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Abstract: Additive manufacturing is a vanguard technology that is currently being used in several
fields in medicine. This study aims to evaluate the viability in clinical practice of a patient-specific 3D
model that helps to improve the strategies of the doctor-patient assistance. Data obtained from a
corneal topographer were used to make a virtual 3D model by using CAD software, to later print
this model by FDM and get an exact replica of each patient’s cornea in consultation. Used CAD and
printing software were open-source, and the printing material was biodegradable and its cost was
low. Clinic users gave their feedback by means of a survey about their feelings when perceiving
with their senses their own printed cornea. There was 82 surveyed, 73.8% (9.74; SD: 0.45) of them
considered that the model had helped them a lot to understand their disease, expressing 100% of them
their intention of taking home the printed model. The majority highlighted that this new concept
improves both quality and clinical service in consultation. Custom-made individualized printed
models allow a new patient-oriented perspective that may improve the communication strategy from
the ophthalmologist to the patient, easing patient’s understanding of their asymmetric disease and its
later treatment.

Keywords: computer-aided geometric design (CAGD); additive manufacturing (AM); scheimpflug;
low cost

1. Introduction

Keratoconus (KC) is an asymmetric condition in which the cornea, at a local level, becomes
thinner and develops a cone-like bulge. Prevalence of this corneal degeneration is variable: many
studies suggest a value ranging from 50 to 230 cases per 10,000, due to variability of diagnostic criteria.
Keratometry, slit-lamp biomicroscopy, corneal topography and retinoscopy are the most common
exams used for KC diagnosis [1,2].

Currently, there is an increasing need from patients to be better informed about clinical practice [3],
however, improving patient information in ophthalmology consultations remains a clinical challenge [4],
as ophthalmologists develop their doctor-patient assistance strategies using conventional techniques
based in bi-dimensional (2D) images [5]. Many of the patients that attend consultations suffer from
severely diminished visual acuity, something that is particularly frequent in advanced cases of KC,
impeding the explanation of their pathology to them by means of drawn pictures or 3D renders on
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a screen. Consequently, as patients cannot take advantage from the benefits of three-dimensional
(3D) images to spatially conceptualize the real extent of their pathology, new approaches need to be
explored in the patient-doctor’s communication process.

The fundamental pillar for a successful clinical consultation is the ability that the ophthalmologist
shows to manage patient expectations, as frequently patients do not understand the true nature of
their medical condition in KC disease, which leads to a scenario of frustration and poor outcomes [6].
In clinical practice, several authors have demonstrated that the use of physical 3D models of biological
structures improves the understanding of the disease by the patients [7-9], which suggests that the use
of senses over a three-dimensional physical model makes patient’s learning easier, providing a better
understanding of the pathology and its later treatment. Thus, it would be of great interest, in the field
of ophthalmology, to develop a new concept of information and education of patients that promoted
success in ophthalmological consultations (Figure 1).
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Figure 1. New concept of information and education in clinical practice.

Additive manufacturing (AM) is a disruptive and sustainable innovation [10] that allows the
fabrication of three-dimensional (3D) objects. This term comprises many subcategories, such as rapid
prototyping, direct digital manufacturing (DDM) and 3D printing (3DP), among others [11], all of them
increasingly useful in automotive [12,13] and aerospace/defense [14,15] industries. When combined
with reverse engineering and CAD modeling techniques, AM technologies can end up the design
process in engineering, allowing more freedom when designing, higher customization, less waste
production and manufacturing complex structures in a faster way [16,17].

In the field of medicine, AM technology is used for the manufacture of highly customized vanguard
devices, as well as printing tissues and soft organs [6]. In addition, the advent of new technologies has
propelled AM to become an accessible and cost-effective technology for medical community [18], being
it also used in different fields for the fabrication of personalized models used in surgical planning,
residents teaching or patients education [19-29]. Furthermore, these designs are frequently available
in the Internet in open access for the medical community, promoting the development of collaborative
networks between doctors and researchers, which turns them into a fundamental tool in translational
research [30,31].
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Our research group has validated a virtual 3D model of the cornea for each specific patient by
using proprietary software [32]. These models have been used for the diagnosis of KC in virtual
environments [33,34], but can also be used for 3D printing, so the printed physical model will reflect
the abnormal irregularities and asymmetry that characterizes the cornea as KC disease progresses,
in a way that patients would be capable of conceiving the geometrical variability of their cornea
comparing it with a healthy one. This way, patients will be able to conceptualize the physical cause
that inducts their loss of visual acuity, and consequently, their quality of life. Furthermore, and in the
framework of promotion of the collaborative research networks, in this research work we propose
the use of open-source software for the generation of the files of the virtual 3D models of the patients,
so they can be used for any member of the international scientific community.

Thus, in this research work, it is proposed a new concept of patient information that uses 3D
printed models of the cornea in the clinical practice of a hospital, using for its creation open-source
software, both for the generation of the CAD models and the 3D printing files. The main objective
pursued is improving the communication strategy of the ophthalmologist with the patient, easing the
patient’s process of understanding their disease and its later treatment, and avoiding a situation in
which patients do not realize the real dimension of their disease, that could lead them to a scenario of
frustration and poor outcomes.

2. Material and Methods

2.1. Patients

This article presents an observational comparative study that included 30 corneas of healthy
patients (13 men and 17 women, average age 28.01 + 14.19) and 52 of patients with keratoconus
(22 men and 30 women, average age 26.71 + 13.41). Keratoconus patients were also divided in
several sub-groups, depending on the disease severity in the Amsler-Krumeich grading system [2,35]:
20 grade I, 14 grade II, 12 grade III and 6 grade IV.

The tenets of the Declaration of Helsinki (7th rev., Oct-2013, Fortaleza, Brazil) were followed for
the development of the research, and it was backed up by the Committee of Ethics of the hospital
participating in this study, signing all patients their consent to participate. The subjects whose data were
used in this study were diagnosed in Vissum Corporation Alicante (a centre in affiliation with Miguel
Hernandez University of Elche, Spain), and their data is stored in the “Iberia” database of KC eyes that has
been developed for the National Network for Clinical Research In Ophthalmology RETICS-OFATARED.

The procedure to discriminate between normal and KC patients was made according to validated
up-to-date topographical and clinical verifications [2,5]. The exclusion criteria were the subsequent:
contact lenses use in the thirty days that preceded their initial visit, ocular surface irritation, any
previous ocular surgical procedure, mild or acute dry eye or presence of any other ocular comorbidity.
Healthy eyes selected were all those that did not coincide with any of the exclusion criteria, while
the diagnosis of keratoconus according to standard guidelines was the criterion to be included in the
KC group.

2.2. Methods

Corneal tomographers based on Scheimpflug technology allow us to obtain a file in comma-separated
values (CSV format), which can be used for different studies [36—39]. This file is composed of a spatial
cloud of points in matrix form that represent corneal surfaces [32].

In this research work, Sirius tomographer (CSO, Italy) has been used. It is equipment that has
proved its validity in clinical practice [5]. For the selection of data, just the topographies showing the
highest acquisition quality were included in the study.

The custom-made individualized printed model reconstruction procedure consists of the following
successive stages (Figure 2): I) surface and 3D model generation, II) 3D printable model preparation
and III) 3D model printing in clinical practice.
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Figure 2. Proposed methodology for custom-made individualized model printing.

I. Surface and 3D model generation. At this point, a volumetric dataset was calculated from
the available CSV file. This task can be performed by several software applications. In this study,
CloudCompare 2.9.1 open-source software was the one used to generate the 3D model, using its
“Delaunay 2.5D (best fitting plane)” option to generate a mesh from the point cloud of each surface.
Then, the perimeter surface was created and, using Boolean operations, it was merged with the anterior
and posterior corneal surfaces to create the final volume, which was then cut by a sagittal plane that
passed through the optical axis and the minimum thickness points (anterior/posterior) of the corneal
surfaces. CloudCompare entities are saved as BIN files, a format that is highly compatible with most
open source 3D graphics software, so they can be easily used by any collaborative research network.

II. 3D Printable Model Preparation. 3D Printing process needs to define the surfaces of the solid
model as a polygonal triangle mesh. However, even doing so, the virtual 3D model is still unfinished
and its rough borders have to be refined. Other surface improvements can also be done, such as
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inspecting and modifying any overlying surfaces, and simplifying the image file to increase printing
efficiency. For this purpose, Cura 2.5 free software (Ultimaker, Netherlands) was used. To do so, files
generated in CloudCompare were exported into STL (Stereolithography, Standard Triangle Language
or Standard Tessellation Language) format [40], which is a very versatile and greatly compatible format
with all 3D printers. Then, printing parameters were set in Cura, and a file containing all printing
information (points, trajectories, speed, filling, etc.) was then generated as a GCODE file, which was
lately uploaded to the 3D printer controller using a USB pendrive. 3D model files (.stl) and printing
information files (.gcode) for both a healthy and an advanced KC cornea, complete and by a sagittal
cut, have been attached as Supplementary Materials.

III. 3D Printing. The printer selected for this project was a FDM (fused deposition modeling)
model designed by the UPCT-Makers organization, named “3D Printer ETSII -UPCT” [41]. This 3D
printer is part of the RepRap project [42], so its drawings and technical data are open-source and
available in the Internet, allowing its construction by any user. It was endowed with an Arduino
MEGA controller, RAMPS 1.4 and drivers V. 88.25, and was programmed with Marlin software. It can
be considered a low cost printer, as it had an approximate cost of less than 120 €, with an average life
expectancy of 2000 duty hours.

The material used for 3D printing was polylactic acid (PLA), itis a rigid biodegradable polymer [43],
that is stable to ultra-violet light, has low flammability and its characteristics are similar to PET polymer.
Its properties, along with main printing parameters, can be checked in Table 1.

Table 1. 3D printer parameters.

Parameter Values/Settings
Material PLA
Quality: layer height 0.2-0.3 mm
Fusing material density 1.25 gfem?®
Fusing material fusion point 160 °C
Printing temperature 225°C
Nozzle diameter 1 mm
Flow rate 100%
Print speed 500 mm/s
Travel speed 130 mm/s
Printing area 22 cm X 23 cm X 20 cm

In our study, two physical models of cornea were printed per patient: a complete cornea, which
corresponds to its full structure geometry, in which patient can see and perceive with his own senses
the possible existence of morphological alterations at surface (anterior/posterior) level and the corneal
volume; and another cornea, which corresponds to one half of a full cornea, defined by a sagittal
plane that passes through the geometrical axis and the minimum thickness points (anterior/posterior)
of the corneal surfaces (Figure 3), in which the patient can perceive with his senses the possible
existence of morphological alterations in corneal thickness and the variation of curvature at surface
(anterior/posterior) level.

As corneal real diameter is about 12 mm, and at that size corneal alterations were difficult to
perceive, the use of a 1:1 scale for the model was discarded. Conversely, using big size models makes
perception easier, but also significantly increases printing costs, so finally a 5:1 scale was used, as it
was the smallest one that allowed an easy detection of slight changes in thickness and/or curvature.

The average time for all the process (3D modeling and 3D printing) was of 24.8 + 3.4 min.
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Figure 3. Healthy cornea (male patient of 24 years, Oculus Sinister (OS), Corrected Distance Visual
Acuity (CDVA) = 1, astigmatism = 0.45, comma of like = 0.27, spherical-like = 0.23, Q8mm = —0.16
central thickness= 534). Advanced keratoconus (female patient of 20 years, Oculus Dexter (OD),
CDVA = 0.44, astigmatism = 1.17, comma of like = 2.27, spherical-like = 2.50, Q8mm = —2.42 central
thickness = 402).

2.3. Questionnaire

Finally, in order to assess the usefulness of the 3D model, a questionnaire was passed to each
patient (82 in total). If the patient suffered from keratoconus, his custom 3D printed model was
compared with a typical healthy cornea model, and their condition was explained to them, filling
the questionnaire just after finishing the explanation. Questions made can be seen in Table 2. When
selecting the scale for each question, for Q1, Q2 and Q5 we used 10 levels Likert items instead of the
most common five level ones, looking for minimizing central tendency bias, while for questions Q3
and Q4, we opted for an absolute scale (yes/no/neutral).

Table 2. Questions made to the patients.

Number Question Test Possible Answer

What usefulness do you attribute to this
custom 3D model?

Q1

From 1 = not useful at all to 10 = very useful

How much did the custom 3D model help
you to better understand your condition?

Q2 From 1 = nothing at all to 10 = a huge lot

Would you like to take the custom 3D
model with you after the consultation?

Q3 Yes/No/Neutral

Would you consider that using this
Q4 custom 3D model improves the quality of Yes/No/Neutral
our clinical service?

How much do you consider that patients
Q5 would benefit from the use of these From 1 = nothing at all to 10 = a huge lot
custom 3D models in consultations?

3. Results

The study lasted from January 2018 to March 2019, in Vissum Hospital in Alicante (Spain). Table 3
reports the collected answers to the five questions proposed to the patients.
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Table 3. Questionnaire results.

Standard

Number Possible Answer Percentage Average Deviation (SD)

From 1 = not useful at all
Q1 to 10 = very useful i 967 053

From 1 = nothing at all
Q2 to 10 = a huge lot B 9.74 0.45

Yes 100.0
Q3 No 0.0
Neutral 0.0

Yes 95.2
Q4 No 0.0
Neutral 4.8

From 1 = nothing at all
2 to 10 = a huge lot - 8.62 0.58

Results of Q1 show that the majority of patients found the 3D custom model “very useful”, with
more than half of the answers (69%) placed in top of the graduated scale (9.67; SD:0.53).

Similarly, 73.8% of patients considered that the use of the 3D personalized model had helped
them “a huge lot” to understand their disease (9.74; SD: 0.45) when they answered question Q2.

In relation with question Q3, 100% of patients expressed their will to take the model home with them.

Results of question Q4 show that the vast majority of (95.2%) consider that the use of the
personalized 3D model improves the clinical service rendered, being remarkable that only 4.8% believe
that it does not make it better nor worse, and none of them consider that it makes it worse.

Finally, the results of question Q5 suggest that patients have considered that the use of personalized
3D models has improved the clinical service rendered in a high degree (8.62; SD:0.58).

To estimate the cost of realization of the 3D model, we considered the following: cost of data
acquisition (0 €, included in consultation costs), proportional part of the cost of buying of the printer
(120 € divided by 2000 h of life, 0.06 € per hour), labor of the laboratory technician (6 min at 5.66 €/hour,
0.57 €), software (0 €, as it was all open source) and material (30 g. of PLA at 18 €/kg, 0.47 €). The final
estimated cost for each piece was around 1.10 €.

4. Discussion

In medical consultation, it has been demonstrated that a combination of both physical models
and conventional 2D techniques of bone structures, gives patients a better comprehension of their
disease [44]. Furthermore, in terms of teaching human anatomy, it has been proved that physical 3D
models are more efficient to determine the existence of the disease than corpse models [45,46].

Physical 3D modeling has the capability of creating exact models of the human anatomy, thus
being a fundamental tool not only for research [47], but also to educate patients [3].

However, using AM for biomedical applications has also its limitations: small anatomical features
and structural details are difficult to replicate, and the number of biocompatible materials and resins
available is limited, making AM expensive sometimes [48].

In the field of ophthalmology, AM applications are, conceptually speaking, not very different from
the ones used in other fields of medicine. In scientific literature, there have been described works related
with the printing of the first artificial cornea [49], fetal face modeling [50], intraocular lenses [51-54] or
rigid permeable gas contact lenses [55], ocular prosthesis [56-59], intraocular tumor visualization [60],
medical staff education [61,62], tissue bio-printing [63-65], printing of surgical instruments [66] or
medical devices [67] or goggles for patients with deformations of unusual facial features [68]. However,
we have not found proof of the use of the AM as a tool for improving doctor—patient communication
strategies in KC disease.
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In this research work, we describe our experience using AM techniques in ophthalmological
clinical practice to obtain a custom-made individualized printed model, by means of a low-cost material,
such as PLA. The objective is that patients acquire, basing on the physical model built, knowledge
of the real dimension of the asymmetrical morphological changes that their cornea suffers when the
disease progresses, and that affect their optical capacity, and therefore their quality of life.

For the building of the physical model, it is necessary to start from a virtual 3D model. However,
in all different collaborative platforms of medical research related with virtual models [30,31,69], we
have not found any virtual models of healthy or keratoconus-diagnosed corneas. Thus, virtual models
have been generated from the data provided by the Sirius (CSO, Italy) tomographer, by using the
open-source software CloudCompare, although these data can be obtained from any tomographer
based in Scheimpflug technology [5]. In our study, two virtual models have been generated for each
patient, one of a complete cornea, and another of a cornea with a sagittal cut defined from the minimum
thickness points. These virtual models can be a fundamental tool in translational research, if shared
through the collaborative open-access platforms [69].

From these patient-specific virtual models, and using open-source software, as well as low-cost
and freely available manufacture hardware, the physical models used in this study were produced.

For this work, different printing speeds, layer thicknesses and nozzle sizes were tested, and it
could be observed that a higher speed generally implied higher layer thicknesses, and therefore, a worse
surface finishing in the model, which is in accordance with other authors works [70]. Finally, we opted
for the speed, thickness and nozzle size indicated in Table 1 to get an acceptable surface finishing, with
printing times below 30 min, that is the mean time that patients wait after the clinical tests to enter
the doctor’s consultation to be informed of the diagnosis. With these parameters, the printing is a bit
cheaper than usual in other cases [71], and gives printed cornea a “stepped” aspect, although with
enough precision to show, in an evident way, the differences between a normal cornea and one with its
thickness locally diminished.

The fabrication cost of the 3D printed model, due to its simplicity and low cost of PLA, was of
only 1.10 € each, which remains wide below the 490 € that can cost a model of more complex organs,
such as kidneys, made in photopolymer materials [72].

Regarding the questionnaire answers, results of Q1 confirm the results obtained in other similar
studies [73]. Similarly, answers to question Q2 are in line with what have been observed in other
previous investigations, which used 3D models to explain patients their condition or the surgery
that they will undergo [72]. Furthermore, the results obtained are in line with the ones obtained by
Precee et al. [7], who demonstrated that the use of the touch and sight senses, with regard to a physical
3D model, improve the learning curve of the patients in relation with their disease.

In relation with question Q3, results contrast with the results obtained in other studies, in which
39% of the patients expressed that they would not be interested in buying the model [71], and can be
explained by the fact that the low fabrication cost of the model allows the clinic to offer this service
without any additional charge to the patient, integrating its cost in the cost of the medical consultation
itself, making the patient more willing to take it home.

Results of question Q4 are in line with the ones presented by other authors, in which they
demonstrated the usefulness of the 3D printing to improve the education in clinical practice [18], more
precisely, in this study 95.8% of the surveyed considered useful the 3D models.

Finally, the results of question Q5 are in line with the values obtained for other studies (9.4/10)
when patients have been asked about the degree of satisfaction with the medical services after the use
of 3D models for their education [72].

Our study has, however, some limitations. First, the cross-sectional nature of the study presents a
limited extension of the patient’s cohort due to the low prevalence of this corneal degeneration; and
second, the use of patients of just one hospital for the study. A longitudinal study with a larger sample
size and including patients from different hospitals would be needed to further investigate the clinical
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utility and viability, in clinical practice, of a patient-specific 3D model that helped to improve the
strategies in doctor—patient assistance.

5. Conclusions

In this paper, the authors evaluated the possible benefits of using custom made 3D printed models
of the cornea as a tool for increasing patient’s knowledge and understanding of their asymmetric
condition, with the aim of improving the level of quality perceived for the services rendered in
medical consultations.

The results show that owning a custom 3D printed model of their cornea was considered interesting
for the totality of the patients that participated in the study, and that the comparison of their pathologic
cornea with the 3D model of a healthy one, helped them “a lot” (9.71/10, SD:0.45) to understand their
disease, considering the vast majority (>95%) of the participants that using the 3D printed realistic
models increased the quality of services rendered in the clinic.

In addition, the use of open-source and free software, as well as a RepRap 3D printer, whose
drawings are available for everyone, make the approach described in this work accessible not only to
high-end clinics, but to any clinic, whatever its budget is.

In conclusion, 3D printing has allowed the creation of precise physical models that reflects
asymmetric modifications due to keratoconus pathology. The visual and tactile perception of these
models allow patients to better understand and manage the perspective of treatment of their disease,
making the clinicians job more efficient and therefore increasing the perception of quality of the service
they render.

Although the use of 3D printing is increasing currently, the true potential of this technology will be
achieved when function and form become fully integrated, as for example happens in the bio printing
of tissues or organs, such as the cornea, that even if it has not been fully reached yet, the first steps
have started to be successfully taken [49].
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