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Abstract: Anhydrous ethanol is a promising alternative to gasoline in fuel engines. However, since ethanol
forms an azeotrope with water, high-energy-consumption separation techniques such as azeotropic
distillation, extractive distillation, and molecular sieves are needed to produce anhydrous ethanol.
This work discusses the potential development of an integrated process for bioethanol production using
ionic liquids and Ceratonia siliqua as a carbohydrate source for further fermentation of the aqueous
extracts. A four-stage counter-current system was designed to improve the sugar extraction yield
to values close to 99%. The alcoholic fermentation of the extracts showed ethanol concentrations
of 95 g/L using the microorganism Saccharomyces cerevisae. The production of anhydrous ethanol
through extractive distillation with ethylene glycol was simulated using CHEMCAD software, with an
energy consumption of 13.23 MJ/Kg of anhydrous ethanol. Finally, several ionic liquids were analyzed
and are proposed as potential solvents for the recovery of bioethanol for the design of an integrated
extraction–fermentation–separation process, according to their ability to extract ethanol from aqueous
solutions and their biocompatibility with the microorganism used in this study.

Keywords: carob pod; bioethanol; extractive distillation; ionic liquids; biocompatibility;
liquid–liquid extraction

1. Introduction

The global demand of energy is expected to rise sharply in the next decades as a consequence of
the increase in worldwide population. The energy demand is projected to increase by 50% or more by
2030 [1]. The depletion of conventional fossil fuel reserves together with the growing concerns for
environmental protection have aroused considerable interest in promoting alternative and renewable
sources of energy. The shift towards more sustainable energy sources is thus unavoidable, and in
this context, biofuels are seen as promising candidates to replace fossil fuels in the short term [2].
Biofuels containing energy from geologically recent carbon fixation offer environmental benefits as
their employment reduces the atmospheric dioxide carbon concentration, the emission of hydrocarbons
and particulate matter, and the discharge of sulfur compounds [3].

Bioethanol is especially attractive as an alternative to fossil fuels, reason why its global production
has significantly increased in the last years. Bioethanol is an environment-friendly oxygenated fuel
containing over 34% of oxygen, with enhanced combustion efficiency (15% higher) in comparison to
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gasoline. The renewable sources for bioethanol generation largely include sugars, starch, lignocellulosic
biomass, and algae [4,5]. While third-generation bioethanol obtained from algal biomass is still under
development and has been demonstrated at laboratory scale, sugars, starch, and lignocellulosic
biomass have already shown their potential as commercial feedstock for bioethanol. Nevertheless,
their treatment requires different approaches, since raw materials such as cane need a single extraction
process to obtain fermentable sugars, while starchy crops such as wheat and corn require a previous
hydrolysis stage to transform starch into sugar [6–8].

One of the agricultural crops with high carbohydrate content is Ceratonia siliqua, also known as
carob [9,10]. The carob tree is native of the Mediterranean region, and its cultivation has been promoted
for the revitalization of coastal agriculture in dryland areas [11]. The average worldwide production of
carob pods for the period 2010–2013 was 165,990 tons, and the main producers were Spain (26.31%),
Italy (16.62%), Portugal (13.77%), Morocco (12.27%), Greece (12.05%), and Turkey (8.53%) [10].

Carob is a drought-resistance evergreen tree requiring low maintenance and producing several
products like seeds and pods. The carob pod can be employed for animal feeding or to produce carob
powder that in turn can be exploited for human consumption. However, the high content of tannin
in carob pods greatly limits this application. Carob pods can be also used for bioethanol production
through fermentation with Saccharomyces cerevisiae, as has been shown in previous works. Sugars needs
to be extracted from carob pods, and this can be achieved with water extraction before the subsequent
fermentation process [12].

On the other hand, the energy requirements in the process of bioethanol production offer a future
challenge. Bioalcohol needs to be separated from the aqueous medium in which fermentation is
performed [13,14]. To achieve the desired purity of bioethanol, distillation is usually employed, but this
stage is highly energy-consuming. Liquid–liquid extraction of bioethanol has been proposed as an
alternative method, but the solvent used has to display at the same time water immiscibility and high
polarity for the extraction of alcohol molecules. Both features are rarely found in conventional organics.
Unique compounds such as ionic liquids (ILs), however, have shown a promising capacity to separate
polar substances such as ethanol from aqueous media [15].

Room-temperature ionic liquids (RTILs) are organic salts usually formed by an organic cation
and an inorganic anion that remain in the liquid state at room temperature. RTILs offer advantageous
properties versus organic solvents, such as negligible vapor pressure, physical-chemical tunability,
and non-flammability [16,17]. Because of these features, they are regarded as a real option to substitute
organic solvents in liquid–liquid extraction processes both in bulk form and in membrane-based
technologies [18,19].

This work discusses the potential development of an integrated process for bioethanol production
using ionic liquids and C. siliqua as bioethanol feedstock. Firstly, the sugar extraction process from carob
pods is analyzed. Sugar extraction was performed at different liquid/solid ratios (L/S) for 30 min at 25 ◦C.
A four-stage counter-current system was designed to improve the sugar extraction efficiency from carob
pods. After the fermentation of carob pod extracts with S. cerevisiae, bioethanol recovery was approached
through simulation tests. Finally, several ionic liquids are proposed and analyzed as potential solvents
to recover bioethanol for the design of an integrated extraction–fermentation–separation process.

2. Materials and Methods

2.1. Characterization of the Carob Pod

Carob pods purchased from a local supplier were physically and chemically characterized.
The physical characterization consisted in the determination of their particle size distribution by sieve
analysis. For that, 100 g of carob pod was sieved using for 10 min a set of sieves with 2.0, 1.0, 0.5, 0.2,
and 0.1 mm mesh opening and a vibrating sieve machine. Sugar, ash, protein, and fibre analyses were
carried out according to the methodology proposed by Mahtout et al. [20].
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2.2. Sugar Extraction

The sugar extraction was carried out using 250 g of carob pod and 750 mL of water at a fix stirring
speed of 1000 r.p.m in a stirred tank reactor at room temperature. The as-received carob pod and
the average size fraction of the sieved carob pod (D50) were tested until the extraction yield was
constant, with the aim to study the influence of the particle size over the extraction time and to ascertain
a suitable particle size for the as-received material. Samples were withdrawn at periodic time intervals
to analyze the total sugars content.

Extraction System with Alternate Washing Steps

A four-stage counter-current system was designed to improve the sugar extraction efficiency from
carob pod. Different L/S ratios were tested according to the operation conditions described in Table 1,
using the D50 fraction. Liquid–solid separation was carried out using a 0.05 mm sieve under vibration
for 5 min.

Table 1. Operation conditions for the four-stage counter-current system. L/S: liquid/solid ratios.

Experiment Carob Pod (g)
Each Stage

Water (mL)
Each Stage L/S Ratio Temperature

(◦C)
Time

(mins)
Stirring Speed

(r.p.m.)

1 250 500 2.00 25 30 1000
2 100 375 3.75 25 30 1000

2.3. Fermentation Test

The anaerobic fermentation was carried out in a 3 L fermenter with several sampling devices
and temperature and stirring control. The aqueous extract from the sugar extraction tests with a
concentration of 200 g/L was used as fermentation medium supplemented with ammonium phosphate
(3.2 g/L), potassium sulphate (1 g/L), and magnesium sulphate (1.8 g/L). The pH was adjusted to 3.5–4,
using diluted sulphuric acid. The resulting solution was sterilized by heating up to its boiling point
and then cooled at 35 ◦C. This solution was fed into the fermenter at a fixed temperature of 35 ◦C
and at a fix stirring speed of 125 r.p.m. Free cells of S. cerevisiae at concentration sof 10, 15, and 25 g/L
were used for ethanol production. The evolution of the fermentation process was determined by
density measurement of the hydro-alcoholic solutions obtained and by gas chromatography using an
HP-INNOWAX column (30 m × 0.53 mm × 0.25 µm, Agilent). A medium consisting of 200 g/L of pure
saccharose prepared in the same conditions as described above and 15 g/L of S. cerevisiae cells was
used as a control test.

2.4. Ethanol Recovery Simulation

Ethanol recovery from the fermentation broth through extractive distillation with ethylene glycol
(EG) was simulated using CHEMCAD software and the NRTL thermodynamic model, according to
the flowsheet shown in Figure 1. The ethanol/water mixture with 10% mol of ethanol was distilled in
the column C1 to produce an ethanol/water mixture with azeotropic composition.

Ethanol was dehydrated in column C2 with the aid of EG and recovered as a head product.
The bottom product of column C2 was expanded from 100 to 26.34 kPa and fed into column C3 for EG
recovery as a bottom product. The decision variables used in the simulation after sensitivity analysis
of the simulation flowsheet in Figure 1 are shown in Table 2.
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Table 2. Decision variables used in the simulation.

Stream Ethanol
(kmol/h) Water (kmol/h) EG (kmol/h) Temperature

(◦C)
Pressure

(kPa)

Ethanol/Water mixture 10.00 90.00 0.00 25 100
Fresh EG 0.00 0.00 3.70 80 100

Column N◦ Stages Feed Stage Bottom Water
(kmol/h)

Bottom EG
(kmol/h) Reflux ratio

C1 30 15 88.54 0.00 8.00

C2 30 Azeotrope (15)
EG (3) 1.56 73.31 0.5

C2 12 6 0.00 69.65 1.00

2.5. Evaluation of Ionic Liquids as Potential Solvents for the Development of In Situ Alcoholic Fermentation Processes

In order to address the use of ILs as in situ extraction agents to recover ethanol from fermentation
broths, it is required to study their water solubility, microorganism biocompatibility, and ethanol extraction
power. The ionic liquids used in this study were: 1-octyl-3-methylimidazolium{Bis(trifluoromethyl)sulfonyl}
imide[OMIM+][NTf2

−], Methyltrioctylammonium{Bis(trifluoromethyl)sulfonyl}imide[MTOA+][NTf2
−],

1-butyl-3-methylimidazolium{Bis(trifluoromethyl)sulfonyl}imide[BMIM+][NTf2
−], 1-butyl-3-methylimid

azolium hexafluorophosphate[BMIM+][PF6
−], 1-octyl-3-methylimidazolium tetrafluoroborate[OMIM+]

[BF4
−], tetradecyl(trihexyl)phosphonium dicyanamide [Hex3TDP+][dca−], tetradecyl(trihexyl)phosphonium

bromide [Hex3TDP+][Br−], tetradecyl(trihexyl)phosphonium chloride [Hex3TDP+][Cl−], ethylpyridinium
{bis(trifluoromethyl)sulfonyl}imide [EPy+][NTf2

−]. These liquids were used as received without
further purification.

2.5.1. Water Solubility Tests

Water solubility tests were carried out using the cloud-point method. For that, 2 µL of IL was
added to 1 mL of water until complete dissolution after vigorous stirring. The additions stopped when
saturation was not reached after adding more than 100 µL of IL.

2.5.2. Ionic Liquids Biocompatibility with S. cerevisiae

Ionic liquids biocompatibility was measured through growth inhibition in liquid medium and the
agar diffusion test. For the growth inhibition tests, a liquid culture medium composed of D-glucose
(20 g/L), peptone (20 g/L), yeast extract (10 g/L), and 3% (v/v) of ionic liquid was used. The ionic liquid
content of the liquid medium was selected on the basis of previous research works, which report that
a significant toxicity is observed for concentrations of ILs ranged between 2% and 5% (v/v) [21,22].
The liquid medium with 1 g/L of S. cerevisiae was incubated at 30 ◦C with continuous shaking.
Samples were withdrawn at regular time intervals to measure the OD660 using a 1650 PC Shimadzu
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UV–Vis spectrophotometer and calculate the specific growth rate by selecting two time points in the
exponential growth phase.

For the agar diffusion tests, a solid medium with the same composition mentioned above was
placed in a Petri dish. Wells of 6 mm diameter were impregnated with 50 µL of each IL in sterile
conditions and placed over dish. The radius of the inhibition zone around the wells was recorded.

2.5.3. Ethanol Extraction Tests

For the extraction tests, a 10% v/v ethanol aqueous solution was put in contact with the same
volume of water-insoluble IL at 30 ◦C. The mixture was shaken for 2 min to facilitate ethanol transfer
into the IL phase and left at a constant temperature to complete the phase separation. Samples from
the aqueous phase were taken at 24, 48 h, and 21 days and analyzed through gas chromatography as
described in Section 2.3. The ethanol extraction percentage was calculated according to Equation (1).

E(%) = CIL (CIL + CW)−1 (1)

where CIL and CW are the ethanol equilibrium concentrations in the ionic liquid and the aqueous phase,
respectively. Measurements were carried out in triplicate, and the ethanol content in the aqueous phase
was determined by gas chromatography following the same procedure described above. The ethanol
concentration in the ionic liquid was determined by taking the difference between the initial and the
final ethanol concentrations in the aqueous phase.

3. Results and Discussion

3.1. Physical and Chemical Characterization of Carob Pod

The sieve analysis results are shown in Figure 2. As can be seen, the average calculated particle
size was 0.57mm. The chemical analysis of the as-received carob pod is presented in Table 3.
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Table 3. Chemical analysis of the carob pod. The results are expressed as %w/w.

Humidity Ash Fibre Protein Total Sugars Reducing Sugars

14.41 ± 1.90 3.30 ± 0.46 12.24 ± 2.45 4.15 ± 0.93 49.50 ± 7.60 28.35 ± 2.93

The results presented in Table 3 show that the carob pod is a carbohydrate-rich material and thus
a valuable feedstock for fermentation processes after sugar extraction. The feasibility of the extraction
of sugars from carob pod is discussed in the following section.
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3.2. Sugar Extraction

The extraction results are presented in Figure 3. The time required to achieve total sugars extraction
from the as-received material was approximately 360 min, in contrast with the 30 min required for
extraction from the D50 fraction. This result points out the suitability of the D50 particle size to carry
out the sugar extraction process.Fermentation 2019, 5, x FOR PEER REVIEW 6 of 12 
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Figure 3. Sugar extraction from carob pod.

These differences are attributed to the better solid–liquid contact and the lower sugar diffusion
resistance compared to the bulk solution when the particle size is small [10–12]. However, solid swelling
was observed during the extraction process; therefore, the solution retention by the solid waste after
solid–liquid separation was high, leading to significant sugar losses. To solve this problem, an extraction
system with alternate washing steps was designed, as shown in Figure 4.
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Two full sets of experiments in the conditions described in Table 1 were carried out with the aim
of achieving sugar losses lower than 10%. The results of each set are presented in Table 4.

Table 4. Counter-current experiments results.

Experiment Total Sugars
Feed (g)

Total Sugars in
L1 Streams (g)

Total Sugars in
LD2-LD4

Streams (g)

Total Sugars in
Solid Residues
RA4-RD4 (g)

Extraction
Yield (%)

1 495.0± 37.6 171.7± 7.7 240.1± 9.6 82.2± 7.2 83.2
2 198± 15.1 142.4± 6.5 52.9± 2.1 3.1± 0.3 98.6

For experiment 1 using an L/S ratio of 2.00, the concentrations of the combined liquid streams LA1
plus LD1 and LD2 plus LD4 were 301.24 g/L and 159.51 g/L, respectively. Both combined streams were
suitable to be fed to the fermenter for bioethanol production. However, even after the washing steps,
sugar losses in the solid residue accounted for more than 16% of the total sugars fed into the system.
On the other hand, in experiment 2, the concentrations of the combined streams LA1 plus LD1 and LD2
plus LD4 were 168 g/L and 48 g/L, respectively. From an industrial point of view, the 168 g/L stream can
be directly fed to the fermenter, while the 48 g/L stream can be used as a pre-culture medium for the
bioethanol-producing microorganisms. In addition, the use of an L/S ratio of 3.75 seems a more sensible
approach because of the higher extraction yield. However, sugar concentrations close to 200 g/L are
preferred for fermentation, that is why an L/S ratio of 3.00 was used for the fermentation tests.

3.3. Fermentation of Carob Pod Extracts

The ethanol concentration increased during fermentation until a maximum of 95 g/L was reached
after 20 h, independently of the yeast concentration, as shown in Figure 5. Higher ethanol productivities
were achieved at higher yeast concentrations. However, after 15 h of fermentation, the productivity
value remained constant at 4 g/L*h in all cases. This behaviour can be attributed to the ethanol
inhibitory effects on the free cells.
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3.4. Ethanol Recovery

Extractive distillation with ethylene glycol is one of the most common industrial methods for
the dehydration of ethanol [23]. The results obtained according to the process flowsheet and process
parameters mentioned in Section 2.4 are presented in Tables 5 and 6.
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Table 5. Stream composition.

Stream
Total Flow
(Kmol/h)

Stream Composition (Mole Fraction)

Ethanol Water EG

Fresh EG 1.00 0.000 0.000 1.000
Mixture Ethanol/Water 100.00 0.100 0.900 0.000
Azeotrope 11.41 0.868 0.132 0.000
Water 88.63 0.001 0.999 0.000
Anhydrous Ethanol 9.63 0.996 0.002 0.002
EG/Water Mixture 5.47 0.060 0.272 0.669
EG 69.72 0.000 0.010 0.999

Table 6. Energy requirements.

Column
Energy Requirements (MJ/h)

Reboiler Duty Condenser Duty Specific Energy Requirements (Reboiler
Duty/Kg Anhydrous Ethanol)

C1 3638.54 4012.04 8.23
C2 1936.73 561.00 4.38
C3 262.77 669.34 0.59

In Table 7, a summary of the energy consumed per Kg of anhydrous ethanol is presented for the
traditional distillation and dehydration processes used in the ethanol industry.

Table 7. Energy requirements for traditional industrial ethanol distillation and dehydration processes [23].

Process Energy Requirements (MJ/Kg)

Low pressure distillation 11.72
Azeotropic distillation

Pentane 10.05
Benzene 15.49

Diethyl ether 12.56
Extractive distillation

Gasoline 9.21
Ethylene Glycol 18.84

A typical extractive distillation with gasoline or ethylene glycol has an energy requirement
ranging from 9.21 to 18.84 MJ/Kg of anhydrous ethanol, on the basis of the energy required in the
columns reboiler [23,24]. In our process, the energy consumption was 13.23 MJ/Kg of anhydrous
ethanol, which within the normal range. Moreover, as can be seen in Table 6, the fractional distillation
carried out in column C1, accounted for the 62% of the energy required to produce 1 Kg of anhydrous
ethanol as a consequence of the formation of the water–ethanol azeotrope. This fact highlights the
need to develop in situ extraction processes to recover ethanol using suitable solvents for further
energy-efficient ethanol distillation.

3.5. Evaluation of Ionic Liquids as Potential Solvents for the Development of In Situ Alcoholic Fermentation Processes

3.5.1. Water Solubility Tests

The water solubility of a wide variety of ILs with different anion and cation structures was
measured. The results showed that the anion structure strongly affects the water solubility of an ionic
liquid, since this parameter changes significantly for ILs containing the same cation but a different
anion. In this case, the water solubility showed the following trend: [dca−], [Cl−] > [BF4

−] > [PF6
−]

> [NTf2
−]. Regarding the cation, the longer the alkyl chain, the lower the water solubility of the IL.
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For instance, in the case of imidazolium-based ionic liquids, the water solubility according to the
length of the alkyl chain of the cation shows the following trend: [bmim+][NTF2

−] > [omim+][NTF2
−],

[bmim+][PF6
−] > [omim+][PF6

−], and [bmim+][BF4
−] > [omim+][BF4

−]. Table 8 summarizes the ILs
considered to be non-water-soluble, whose water solubility is lower than 10 % (VIL/Vwater).

Table 8. Selection of ionic liquids and their water solubility.

Ionic Liquid Abbreviation Solubility (%VIL/VWater)

1-octyl-3-methylimidazolium
{Bis(trifluoromethyl)sulfonyl}imide [OMIM+][NTf2

−] <0.04

Methyltrioctylammonium
{Bis(trifluoromethyl)sulfonyl}imide [MTOA+][NTf2

−] <0.02

1-butyl-3-methylimidazolium
{Bis(trifluoromethyl)sulfonyl}imide [BMIM+][NTf2

−] <0.28

1-butyl-3-methylimidazolium hexafluorophosphate [BMIM+][PF6
−] <0.50

1-octyl-3-methylimidazolium tetrafluoroborate [OMIM+][BF4
−] <1.4

Tetradecyl(trihexyl)phosphonium dicyanamide [Hex3TDP+][dca−] <2
Tetradecyl(trihexyl)phosphonium bromide [Hex3TDP+][Br−] <2
Tetradecyl(trihexyl)phosphonium chloride [Hex3TDP+][Cl−] <2
Ethylpyridinium{Bis(trifluoromethyl)sulfonyl}imide [EPy+][NTf2

−] <2

3.5.2. Ionic Liquids Biocompatibility with S. cerevisiae

As can be seen in Figure 6, the growth rate of the yeast in the presence of [MTOA+][NTf2
−] and

[BMIM+][NTf2
−] (0.47 h−1 and 0.30 h−1, respectively) was very similar to that observed in the absence

of the IL (0.43 h−1). By contrast, the growth rate of S. cerevisiae in the presence of [Hex3TDP+][Cl−],
[Hex3TDP+][Br−], [EPy+][NTf2

−], [OMIM+][BF4
−], and [Hex3TDP+][dca−] was zero or near zero.

The results show that ionic liquids containing imidazolium cations along with hydrophobic anions,
such as [PF6

−] and [NTf2
−], allow the yeast to grow normally. On the contrary, ionic liquids combined

with more hydrophilic anions, such as [BF4
−], inhibit the growth of S. cerevisiae, showing toxicity

toward this microorganism. Regarding pyridinium- and phophonium-based ILs such as [EPy+][NTf2
−],

[Hex3TDP+][Cl−], [Hex3TDP+][Br−], and [Hex3TDP+][dca−], they exhibited low biocompatibility with
S. cerevisiae, hindering its growth. The results show that the higher the water solubility of the IL,
the higher its interaction with the microorganism, and therefore, the lower the biocompatibility.
Besides water solubility, ILs structure has also significant influence on their toxicity to microorganism.
For this reason, the selection of the optimum IL to perform ethanol extraction is a compromise between
low water solubility and an appropriate structure of the IL. According to the different anions analyzed,
[NTf2

−] showed higher biocompatibility than [PF6
−] and [BF4

−].
In line with the toxicity results shown in this work, Pfruender et al. reported the biocompatibility

of water-immiscible ILs such as [MTOA+][NTf2
−], [BMIM+][NTf2

−], and [BMIM+][PF6
−] with S.

cerevisiae by using viability assays performed after incubation of 20 g L−1 of the yeast strain FasB
His6 at 27 ◦C at 300 rpm during 20 h [25]. Other non-water-soluble ILs have also been employed
to increase the 2-phenylethanol concentration in biphasic systems by using S. cerevisiae as an in situ
product removal catalyst. After analyzing the effect of the IL structure on the yeast growth, it was
concluded that ILs containing [NTf2

−] anions are more biocompatible than those containing [PF6
−]

or [BF4
−]. On the other hand, it was also observed that the biocompatibility of the IL with the yeast

decreases as the length of the alkyl side chain on the imidazolium ring increases [26]. All these results
are in good agreement with those reported in this work.
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3.5.3. Ethanol Extraction Tests

The percentage of ethanol extracted from an aqueous solution with 10% (v/v) of ethanol by using
the non-water-soluble ionic liquids selected is shown in Table 7. Figure 7 depicts the evolution of the
extraction percentage obtained with each IL over time, measured after 1, 2, and 21 days.
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The results of the extraction process showed that the ionic liquids containing phosphonium-
or ammonium-based cations were capable of extracting higher amounts of ethanol than the rest
of ionic liquids after 1 day of operating time (51.3% and 39.4%, respectively). Similar results
were obtained by Neves et al., who also reported high values of ethanol extraction by
tetradecyl(trihexyl)phosphonium-based ILs [15]. Other alcohols, such as butanol, have also been
extracted from aqueous solutions with ammonium-based ionic liquids, reporting promising results
(extraction percentage up to 90%) [27]. The high extraction capacity of these ionic liquids might be
related to the localized charges and small-volume ions. Unlike the imidazolium cation in which the
positive charge is delocalized, in the case of phosphonium- and ammonium-based ILs, the positive
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charge is located in the phosphorus and ammonia atoms, respectively. In the same way, small anions
such as chloride, bromide, or dicyanamide show a negative charge localized in one atom, whereas in the
case of NTf2

−, the charge is localized in five atoms. Immidazolium-based ILs yielded a lower extraction
percentage of ethanol than those containing phosphonium- or ammonium-based cations. during the
whole experiment. Regarding the anion structure, it was observed that the extraction percentage of
ethanol decreased as both the anion size and the delocalization of the negative charge increased.

4. Conclusions

The present study revealed the feasibility of sugar extraction from carob pod using a four-stage
counter-current system and an L/S ratio of 3.75, with sugar losses below 2%. The alcoholic fermentation
of the aqueous extracts with a sugar concentration of 168 g/L using S. cerevisiae showed that a maximum
ethanol concentration of 95 g/L was achieved after 20 h, independently of the initial concentration of
the microorganism.

According to the biocompatibility and ethanol extraction tests, the ILs [Hex3TDP+][Cl−] and
[MTOA+][NTf2

−] are potential candidates for the development of in situ extraction–fermentation processes.
The extractive ethanol recovery simulation using ethylene glycol showed that 62% of the

energy consumed in the process can be attributed to the production of the azeotropic ethanol–water
mixture. Current research works have used ILs as entrainers to replace ethylene glycol and other
solvents commonly employed in ethanol extractive distillation to produce anhydrous ethanol [28,29].
However, there are not many data and experimental studies about ethanol–ionic liquids binary mixtures.
These data are of crucial importance to develop single distillation processes for the production of
anhydrous ethanol.
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