This is a preprint of: "Periods of continuous maps on closed surfaces", Juan Luis Garcia Guirao, Jaume Llibre, *Rocky Mountain J. Math.*, vol. 47(4), 1089–1096, 2017.

PERIODS OF CONTINUOUS MAPS ON CLOSED SURFACES

JUAN LUIS GARCÍA GUIRAO 1 AND JAUME LLIBRE 2

ABSTRACT. The objective of the present work is to present what information on the set of periodic points of a continuous self-map on a closed surface can be obtained using the action of this map on the homological groups of the closed surface.

1. INTRODUCTION

Along this work by a closed surface we denote a connected compact surface with or without boundary, orientable or not. More precisely, an orientable connected compact surface without boundary of genus $g \ge 0$, \mathbb{M}_g , is homeomorphic to the sphere if g = 0, to the torus if g = 1, or to the connected sum of g copies of the torus if $g \ge 2$. An orientable connected compact surface with boundary of genus $g \ge 0$, $\mathbb{M}_{g,b}$, is homeomorphic to \mathbb{M}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{M}_{g,0} = \mathbb{M}_g$.

A non-orientable connected compact surface without boundary of genus $g \geq 1$, \mathbb{N}_g , is homeomorphic to the real projective plane if g = 1, or to the connected sum of g copies of the real projective plane if g > 1. A non-orientable connected compact surface with boundary of genus $g \geq 1$, $\mathbb{N}_{g,b}$, is homeomorphic to \mathbb{N}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{N}_{g,0} = \mathbb{N}_g$.

Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map on a closed surface \mathbb{X} . A point $x \in \mathbb{X}$ is periodic of period n if $f^n(x) = x$ and $f^k(x) \neq x$ for $k = 1, \ldots, n-1$. We denote by $\operatorname{Per}(f)$ the set of periods of all periodic points of f. The aim of the present paper is to provide some information on $\operatorname{Per}(f)$.

Let A be an $n \times n$ complex matrix. A $k \times k$ principal submatrix of A is a submatrix lying in the same set of k rows and columns, and a $k \times k$ principal minor is the determinant of such a principal submatrix. There are $\binom{n}{k}$ different $k \times k$ principal minors of A, and the sum of these is denoted by $E_k(A)$. In particular, $E_1(A)$ is the trace of A, and $E_n(A)$ is the determinant of A, denoted by det(A).

It is well known that the characteristic polynomial of A is given by

$$\det(tI - A) = t^n - E_1(A)t^{n-1} + E_2(A)t^{n-2} - \ldots + (-1)^n E_n(A).$$

 $Key\ words\ and\ phrases.$ Closed surface, continuous self–map, Lefschetz fixed point theory, periodic point, set of periods.

²⁰¹⁰ Mathematics Subject Classification: 58F20, 37C05, 37C25, 37C30.

Our main result is state in the following theorem.

Theorem 1. Let \mathbb{X} be a closed surface and let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map and let A and (d) be the integral matrices of the endomorphisms $f_{*i} :$ $H_i(\mathbb{X}, \mathbb{Q}) \to H_i(\mathbb{X}, \mathbb{Q})$ induced by f on the *i*-th homology group of \mathbb{X} , i = 1, 2.

If X is either $\mathbb{M}_{g,b}$ with b > 0, or $\mathbb{N}_{g,b}$ with $b \ge 0$, then the following statements hold.

- (a) If $E_1(A) \neq 1$, then $1 \in Per(f)$.
- (b) If $E_1(A) = 1$ and $E_2(A) \neq 0$, then $Per(f) \cap \{1, 2\} \neq \emptyset$.
- If $\mathbb{X} = \mathbb{M}_{q,b}$ with b = 0, then the following statement hold.
- (c) If $E_1(A) \neq 1 + d$, then $1 \in \operatorname{Per}(f)$.
- (d) If $E_1(A) = 1 + d$ and $E_2(A) \neq d^2 + 3d + 1$, then $Per(f) \cap \{1, 2\} \neq \emptyset$.
- If $\mathbb{X} = \mathbb{M}_{q,b}$ with b > 0, then the following statement hold.
 - (e) If $2g + b 1 \ge 3$, $E_1(A) = 1$, $E_2(A) = 0$ and k is the smallest integer of the set $\{3, 4, ..., 2g + b 1\}$ such that $E_k(A) \ne 0$, then Per(f) has a periodic point of period a divisor of k.
- If $\mathbb{X} = \mathbb{N}_{q,b}$ with $b \ge 0$, then the following statement hold.
 - (f) If $g + b 1 \ge 3$, $E_1(A) = 1$, $E_2(A) = 0$ and k is the smallest integer of the set $\{3, 4, ..., g + b 1\}$ such that $E_k(A) \ne 0$, then Per(f) has a periodic point of period a divisor of k.

Theorem 1 is proven in section 2.

Similar results tote ones obtained in Theorem 1 but for homeomorphisms on closed surfaces where obtained by Franks and Llibre in [3], and by the authors in [4].

2. Proof of Theorem 1

Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map and let \mathbb{X} be either $\mathbb{M}_{g,b}$ or $\mathbb{N}_{g,b}$. Then the *Lefschetz number* of f is defined by

$$L(f) = \operatorname{trace}(f_{*0}) - \operatorname{trace}(f_{*1}) + \operatorname{trace}(f_{*2}).$$

For continuous self-maps f defined on \mathbb{X} the Lefschetz fixed point theorem states (see for instance [1]).

Theorem 2. If $L(f) \neq 0$ then f has a fixed point.

With the objective of studying the periodic points of f we shall use the Lefschetz numbers of the iterates of f, i.e. $L(f^n)$. Note that if $L(f^n) \neq 0$ then f^n has a fixed point, and consequently f has a periodic point of period a divisor of n. In order to study the whole sequence $\{L(f^n)\}_{n\geq 1}$ it is defined the formal Lefschetz zeta function of f as

(1)
$$Z_f(t) = \exp\left(\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n\right).$$

The Lefschetz zeta function is in fact a generating function for the sequence of the Lefschetz numbers $L(f^n)$.

Let f be a continuous self-map defined on $\mathbb{M}_{g,b}$ or $\mathbb{N}_{g,b}$, respectively. For a closed surface the homological groups with coefficients in \mathbb{Q} are linear vector spaces over \mathbb{Q} . We recall the homological spaces of $\mathbb{M}_{g,b}$ with coefficients in \mathbb{Q} , i.e.

$$H_k(\mathbb{M}_{q,b},\mathbb{Q}) = \mathbb{Q} \oplus \overset{n_k}{\ldots} \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = 2g$ if b = 0, $n_1 = 2g + b - 1$ if b > 0, $n_2 = 1$ if b = 0, and $n_2 = 0$ if b > 0; and the induced linear maps $f_{*k} : H_k(\mathbb{M}_{g,b}, \mathbb{Q}) \to H_k(\mathbb{M}_{g,b}, \mathbb{Q})$ by f on the homological group $H_k(\mathbb{M}_{g,b}, \mathbb{Q})$ are $f_{*0} = (1)$, $f_{*2} = (d)$ where d is the *degree* of the map f if b = 0, $f_{*2} = (0)$ if b > 0, and $f_{*1} = A$ where A is an $n_1 \times n_1$ integral matrix (see for additional details [6, 7]).

We recall that the homological groups of $\mathbb{N}_{g,b}$ with coefficients in \mathbb{Q} , i.e.

$$H_k(\mathbb{N}_{q,b},\mathbb{Q}) = \mathbb{Q} \oplus \overset{n_k}{\ldots} \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = g + b - 1$ and $n_2 = 0$; and the induced linear maps are $f_{*0} = (1)$ and $f_{*1} = A$ where A is an $n_1 \times n_1$ integral matrix (see again for additional details [6, 7]).

From the work of Franks in [2] we have for a continuous self–map of a closed surface that its Lefschetz zeta function is the rational function

$$Z_f(t) = \frac{\det(I - tf_{*1})}{\det(I - tf_{*0})\det(I - tf_{*2})},$$

where in $I - tf_{*k}$ the I denotes the $n_k \times n_k$ identity matrix, and $\det(I - tf_{*2}) = 1$ if $f_{*2} = (0)$. Then for a continuous map $f : \mathbb{M}_{g,b} \to \mathbb{M}_{g,b}$ we have

(2)
$$Z_f(t) = \begin{cases} \frac{\det(I - tA)}{(1 - t)(1 - dt)} & \text{if } b = 0\\ \frac{\det(I - tA)}{1 - t} & \text{if } b > 0, \end{cases}$$

and for a continuous map $f : \mathbb{N}_{g,b} \to \mathbb{N}_{g,b}$ we have

(3)
$$Z_f(t) = \frac{\det(I - tA)}{1 - t}.$$

Proof of Theorem 1. Combining the expressions (1) and (2) if $\mathbb{X} = \mathbb{M}_{g,b}$ and b > 0, and the expressions (1) and (3) if $\mathbb{X} = \mathbb{N}_{g,b}$ with $b \ge 0$, we obtain the

following equalities

$$\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n = \log(Z_f(t))$$

$$= \log\left(\frac{\det(I - tA)}{1 - t}\right)$$

$$= \log\left(\frac{1 - E_1(A)t + E_2(A)t^2 - \dots + (-1)^m E_m(A)t^m}{1 - t}\right)$$

$$= \log(1 - E_1(A)t + E_2(A)t^2 - \dots) - \log(1 - t)$$

$$= \left(-E_1(A)t + \left(E_2(A) - \frac{E_1(A)^2}{2}\right)t^2 - \dots\right) - \left(-t - \frac{t^2}{2} - \dots\right)$$

$$= (1 - E_1(A))t + \left(\frac{1}{2} - \frac{E_1(A)^2}{2} + E_2(A)\right)t^2 + O(t^3).$$

Here $n_1 = 2g + b - 1$ if $\mathbb{X} = \mathbb{M}_{g,b}$ with b > 0, or $n_1 = g + b - 1$ if $\mathbb{X} = \mathbb{N}_{g,b}$ with $b \ge 0$. Therefore we have

$$L(f) = 1 - E_1(A)$$
 and $L(f^2) = 1 - E_1(A)^2 + 2E_2(A)$.

Hence, if $E_1(A) \neq 1$ then $L(f) \neq 0$, and by Theorem 2 statement (a) follows. If $E_1(A) = 1$ and $E_2(A) \neq 0$, then $L(f^2) = 2E_2(A) \neq 0$, and again by Theorem 2 we get that $Per(f) \cap \{1, 2\} \neq \emptyset$. So statement (b) is proved.

Let $\mathbb{X} = \mathbb{M}_{g,b}$ with b = 0. By (1) and (2) with b = 0 we obtain the following equalities

$$\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n = \log(Z_f(t))$$

$$= \log\left(\frac{\det(I - tA)}{(1 - t)(1 - dt)}\right)$$

$$= \log\left(\frac{1 - E_1(A)t + E_2(A)t^2 - \dots + (-1)^m E_m(A)t^m}{(1 - t)(1 - dt)}\right)$$

$$= \log(1 - E_1(A)t + E_2(A)t^2 - \dots) - \log((1 - t)(1 - dt))$$

$$= \left(-E_1(A)t + \left(E_2(A) - \frac{E_1(A)^2}{2}\right)t^2 - \dots\right)$$

$$- \left(-(1 + d)t - \left(\frac{d^2 + 1}{2}\right)t^2 - \dots\right)$$

$$= (1 + d - E_1(A))t + \left(E_2(A) - \frac{E_1(A)^2}{2} - \frac{d^2 + 1}{2}\right)t^2 + O(t^3).$$

Here $n_1 = 2g$. Therefore we have

 $L(f) = 1 + d - E_1(A)$, and $L(f^2) = 2E_2(A) - E_1(A)^2 - (d^2 + 1)$. Hence, if $E_1(A) \neq 1 + d$ then $L(f) \neq 0$, and by Theorem 2 statement (c) follows. If $E_1(A) = 1+d$ and $E_2(A) \neq d^2+d+1$, then $L(f^2) = 2E_2(A)-2(d^2+d+1) \neq 0$, and again by Theorem 2 we get that $\operatorname{Per}(f) \cap \{1,2\} \neq \emptyset$. So statement (d) is proved.

Assume now that $\mathbb{X} = \mathbb{M}_{g,b}$ with b > 0, $2g+b-1 \ge 3$, $E_1(A) = 1$, $E_2(A) = 0$ and k is the smallest integer of the set $\{3, 4, \dots, 2g+b-1\}$ such that $E_k(A) \ne 0$. Therefore

$$\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n = \log\left(\frac{1-t+(-1)^k E_k(A)t^k + \dots + (-1)^{b-1} E_{2g+b-1}(A)t^{2g+b-1}}{1-t}\right)$$
$$= \log\left(1 + \frac{(-1)^k E_k(A)t^k + \dots + (-1)^{b-1} E_{2g+b-1}(A)t^{2g+b-1}}{1-t}\right)$$
$$= (-1)^k E_k(A)t^k + O(t^{k+1}).$$

Hence, $L(f) = \dots = L(f^{k-1}) = 0$ and $L(f^k) = (-1)^k k E_k(A) \neq 0$. So, from Theorem 2, it follows the statement (e).

Suppose that $\mathbb{X} = \mathbb{N}_{g,b}$ with $b \ge 0$, $g+b-1 \ge 3$, $E_1(A) = 1$, $E_2(A) = 0$ and k is the smallest integer of the set $\{3, 4, \dots, g+b-1\}$ such that $E_k(A) \ne 0$. Therefore

$$\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n = \log\left(\frac{1-t+(-1)^k E_k(A)t^k + \dots + (-1)^{g+b-1} E_{g+b-1}(A)t^{g+b-1}}{1-t}\right)$$
$$= \log\left(1 + \frac{(-1)^k E_k(A)t^k + \dots + (-1)^{g+b-1} E_{g+b-1}(A)t^{g+b-1}}{1-t}\right)$$
$$= (-1)^k E_k(A)t^k + O(t^{k+1}).$$

Again $L(f) = \ldots = L(f^{k-1}) = 0$ and $L(f^k) = (-1)^k k E_k(A) \neq 0$. Therefore, from Theorem 2, it follows the statement (f).

Acknowledgements

The first author of this work was partially supported by MICINN/FEDER grant number MTM2011–22587, Junta de Comunidades de Castilla-La Mancha, grant number PEII09-0220-0222. The second author was partially supported by MICINN/FEDER grant number MTM2008-03437, AGAUR grant number 2014SGR 568, ICREA Academia, FP7-PEOPLE-2012-IRSES numbers 316338 and 318999, and FEDER-UNAB10-4E-378.

References

- R.F. BROWN, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview, IL, 1971.
- [2] J. FRANKS, Homology and Dynamical Systems, CBMS Regional Conf. Series, vol. 49, Amer. Math. Soc., Providence R.I., 1982.
- [3] J. FRANKS AND J. LLIBRE, Periods of surface homeomorphisms, Contemporary Mathematics 117 (1991), 63–77.
- [4] J.L. GARCÍA GUIRAO AND J. LLIBRE, *Periods of homeomorphisms on surfaces*, to appear in the Proceeding of the conference ICDEA2012.
- [5] B. HALPERN, Fixed point for iterates, Pacific J. Math. 25 (1968), 255–275.

[6] J.R. MUNKRES, Elements of Algebraic Topology, Addison-Wesley, 1984.

[7] J.W. VICKS, Homology theory. An introduction to algebraic topology, Springer-Verlag, New York, 1994. Academic Press, New York, 1973.

¹ Departamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain.

E-mail address: juan.garcia@upct.es

 $^2 \rm Departament$ de Matemàtiques. Universitat Autònoma de Barcelona, Bellaterra, 08193-Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

6