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Nowadays, the popularity of the unmanned aerial vehicles (UAVs) is high, and it is expected that, in the next years, the
implementation of UAVs in day-to-day service will be even greater. These new implementations make use of novel technologies
encompassed under the term Internet of Things (IoT). One example of these technologies is Long-Range (LoRa), classified as a
Low-Power Wide-Area Network (LPWAN) with low-cost, low-power consumption, large coverage area, and the possibility of a
high number of connected devices. One fundamental part of a proper UAV-based IoT service deployment is performance
evaluation. However, there is no standardized methodology for assessing the performance in these scenarios. This article presents
a case study of an integrated UAV-LoRa system employed for air-quality monitoring. Each UAV is equipped with a set of sensors
to measure several indicators of air pollution. In addition, each UAV also incorporates an embedded LoRa node for com-
munication purposes. Given that mobility is key when evaluating the performance of these types of systems, we study eight
different mobility models, focusing on the effect that the number of UAVs and their flying speed have on system performance.
Through extensive simulations, performance is evaluated via multiple quality dimensions, encompassing the whole process from
data acquisition to user experience. Results show that our performance evaluation methodology allows a complete understanding
of the operation, and for this specific case study, the mobility model with the best performance is Pathway because the LoRa nodes
are distributed and move orderly throughout the coverage area.

1. Introduction

The Internet of Things (IoT) is gaining momentum. [oT
represents a heterogeneous network scenario with virtually
unlimited uses [1, 2]: Smart-Homes, Smart-Cities, Industry
4.0, Smart-Grids, etc. At the same time, unmanned aerial
vehicles (UAV), also known as drones, are becoming a very
interesting tool for traffic surveillance, crop monitoring,
border patrolling, disaster management, remote areas
control, or wildfire monitoring, and among others [3].
Examining the characteristics of both, [oT and UAVs, it can
be presumed that UAVs could become a natural symbiotic
element of the Internet of Things (IoT) [1]. Let us delve into
this idea.

On the one hand, UAVs can be classified in terms of
several features such as size, communication capacity, flight

mode, and wing types. UAVs can work isolated or in groups,
giving rise to a new type of communication network called
Flying Ad hoc Networks (FANETS) [4]. FANET can be seen
as an extension of Mobile Ad hoc Networks (MANETS) with
singular features in terms of mobility, topology, wave
propagation, and energy constraints. In contrast to other
communication networks as MANET or Vehicular Ad hoc
Networks (VANETs), the UAVs move freely in the air,
including a third axis (z) to the mobility of the devices (x, y)
considered so far. Mobility models used for UAVs are
usually classified according to its nature and are either
created for other networks and then adapted to this new
environment or specifically introduced as mobility models
[5]. Mobility models are key for an optimal UAV de-
ployment [6]. Numerous factors have a notable effect on the
trajectory of UAVs such as energy constraints, collision
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avoidance, flight time, ground users’ demands, and the
specific service in use. For instance, UAVs employed for
extension coverage of wireless telecommunications network
(better connectivity to terrestrial networks) will need to
consider the Quality of Service (QoS) as a key element to
optimize their performance [7].

On the other hand, it is a common practice in IoT to use
small (and sometimes low cost) sensor devices to capture
data from multiples sources. Then, these data are usually sent
by means of wireless technology to a gateway that provides
Internet connectivity to the cloud, where network servers are
located. Network servers are responsible for collecting and
processing the data and also making decisions or defining
specific actions to be carried out. Although there are several
technologies being used for the wireless part of this general
IoT communication architecture, Low-Power Wide-Area
Network (LPWAN) solutions are standing out [8]. Among
their benefits, we can highlight the following: energy effi-
ciency, low cost, possibility of dense deployments, and high
performance in a wide coverage area. However, it is im-
portant to note that the low data rate (DR) and the duty cycle
constraint (1%) make this technology not appropriate for
time-sensitive traffic. One of the most popular LPWAN
technologies is Long-Range (LoRa) [9]. LoRa uses a pro-
prietary modulation algorithm patented by Semtech [10] as a
derivative of chirp spread spectrum (CSS), operating in the
industrial, scientific, and medical (ISM) band and spreading
a narrowband signal over a wider channel bandwidth. The
communication architecture of LoRa (layers and protocols)
is defined by LoRaWAN [11, 12].

Consequently, these small sensors used in IoT together
with their communications capabilities could be easily
embedded in UAVs (e.g., Figure 1). By doing so, the UAV's
provide a new framework to deploy IoT-based services.
Although the maturity level of UAVs and LoRa/LoRaWAN
for IoT is higher and higher, there are some important
unsolved issues. From the UAV perspective, mobility is a
challenge. Specific mobility models have been proposed in
the scientific literature for UAVs and FANETs. However,
how to select the best mobility pattern for a given service is
still an open issue. From the IoT perspective, there is not yet
a standardized methodology for performance evaluation in
terms of quality [13].

In this paper, we address these two questions using a case
study. Particularly, we evaluate the performance of an IoT
air-quality monitoring system that integrates LoRa/LoR-
aWAN and UAVs. Each UAV incorporates an IoT device
that has sensors, which measure the quality of the air, and a
LoRa node for sending these data to a gateway. Eight dif-
ferent UAV mobility models are tested, namely, Random
Walk (RW), Random Waypoint (RWP), Random Direction
(RD), Gauss-Markov (GM), Reference Point Group Mo-
bility (RPGM), Pathway, Semi-Random Circular Movement
(SRCM), and Smooth Turn (ST). Performance is measured
using four quality components, namely, Quality of Data
(QoD), Quality of Information (Qol), Quality of user Ex-
perience (QoE), and Quality Cost (QC). These quality
components encompass the whole process from data ac-
quisition to user experience and were introduced in previous
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works [14, 15]. Observe that, for each mobility model, we
will measure the effect on performance of both the number
of UAVs, equivalent to the number of IoT end-nodes, and
the UAVS’ flying speed. Through intensive computer sim-
ulations, we find out the best mobility model to be used for
this IoT system. Results show that the mobility models that
orderly cover all the areas obtain the best performance for
the service under study.

The rest of the paper is organized as follows. A review of
the state-of-the-art literature is included in Section 2. Section
3 describes the materials and methods used in this study.
Simulation results are shown and discussed in Section 4. The
paper ends with a conclusion in Section 5.

2. Related Work

There are many proposals in the scientific literature
addressing the trade-off between resource optimization and
performance in UAV deployments. It is well known that the
mobility model is one of the key factors with a high impact of
performance. Therefore, in this section, we first review
previous works related to optimal location, distribution, and
trajectories of UAVs. Then, we focus on studies that analyzed
the impact of UAV mobility in the performance of the
system in terms of quality metrics. Finally, we explore those
works that have proposed the combined used of IoT wireless
communication technologies, e.g., Wireless Sensor Net-
works (WSN) or LoRa, and UAVs.

In [3, 16], authors studied mobility models in UAVs. The
goal was to identify the best mobility model in order to
achieve higher WLAN coverage without decreasing per-
formance. They took into account the qualitative and
quantitative communications needs and used the number of
drones as the main investigated parameter. Similarly, Chen
et al. [17] suggested maximizing QoE at the expense of
minimizing the total transmitted power by each UAV
considering the channel communication constraints be-
tween the deployed devices and the base station (or base
stations). Gao et al. [18] proposed a high energy-efficient
resource allocation scheme considering the mobility of the
UAVs and measuring the performance of devices in terms of
QoE in dynamic aerial channel conditions and different
transmission DR. Vashisht et al. [19] analyzed the impact of
the increase of peripherals into UAVs; the idea was that only
needed peripherals should be fixed in drones with limited
resources to perform all the tasks in an energy-efficient way
and increasing as much as possible the flight time.

Cheng et al. [20] proposed a security alternative re-
garding UAV trajectories and time scheduling with an it-
erative algorithm solving a convex optimization problem.
Similarly, Zhao et al. [21] solved an optimization problem
for UAV trajectories and Non-Orthogonal Multiple Access
(NOMA) precoding by erasing the interference from the
base station to UAVs or minimizing to a given threshold.
Also coupling with QoE, contributions [17, 22, 23] resolved
different optimization problems to guarantee the QoE re-
quirement using the minimum transmission power in the
UAV. In this case, the goal was to provide wider coverage for
all nodes in a particular area maintaining QoS requirements
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FIGURE 1: Example of an IoT deployment integrating LoRa/LoRaWAN and UAVs.

in the 3D deployment or maximizing the number of nodes in
the coverage area but always being aware of energy effi-
ciency. Other studies [18, 19, 24] addressed different chal-
lenges such as high node mobility, fluid topology, or low
node density. As an example, Bouachir et al. [24] studied the
Random Waypoint (RWP) mobility pattern, having a great
impact on QoS metrics, mainly due to interference and
packet collisions [25].

Regarding the combination of UAVs and IoT, several
studies are addressing the use of WSN in these scenarios. For
instance, in [3], the authors studied the features and con-
ditions in a UAV network using different metrics to guar-
antee connectivity, security, and scalability. Other authors
[26-29] evaluated the use of WSN to acquire raw data from
the environment and employed LoRa/LoRaWAN to trans-
mit the data to the server, assuming that LoRa covers a range
up to 30km. In [30, 31], the authors integrated WSN with
UAVs and proposed an optimal trajectory design, mini-
mizing the total path length, passing close to the main in-
teresting points, and ensuring a minimal delay in the
communication. Sharma et al. [32] tested a LoRaWAN
network using UAVs for urban surveillance focusing on
stress areas, being able to preserve 40% of the network
energy consumption.

From a more complete perspective, Yuan et al. [1]
assessed and compared the performance in rural and urban
environments of UAVs equipped with LoRa, WiFi, and
Long-Term Evolution (LTE) networks; results showed that
LoRa achieved the best performance with greater swarm
density and longer coverage range when LTE was not
supported. Kirichek and Kulik [33] addressed the use of
different elements in the networks as WSN acquiring data
from terrestrial segments. In their proposal, LoRa/LoR-
aWAN devices transmitted the data acquired from the WSN
to a UAV gateway. Then, the UAV acting as a gateway and/
or as a repeater forwarded the data to reach the LoRa base
station, which, in turn, forwarded the data to a network
server. Finally, Trasviia-Moreno et al. [34] developed a

complete system with buoys equipped with WSN for ma-
rine-coastal environment monitorization and transmitted
the acquired data using LoRa technology. This provided an
easy-to-use and low-power solution with a large coverage
area, one of the main features of LoRa. In parallel, a UAV
with LoRa technology acted as a gateway to collect the data
up to forwarding to the server that processes it. Finally,
security is also one important concern because these devices
could be an easy target. Some contributions addressed this
issue using an efficient resource management and planning
the strategy in accordance with QoS [19, 35, 36].

Despite existing many contributions that evaluated the
performance of different mobility models in UAV or the
incorporation of LoRa to UAV deployments, they have
based the performance analysis only on two quality com-
ponents, namely, QoS and QoE. For QoS, the examined
metrics are the classic ones: delay, jitter, throughput, and
packet losses. However, the QoE component does not have a
standardized model for IoT services. Consequently, the
metrics used to assess QoE in the state of the art are ex-
tremely unalike. With this paper, we verify a proposal that
harmonizes the performance evaluation of IoT services using
a complete UAV/LoRa/LoRaWAN deployment as a case
study. The novelty resides on the use of multiple quality
dimensions (QoD, Qol, QoE, and QC).

3. Materials and Methods

In this section, we describe the main features of the mobility
models used in UAV deployments. Then, we describe the
characteristics of the simulation framework that we have
used in this study as well as the performance evaluation
methodology.

3.1. Mobility Models. Dynamic topology, high mobility, etc.,
are significant challenges in the design of UAV networks and
services. Taking into account that testing with real devices is



costly and depends on region restrictions, Camp et al. [25]
suggested the use of mobility models under simulation to
assess the performance of UAV networks and FANETs. The
mobility of UAVs is largely different to the mobility of
vehicles placed in the ground, so in most cases the MANET
models are not directly applied. According to [5], two
primary groups can be found for mobility models in this
scenario: adapted mobility models and specific models de-
fined for FANETs.

On the one hand, Xie et al. [5] adapted and extended
traditional MANET mobility models from 2D to 3D clas-
sifying them into five categories: random, temporal de-
pendency, spatial dependency, geographic dependency, and
hybrid mobilities.

The first category encompasses Random Mobility,
which, in turn, includes three models, namely, Random
Walk (RW), Random Waypoint (RWP), and Random Di-
rection (RD). In RW, the node randomly chooses the ori-
entation and speed during a time interval, and before it ends,
it chooses a new random orientation and speed for the next
period reflecting or wrapping from the boundaries. In RWP,
each node randomly selects a target in the coverage area and
the travelling speed. When the node achieves the target, it
waits for a random time; then, it chooses a new target and a
new speed to reach the new target. Finally, in RD, the node
chooses a course and speed moving to the border, where it
rests and after that chooses a new direction to go. The
difference among RD and RW is the travelling duration,
being constant or random, respectively. In contrast, the aim
of RWP model is to measure the influence of the range,
speed, the number of hops, and the density of nodes in a
FANET. Observe that despite the random mobility, the
destination position is always in the constrained area range.

The second category is the temporally dependent mo-
bility models that claim to avoid sudden changes in direction
and speed, such as the Gauss—-Markov (GM) [37] for
tracking trajectories of targets. The GM equations are found
in [5] and depend on heading speed, direction, and pitch,
avoiding abrupt changes close to the borders. The GM model
has been largely used for network performance evaluation.
Smooth Random Mobility correlates the behavior of the
vehicles in the ground by the Stop-Turn-Go model.

The third group is space-dependent, where the mobility
of a node depends on the available space and the behavior of
the closest nodes. One example is Reference Point Group
Mobility (RPGM) that follows the master-slave model,
where the members of a group follow the group leader [38].
Another example is Spatially Correlated Mobility, where the
behavior of a node depends on the actions of the other
nodes.

The fourth category is the geographical dependence
classification, including the models with trajectory re-
strictions due to pathways or obstacles in the way [39].
Lastly, the hybrid models share at least two features of
different categories as the Free-way Mobility model that
relies on the present context (temporally dependent) and the
position of surrounding nodes restricted to lanes on high-
ways (space-dependent). Another case is the Disaster-Area
model where many mobility models are included [5].
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On the other hand, many mobility models have been
specifically created for FANETS. First, in the Semi-Random
Circular Movement (SRCM) model, all UAVs are placed
around a fixed center and turn around it with a radius, speed,
and initial angle. This model is not suitable in MANETs
because these conditions are not feasible on ground due to
geographical or item restrictions. But it is possible in FANET
because of the available free space in the air. Second, the
Three-Way Random Mobility assumes the heading speed
and three possible states defined on a Markov chain: going
straight, turning right, and turning left. Third, the Phero-
mone Repel model splits the area into small grids trying to
cover all the available networks. The behavior of Three-Way
Random and Pheromone Repel models close to the border is
similar to GM model, choosing to turn completely the di-
rection of the UAV pointing to the interior of the area.
Fourth, the Smooth Turn (ST) captures the free-space
mobility of the nodes making smooth trajectories with a
large radius as aircrafts in 2D and 3D. In the second case, the
3D model has two versions, z-dependent and z-independent,
which vary in the correlation along z-dimension and the
plane (x, y). Fifth, the Flight-Plan (FP) mobility defines
flights where the initial and final point are known before-
hand (e.g., regular and commercial), not suitable for au-
tonomous UAVs. Finally, the Multi-Tier Mobility model use
different aircraft types that flight at diverse heights. Figure 2
contains a brief summary of the mobility models mentioned
in [5].

3.2. Performance Evaluation in LoRa. The simulation is
carried out using OMNeT++ [40], INET framework [41],
FLoRa framework [42], and Crypto++ [43]. The simulated
scenario is composed of one server (called for this purpose
Network Server, NS), four LoRa gateways (LoRaGWs), and a
variable number of LoRa nodes ranging from five to twenty
in the LoRa network. The scenario is depicted in Figure 1.
Each UAV incorporates a set of sensors, so that the UAV can
act as a mobile air-quality station. Specifically, each UAV
includes nine pollution metrics.

During simulations, the UAVs will move around the
coverage area at different speeds (10, 25, and 50 km/h). In
addition, given the favored characteristic of LoRa nodes,
these are also embedded into the UAVs to send the collected
data to the LoRaGW. In our scenario, we employ four
LoRaGWs to cover the complete area (40 km x 40 km), thus
maximizing the coverage area, but considering that dupli-
cated packets might be received. Behind the LoRaGWs, four
GWRouters (one for each LoRaGW), one InternetCloud,
one NSRouter, and one Network Server compose the
backhaul network (Figure 1). When a LoRaGW receives a
frame, it forwards it through the cloud to the Network
Server. This element processes the packet and obtains
valuable information for decision-making. In summary,
each UAV in the topology represents an air-quality station
with sensors that acquire data from the environment where
the UAV is flying, and the embedded LoRa node transmits
the raw data to the Network Server through a LoRaGW.
Each LoRa node generates packets randomly using an
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FIGURE 2: Mobility model classification.

exponential distribution with mean 100 seconds. For a better
understanding, sensor measurements are obtained from a
real dataset [44] that corresponds to a suburban area. Table 1
and Figure 3 show the configuration parameters used in the
simulations.

Our goal is to evaluate the performance of eight different
mobility models: RW, RWP, RD, GM, RPGM, Pathway,
SRCM, and ST. For each model, we analyze the effect of the
number of LoRa nodes (i.e., the number of UAVs) and also
their motion speed. The evaluation is carried out using four
quality components introduced in [14, 15], each one cov-
ering a different dimension of the performance, and thus
avoiding overlapping. In this sense, these four quality
components are divided into two magnitudes: profit (QoD,
Qol, and QoE) and cost (QC). Each component assesses one
dimension:

(1) QoD: it measures the quality of raw data as acquired
by sensors. It is calculated as shown in (1) and it
refers to the precision of the sensor reading, the
truthfulness of the measurement (it is within range),
and the completeness of the measured data (if all
sensors work properly).

(2) Qol: it measures the quality of the obtained in-
formation after raw data have been processed in the
server. It includes seven metrics dealing with the

TaBLE 1: LoRa parameters used in simulations.

Parameter Values

Random (7, 12) uniform distribution
. Random (2, 14 dBm) uniform
Transmission power (TP) distribution

Bandwidth (BW) 125kHz

Coding rate (CR) 4/5

Time to first/next packet Exponential (100s)
Number of grids 5x5

dmaxo Amin Suburban {12148.93 m, 999.71 m}

Spreading factor (SF)

quality of the processed data, from the amount of
data received to the accuracy of these data. It is
obtained as shown in (2).

(3) QOE: it measures network performance (i.e., classical
QoS values) and the user experience. Initially, only
the use of the network interface of the LoRa gateway
is considered as a metric different from the well-
known QoS metrics used for performance evaluation
(delay, jitter, packet loss, and throughput). It is
calculated as shown in (3).

(4) QC: it measures the cost in terms of resources, e.g.,
energy consumption, computation capacity, and
duty cycle limitation (1%). Its expression is depicted
in (4).
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FIGURE 3: Specific parameters used in simulations for the mobility models.

QoD = completeness - precision - truthfulness, (1)
Qol = quantity - precision - recall - accuracy )
- timeliness - detail - validity,
QoE = jitter - delay - packet delivery rate 3)
- throughputy, .. - gateway,ijapiiiry>
QC = energy consumption - interface usage. (4)

It is important to observe that each quality component is
the product of several metrics, previously normalized, as

shown in (1)-(4). Therefore, QoD, Qol, QoE, and QC are
also normalized values [0-1], being 1 the best possible
performance and 0 the worst one. Quality components will
be calculated at time intervals, called T,,,, at the network
server. This evaluation period (T.y,) is customized according
to the monitoring needs. In this paper, we use Ty, =500s.

4. Results and Discussion

In this section, we show the results obtained after extensive
simulations. The eight mobility models have been tested with
a variable number of UAVs/LoRa nodes {5, 10, 15, and 20}
and different speeds {10, 25, and 50km/h}. Results are
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FIGURE 4: (a) RW and (b) RPGM models obtain the best QoD.

obtained for QoD, Qol, QoE, and QC. The term QoX will be
used in this section to refer to any of these quality
components.

Generally, the performance in terms of quality com-
ponents QoX improves as the number of LoRa nodes/
UAVs increases. This result applies to all the evaluated
mobility models. The only exception is for RPGM because
all flying nodes are usually located into a small part of the
studied area; therefore, at each T, the system only re-
ceives packets from one or two grids. This entails the worst
value for Qol when the number of LoRa nodes/UAVs is
higher in RPGM. In the situation where the number of
flying devices is constant and we only change the speed of
the devices, the different mobility models obtain similar
results with a slight performance enhancement as the speed
increases. As we commented previously, the Qol compo-
nent of the RPGM model is highly affected by mobility, due
to the coverage; therefore, the faster the movement, the best
the results for this model.

Now, we discuss the particular results for each QoX
component. In relation to the data acquisition process, we
have measured the quality of the raw data obtained by the
UAV-incorporated sensors. Because we are focusing on
collecting data, the QoD component penalizes pollution
measurements that are not taken. If we observe how QoD
varies as a function of the number of nodes, we can see
that, in general, the more the number of UAVs, the better
the performance (Figure 4). In the scenario with 5 nodes,
the raw data obtained by the first LoRa node (nodey) is
weaker because it has not all the sensors to obtain all the
air-quality values. This fact penalizes the QoD in this
scenario. As the number of UAVs increases, this “poor”
UAV goes unnoticed because the rest of UAVs collect a
high number of measurements, thus increasing the value
of QoD. The QoD value is practically the same with a
constant number of UAVs, though with a certain variance
due to the random message generation by each UAV. On
this component, the speed at which the UAV moves
within the coverage area does not have any influence on

the results. Lastly, the scenario with 20 UAVS is slightly
better than others in terms of QoD for all mobility models
because the effect of that “poor” UAV is lower. The
performance for all mobility models are quite similar
because the QoD metrics only depend on the raw data,
which is obtained from the same dataset that is shared by
all the tested mobility models. The best performance is
acquired by RPGM and RW models (Figure 4) and the
worst by RWP and RD (Figure 5).

After the data acquisition process, the Qol component
measures the quality of the obtained information. Qol de-
pends on seven metrics, as shown in (2), which make it very
volatile. In other words, mobility has a higher impact on Qol
than in QoD. To this particular case, the better the per-
formance, the faster the nodes because the Network Server
receives packets from all grids (i.e., more data are available to
monitor all grids in the studied area). The recall metric is
responsible for measuring this effect on Qol. The mobility
model with the best performance for this quality component
is Pathway Mobility due to the orderly arrangement of the
UAVs in the coverage area (Figure 6). This means that once
processed the data, the Network Server assesses information
from all the monitored areas, which is very important for
decision-making.

The use of four LoORaGWSs guarantees that there are no
hidden or “blank” areas without LoRa coverage. Therefore,
the performance in terms of QoE is very similar for all the
mobility models. The only metric that varies a little bit more
is gateway,yailability> Se€ (3). The reason is that this metric
evaluates how busy is the gateway because of the need for
sending data, which could create a bottleneck in specific
congested scenarios (which is not the case). All mobility
models obtain similar results with RD as the best one
(Figure 7); this is because this model looks for the edge of the
area to change the direction, coinciding with the location of
LoRaGWs, so the ratio of delivery packets is higher than in
other mobility models. The speed of the flying LoRa nodes/
UAVs does not affect performance in the QoE quality
component.
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FiGure 6: Continued.
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FIGURE 7: Performance results of the best ((a) RD) and the worst ((b) RPGM) mobility models for the QoE quality component.

Finally, we discuss the QC quality component. The
energy consumption depends on the state of the transceiver
(higher consumption in transmitting state). Due to a

random message generation when the number of UAVs is
lower, the number of times that transceiver is in transmitting
mode is different for each T.,;. This fact makes this
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FiGURE 8: Performance results of the best ((a) GM) and the worst ((b) RPGM) mobility models for the QC quality component.

component unstable because the consumption is highly
fluctuating between two time intervals T,,,. The best result is
obtained for the GM model and the worst for RPGM model
(Figure 8), although the difference is small.

5. Conclusion

The combination of technologies to design a multifaceted
system is a current trend with greater impact on future smart
services. UAVs, as well as LoRa, is a very flexible technology
with an increasing number of applications. However, today,
there is still not a standard to evaluate the performance of
these technologies (or combination of them). Therefore, we
used a model based on different quality components that
address different dimensions of the operation of the service.
We compared the results obtained for eight mobility models
(Random Walk, Random Waypoint, Random Direction,
Gauss-Markov, Reference Point Group Mobility, Pathway
Mobility, Semi-Random Circular Movement, and Smooth
Turn). From the results, we found out that whereas QoD and
QC components hardly vary among models because these
quality components do not depend on communication
factors, some variation is perceived in terms of QoI and QoE.
These two quality components, Qol and QoE, depend on
wireless and wired network conditions, and thus, the pro-
vision and the movement of the flying nodes across the
network have a direct impact on performance. On the one
hand, the Qol component achieves a better performance for
those mobility models whose UAVs move orderly through
the network. On the other hand, QoE relies on network
conditions and the best results were achieved for the RD
mobility model which minimizes network metrics such as
delay, jitter, and packet delivery rate. As future work, we plan
to improve the quality model to find out the best relationship
among quality components.
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