PERIODS OF CONTINUOUS MAPS ON CLOSED SURFACES

JUAN LUIS GARCÍA GUIRAO ${ }^{1}$ AND JAUME LLIBRE ${ }^{2}$

Abstract

The objective of the present work is to present what information on the set of periodic points of a continuous self-map on a closed surface can be obtained using the action of this map on the homological groups of the closed surface.

1. Introduction

Along this work by a closed surface we denote a connected compact surface with or without boundary, orientable or not. More precisely, an orientable connected compact surface without boundary of genus $g \geq 0, \mathbb{M}_{g}$, is homeomorphic to the sphere if $g=0$, to the torus if $g=1$, or to the connected sum of g copies of the torus if $g \geq 2$. An orientable connected compact surface with boundary of genus $g \geq 0, \mathbb{M}_{g, b}$, is homeomorphic to \mathbb{M}_{g} minus a finite number $b>0$ of open discs having pairwise disjoint closure. In what follows $\mathbb{M}_{g, 0}=\mathbb{M}_{g}$.

A non-orientable connected compact surface without boundary of genus $g \geq$ $1, \mathbb{N}_{g}$, is homeomorphic to the real projective plane if $g=1$, or to the connected sum of g copies of the real projective plane if $g>1$. A non-orientable connected compact surface with boundary of genus $g \geq 1, \mathbb{N}_{g, b}$, is homeomorphic to \mathbb{N}_{g} minus a finite number $b>0$ of open discs having pairwise disjoint closure. In what follows $\mathbb{N}_{g, 0}=\mathbb{N}_{g}$.

Let $f: \mathbb{X} \rightarrow \mathbb{X}$ be a continuous map on a closed surface \mathbb{X}. A point $x \in \mathbb{X}$ is periodic of period n if $f^{n}(x)=x$ and $f^{k}(x) \neq x$ for $k=1, \ldots, n-1$. We denote by $\operatorname{Per}(f)$ the set of periods of all periodic points of f. The aim of the present paper is to provide some information on $\operatorname{Per}(f)$.

Let A be an $n \times n$ complex matrix. A $k \times k$ principal submatrix of A is a submatrix lying in the same set of k rows and columns, and a $k \times k$ principal minor is the determinant of such a principal submatrix. There are $\binom{n}{k}$ different $k \times k$ principal minors of A, and the sum of these is denoted by $E_{k}(A)$. In particular, $E_{1}(A)$ is the trace of A, and $E_{n}(A)$ is the determinant of A, denoted by $\operatorname{det}(A)$.

It is well known that the characteristic polynomial of A is given by

$$
\operatorname{det}(t I-A)=t^{n}-E_{1}(A) t^{n-1}+E_{2}(A) t^{n-2}-\ldots+(-1)^{n} E_{n}(A)
$$

[^0]Our main result is state in the following theorem.
Theorem 1. Let \mathbb{X} be a closed surface and let $f: \mathbb{X} \rightarrow \mathbb{X}$ be a continuous map and let A and (d) be the integral matrices of the endomorphisms $f_{* i}$: $H_{i}(\mathbb{X}, \mathbb{Q}) \rightarrow H_{i}(\mathbb{X}, \mathbb{Q})$ induced by f on the i-th homology group of $\mathbb{X}, i=1,2$.

If \mathbb{X} is either $\mathbb{M}_{g, b}$ with $b>0$, or $\mathbb{N}_{g, b}$ with $b \geq 0$, then the following statements hold.
(a) If $E_{1}(A) \neq 1$, then $1 \in \operatorname{Per}(f)$.
(b) If $E_{1}(A)=1$ and $E_{2}(A) \neq 0$, then $\operatorname{Per}(f) \cap\{1,2\} \neq \emptyset$.

If $\mathbb{X}=\mathbb{M}_{g, b}$ with $b=0$, then the following statement hold.
(c) If $E_{1}(A) \neq 1+d$, then $1 \in \operatorname{Per}(f)$.
(d) If $E_{1}(A)=1+d$ and $E_{2}(A) \neq d^{2}+3 d+1$, then $\operatorname{Per}(f) \cap\{1,2\} \neq \emptyset$.

If $\mathbb{X}=\mathbb{M}_{g, b}$ with $b>0$, then the following statement hold.
(e) If $2 g+b-1 \geq 3, E_{1}(A)=1, E_{2}(A)=0$ and k is the smallest integer of the set $\{3,4, \ldots, 2 g+b-1\}$ such that $E_{k}(A) \neq 0$, then $\operatorname{Per}(f)$ has a periodic point of period a divisor of k.
If $\mathbb{X}=\mathbb{N}_{g, b}$ with $b \geq 0$, then the following statement hold.
(f) If $g+b-1 \geq 3, E_{1}(A)=1, E_{2}(A)=0$ and k is the smallest integer of the set $\{3,4, \ldots, g+b-1\}$ such that $E_{k}(A) \neq 0$, then $\operatorname{Per}(f)$ has a periodic point of period a divisor of k.

Theorem 1 is proven in section 2.
Similar results tote ones obtained in Theorem 1 but for homeomorphisms on closed surfaces where obtained by Franks and Llibre in [3], and by the authors in [4].

2. Proof of Theorem 1

Let $f: \mathbb{X} \rightarrow \mathbb{X}$ be a continuous map and let \mathbb{X} be either $\mathbb{M}_{g, b}$ or $\mathbb{N}_{g, b}$. Then the Lefschetz number of f is defined by

$$
L(f)=\operatorname{trace}\left(f_{* 0}\right)-\operatorname{trace}\left(f_{* 1}\right)+\operatorname{trace}\left(f_{* 2}\right) .
$$

For continuous self-maps f defined on \mathbb{X} the Lefschetz fixed point theorem states (see for instance [1]).

Theorem 2. If $L(f) \neq 0$ then f has a fixed point.
With the objective of studying the periodic points of f we shall use the Lefschetz numbers of the iterates of f, i.e. $L\left(f^{n}\right)$. Note that if $L\left(f^{n}\right) \neq 0$ then f^{n} has a fixed point, and consequently f has a periodic point of period a divisor of n. In order to study the whole sequence $\left\{L\left(f^{n}\right)\right\}_{n \geq 1}$ it is defined the formal Lefschetz zeta function of f as

$$
\begin{equation*}
Z_{f}(t)=\exp \left(\sum_{n=1}^{\infty} \frac{L\left(f^{n}\right)}{n} t^{n}\right) . \tag{1}
\end{equation*}
$$

The Lefschetz zeta function is in fact a generating function for the sequence of the Lefschetz numbers $L\left(f^{n}\right)$.

Let f be a continuous self-map defined on $\mathbb{M}_{g, b}$ or $\mathbb{N}_{g, b}$, respectively. For a closed surface the homological groups with coefficients in \mathbb{Q} are linear vector spaces over \mathbb{Q}. We recall the homological spaces of $\mathbb{M}_{g, b}$ with coefficients in \mathbb{Q}, i.e.

$$
H_{k}\left(\mathbb{M}_{g, b}, \mathbb{Q}\right)=\mathbb{Q} \oplus n_{k} . \oplus \mathbb{Q}
$$

where $n_{0}=1, n_{1}=2 g$ if $b=0, n_{1}=2 g+b-1$ if $b>0, n_{2}=1$ if $b=0$, and $n_{2}=0$ if $b>0$; and the induced linear maps $f_{* k}: H_{k}\left(\mathbb{M}_{g, b}, \mathbb{Q}\right) \rightarrow H_{k}\left(\mathbb{M}_{g, b}, \mathbb{Q}\right)$ by f on the homological group $H_{k}\left(\mathbb{M}_{g, b}, \mathbb{Q}\right)$ are $f_{* 0}=(1), f_{* 2}=(d)$ where d is the degree of the map f if $b=0, f_{* 2}=(0)$ if $b>0$, and $f_{* 1}=A$ where A is an $n_{1} \times n_{1}$ integral matrix (see for additional details $[6,7]$).

We recall that the homological groups of $\mathbb{N}_{g, b}$ with coefficients in \mathbb{Q}, i.e.

$$
H_{k}\left(\mathbb{N}_{g, b}, \mathbb{Q}\right)=\mathbb{Q} \oplus n_{k} \cdot n^{*} \oplus \mathbb{Q}
$$

where $n_{0}=1, n_{1}=g+b-1$ and $n_{2}=0$; and the induced linear maps are $f_{* 0}=(1)$ and $f_{* 1}=A$ where A is an $n_{1} \times n_{1}$ integral matrix (see again for additional details $[6,7]$).

From the work of Franks in [2] we have for a continuous self-map of a closed surface that its Lefschetz zeta function is the rational function

$$
Z_{f}(t)=\frac{\operatorname{det}\left(I-t f_{* 1}\right)}{\operatorname{det}\left(I-t f_{* 0}\right) \operatorname{det}\left(I-t f_{* 2}\right)}
$$

where in $I-t f_{* k}$ the I denotes the $n_{k} \times n_{k}$ identity matrix, and $\operatorname{det}\left(I-t f_{* 2}\right)=1$ if $f_{* 2}=(0)$. Then for a continuous map $f: \mathbb{M}_{g, b} \rightarrow \mathbb{M}_{g, b}$ we have

$$
Z_{f}(t)=\left\{\begin{array}{l}
\frac{\operatorname{det}(I-t A)}{(1-t)(1-d t)} \quad \text { if } b=0 \tag{2}\\
\frac{\operatorname{det}(I-t A)}{1-t} \quad \text { if } b>0
\end{array}\right.
$$

and for a continuous map $f: \mathbb{N}_{g, b} \rightarrow \mathbb{N}_{g, b}$ we have

$$
\begin{equation*}
Z_{f}(t)=\frac{\operatorname{det}(I-t A)}{1-t} \tag{3}
\end{equation*}
$$

Proof of Theorem 1. Combining the expressions (1) and (2) if $\mathbb{X}=\mathbb{M}_{g, b}$ and $b>0$, and the expressions (1) and (3) if $\mathbb{X}=\mathbb{N}_{g, b}$ with $b \geq 0$, we obtain the
following equalities

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{L\left(f^{n}\right)}{n} t^{n} & =\log \left(Z_{f}(t)\right) \\
& =\log \left(\frac{\operatorname{det}(I-t A)}{1-t}\right) \\
& =\log \left(\frac{1-E_{1}(A) t+E_{2}(A) t^{2}-\ldots+(-1)^{m} E_{m}(A) t^{m}}{1-t}\right) \\
& =\log \left(1-E_{1}(A) t+E_{2}(A) t^{2}-\ldots\right)-\log (1-t) \\
& =\left(-E_{1}(A) t+\left(E_{2}(A)-\frac{E_{1}(A)^{2}}{2}\right) t^{2}-\ldots\right)-\left(-t-\frac{t^{2}}{2}-\ldots\right) \\
& =\left(1-E_{1}(A)\right) t+\left(\frac{1}{2}-\frac{E_{1}(A)^{2}}{2}+E_{2}(A)\right) t^{2}+O\left(t^{3}\right) .
\end{aligned}
$$

Here $n_{1}=2 g+b-1$ if $\mathbb{X}=\mathbb{M}_{g, b}$ with $b>0$, or $n_{1}=g+b-1$ if $\mathbb{X}=\mathbb{N}_{g, b}$ with $b \geq 0$. Therefore we have

$$
L(f)=1-E_{1}(A) \quad \text { and } \quad L\left(f^{2}\right)=1-E_{1}(A)^{2}+2 E_{2}(A)
$$

Hence, if $E_{1}(A) \neq 1$ then $L(f) \neq 0$, and by Theorem 2 statement (a) follows.
If $E_{1}(A)=1$ and $E_{2}(A) \neq 0$, then $L\left(f^{2}\right)=2 E_{2}(A) \neq 0$, and again by Theorem 2 we get that $\operatorname{Per}(f) \cap\{1,2\} \neq \emptyset$. So statement (b) is proved.

Let $\mathbb{X}=\mathbb{M}_{g, b}$ with $b=0$. By (1) and (2) with $b=0$ we obtain the following equalities

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{L\left(f^{n}\right)}{n} t^{n}= & \log \left(Z_{f}(t)\right) \\
= & \log \left(\frac{\operatorname{det}(I-t A)}{(1-t)(1-d t)}\right) \\
= & \log \left(\frac{1-E_{1}(A) t+E_{2}(A) t^{2}-\ldots+(-1)^{m} E_{m}(A) t^{m}}{(1-t)(1-d t)}\right) \\
= & \log \left(1-E_{1}(A) t+E_{2}(A) t^{2}-\ldots\right)-\log ((1-t)(1-d t)) \\
= & \left(-E_{1}(A) t+\left(E_{2}(A)-\frac{E_{1}(A)^{2}}{2}\right) t^{2}-\ldots\right) \\
& -\left(-(1+d) t-\left(\frac{d^{2}+1}{2}\right) t^{2}-\ldots\right) \\
= & \left(1+d-E_{1}(A)\right) t+\left(E_{2}(A)-\frac{E_{1}(A)^{2}}{2}-\frac{d^{2}+1}{2}\right) t^{2}+O\left(t^{3}\right) .
\end{aligned}
$$

Here $n_{1}=2 g$. Therefore we have

$$
L(f)=1+d-E_{1}(A), \quad \text { and } \quad L\left(f^{2}\right)=2 E_{2}(A)-E_{1}(A)^{2}-\left(d^{2}+1\right)
$$

Hence, if $E_{1}(A) \neq 1+d$ then $L(f) \neq 0$, and by Theorem 2 statement (c) follows.

If $E_{1}(A)=1+d$ and $E_{2}(A) \neq d^{2}+d+1$, then $L\left(f^{2}\right)=2 E_{2}(A)-2\left(d^{2}+d+1\right) \neq$ 0 , and again by Theorem 2 we get that $\operatorname{Per}(f) \cap\{1,2\} \neq \emptyset$. So statement (d) is proved.

Assume now that $\mathbb{X}=\mathbb{M}_{g, b}$ with $b>0,2 g+b-1 \geq 3, E_{1}(A)=1, E_{2}(A)=0$ and k is the smallest integer of the set $\{3,4, \ldots, 2 g+b-1\}$ such that $E_{k}(A) \neq 0$. Therefore

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{L\left(f^{n}\right)}{n} t^{n} & =\log \left(\frac{1-t+(-1)^{k} E_{k}(A) t^{k}+\ldots+(-1)^{b-1} E_{2 g+b-1}(A) t^{2 g+b-1}}{1-t}\right) \\
& =\log \left(1+\frac{(-1)^{k} E_{k}(A) t^{k}+\ldots+(-1)^{b-1} E_{2 g+b-1}(A) t^{2 g+b-1}}{1-t}\right) \\
& =(-1)^{k} E_{k}(A) t^{k}+O\left(t^{k+1}\right)
\end{aligned}
$$

Hence, $L(f)=\ldots=L\left(f^{k-1}\right)=0$ and $L\left(f^{k}\right)=(-1)^{k} k E_{k}(A) \neq 0$. So, from Theorem 2, it follows the statement (e).

Suppose that $\mathbb{X}=\mathbb{N}_{g, b}$ with $b \geq 0, g+b-1 \geq 3, E_{1}(A)=1, E_{2}(A)=0$ and k is the smallest integer of the set $\{3,4, \ldots, g+b-1\}$ such that $E_{k}(A) \neq 0$. Therefore

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{L\left(f^{n}\right)}{n} t^{n} & =\log \left(\frac{1-t+(-1)^{k} E_{k}(A) t^{k}+\ldots+(-1)^{g+b-1} E_{g+b-1}(A) t^{g+b-1}}{1-t}\right) \\
& =\log \left(1+\frac{(-1)^{k} E_{k}(A) t^{k}+\ldots+(-1)^{g+b-1} E_{g+b-1}(A) t^{g+b-1}}{1-t}\right) \\
& =(-1)^{k} E_{k}(A) t^{k}+O\left(t^{k+1}\right)
\end{aligned}
$$

Again $L(f)=\ldots=L\left(f^{k-1}\right)=0$ and $L\left(f^{k}\right)=(-1)^{k} k E_{k}(A) \neq 0$. Therefore, from Theorem 2, it follows the statement (f).

Acknowledgements

The first author of this work was partially supported by MICINN/FEDER grant number MTM2011-22587, Junta de Comunidades de Castilla-La Mancha, grant number PEII09-0220-0222. The second author was partially supported by MICINN/FEDER grant number MTM2008-03437, AGAUR grant number 2014SGR 568, ICREA Academia, FP7-PEOPLE-2012-IRSES numbers 316338 and 318999, and FEDER-UNAB10-4E-378.

References

[1] R.F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview, IL, 1971.
[2] J. Franks, Homology and Dynamical Systems, CBMS Regional Conf. Series, vol. 49, Amer. Math. Soc., Providence R.I., 1982.
[3] J. Franks and J. Llibre, Periods of surface homeomorphisms, Contemporary Mathematics 117 (1991), 63-77.
[4] J.L. García Guirao and J. Llibre, Periods of homeomorphisms on surfaces, to appear in the Proceeding of the conference ICDEA2012.
[5] B. Halpern, Fixed point for iterates, Pacific J. Math. 25 (1968), 255-275.
[6] J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
[7] J.W. Vicks, Homology theory. An introduction to algebraic topology, Springer-Verlag, New York, 1994. Academic Press, New York, 1973.
${ }^{1}$ Departamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain.

E-mail address: juan.garcia@upct.es
${ }^{2}$ Departament de Matemàtiques. Universitat Autònoma de Barcelona, Bellaterra, 08193-Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

[^0]: Key words and phrases. Closed surface, continuous self-map, Lefschetz fixed point theory, periodic point, set of periods.

 2010 Mathematics Subject Classification: 58F20, 37C05, 37C25, 37C30.

