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Resumen 

Actualmente, la gran minería del cobre chilena se encuentra frente a nuevos 

problemas y desafíos a superar. El principal problema, es de carácter medio 

ambiental, debido a que la mayor parte de la producción es por procesos de 

flotación, lo que implica aumentar la generación de relaves, ocasionando drenajes 

ácidos que generan la movilidad de elementos pesados al medio ambiente. Otro 

desafío importante, es diversificar las extracciones de otros elementos (como 

ocurre actualmente con el molibdeno) para impulsar la exportación de productos 

básicos y aumentar el empleo. Además, se deben tratar recursos que hoy en día 

no se están aprovechando a escala industrial, un ejemplo son los minerales de 

cobre negro, estos recursos generalmente no se incorporan en las pilas de 

lixiviación. Estos minerales exóticos tienen cantidades considerables de Mn 

(aproximadamente 29%), lo que representa un atractivo comercial. 

Para abordar este desafío, se realizaron investigaciones a nivel laboratorio, 

de extracción de cobre y manganeso desde cobres negros mediante procesos de 

lixiviación. Se evaluaron diferentes aditivos y concentraciones de estos mediante 

la aplicación de modelos estadísticos de regresión cuadrática, evaluando efectos 

lineales, interacciones y curvaturas. Además, se diseñaron y probaron con éxito 

nuevos procesos de extracción. 

Finalmente, se pudo demostrar que para la disolución de Mn ya sea desde 

nódulos marinos o cobres negros, se obtienen resultados positivos al adicionar Fe 

en el sistema, siendo un parámetro óptimo de trabajo una razón de MnO2/Fe de 

1/2, logrando extracciones sobre el 70% en tiempos de 20 min. Para la disolución 

de Cu desde sulfuros secundarios, se puede concluir que los mejores resultados se 

obtienen al trabajar a elevadas concentraciones de cloruro, siendo poco relevante 

la concentración de H2SO4. Por otra parte, para la disolución de calcopirita, 

trabajar en un medio clorurado incorporando altas concentraciones de MnO2 

(razones de MnO2/CuFeS2 de 5/1) favorece el mantener un alto valor de potencial 

en el sistema, superando la pasivación de este mineral. 
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Abstract 

Currently, the great copper mining is facing new problems and challenges to 

overcome. The main problem is environmental, because most of the production is 

due to flotation processes, which implies increasing the generation of tailings, 

causing acid drains that generate the mobility of heavy elements to the 

environment. Another important challenge is to diversify the extractions of other 

elements (as is currently the case with molybdenum) to boost the export of basic 

products and increase employment. In addition, resources that are not currently 

being used on an industrial scale should be treated, an example is black copper 

ores, these resources are generally not incorporated into the extraction circuits or 

are not treated, whether in stocks, platforms leaching or waste. These exotic 

minerals have considerable amounts of Mn (approximately 29%), which 

represents a commercial appeal. 

To address this challenge, research was carried out at the laboratory level, 

for the extraction of copper and manganese from minerals through leaching 

processes. Evaluating different additives and concentrations thereof, applying the 

use of statistical models of quadratic regression, evaluating linear effects, 

interactions and curvatures. And in other cases, creating new extraction 

processes. 

Finally, it was discovered that for the dissolution of Mn either from marine 

nodules or black copper, very positive results are obtained by adding Fe in the 

system, an optimal working parameter being a ratio of MnO2/Fe of 1/2, achieving 

extractions above 70% in times of 20 min. For the dissolution of Cu from secondary 

sulphides, it was found that the best results are obtained when working at high 

concentrations of chloride, the concentration of H2SO4 being insignificant. On the 

other hand, for the dissolution of chalcopyrite, working in a chlorinated medium 

incorporating high concentrations of MnO2 (ratios of MnO2 / CuFeS2 of 5/1) favors 

maintaining a high potential value in the system, overcoming the passivation of 

this mineral. 
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1. Introducción 

Chile es el principal productor de cobre a nivel mundial con un 27,9% de 

participación [1] y con un 29% de las reservas de este commodity [2]. Dentro del 

territorio nacional existen 3.817 depósitos de minerales de cobre [1], en donde la 

explotación de los mismos representa un 92% de las exportaciones por el mercado 

minero [3]. Actualmente, parte de la estrategia a nivel país es lograr pasar de 5,78 

millones de toneladas de cobre fino a alrededor de 6,2 millones de toneladas en 2027, 

aumentando en un 1,7% [4]. Sin embargo, pese a estas cifras positivas presentadas, en 

los últimos años los yacimientos de cobre han presentado un descenso en sus leyes, 

bajando desde un 1% en el año 2004 a 0,65% en 2016 [3]. Por este motivo, en los últimos 

años se están buscando nuevas alternativas para mejorar esta problemática en el país. 

Una opción interesante es la extracción de otros elementos, ya sea como subproductos 

de menas de cobre, residuos generados por la industria o incluso explotar recursos 

submarinos debido a la ausencia de menas de alta ley en la superficie. Otra alternativa 

es optimizar los parámetros operacionales de los procesos ya existentes con el fin de 

aumentar las extracciones y a la vez disminuir los costos y tiempos de trabajo. 

Actualmente, los dos procesos más utilizados para extraer elementos en Chile 

(principalmente cobre) son los procesos de lixiviación y flotación. Sin embargo, los 

procesos de flotación generan problemas medio ambientales, debido a la gran cantidad 

de relaves que generan y los drenajes ácidos generados por la oxidación de pirita en 

tranques de relaves, lo cual se ve reflejado en la movilidad de elementos pesados al 

medio ambiente [5]. Por este motivo, existe la necesidad de generar un nuevo impulso 

que supere cierto estancamiento en la capacidad de crecimiento de la industria minera. 

Esto genera la obligación de desarrollar investigaciones que propongan nuevos 

mecanismos de extracción, nuevos aditivos a los procesos y/o la optimización de 

parámetros de trabajo, que deben estar en línea con las necesidades medio ambientales 

actuales. 

Para solucionar lo anteriormente expuesto, se propone realizar una lixiviación a 

nivel laboratorio de minerales y concentrados en estado puro en medios ácidos, 

evaluando parámetros de dosificación de reactivos con el objetivo de encontrar un 

modelo cuadrático que permita predecir la extracción del elemento de interés, 

determinando las condiciones necesarias para mejorar la cinética de disolución y 
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analizar los efectos de estos parámetros en la extracción.  

La lixiviación ha demostrado ser un método eficiente para tratar menas de leyes 

bajas y medias a escala industrial. Se ha trabajado históricamente en la minería a través 

de pilas de lixiviación, logrando buenos resultados [6]. En los últimos años, las 

lixiviaciones agitadas (reactores) se han incorporado a los procesos industriales, debido 

a las nuevas exigencias que se generan por minerales más refractarios, además de la 

aparición de impurezas complejas de eliminar por procesos convencionales. Los estudios 

de minerales que están en un estado puro (o casi totalmente), y que además abarcan 

modelos estadísticos para optimizar parámetros, no suelen ser comunes en el área de 

investigación de la lixiviación debido a la dificultad de encontrar minerales de alta ley 

que se encuentren de forma homogénea. Además, el hecho de que son trabajos 

interdisciplinarios que comprenden tópicos de ingeniería metalúrgica e ingeniería 

industrial ha limitado su desarrollo. Este tipo de estudios permite sensibilizar 

parámetros y generar propuestas que agilicen futuros trabajos de investigación. 

El presente trabajo de investigación contribuye en el campo de la metalurgia e 

ingeniería industrial, específicamente las áreas de lixiviación y estadística. Este trabajo 

se ha realizado en el contexto de 5 estudios de extracción de elementos (Cu y Mn), en 

donde cada uno de estos propone novedosos métodos para aplicar en la industria 

minera, y, además, optimizar los resultados actuales en las pilas de lixiviación.  

Para cumplir este objetivo, se utilizará la metodología de optimización de la 

superficie para evaluar el efecto de X variables independientes para la disolución de un 

elemento. Con un análisis ANOVA se obtendrán los parámetros (lineales, interacciones 

y curvatura), eliminando todo valor sesgado (p > 0,05), lo cual permitirá aumentar la 

representatividad del modelo (R2), del cual se propondrá una ecuación de extracción. 

Finalmente se realizarán pruebas de lixiviación, para los parámetros de mayor 

impacto en el modelo y se evaluarán diferentes concentraciones de aditivos. Esto 

permitirá concluir el mecanismo de trabajo más apropiado para la disolución del 

elemento deseado, desde un mineral o concentrado. 
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1.1 Metodología de trabajo 

Todas las pruebas experimentales se realizaron en el laboratorio “Nuevas líneas 

de investigación” perteneciente al Departamento de Ingeniería Metalúrgica y Minas, de 

la Universidad Católica del Norte. La metodología experimental se llevó a cabo en 2 

etapas, las cuales se detallan a continuación: 

1.1.1 Preparación del mineral 

En los 5 estudios realizados para este trabajo de investigación, se trabajó con 

nódulos de manganeso, cobres negros, sulfuros secundarios (calcosina y covelina) y 

sulfuro primario (calcopirita).  

Era fundamental que los minerales a utilizar estuvieran lo más puros posibles, para 

disminuir las desviaciones en los resultados. Por este motivo fueron reducidos de 

tamaño con el uso de un mortero para evitar contaminación debido a las impurezas y 

polvo que están presentes en un chancador. 

La reducción de tamaño del mineral se realiza hasta que el 100% esté a una 

granulometría -10#. Luego se procede a homogenizar el mineral, y se toman 2 muestras 

representativas de 1 g cada una, para ser enviadas a análisis químico y mineralógico. 

Los análisis químicos fueron determinados por espectrometría de emisión atómica 

de plasma acoplado inductivamente (ICP-AES), mientras que la mineralogía de las 

muestras se determinó de dos formas: un análisis QEMSCAN, que es un microscopio 

electrónico de exploración que se modificó tanto en hardware como en software, y/o 

utilizando un difractómetro de rayos X de la marca Bruker, modelo automático e 

informatizado de D8.  

Para la clasificación de tamaños en los diferentes estudios, el material fue molido 

en el mortero cuidadosamente, y clasificado a través de mallas tamices, hasta llegar a 

los rangos deseados. 

1.1.2 Proceso de lixiviación 

El ácido sulfúrico utilizado para todas las pruebas de lixiviación fue de grado P.A., 

con una pureza del 95-97%, una densidad de 1,84 kg/L y un peso molecular de 98,80 

g/mol.  
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Las pruebas de lixiviación se llevaron a cabo en un circuito de reactores de vidrio 

de 50 mL con una relación sólido / líquido de 0,01. Se mantuvo en suspensión un total 

de 200 mg de mineral del mineral a procesar con el uso de un agitador magnético de 

cinco posiciones (IKA ROS, CEP 13087-534, Campinas, Brasil) a una velocidad de 600 rpm. 

Las pruebas se realizaron a una temperatura ambiente de 25 °C, mientras que para otras 

se varío la temperatura (de 25 a 90 °C) evitando la evaporación de agua con el uso de un 

refrigerante de vidrio conectado a la parte superior de los reactores. Los refrigerantes 

son alimentados por una manguera conectada a la llave de agua potable, de este modo 

al pasar el chorro de agua a temperatura ambiente y hacer contacto con el gas caliente 

que sale del reactor hace que éste se condense y vuelva al mismo (ver Figura 1). Las 

pruebas se realizaron por duplicado y las mediciones (o análisis) se realizaron en 

muestras de 5 mL sin diluir utilizando espectrometría de absorción atómica con un 

coeficiente de variación ≤ 5% y un error relativo entre 5 y 10%. Las mediciones del pH y 

el potencial de oxidación-reducción (ORP) de las soluciones de lixiviación se realizaron 

con un medidor de pH-ORP (HANNA HI-4222 (instrumentos HANNA, Woonsocket, 

Rhode Island, EE. UU.)). La solución ORP se midió en una celda de electrodo de 

combinación ORP compuesta de un electrodo de trabajo de platino y un electrodo de 

referencia de Ag/AgCl saturado. 

 

Figura 1 Circuito de reactores en serie (Fuente: Autor) 
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1.1.3 Modelamiento matemático y diseño de experimentos 

El diseño de experimentos (DOE) ayuda a investigar los efectos de las variables de 

entrada (factores) sobre una o más variables de salida (respuesta) [7]. El diseño de 

experimentos consiste en una serie de pruebas en las que se realizan cambios o 

perturbaciones de forma intencional en las variables de entrada [8], recolectando los 

datos de la salida para su posterior análisis [9]. Se desarrolló un diseño factorial, de 

manera de estudiar el efecto del Tiempo, Concentración de H2SO4 y la relación 

MnO2/Fe2O3 en la recuperación de manganeso, donde la variable respuesta fue 

expresada basada tanto en los efectos lineales, las interacciones y la curvatura de las 

variables independientes, tal como se muestra en la ecuación 1. 

Element Extraction (%) = α + ∑ βixi

n

i=1

+ ∑ ∑ βijxixj

n

j=1

n

i=1

 
( 1 ) 

Donde 𝛼 es la constante general, 𝑥𝑖  son las n variable independientes y β son los 

coeficientes de los diferentes efectos de las variables independientes. Posterior al ajuste 

del modelo de regresión múltiple, previa linealización de los factores de orden dos o 

superior, se procede a la optimización de la respuesta, identificando el nivel de los 

factores que maximizan la recuperación de manganeso o cobre para el conjunto de 

valores muestreados, tal como se desarrolló en Toro et al. [9].  

Posterior al ajuste y optimización mediante el diseño de un modelo factorial, se 

extiende el diseño experimental, de manera de incluir las variables independientes 

tamaño de partícula, temperatura y velocidad de agitación de los reactores al modelo 

analítico, replanteándolo como un sistema de ecuaciones de primer orden, tal como se 

presenta en el trabajo desarrollado por Saldaña et al. [10],  en donde se ajustan los 

modelos analítico para la lixiviación mediante los modelos analíticos desarrollados 

anteriormente por Mellado et al. [11-13], en donde se considera que el comportamiento 

de la lixiviación podría ser modelado usando un sistema de ecuaciones como el 

mostrado en la Ecuación 2. 

𝜕𝑦

𝜕𝜏
= −𝑘𝜏𝑦𝑛𝜏 

( 2 ) 

Donde y representa la recuperación (𝑅𝑡), 𝑘𝜏 es la constante cinética y 𝑛𝜏 es el 

orden de la reacción. El subíndice 𝜏 representa una escala de tiempo que depende del 
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fenómeno a modelar. Para resolver la Ecuación ( 2 ) una condición inicial es requerida, 

introduciéndose un retraso (𝜔). Luego, la solución general es conocida y su solución está 

dada por la Ecuación 3. 

𝑅𝜏 = 𝑅𝜏
∞(1 − 𝑒−𝑘𝜏(𝜏−𝜔)) ( 3 ) 

𝑅𝜏
∞ es la máxima recuperación esperada en condiciones operacionales. Dixon y 

Hendrix [14-15] consideraron que el fenómeno ocurre en diferentes escalas de tamaño 

(relacionado a la altura de la pila de lixiviación) y tiempo, sin embargo, este supuesto 

solo aplica para el análisis del proceso a escala industrial. Luego, modificando la ecuación 

para ajustar un modelo al diseño experimental, se tiene que es posible explicar la 

recuperación del elemento valioso desde el mineral según la Ecuación 4. 

𝑅(𝑋) = 𝑅∞(1 − 𝑒−𝑔(𝑋)) ( 4 ) 

Donde 𝑅∞ = 100% es la máxima recuperación esperada de mineral bajo las 

condiciones experimentales (condiciones de laboratorio), mientras que 𝑔(𝑋) es una 

ecuación polinómica, explicada por las variables muestreadas indicadas anteriormente. 

 

2 Estado del arte 

2.1 Minerales de manganeso 

El manganeso, es un metal de transición de color gris plateado, similar al hierro. 

Este elemento pertenece al grupo 7 y periodo 4 de la tabla periódica con numero 

atómico 25, su masa atómica es de 54,94 g/mol, es un metal duro y muy frágil [16]. El 

manganeso tiene una densidad de 7,3 g/cm3, con un punto de fusión y ebullición de 

1246 y 2061 °C respectivamente [17]. 

El Mn está entre los 12 elementos con mayor abundancia en la corteza terrestre 

[18], este metal, ampliamente distribuido en rocas, constituye aproximadamente el 

0,1% de la corteza terrestre; su ocurrencia no está asociada a la forma metálica libre, 

sino a diversas formas compuestas, siendo los más abundantes óxidos, sulfuros, 

carbonatos y silicatos [19]. El manganeso también se puede encontrar en las 

profundidades oceánicas, en forma de nódulos, micro concreciones, recubrimientos y 

costras, se estima que ocupan hasta 30% del pacífico [17]. 
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La disolución de Mn desde nódulos marinos o cobres negros es un proceso de 

lixiviación en el que se trabaja a bajos valores de potencial. Para lograr extraer el Mn y 

otros metales de interés desde estos recursos, es necesario el uso de un agente reductor 

[20]. 

2.1.1 Nódulos marinos 

Los nódulos de manganeso, también conocidos como nódulos polimetálicos, 

desde su descubrimiento en los años 1873-76 durante la afamada expedición 

Challenger, han sido objeto de gran interés y especulación [21]. Estos nódulos de Mn 

son concreciones conformadas principalmente de minerales de óxido de hierro y 

manganeso hidratados (Ver Figura 2), aunque también se encuentran cantidades 

menores de níquel, cobre, cobalto, molibdeno y elementos de tierras raras [22]. 

Estas concreciones rocosas se encuentran diseminadas en los fondos marinos de 

los océanos Atlántico, Indico y Pacífico Norte, principalmente, a profundidades de 4.000-

5.000 m. Tienen una forma casi esférica de color entre marrón y negro [23]. Los nódulos, 

generalmente, tienen un tamaño promedio de entre 1-12 cm, pero su diámetro puede 

variar desde milímetros (micronódulos) hasta 20 cm [21]. 

 
Figura 2 Nódulos de manganeso [21] 
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2.1.2 Cobres negros  

Chile posee los yacimientos porfídicos más inmensos del planeta, que son 

esencialmente depósitos de baja ley, pero de gran tonelaje. Si bien, estos depósitos 

pueden no tener gran atractivo económico en su fase hipógena, el panorama cambia 

cuando el pórfido ha desarrollado procesos supérgenos. Dichos procesos pueden ser, 

enriquecimiento secundario y/o mineralización de cobre exótico. La mineralización 

primaria del pórfido está compuesta por un protolito de sulfuros de hierro y cobre, 

hospedada por distintas asociaciones mineralógicas alteradas. El mineral precursor de 

estos yacimientos metalíferos es la pirita. Ésta al reaccionar con el agua, genera ácido 

sulfúrico, promoviendo la movilidad de metales, como el cobre, que, bajo ciertas 

condiciones de potencial y pH, pueden ser transportadas logrando precipitar aguas 

abajo y formando yacimientos denominados exóticos [24-25]. 

La mineralización existente en estos yacimientos comprende distintas especies de 

minerales de cobre tales como, crisocola, atacamita, copper pitch y copper wad [24, 26]. 

Estos últimos, definidos como mineraloides, debido a que cristalizan de manera amorfa 

(Ver Figura 3) [27]. También son denominados silicatoides rico en Si-Fe-Cu-Mn [28] 

 
Figura 3 Mineral de cobre negro [29] 

2.2 Minerales de cobre 

La mayor parte de los minerales de cobre en el planeta corresponden a minerales 

sulfurados y una menor cantidad a minerales oxidados [30]. La mayor parte de la 

producción de cobre en el mundo se realiza mediante el procesamiento de minerales 

sulfurados (75%) por procesos de flotación y fundición [31], mientras que el resto (25%) 

se trabaja por la vía hidrometalúrgica [32]. Sin embargo, pese a la alta producción 
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mundial por la vía pirometalúrgica, existe una preocupación por la contaminación del 

aire y las emisiones de dióxido de azufre generados por procesos de fundición 

convencionales [33].  Por este motivo científicos e ingenieros han planteado la 

hidrometalurgia como una mejor alternativa para el tratamiento de calcopirita, ya que 

es un proceso más amigable con el medio ambiente [34]. 

2.2.1 Calcosina 

La calcosina es el mineral sulfurado de cobre más abundante después de la 

calcopirita [35]  y es el que tiene un tratamiento más fácil por vía hidrometalúrgica [36]. 

Es un sulfuro secundario en la zona oxidada de los depósitos de cobre o cercana a ella. 

Cristaliza en el sistema por encima de 105 °C (Ver Figura 4) y se confunde fácilmente con 

djurleita [37]. 

 

 
Figura 4 Estructura cristalina de la calcosina [37] 

 

2.2.2 Covelina 

La covelina no es un mineral abundante, pero se halla en muchos depósitos de 

cobre como mineral supergénico, normalmente como recubrimiento en la zona de 

enriquecimiento de sulfuros. Está asociada a otros minerales principalmente calcosina, 

calcopirita, bornita y enargita, de los que deriva por alteración [38]. La covelina presenta 

un interés para el proceso hidrometalúrgico debido al porcentaje encontrado en menas 

de óxidos, además de ser un producto intermedio de las conversiones de fase de 

calcopirita [39] y transformación de digenita a covelina en un medio oxigenado [40-41]. 

En la Figura 5 se presenta un mineral de covelina cristalizado. 
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Figura 5 Cristales de covelina [42] 

2.2.3 Calcopirita  

La calcopirita es el mineral de cobre más abundante en el planeta [43], además, 

uno de los minerales más refractarios en los procesos de hidrometalurgia [44].  Es un 

sulfuro de hierro y cobre cuya fórmula química es CuFeS2, con una composición de 34,6% 

de cobre, 30,5% de hierro y 34,9% de azufre. Este mineral tiene una dureza 3,5 – 4, raya 

negra verdosa, color amarillo latón con reflejos verdes y posee brillo metálico. La 

estructura cristalina consiste en una red relativamente simple tetragonal, cerca de 

cúbico [45], con cada ión de azufre rodeado por cuatro iones metálicos de cobre y hierro 

situados en ángulos tetraedros y en un cierto orden en cada plano [46]. En la Figura 6 se 

presenta un mineral de calcopirita. 

 
Figura 6 Cristales de calcopirita sobre matriz de cuarzo [46] 
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2.3 Lixiviación agitada 

Generalmente la lixiviación por agitación involucra que el mineral esté sometido a 

altas presiones y temperaturas, dado que bajo estas condiciones se consiguen cinéticas 

de extracción aceptables que no son posibles bajo condiciones moderadas [47]. 

La lixiviación por agitación permite tener un mayor control del proceso de 

lixiviación. Además, la velocidad de extracción del metal es mucho mayor que la lograda 

mediante el proceso de lixiviación en pilas o en bateas. Sin embargo, es un proceso de 

mayor costo, ya que incluye los costos de la molienda del mineral, separación sólido-

líquido, entre otros [48]. 

La ley del mineral y el tamaño de partícula tienen una importante influencia en la 

selección del proceso para la lixiviación de minerales, como se muestra en la Figura 7. 

 

Figura 7. Relación entre la ley de cobre y tamaño de partícula del mineral para 

distintos métodos de lixiviación [49] 
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Abstract: Manganese nodules are an attractive source of base metals and critical and rare elements
and are required to meet a high demand of today’s industry. In previous studies, it has been
shown that high concentrations of reducing agent (Fe) in the system are beneficial for the rapid
extraction of manganese. However, it is necessary to optimize the operational parameters in order to
maximize Mn recovery. In this study, a statistical analysis was carried out using factorial experimental
design for the main parameters, including time, MnO2/Fe2O3 ratio, and H2SO4 concentration. After
this, Mn recovery tests were carried out over time at different ratios of MnO2/Fe2O3 and H2SO4

concentrations, where the potential and pH of the system were measured. Finally, it is concluded that
high concentrations of FeSO4 in the system allow operating in potential and pH ranges (−0.2 to 1.2
V and −1.8 to 0.1) that favor the formation of Fe2+ and Fe3+, which enable high extractions of Mn
(73%) in short periods of time (5 to 20 min) operating with an optimum MnO2/Fe2O3 ratio of 1:3 and
a concentration of 0.1 mol/L of H2SO4.

Keywords: leaching; manganese nodules; optimization of parameters; tailings

1. Introduction

The oxides of Fe and Mn are formed by direct precipitation in ambient seawater and are mainly
deposited on the flat parts and the flanks of seamounts, where ocean currents prevent sedimentation [1,2].
These deposits are found in the oceans around the world [3] and among these are the manganese nodules [4].

The economic interest in ferromanganese (Fe-Mn) nodules is due to high grades of base, critical,
and rare metals [5]. These metals that provide mineral deposits on the seabed are necessary for the
rapid development of high technology application. They also support the growth and quality of
life of the middle class in densely populated countries with expanding markets and economies [6].
Manganese is the most abundant marine nodule metal, with an average content of around 24% [7].

In order to dissolve Mn present in marine nodules in acidic media, it is necessary to use a reducing
agent [8]. Studies have reported that the acid leaching of manganese nodules with the use of Fe as the
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reducing agent is efficient at room temperature [8–11]. In a study conducted by Zakeri et al. [8], ferrous
ions were added for the reductive dissolution of manganese nodules. The authors indicated that in
a molar H2SO4/MnO2 ratio of 2:1 and a molar Fe2+/MnO2 ratio of 3:1, it was possible to dissolve 90%
of Mn in 20 min at 20 ◦C. Bafgui et al. [9] performed acid leaching of manganese nodules by adding Fe,
comparing their results with those previously obtained by Zakeri et al. [8]. The authors concluded that
when operating with high Fe/MnO2 ratios, Fe0 is a more efficient reducing agent compared to Fe2+

because it maintains high activity in the system through the regeneration of ferrous ions.
For the acidic leaching of marine nodules with the use of residues (tailings and slags) containing

Fe2O3, only two studies have been presented [10,11]. In the studies carried out by Toro et al. [10] and
Toro et al. [11], it was shown that variables, such as particle size and agitation speed, do not majorly
influence the dissolution of MnO2 and that the most important variable is the Fe2O3 concentration in
the system. In the study carried out by Toro et al. [10] with the use of smelter slag, extraction of 70% of
Mn was achieved in 40 min when operating at a MnO2/Fe2O3 ratio of 1:2, a particle size of −47 + 38 µm,
and a H2SO4 concentration of 1 mol/L. In the later study carried out by Toro et al. [11], involving the
use of tailings, it was demonstrated that under the same operating conditions as in Toro et al. [10],
greater extraction of Mn (77%) was achieved because tailings are more amenable to leaching. In both
studies, the following Reactions (R1)–(R9) involving the use of Fe2O3 were proposed.

(Fe2+ Fe2
3+)O4(s) + 2H+(aq) = (Fe2

3+)O3 + Fe2+(aq) + H2O(l) (R1)

3(Fe2+ Ti)O3(s) + 6H+(aq) = 3TiO2 + 3Fe2+(aq) + 3H2O(l) (R2)

Fe2O3 + H2SO4 = Fe2(SO4)3 + H2O(l) (R3)

Fe3O4(s) + 4H2SO4(aq) = FeSO4 + Fe2(SO4)3 + 4H2O(l) (R4)

Fe2(SO4)3 + H2O = Fe(OH)3 + Fe(s) + H2(aq) + H2SO4(aq) + O2 (R5)

FeSO4(s) + H2O(aq) = Fe(s) + H2SO4(aq) + O2 (R6)

MnO2(s) + Fe2+(aq) + H+(aq) = Fe3+(aq) + Mn2+(aq) + H2O(l) (R7)

MnO2(s) + Fe(s) + 8H+(aq) = 2Fe3+(aq) + Mn2+(aq) + 2H2O(l) + 2H2(g) (R8)

MnO2(s) + 2/3Fe(s) + 4H+(aq) = Mn2+(aq) + 2/3Fe3+(aq) + 2H2O(l) (R9)

However, in previous studies [8,9], thermodynamic aspects were not considered.
Table 1 reports the statistical information of the reactions of interest with iron as a reducing

agent and its transformations during manganese leaching. It is emphasized that, unlike previous
investigations [11], under these conditions, elemental iron (Fe0) was not formed, since this reaction is
not spontaneous (G = 744.22 kJ) and requires a lot of energy. On the other hand, the main reducing
agent is ferrous sulfate (FeSO4), which is produced from the reaction between magnetite (Fe3O4,
mostly present in tailings) and sulfuric acid (Equation (2)). With this reducing agent, it is possible to
reduce manganese present in pyrolusite (Mn4+), obtaining a manganese sulphate (Mn2+), as observed
in Equation (5).

Table 1. Thermodynamic information of the reactions (based on HSC Chemistry 5.1).

Reaction Equation
Reaction

Coefficient (K)
25 ◦C

∆G◦ (kJ)
25 ◦C

Fe2O3(s) + 3 H2SO4(aq) = Fe2(SO4)3(s) + 3 H2O(l) (1) 4.21 × 1028 −163,37
Fe3O4(s) + 4H2SO4(l) = FeSO4(aq) + Fe2(SO4)3(s) + 4 H2O(l) (2) 6.06 × 1045 −261,30

Fe2(SO4)3(s) + 6 H2O(l) = 2 Fe(OH)3(s) + 3 H2SO4(l) (3) 2.14 × 10-35 197,87
2 FeSO4(aq) + 2 H2O(l) = 2 Fe(s) + 2 H2SO4(l) + O2(g) (4) 4.02 × 10-131 744,22

2 FeSO4(aq) + 2 H2SO4(aq) + MnO2(s) = Fe2(SO4)3(s) + 2 H2O(l) + MnSO4(aq) (5) 9.06 × 1034 −199,52



Minerals 2019, 9, 387 3 of 11

The smelting slag is one of the main solid wastes of the copper industry and the produced
volume increases day by day [12]. In Chile, the smelters produce 163 tons of slag per day [13]
and companies such as Altonorte perform slag flotation for the recovery of Cu. During flotation
for each ton of Cu obtained, 151 tons of tailings are generated [14], which are mainly disposed of
in tailing dams and represent the most significant environmental liability according to their size
and risk of a mining site [15]. Another example is what happened in Lavrio, Greece, due to the
intensive mining and metallurgical activities in the last century. This generated huge amount of waste,
including acid-generating sulfidic tailings, carbonaceous tailings, and slags. Quantification of the
human health risks indicated that direct ingestion of contaminated particles is the most important
exposure route for the intake of contaminants by humans [16]. Komnitsas et al. [17] conducted research
on waste generated by intensive mining and mineral processing activities in Navodari and Baia, on the
Romanian Black Sea coast. Analyzing the experimental results and the associated risks, the authors
conclude that it is necessary to rehabilitate the affected areas through removal of toxic and heavy
elements from sulphidic tailings and leachates with biosorption and biosolubilisation techniques and
development of a vegetative cover on phosphogypsnm stacks and sulphidic tailings dumps. For this
reason, it is important to highlight the importance of studying options to reuse waste generated from
metallurgical processes.

In Chile, ocean mining is not regulated and is also under-exploited for security reasons [18].
Due to this, it is not possible to carry out a cost-effectiveness study on the extraction of nodules from
sea depths. Mining technologies have been developed in the world for the extraction of polymetallic
nodules [19]. However, there is no study indicating cost differences between the different methods
available on the market. In spite of this, it is necessary to continue investigating processes for the
extraction of elements from marine nodules, because technologies are being developed to collect
minerals from sea beds and, in the near future, they could be considered as viable alternatives to meet
the high demand for metals.

In this investigation, the use of Fe2O3, which is present in tailings, to facilitate reductive leaching
of MnO2 from marine nodules for the recovery of Mn is evaluated. The objective is to minimize these
environmental liabilities and optimize the most important process variables (time, acid concentration,
and MnO2/Fe2O3 ratio).

2. Materials and Methods

2.1. Manganese Nodule Sample

The marine nodules used in this work were the same as those previously used in Toro et al. [11].
They were analyzed by means of atomic emission spectrometry by induction-coupled plasma (ICP-AES),
developed in the applied geochemistry laboratory of the department of geological sciences of the
Catholic University of the North. They contained 15.96% Mn and 0.45% Fe; Mn was present as MnO2

(29.85%) and Fe as Fe2O3 (26.02%).

2.2. Tailings

The tailings used for the present investigation were the same as those used in Toro et al. [11].
The methods used to determine their chemical and mineralogical composition are the same as those
used for the analysis of the manganese nodules. Figure 1 shows the chemical species determined by
QEMSCAN. There were several phases that contained iron (mainly magnetite (58.52%) and hematite
(4.47%), while the content of Fe was estimated at 41.90%.
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Figure 1. Detailed modal mineralogy.

2.3. Reagents Used—Leaching Parameters

The sulfuric acid used for the leaching tests was grade PA, with 95–97% purity, a density of 1.84 kg/L,
and a molecular weight of 98.80 g/mol. The leaching tests were carried out in a 50 mL glass reactor
with a 0.01 solid:liquid ratio. A total of 200 mg of Mn nodules were maintained in suspension with the
use of a 5 position magnetic stirrer (IKA ROS, CEP 13087-534, Campinas, Brazil) at a speed of 600 rpm.
The tests were conducted at a room temperature of 25 ◦C, while the studied variables were additives,
particle size, and leaching time. Also, the tests were performed in duplicate and measurements
(or analyses) were carried out on 5 mL undiluted samples using atomic absorption spectrometry with
a coefficient of variation ≤5% and a relative error between 5% and 10%. Measurements of pH and
oxidation-reduction potential (ORP) of leach solutions were made using a pH-ORP meter (HANNA
HI-4222). The ORP solution was measured using a combination of an ORP electrode cell composed of
a platinum operating electrode and a saturated Ag/AgCl reference electrode. The solid waste obtained
was analyzed by XRD with the use of a Bruker brand diffractometer; the patterns of the main crystalline
phases were obtained using Eva software.

2.4. Estimation of Linear and Interaction Coefficients for Complete Factorial Designs of Experiments of 33

In previous studies [8–11], in which the dissolution of Mn from marine nodules was investigated
with the use of Fe as a reducing agent, it was demonstrated that for high concentrations of Fe in the system
(ratios of Fe/MnO2 greater than 1), quite high extractions were obtained (over 70%) in short periods of time
(5 to 30 min). The studies conducted by Bafghi et al. [9] and Toro et al. [10] indicated that the concentration
of Fe in the system is the most important variable in order to shorten MnO2 dissolution times; it was also
found that the concentration of H2SO4 is not an important parameter. However, in these studies, it was not
possible to indicate an optimum MnO2/Fe ratio and H2SO4 concentration in relation to time. In order to
overcome this and elucidate Mn extraction from marine nodules, three independent variables were selected
for the factorial design of 33 experiments, namely time, sulfuric acid concentration, and MnO2/Fe2O3 ratio.
This approach allows the determination of the effect of the most relevant factors, as well as their levels,
and the development of an experimental model that allows through the determination of coefficients
the optimization of the response variable [20–22]. A factorial design was applied involving three factors,
each one having three levels; thus, 27 experimental tests were carried out. Minitab 18 software was used
for the experimental design and development of a multiple regression equation [23].
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Then, the response variable was expressed based on the linear effect of the variables of interest
and considering the effects of interaction and curvature, as shown in Equation (6).

Mn Extraction (%) = α + β1 × x1 + β2 × x2 + β3 × x3 + β12 × x1 × x2 + β13 × x1 × x3 +

β23 × x2 × x3 + β11 × x1
2 + β22 × x2

2 + β33 × x3
2, (6)

where α is an overall constant, xi is the value of the level “i” of the factor x, βi is the coefficient of
the linear factor xi, βij is the coefficient of the interactions xi × xj, n is the level of the factor, and Mn
extraction is the dependent variable.

Table 2 shows the values of the levels for each factor, while Table 3 shows the recovery obtained
for each configuration.

Table 2. Experimental conditions.

Parameters/Values Low Medium High

Time (min) 10 20 30
MnO2/Fe2O3 2/1 1/1 1/2

H2SO4 (mol/L) 0.1 0.5 1
Codifications −1 0 1

Table 3. Experimental configuration and Mn extraction.

Exp.
No.

Time
(min)

MnO2/Fe2O3
Ratio

Sulfuric Acid Conc.
(mol/L)

Mn Extraction
(%)

1 10 1/1 0.1 48.42
2 20 2/1 0.5 38.78
3 20 1/1 1 57.32
4 30 2/1 1 42.55
5 10 1/2 0.5 70.24
6 20 2/1 0.1 38.10
7 30 1/1 1 72.96
8 30 1/2 0.1 74.20
9 10 2/1 0.5 33.23

10 10 2/1 1 33.33
11 20 1/1 0.5 56.80
12 30 2/1 0.1 42.30
13 20 1/1 0.1 55.95
14 10 2/1 0.1 32.83
15 10 1/1 1 50.23
16 10 1/2 0.1 70.21
17 20 1/2 0.1 73.20
18 20 1/2 0.5 73.20
19 30 1/1 0.1 71.96
20 30 1/1 0.5 72.33
21 10 1/2 1 70.90
22 20 1/2 1 73.40
23 20 2/1 1 39.22
24 30 1/2 0.5 74.90
25 10 1/1 0.5 48.91
26 30 1/2 1 75.21
27 30 2/1 0.5 42.00

3. Results and Discussion

3.1. Effect of Variables

From the principal components analysis, it is seen that there is no main effect of the sulfuric
acid concentration factor, which means that the average response is the same across all levels of the
factor, while the time and MnO2/Fe2O3 ratio factors have a main effect since the variation between
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the different levels affects the response differently, as shown in main effects plot for Mn extraction of
Figure 2. Developing the ANOVA test and the multiple linear regression adjustment, the recovery
according to the predictive variables of time and MnO2/Fe2O3 ratio is given by Equation (7).

Mn Extraction (%) = 53.90 + 6.12 × x1 − 17.40 × x2 − 4.00 × x2
2, (7)

where x1 represents the time factor and x2 represents the MnO2/Fe2O3 ratio (previous coding). Then,
it is seen that the double and triple interaction factors, together with the curvature of time and H2SO4

concentration factors, do not contribute to the explanation of the variability of the model.
A gradient analysis of manganese extraction, ∇Mn Extraction (x1, x2) = (6.12, −23.40), indicates

an increase in the positive direction of the predictor variables. The response decreases faster with
respect to the variable x2 than with respect to the variable x1, as shown in Figure 3.
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The ANOVA test indicates that the model adequately represents manganese extraction for the set
of sampled values. Also, the model does not require additional adjustments and is validated by the
following goodness-of-fit statistics. The p-value of the model (p < 0.05) indicates that it is statistically
significant. The value of the R2 statistic is 94.94%, which indicates that approximately 95% of the total
variability is explained by the model, while the predictive R2 is 92.79%, indicating that the model can
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adequately predict the response to new observations. The F test indicates the significance of the model,
given that FRegression(143.89) >> (FTable = F3,23(3.03)), while the residual normality test indicates that
these are distributed with media −7.41 × 10−7, with a standard deviation of 3.5. The p-value of the
Kolmogorov-Smirnov test is greater than the level of significance, so it is not possible to reject the
assumption of the regression model, which is that the residuals are normally distributed.

3.2. Effect on Acid Concentration and MnO2/Fe2O3 Ratio

In Figure 4, it can be seen that the largest extractions of Mn from marine nodules are obtained
when operating at MnO2/Fe2O3 ratios less than 1:1, which agrees with the theories proposed by
Kanungo et al. [24], Zakeri et al. [8], Bafghi et al. [9], and Toro et al. [10], which mentioned that the
presence of more Fe than MnO2 in the system improved Mn dissolution in short periods of time.
The highest Mn dissolution (76.10%) was obtained by operating at a MnO2/Fe2O3 ratio of 1:3 with
a H2SO4 concentration of 1 mol/L at 30 min. However, this extraction is not far from that obtained when
operating at a MnO2/Fe2O3 ratio of 1:2 (75.50%) at the same acid concentration. For the MnO2/Fe2O3

ratios described in Figure 4b–d, it can be seen that, for leaching times of 30 min, very similar values
are obtained, but much higher dissolution kinetics are seen in 1:2 and 1:3 ratios where higher than
65% recoveries of Mn are obtained after 5 min. For a MnO2/Fe2O3 ratio of 2:1 (Figure 4a), much lower
dissolution is obtained compared to the other cases under the same operating conditions; the maximum
dissolution achieved is 48.30% after 30 min when the H2SO4 concentration is 1 mol/L.

The concentration of H2SO4 in the system is not significant when MnO2/Fe2O3 ratios are 1:2 and
1:3; this finding agrees with those of Toro et al. [10], who mention that high concentrations of Fe2O3 in
the system are independent of the acid concentration. However, it can be observed that this factor
has a greater impact as long as there is a lower concentration of reducing agent (FeSO4) in the system.
For a MnO2/Fe2O3 ratio of 2:1, there is a difference of 3.30% between 0.1 and 1 mol/L of H2SO4.

For these two variables analyzed under the exposed operational parameters, it can be observed
that when operating at a MnO2/Fe2O3 ratio of 1:2, at a concentration of H2SO4 of 0.5 mol/L at 20 min,
similar results like those obtained when operating in a MnO2/Fe2O3 ratio of 1:3 (73.50% approximately)
are obtained. This is consistent with what was proposed by Toro et al. [11], who indicated that,
when operating at high concentrations of Fe2O3 in the system, the dissolution kinetics of MnO2

were drastically increased and significant differences were only observed in short periods of time
(5 to 10 min). However, for the second case mentioned in Figure 4d, better results are obtained at low
acid concentrations (0.1 mol/L). For this reason, it can be concluded that it is more convenient to operate
at MnO2/Fe2O3 ratios of 1:3 and low concentrations of acid (0.1 mol/L) at 20 min. This is because the
tailings are wastes that do not have a commercial value and their reuse is beneficial, while the increase
of the acid concentration in the system results in a direct increase in the cost of the process.
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(c) ratio 1:2; and (d) ratio 1:3 (25 ◦C, 600 rpm, −75 + 53 µm).

Based on the results presented in Figure 4, Figure 5 shows that an optimum MnO2/Fe2O3 ratio
can be determined. It can be seen that there is no difference in manganese extractions when operating
at 1:3 and 1:4 ratios. For short periods of time (5 to 20 min), it can be observed that there are greater
extractions for ratios higher than 1:2, achieving dissolutions of Mn over 70% at 15 min. However, it can
be seen that at 30 min the results converge in extractions of approximately 75%. Finally, it can be
indicated that for times between 15 to 25 min, it is convenient to operate at a MnO2/Fe2O3 ratio of 1:3,
while at 30 min, the optimum ratio is 1:2. Figure 6 shows the potential and pH values obtained in the
tests presented in Figure 5, which vary between (−0.2 V to 1.2 V) and (−1.8 to 0.1), respectively.
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Senanayake [25] stated that during reductive leaching of MnO2 with the use of FeSO4 as a reducing
agent, the values of potential and pH must be in the range of −0.4 to 1.4 V and −2 to 0.1 in order to
dissolve Mn. In addition, it is indicated that the divalent Fe (II), produced by the partial acid dissolution
of Fe3O4, acts as a reducing agent for MnO2. Under these conditions, Mn ions remain in solution and
do not precipitate through oxidation-reduction reactions by the presence of Fe2+ and Fe3+ ions [26].
This can be seen in Figure 7, when analyzing the residues of the present study by XRD analysis and
mainly the presence of fayalite (Fe2

+2 SiO4), magnetite (Fe3O4), and gypsum (CaSO4·2H2O) is observed.
It is concluded that, in these residues, no Fe precipitates were generated from the solution when tailings
were added. In future studies, it may be interesting to perform a kinetic study to elucidate the effect of
temperature in order to determine the Mn dissolution mechanisms from marine nodules in very short
periods of time (5 min).
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Figure 7. X-ray diffractogram of solid waste after leaching for 30 min at 25 ◦C using a MnO2/Fe2O3

ratio of 1:2, 600 rpm, −75 + 53 µm, and an acid concentration of 0.1 mol/L.

4. Conclusions

The present study shows results by means of a statistical model as well as extraction curves versus
time to investigate the extraction of Mn from MnO2 present in manganese nodules using tailings
obtained from slag flotation when operating in an acid medium and a room temperature of 25 ◦C.
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FeSO4 proves to be a good reducing agent, shortening the dissolution time of MnO2. The main findings
are the following:

1. At 30 min, the optimum MnO2/Fe2O3 ratio is 1:2, with a H2SO4 concentration of 0.1 mol/L,
achieving a Mn extraction of 74%.

2. For short periods of time (5 to 20 min), the optimum MnO2/Fe2O3 ratio is 1:3, with a H2SO4

concentration of 0.1 mol/L, achieving a Mn extraction between 68% and 73%.
3. When operating at MnO2/Fe2O3 ratios lower than 1:1, the concentration of acid in the system is

not an important factor.
4. High concentrations of FeSO4 in the system allow the operation in potential and pH ranges,

which favor the generation of Fe2+ and Fe3+; thus, the formation of Fe precipitates is avoided.

The reductive leaching of marine nodules in an acidic medium with the addition of tailings is
an attractive and cost efficient alternative and results in high extraction of Mn in short periods of time
with the use of low concentrations of acid. In the future, a study should be carried out to improve the
economic viability of the process.
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Abstract: Chalcocite is the most important and abundant secondary copper ore in the world with a
rapid dissolution of copper in an acid-chloride environment. In this investigation, the methodology
of surface optimization will be applied to evaluate the effect of three independent variables (time,
concentration of sulfuric acid and chloride concentration) in the leaching of pure chalcocite to extract
the copper with the objective of obtaining a quadratic model that allows us to predict the extraction
of copper. The kinetics of copper dissolution in regard to the function of temperature is also analyzed.
An ANOVA indicates that the linear variables with the greatest influence are time and the chloride
concentration. Also, the concentration of chloride-time exerts a significant synergic effect in the
quadratic model. The ANOVA indicates that the quadratic model is representative and the R2 value
of 0.92 is valid. The highest copper extraction (67.75%) was obtained at 48 h leaching under conditions
of 2 mol/L H2SO4 and 100 g/L chloride. The XRD analysis shows the formation of a stable and
non-polluting residue; such as elemental sulfur (S0). This residue was obtained in a leaching time of
4 h at room temperature under conditions of 0.5 mol/L H2SO4 and 50 g/L Cl−.

Keywords: chalcocite; sulphide leaching; copper; reusing water; desalination residue;
ecological treatment

1. Introduction

Most of the copper minerals on the planet correspond to sulfur minerals and a smaller amount of
oxidized minerals. A report by COCHILCO [1] mentions that the world copper production is currently
19.7 million tons. Seventy-five percent of this total comes from the pyrometallurgical processing of
copper sulfide minerals processed in smelting plants [2], and 25% by the hydrometallurgical route [3].

There is a need to generate a new momentum that overcomes a certain stagnation in the growth
capacity of the mining industry. Even in its role as a surplus generator, large-scale mining faces great
challenges. These include an increase in costs due to various factors; such as the deterioration of
laws and other elements associated with the aging of deposits and input costs to be compatible with
sustainable development demands [4].
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Sulfur minerals have been treated for decades with flotation and pyrometallurgical processes [5],
which result in major environmental problems; such as tailings dams and the generation of acid
drainage (sulfuric acid and oxides of iron) by the oxidation of sulfur minerals with a high presence of
pyrite. This sulfide is one of the most common and abundant minerals in the world and is associated
with hydrothermal mineralization [6]. On the other hand, foundries produce large emissions of sulfur
dioxide (SO2), which together, with NOx and CO2, can cause large problems; such as acid rain and
increasing local pollution, therefore, the abatement of waste gases is an important task for the protection
of the environment [7–9]. As a result, new hydrometallurgical alternatives are being developed in the
mining industry, because they are more ecological and economic processes to recover copper [10,11].

Chalcocite is the most abundant copper sulfide mineral after chalcopyrite [5,12], and it is the
copper sulfide the most easily treated by hydrometallurgical routes [13]. Several investigations have
been carried out for the leaching of this mineral with the use of multiple additives and in different media
such as; bioleaching [14–18], ferric sulfate solution [19], chloride media [20–23], pressure leaching for
chalcocite [24] and synthetic chalcocite (white metal) [25].

When operating in sulphated or chloride media, the oxidative dissolution of the chalcocite occurs
in two stages [13,19,20,23,25].

Cu2S + 2Fe3+ = Cu2+ + 2Fe2+ + CuS (1)

CuS + 2Fe3+ = Cu2+ + 2Fe2+ + S0 (2)

The first stage of leaching of the chalcocite is much faster than the second stage. This is controlled by
diffusion of the oxidant on the surface of the ore at low values of activation energy (4–25 kJ mol−1) [19].
The second stage is slower and can be accelerated depending on the temperature [13,26].

The investigations shown in Table 1 were obtained as a result of high extractions (90%), but these
results were obtained with the application of high temperatures and/or with the addition of ferric or
cupric ions as an oxidizing agent. In addition, the previous investigations were made with mixtures of
copper sulfides, with the presence of gangue or with the use of synthetic chalcocite. It is emphasized
that the present investigation will include a leaching of pure chalcocite in a chlorinated medium,
without the addition of oxidizing agents (Fe3 +, Cu2 +, etc.) and at room temperature.

Table 1. Comparison of previous investigations of chalcocite with the use of Cl−.

Investigation Leaching
Agent Parameters Evaluated Reference Cu Ext (%)

The kinetics of leaching
chalcocite (synthetic) in acidic

oxygenated
sulphate-chloride solutions

NaCl,
H2SO4,

HCl, HNO3
and Fe3+

Oxygen flow, stirring speed,
temperature, sulfuric acid
concentration, ferric ions
concentration, chloride

concentration and particle size.

[20] 97

The kinetics of dissolution of
synthetic covellite, chalcocite

and digenite in dilute chloride
solutions at

ambient temperatures

HCl, Cu2+

and Fe3+

Potential effect, chloride
concentration, acid concentration,

temperature, dissolved oxygen
and pyrite effect.

[13] 98

Leaching kinetics of digenite
concentrate in oxygenated

chloride media at
ambient pressure

CuCl2, HCl
and NaCl

Effect of stirring speed, oxygen
flow, cupric ion concentration,
chloride concentration, acid

concentration and
temperature effect.

[27] 95

Leaching of sulfide copper ore
in a NaCl–H2SO4–O2 media

with acid pre-treatment

NaCl and
H2SO4

Chloride concentration, effect of
agitation with compressed air,

percentage of solids and
particle size.

[22] 78
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A chalcocite leaching is performed with the injection of O2 at ambient pressure in a H2SO4-NaCl
solution, where the leaching agents are Cu2+, CuCl+, CuCl2 and CuCl−3 , which are generated during
leaching in a Cu2+/Cl− system. The general reaction of chalcocite leaching is as follows:

Cu2S + 0.5O2 + 2H+ + 4Cl− = 2CuCl−2 + H2O + S0, (3)

While the chalcocite leaching reactions occur in two stages, guiding us to Equation (3), the
following occurs:

Cu2S + 2Cl− + H+ + 0.25O2 = CuCl−2 + CuS + 0.5H2O, (4)

CuS + 2Cl− + H+ + 0.25O2 = 0.5H2O + CuCl−2 + S0, (5)

The resulting products expected from this chalcocite leaching should be soluble copper; such as
CuCl−2 and a solid residue of elemental sulfur (S0) with covellite residues or copper polysulfides (CuS2)
that still contain valuable metals.

The CuCl−2 is the predominant soluble specie due to the complexation of Cu (I) with the presence
of Cl− at room temperature, in a system of high concentrations of chloride (greater than 1 M). This
CuCl−2 is stable in a range of potentials between 0–500 mV and pH < 6–7 (depending on the chloride
concentration in the system) [20,28].

The shortage of fresh water in arid areas is an economic, environmental and social problem [29].
The use of sea water has become increasingly important for mining in Chile, not only because of its
positive effects on leaching processes due to its chloride content, but also as a strategic and indispensable
resource. For example, some metallic and non-metallic mining companies in the north of Chile have
deposits rich in copper, gold, silver, iron and minerals from salt lakes, which are found in hyper-arid
zones and at high altitudes, which emphasizes the necessity of this resource [30]. In addition, it is
important to mention that the Chilean authorities have indicated that large-scale mining projects
involving the use of water from aquifers will not be authorized [31]. An attractive alternative is the use
of waste water from desalination plants. These companies produce drinking water for the population,
however, their disposal product pollutes the oceans, for this reason, it is necessary to think of possible
alternatives to recycle this resource and at the same time optimize extraction processes in local mining.

In the present investigation, a statistical analysis will be carried out using the methodology of
surface optimization (design of the central composite face) to sensitize independent parameters (time,
sulfuric acid concentration and chloride concentration) in the leaching of a pure mineral of chalcocite
in chlorinated media. In addition, the effect on chloride concentration in the system will be evaluated
when operating with potable water, seawater and reusing waste water.

2. Materials and Methods

2.1. Chalcocite

The pure chalcocite mineral used for the present investigation was collected manually directly
from the veins by expert geologists from Mina Atómica, located in the region of Antofagasta, Chile.

The pure chalcocite samples were checked by X-ray diffraction (XRD) analysis, using an automatic
and computerized X-ray diffractometer Bruker model Advance D8 (Bruker, Billerica, MA, USA).
Figure 1 shows the results of the XRD analysis, indicating the presence of 99.9% chalcocite. The
chemical analysis was performed by atomic emission spectrometry via induction-coupled plasma
(ICP-AES), the sample of chalcocite was digested using aqua regia and HF. Table 2 shows the chemical
composition of the samples. The samples for XRD and ICP-OES were ground in a porcelain mortar to
reach a size range between −147 + 104 µm. The procedures described were performed in the applied
geochemistry laboratory of the department of geological sciences of the Universidad Católica del Norte.
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Figure 1. X-ray diffractogram for the chalcocite mineral.

Table 2. Chemical analysis of the chalcocite ore.

Component Cu S0

Mass (%) 79.83 20.17

2.2. Leaching and Leaching Tests

The sulfuric acid used for the leaching tests was grade P.A., Merck brand, purity 95–97%, density
1.84 kg/L and molecular weight of 98.08 g/mol, though the tests also work with the use of sea water and
waste water from the “Aguas Antofagasta” Desalination Plant. Table 3 shows the chemical composition
of waste water.

Table 3. Chemical analysis of waste water.

Compound Concentration (g/L)

Fluorine (F−) 0.01
Calcium (Ca2+) 0.80

Magnesium (Mg2+) 2.65
Bicarbonate (HCO3

−) 1.10
Chloride (Cl−) 39.16

Calcium carbonate (CaCO3) 13.00

Leaching tests were carried out in a 50 mL glass reactor with a 0.01 S/L ratio. A total of 200 mg of
chalcocite ore in a size range between−147 + 104µm and the addition of NaCl at different concentrations
were maintained in agitation and suspension with the use of a 5-position magnetic stirrer (IKA ROS,
CEP 13087-534, Campinas, Brazil) at a speed of 600 rpm and the temperature was controlled using an
oil-heated circulator (Julabo, St. Louis, MO, USA). The temperature range tested in the experiments was
25 ◦C. Also, the tests were performed in duplicate and measurements (or analyzes) were carried out on
5 mL aliquot and diluted to a range of dilutions using atomic absorption spectrometry with a coefficient
of variation ≤5% and a relative error between 5 to 10%. Measurements of pH and oxidation-reduction
potential (ORP) of leach solutions were made using a pH-ORP meter (HANNA HI-4222, St. Louis, MO,
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USA). The ORP solution was measured in a combination ORP electrode cell of a platinum working
electrode and a saturated Ag/AgCl reference electrode.

2.3. Experimental Design

The effects of independent variables on Cu extraction rates from leaching of chalcocite were
studied using the response surface optimization method [32–35]. The central composite face (CCF)
design and a quadratic model were applied to the experimental design for Cu2S leaching.

Twenty-seven experimental tests were carried out to study the effects of time, chloride and H2SO4

concentration as independent variables. Minitab 18 software (version 18, Pennsylvania State University,
State College, PA, USA) was used for modeling and experimental design, which allowed the study of
the linear and quadratic effects of the independent variables. The experimental data were fitted by
multiple linear regression analysis to a quadratic model, considering only those factors that helped to
explain the variability of the model. The empirical model contains coefficients of linear, quadratic, and
two-factor interaction effects.

The general form of the experimental model is represented by:

Y = (overall constant) + (linear e f f ects) + (interaction e f f ects) + (curvature e f f ects), (6)

Y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b11x2
1 + b22x2

2 + b33x2
3, (7)

Where, x1 is time, x2 is Chloride, x3 is H2SO4 concentration, and b is the variable coefficients.
Table 4 presents the ranges of parameter values used in the experimental model. The variable

values are codified in the model. The following Equation (8) is used for transforming a real value (Zi)
into a code value (Xi) according to the experimental design:

Xi =
Zi −

Zhigh+Zlow
2

Zhigh−Zlow
2

, (8)

Zhigh and Zlow are the highest and lowest levels of a variable, respectively [36].

Table 4. Experimental parameters for the central design of the composite face.

Experimental Parameters Low Medium High

Time (h) 4 8 12
Concentration

20 50 100Cl− (g/L)
Concentration

0.5 1 2H2SO4 (mol/L)
Codifications −1 0 1

A factorial design was applied involving three factors, each one having three levels thus
27 experimental tests were carried out in Table 5, evaluating the effect of time and H2SO4 and
chloride concentration.

The statistical R2, R2
adj, p-values and Mallows’s Cp indicate whether the model obtained is

adequate to describe Cu extraction under a given domain. The R2 coefficient is a measure of the
goodness of fit, which measures the proportion of total variability of the dependent variable with
respect to its mean, which is explained by the regression model. The p-values represent statistical
significance, which indicates whether there is a statistically significant association between the response
variable and the terms. The predicted R2 was used to determine how well the model predicts the
response for new observations. Finally, Mallows’s Cp is a precise measure in the model, estimating the
true parameter regression [36].



Metals 2019, 9, 780 6 of 13

Table 5. Experimental configuration and Cu extraction.

Exp. No. Time (h) Cl− (g/L) H2SO4 (mol/L) Cu Ext. (%)

1 4 20 0.5 31.63
2 4 20 1 33.25
3 4 20 2 37.00
4 4 50 0.5 32.25
5 4 50 1 33.38
6 4 50 2 38.00
7 4 100 0.5 44.75
8 4 100 1 44.88
9 4 100 2 46.19
10 8 20 0.5 35.75
11 8 20 1 38.75
12 8 20 2 43.00
13 8 50 0.5 48.13
14 8 50 1 49.50
15 8 50 2 50.63
16 8 100 0.5 51.50
17 8 100 1 53.00
18 8 100 2 54.88
19 12 20 0.5 52.25
20 12 20 1 52.75
21 12 20 2 52.63
22 12 50 0.5 53.13
23 12 50 1 53.13
24 12 50 2 53.00
25 12 100 0.5 53.25
26 12 100 1 53.88
27 12 100 2 55.63

3. Results

3.1. ANOVA

An ANOVA analysis (Table 6) showed F-value and p-value for the model.

Table 6. ANOVA (analysis of variance) Cu extraction.

Source F-Value p-Value

Regression 22.73 0
Time 123.15 0
Cl− 45.25 0

H2SO4 5.44 0.03
Time × Time 2.06 0.17

Cl− × Cl− 0.13 0.72
H2SO4 × H2SO4 0.00 0.97

Time × Cl− 10.27 0.01
Time × H2SO4 1.18 0.29
Cl− × H2SO4 0.31 0.59

In the contour plot in Figure 2, it is observed that Cu extraction increases at long times, high
chloride concentration, and high H2SO4 concentration.
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great influence on the leaching of chalcocite above 0.02 mol/L [19,22]. Rather, it is only the time-
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Figure 2. Experimental contour plot of independent variables of Chloride and H2SO4 concentration (a);
Time and H2SO4 concentration (b); and Time and Chloride concentration (c) on the dependent variable
Cu extraction.

Table 6 shows ANOVA analysis. There is no significant effect (p > 0.05) of the interactions
concentration of chloride concentration of H2SO4 and time-concentration of H2SO4 in copper extraction,
complying with the theory that the increase in sulfuric acid concentration does not have a great influence
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on the leaching of chalcocite above 0.02 mol/L [19,22]. Rather, it is only the time-concentration interaction
of chloride that must be considered in the model. Additionally, the effects of curvature of the variable
chloride concentration and H2SO4 concentration do not contribute significantly to explaining the
variability of the model. On the other hand, the linear effects of chloride time and concentration
contribute to explaining the experimental model, as shown in the contour plot of Figure 2.

Figures 3 and 4 show that time, chloride and H2SO4 concentration, as well as the interaction of
time-H2SO4 and Cl-H2SO4 affected Cu extraction.
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Figure 3. Linear effect plot for Cu extraction.

In Figure 3, the linear effects demonstrate what has been said by several authors [13,20,37], with
respect to the effect of the concentration of chloride present in the leaching media and the effect of
sulfuric acid concentration. The concentration of chloride has a great impact on the dissolution of
copper from a sulfide; such as chalcocite. According to Velásquez-Yévenes et al. [38], the chloride ions
present in the media increase the rate of oxidation of cuprous ions, while Cheng and Lawson [20,39]
proposed that the effect of chloride ions promotes the formation of long sulfide crystals that allow the
reactants to penetrate the sulfide layer, since in their tests they noticed that, in the absence of chloride
ions, the kinetics of dissolution decreased considerably and that covellite did not dissolve. This with
time was supported in the research of Nicol and Basson [37], without the presence of chloride ions or
with a very low concentration of ions, the potential needed to dissolve covellite is very high.

Figure 4 shows the mean Cu extraction at different combinations of factor levels. In the interaction
time-chloride, the lines are not parallel, and the plot indicates that there is an interaction between the
factors. On the other hand, the interaction between time-H2SO4 and chloride-H2SO4 is low.

Equation (9) presents the Cu extraction model over the range of experimental conditions after
eliminating the non-significant coefficients.

% Extraction = 0.47782 + 0.07472 x1 + 0.04462 x2 + 0.01568 x3 − 0.0163 x2
1 − 0.02546 x1x2, (9)

Where x1, x2 and x3 are codified variables that respectively represent time, chloride and H2SO4

concentration.
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An ANOVA test indicated that the quadratic model adequately represented Cu extraction from
Cu2S under the established parameter ranges. The model did not require adjustment and it was
validated by the R2 value (0.92) and R2

adj value (0.90). The ANOVA analysis showed that the factors
indicated influence Cu extraction from Cu2S (FRegression (22.73) > FT,95% confidence level = F5,21 (2.68)).
On the other hand, the p-value of the model (Equation (9)) is lower than 0.05, indicating that the model
is statistically significant.

The Mallows’s Cp = 3.62 (constant + 5 predictors) indicated that the model was accurate and did
not present bias in estimating the true regression coefficients. This value of Cp of Mallows allows
comparison with other models and establishes that the model found is the one that is most adjustable,
due to the Cp closest to the number of constants and predictors.

In addition, all variance inflation factors (VIF) values are close to one, which ensures that there is
no multicollinearity.

It also allows for prediction with an acceptable future forecast margin of error of R2
pred = 0.8684.

Finally, from the adjustment of the ANOVA analysis, it was found that the factors considered,
after analysis of the main components, explained the variation in the response. The difference between
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the R2 and R2
pred of the model was minimal, thus reducing the risk that the model was over adjusted.

That means, the probability that the model fits only in the sample data is lower. The ANOVA analysis
indicated that time, chloride concentration, H2SO4 concentration and the interaction of time-chloride
are the factors that explain to a greater extent the behavior of the system for the sampled data set.

Table 5 shows that the increase in sulfuric acid concentration does not affect copper dissolution,
obtaining similar results under similar conditions of leaching, only a minimum amount of sulfuric acid
is needed in the leaching system. This result is consistent with other investigations, since according
to Cheng and Lawson [20], a concentration of sulfuric acid of 0.02 mol/L, is sufficient to perform a
leaching of chalcocite and its subsequent phases as it is the djurleite, digenite ore [22]. After this value
its effect is null.

On the other hand, it is shown that at a leaching time of 12 h, the values of copper extraction
do not vary regardless of the concentration of chloride and sulfuric acid. This could be explained
with Equations (4) and (5); Equation (4) is the rapid reaction of the transformation of chalcocite to
covellite, in which a low activation energy is required to achieve its transformation [13]. When covellite
is formed (Equation (5)), it needs more energy (about 72 kJ approximately) to achieve its dissolution
and later become a copper polysulfide (CuS2), what it requires is even more demanding conditions to
achieve its complete dissolution [37].

3.2. Effect on the Chloride Concentration

It has been known since the 1970s that it is beneficial to work with chloride ions in the leaching of
sulfide minerals [23,40]. In Figure 5a, when operating at higher chloride concentrations, higher copper
recoveries are obtained. When operating with the highest chloride concentrations (100 g/L), the highest
recovery (68.82%) is obtained at 48 h. However, a large difference in copper recoveries cannot be seen
when operating at chloride concentrations between 20 and 50 g/L. At 48 h and 20 g/L, a recovery of
63.58% of Cu was obtained and for chloride concentrations of 50 g/L, 65.45% was obtained. On the
other hand, in Figure 5b it is observed that with the use of waste water (39.16 g/L of Cl−), results similar
to those presented in Figure 5a were obtained in a Cl− concentration of 50 g/L, so it is noted that the
presence of calcium ions, fluorine, magnesium and calcium carbonate did not affect the dissolution
of copper from the chalcocite. In the tests carried out with seawater, which has approximately a
concentration of 20 g/L Cl−, obtained copper extractions of up to 63.4% at 48 h with a concentration of
0.5 mol/L of sulfuric acid. In previous investigations [13,20], it has been determined that leaching is
independent of a chloride concentration between 0.5 and 2 mol/L, but a greater kinetic of dissolution
is observed in the first minutes and then the difference decreases as a function of time and behavior
similar to that of Figure 5.

Figure 6 shows a residue analysis performed under the conditions of 50 g/L Cl− and 0.5 mol/L
H2SO4, in a leaching time of 4 h. The result of this XRD is useful to understand the behavior of the
chalcocite in a short time and in low reagent conditions, and to observe which mineralogical species
are forming. The results show a high formation of synthetic covellite (77.34 wt %), early formation of
elemental sulfur (20.20 wt %) and a remaining chalcocite (4.46 wt %), which still does not dissolve.
From this, it follows that the transformation of chalcocite to covellite is faster than the transformation of
covellite to elemental sulfur, which is similar to that observed in Equations (4) and (5), also, according
to Figure 5, the slope of the curve is decreasing slowly, which means less kinetics of copper dissolution
as a function of time. In the investigation of Senanayake [28], it is reported that the dissolution of
chalcocite in a chloride-iron-water system at 25 ◦C occurs at potentials greater than 500 mV with a pH
< 4, while in the research of Miki et al. [13] it is reported that the chalcocite dissolution occurs rapidly
at a potential of 500 mV but stops when it reaches 50% copper extraction. When the potential increases
to 550 mV, this extraction increases again because once it reaches 50% copper extraction, the mineral
present is mainly covellite, which has a dissolution kinetics lower than the chalcocite and that needs
potentials greater than 600 mV to dissolve.
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4. Conclusions

The present investigation shows the experimental results necessary to dissolve Cu from a chalcocite
mineral in chloride media. The findings of this study were:

1. The linear variables with the greatest influence in the model are: time, chloride concentration and
sulfuric acid concentration, respectively.

2. Under normal pressure and temperature conditions, only the chloride-time concentration exerts
a significant synergistic effect on the extraction of copper from a chalcocite mineral.

3. The ANOVA analysis indicates that the presented quadratic model is adequate to represent the
copper extractions and the value of R2 (0.92) validates it.

4. The highest copper extraction is achieved under conditions of low concentration of sulfuric acid
(0.5 mol/L), high concentrations of chloride (100 g/L) and a prolonged leaching time (48 h) to
obtain an extraction of 67.75% copper.

5. The XRD analysis shows the formation of a stable and non-polluting residue; such as elemental
sulfur (S0). This residue was obtained in a leaching time of 4 h at room temperature under
conditions of 0.5 mol/L H2SO4 and 50 g/L Cl−.
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Abstract: Multivariable analytical models provide a descriptive (albeit approximate) mathematical
relationship between a set of independent variables and one or more dependent variables. The current
work develops an analytical model that extends a design of experiments for the leaching of manganese
from marine nodules, using sulfuric acid (H2SO4) in the presence of iron-containing tailings, which are
both by-products of conventional copper extraction. The experiments are configured to address the
effect of time, particle size, acid concentration, Fe2O3/MnO2 ratio, stirring speed and temperature,
under typical industrial conditions. The recovery of manganese has been modeled using a first
order differential equation that accurately fits experimental results, noting that Fe2O3/MnO2 and
temperature are the most critical independent variables, while the particle size is the least influential
(under typical conditions). This study obtains representative fitting parameters, that can be used to
explore the incorporation of Mn recovery from marine nodules, as part of the extended value chain of
copper sulfide processing.

Keywords: Manganese extraction; marine nodules; acid leaching; design of experiments; ordinary
differential equations; mathematical modelling

1. Introduction

Deposits of ferromanganese (Fe–Mn) are present in all of the world′s oceans, on marine ridges and
plateaus, where currents have released sediments for ages [1]. They originate from the accumulation
of iron and manganese oxides, deposited over volcanic and sedimentary rocks that act as substrates [2].
These deposits were discovered for the first time in the Arctic Ocean of Siberia in 1968 [3]. They form
concentric layers of oxide and intermetallic compounds scattered in the sedimentary zone of the
seabed [4]. They are located in the Pacific, Atlantic and Indian Oceans, at depths of 4,500 m, reaching
reserves that range between 1 and 3 billion tons [5].

There is generally a shortage of high-grade sources of manganese on the planet′s surface [4,6],
which has driven the search for alternatives. The marine nodules represent an alternative that has
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economic potential [7], having an average Mn grade of approximately 24% [8]. The nodules may be
further processed so that the resulting manganese may to be incorporated into steel alloys [9].

In addition, the nodules represent large reserves of other metals, such as Cu, Ni, Co and Fe,
along with potentially high concentrations of Te, Ti, Pt and rare earth elements [10].

For the dissolution of MnO2 in acidic media, it is necessary to maintain the system in potential and
pH ranges of −0.4 to 1.4 V and −2 to 0.1, respectively [9]. This indicates that the use of a reducing agent
is necessary to extract Mn from marine nodules [11]. Due to its low cost, abundance and good results
in previous studies [4,12–17], Fe is an attractive additive for the reductive leaching of manganese
nodules. Toro et al. [4] performed leaching tests of marine nodules at the laboratory level by adding
smelting slags with high Fe2O3 contents, where it was discovered that Fe2O3, when reacting with
H2SO4, forms FeSO4, which is a good reducing agent of MnO2, achieving extractions of 68% of the
manganese in 5 min. In addition, in the same study previously mentioned, it was concluded that an
MnO2/Fe2O3 ratio of 1/2 is suitable for dissolving MnO2 in an acidic medium. Later, Toro et al. [16]
conducted tests using the Fe2O3 present in tailings, obtaining even better results than with the slag,
as the tailings were observed to be even more reactive. When exposed to H2SO4, Fe2O3 generates
ferrous sulfate (FeSO4), that acts as a reducing agent for MnO2, as described by the following reactions:

Fe2O3(s) + 3 H2SO4(aq) = Fe2(SO4)3(s) + 3 H2O(l)

Fe3O4(s) + 4H2SO4(l) = FeSO4(aq) + Fe2(SO4)3(s) + 4 H2O(l)

Fe2(SO4)3(s) + 6 H2O(l) = 2 Fe(OH)3(s) + 3 H2SO4(l)

2 FeSO4(aq) + 2 H2O(l) = 2 Fe(s) + 2 H2SO4(l) + O2(g)

2 FeSO4(aq) + 2 H2SO4(aq) + MnO2(s) = Fe2(SO4)3(s) + 2 H2O(l) + MnSO4(aq)

The leaching process has been modeled by many authors. However, the validation, verification and
implementation of these models are difficult, since there is uncertainty about the operating conditions
and parameters of the leaching model [18]. Mellado et al. [19] developed analytical models that
describe leaching, and are based upon the Bernoulli Equation, using constitutive equations for different
levels, particles and heaps, over different scales of operation. Further work by Mellado et al. [20]
extends beyond heap leaching. These more recent models are based on first-order ordinary differential
equations in time, incorporating constitutive relationships derived from a combination of ordinary
and partial differential equations and other relations, in combination with empirical observations.
The resulting models are nonetheless simple (elegant), and are thus especially well-suited for the
analysis, design, control and optimization of leaching processes [21]. Another way to describe the
mechanisms that govern the leaching process was developed by Yaghobi et al. [22] through non-linear
differential equations. Alternatively, Hernández et al. used a non-linear mixed-integer programming
approach [23].

Other leaching studies have used the multilevel factorial design (MFD) of experiments, generating
a predictive quadratic exponential regression model [24]. Liu et al. developed a leaching experiment
in the laboratory, and presented an analytical model of the concentration of the leaching solution [25]
using a neural network; they established a prediction model of the concentration of the leaching
solution, whose maximum error was less than 2%. Other works studied the recovery of nickel and the
dissolution of iron using the response surface methodology [26] to find the optimal leaching conditions
for nickel laterite ores [27]. In similar work, Botane et al. [28] used linear regression to generate
analytical models of continuous bioleaching in stirred tank reactors. Simulation experiments of the
leaching process were carried out by Mellado et al. [29], based on analytical models and Monte Carlo
simulation, concluding that there is a significant influence of the uncertainty in the input variables.

The analytical models have the advantage of being tractable, featuring algebraic parameters
that can be readily fit to operational data, and extrapolated to apply them to similar operational
situations. These mathematical models can be applied with enough reliability in order to technically
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and economically evaluate initial projects of small and medium-scale mining, where economic resources
are scarce, and mineralogical knowledge is limited.

Only a few studies have tested the reduction of manganese nodules within a sulfuric acid medium,
in the presence of iron-containing tailings or slag [4,16,17]. Toro et al. [16] related Mn recovery to
the MnO2/Fe2O3 ratio and the sulfuric acid concentration, but only under time-independent (static)
conditions. This approach involved a three-level factorial design, ignoring the potential impact
of particle size distribution and agitation velocity, which are likely to have a dynamic effect upon
Mn recovery. Interestingly, iron-containing tailings have been observed to be more reactive than
smelter slags within the context of leaching [30]. Moreover, the previous work of Toro et al. [4,16,17]
considered neither temperature, nor its interactions with other critical variables that control the effect
of iron-containing reducing agents on the leaching of Mn from MnO2 [12–15].

Finally, the objective of this work is to demonstrate the development of an analytical model
based on a first order differential equation, which represents the extraction of manganese from marine
nodules, under the set of parameters sampled, together with a factorial design of experiments and a
multiple regression model. This approach is indeed capable of representing complex systems through
relatively simple analytical models.

2. Materials and Methods

2.1. Manganese Nodule Samples

The marine nodules used in this work were the same as those previously used in Toro et al. [16].
The sample was analyzed by means of atomic emission spectrometry by induction-coupled plasma
(ICP-AES), developed in the applied geochemistry laboratory of the Department of Geological Sciences
of the Universidad Católica del Norte (Chile). They were composed of 15.96% Mn and 0.45% Fe,
where the Mn presented in the nodules has been found to be 29.85% MnO2.

2.2. Tailings Samples

The tailings used for the present investigation were the same as those used in Toro et al. [16].
The methods used to determine its chemical and mineralogical composition are the same as those
used with the manganese nodule. Table 1 shows the chemical species determined by QEMSCAN
(Quantitative Evaluation of Minerals by SCANning). There were several phases that contained iron
(mainly magnetite (58.52%) and hematite (4.47%)), while the content of Fe was estimated at 41.90%.

2.3. Reagents and Leaching Parameters

The sulfuric acid used for the leaching tests was obtained from Sigma-Aldrich Chemie,
GmbH (Schnelldorf, Germany), with 95–97% purity, and a density of 1.84 kg/L. The leaching tests were
carried out in a 50 mL glass reactor with a 0.01 solid/liquid ratio. A total of 200 mg of Mn nodules
were maintained in suspension with the use of a 5-position magnetic stirrer (IKA ROS, CEP 13087-534,
Campinas, Brazil). The parameters studied were time, particle size, acid concentration, F2O3/MnO2

ratio, stirring speed and temperature.

2.4. Experimental Design

Design of experiments (DOE) can be used to investigate the simultaneous effects of input variables
(factors) on an output variable (response). 729 experimental tests were carried out, studying the
effects of time, particle size, sulfuric acid (H2SO4) concentration, Fe2O3/MnO2 ratio, agitation speed,
and temperature on Mn recovery. The operational parameters considered in the factorial design of six
factors and three levels by factor are presented in the Table 2.
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Table 1. Mineralogical composition of tailings, as determined by QEMSCAN.

Mineral Amount% (w/w)

Chalcopyrite/Bornite CuFeS2/Cu5FeS4 0.47
Tennantite/Tetrahedrite (Cu12As4S13/Cu12Sb4S13) 0.03

Other Cu Minerals 0.63
Cu–Fe Hydroxides 0.94

Pyrite (FeS2) 0.12
Magnetite (Fe3O4) 58.52

Specular Hematite (Fe2O3) 0.89
Hematite (Fe2O3) 4.47

Ilmenite/Titanite/Rutile (FeTiO3/CaTiSiO3/TiO2) 0.04
Siderite (FeCO3) 0.22

Chlorite/Biotite (Mg3Si4O10(OH)2(Mg)3(OH)6/K(Mg)3AlSi3O10(OH)2) 3.13
Other Phyllosilicates 11.61

Fayalite (Fe2SiO4) 4.59
Dicalcium Silicate (Ca2SiO4 8.30
Kirschsteinite (CaFeSiO4) 3.40

Forsterita (Mg2SiO4) 2.30
Baritine (BaSO4) 0.08

Zinc Oxide (ZnO) 0.02
Lead Oxide (PbO) 0.01

Sulfate (SO4) 0.20
Others 0.03
Total 100.00

Table 2. Experimental values for operational parameters.

Parameter/Value Low Medium High

Time (min) 5 10 20
Particle Size (µm) −150 + 106 −75 + 53 −47 + 38

Sulfuric Acid (H2SO4) 0.1 0.3 0.5
Fe2O3/MnO2 ratio 1/2 1/1 2/1

Stirring Speed (rpm) 600 700 800
Temperature (◦C) 25 35 50

The general form of the experimental model is described by:

Y = F(X)
∣∣∣X : {x1, x2, x3, x4, x5, x6}

in which x1 corresponds to time, x2 to the size of the particle, x3 to the concentration of sulfuric acid,
x4 to the ratio Fe2O3/MnO2, x5 to the speed of agitation and x6 to the temperature.

2.5. Adjustment of an Analytical Model

The following is the analytical model for leaching [31,32], where it is considered that leaching
behavior could generally be modeled using a system of first order equations as shown in Equation (1):

∂y
∂τ

= −kτynτ (1)

In which y is a dynamic quantity, such as concentration or recovery (Rt), kτ is the kinetic constant
and nτ is the order of the reaction. The subscript τ represents a time scale that depends on the
phenomenon to be modeled. To solve Equation (1), an initial condition is required, introducing a delay.
The general solution for this problem for nτ = 1 (see Mellado et al. [19], for example), is given by:

Rτ = R∞τ
(
1− e−kτ(τ−ω)

)
(2)
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R∞τ is the maximum expected recovery in operational conditions, and ω is the delay of the reaction.
Dixon and Hendrix [31,33] considered that the leaching phenomenon occurs at different scales

(mainly related to characteristics such as heap height) and time, and that different phenomena
participate in the leaching process. However, the current study assumes only a single time scale,
with the understanding that additional time scales could be developed as a result of future experiments.
Modifying the equation to fit a model to the experimental design, it is possible to explain the recovery
of manganese from marine nodules according to the equation:

R(X) = R∞
(
1− e−g(X)

)
(3)

For simplicity, R∞ = 100% has been taken to be the maximum expected recovery of ore under
the experimental conditions (laboratory conditions), and g(X) is a polynomial equation, which is
explained by the independent variables’ time, particle size, sulfuric acid and potentially other variables,
such as temperature and the Fe2O3/MnO2 ratio. The analytical model presented in Equation (3) can be
expressed as:

g(X) = ln

∣∣∣∣∣∣ R∞

R∞ −R(X)

∣∣∣∣∣∣ (4)

To ensure the fulfillment of an initial condition for the development of the first-order differential
equation, the exponent must be directly proportional to the difference between time and delay ω,
which is, g(X) ∝ (t−ω). Adjusting a multiple linear regression model for the function presented in
terms of y, and considering the proportionality of g(y), the recovery of Mn can be modeled by the
equation:

g(y(X)) = kτ·y(X)·(t−ω) (5)

in which,

y(X) = α+
n∑

i=1

βixi +
n∑

i=1

n∑
j=1

βi jxi j (6)

The substituting Equation (6) into Equation (3) gives:

Rτ = R∞τ

1− e
−kτ(

n∑
i=1

βixi+
n∑

i=1

n∑
j=1

βi jxi j )(τ−ω)
 (7)

Considering that H2SO4 concentration µ and stirring speed v are proportional to Mn recovery,
and that the square of particle size r is inversely linear to Mn recovery [32,34], the following model
is proposed:

Rτ = R∞τ

1− e
−
λvρµ
r2+β

(
n∑

i=1
βixi+

n∑
i=1

n∑
j=1

βi jxi j )(τ−ω)
 (8)

in which λ and β are mathematical fitting parameters.
The goodness of fit statistics used to study the fitted model are: The mean absolute deviation

(MAD, Equation (9)), a statistic that measures the dispersion of forecast error; the mean square error
(MSE, Equation (10)), measuring of error dispersion, which penalizes the periods where the error
is larger than the average value; and the absolute average percentage error (MAPE, Equation (11)),
a statistic that gives the deviation in percentage terms, calculating the averages of the absolute values
between the real value and fitted (forecast) values [35].

MAD =

∑
| Real− Forecast|

n
(9)

MSE =

∑
(Real− Forecast)2

n
(10)



Metals 2019, 9, 903 6 of 11

MAPE =
1
n

∑
|Real− Forecast|

|Real|
(11)

R software environment (Version 3.6.0) [36] was used to develop the experimental design
transformations presented in Equations (4) and (5), while the version 18 of Minitab software [37]
was used to adjust a multiple linear regression of the independent variables (excluding time) to the
mathematical model presented in Equation (6).

3. Results and Discussion

3.1. Multilinear Regression of Experimental Data

The analysis of this experimental data shows that only three factors have a significant effect upon
the response variable (Figure 1). The factor with the greatest impact is the Fe2O3/MnO2 ratio.
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Figure 1. Graph of the main effects for manganese extraction (Figure created with Minitab 18).

Considering only the static variables (i.e., excluding the time x1), to the following quadratic
regression considers only x4 and x6, which are the Fe2O3/MnO2 ratio and the temperature, respectively.
This, response variable y is hence approximated by:

y = 0.2310− 0.1680 x4 − 0.0094 x6 + 0.0370 x4
2 + 0.0001 x6

2 + 0.0050 x4x6 (12)

A subsequent Analysis of Variance (ANOVA) analysis indicates that the regression is adequate to
represent the extraction of Mn under the range of parameters sampled, including an R2 value of 85.93%
(Figure 2); this implies that 85.93% of the total variation is represented by Equation (12). The ANOVA
analysis further confirms the significance of the model, as the computed F score greatly exceeds the 95%
level, 539.87 > 1.9512. Equivalently, the p-value (Figure 3) of the model represented by the equation
also indicates that the model is statistically significant.
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Figure 2. R2 Statistic (Figure created with Minitab 18).
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The value of the predictive R2 is 85.35%, indicating that the model has a good capacity for
predicting responses to new observations. The small difference between the value of R2 and the
predictive R2 is an indicator that the model is not over fitted. Moreover, the residuals fall relatively
close to the adjusted normal distribution line, and it is not possible to reject the normality assumption
with α = 0.05. Equation (12) will be further developed in the following section. Figure 4 describes the
full quadratic behavior, in which all three critical variables are maintained: Time, MnO2/Fe3O4 and
temperature. As expected, the manganese recovery increases with the passage of time. Figure 4a,b
show that Fe2O3/MnO2 and temperature have a qualitatively similar effect over time, although the
former is more pronounced. Indeed, Figure 4c confirms the scalable equivalence between Fe2O3/MnO2

and temperature, showing recovery as an approximately linear function, increasing in both temperature
and Fe2O3/MnO2. Nonetheless, the full dynamic behavior is not well-represented by such a function,
as it does not capture the asymptotic tendency of reaction kinetics [30,31].

3.2. Fitting of the Exponential Function

Substituting Equation (12) into Equation (5), the following equation represents the exponent of
Equation (3):

g(X) = kτ
(
0.2310− 0.1680 x4 − 0.0094 x6 + 0.0370 x4

2 + 0.0001 x6
2 + 0.0050 x4x6

)
(t) (13)

Thus, the recovery is given by:

Rτ = R∞τ

(
1− e

−kτ
vρµ

r2+β
(0.2310− 0.1680 x4− 0.0094 x6+ 0.0370 x2

4+ 0.0001 x2
6+ 0.0050 x4x6)(t−ω)

)
(14)

In which r, v and µ are taken to be 64 µm, 600 rpm and 0.5 M, respectively. The fitting of parameters
results in the following expression, which is supported by the goodness of fit statistics of Table 3.

Rt(%) = 100
(
1− e−1.3376(0.2310− 0.1680 x4− 0.0094 x6+ 0.0370 x2

4+ 0.0001 x2
6+ 0.0050 x4x6)t

)
(15)
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Figure 4. Contour plot of the independent variables Fe2O3/MnO2 ratio, Time (a); Temperature, Time (b);
and Temperature, Fe2O3/MnO2 ratio (c) in Mn recovery (%) (Figures created with Minitab 18).

Table 3. Statistics of analytical model of the leaching of marine nodules.

Model/Statistic MAD MSE MAPE

R(t) 6.19 × 10−5 3.57 × 10−7 3.88 × 10−4

On the other hand, Figure 5 shows that the assumption of residue normality is reached, because
the p-value of the test is greater than the level of significance (p > 0.05), indicating that the mathematical
model is relatively accurate in representing the experimental design, although some points away from
the line imply a distribution with outliers.

Following the example of Saldaña et al. [38], Equation (15) can be incorporated into a simulation
framework that can quantify benefits, potentially leading to pilot tests and the implementation of
nodule processing within copper producing regions [16,17]. Furthermore, there are several mines
in Chile that have significant reserves of so-called black copper minerals, including Spence Mine,
Mina Sur, Lomas Bayas Mine and Centinela Mine [39]. These black copper minerals are usually
excluded from extraction processes, and may be stockpiled for long periods without being treated [40].
These minerals exhibit a semi-crystalline or amorphous structure that is similar to that of manganese
nodules; indeed, the extraction of Cu from these black minerals by conventional hydrometallurgical
processes is affected by this structure [41], and is therefore comparable to the extraction of Mn from
marine nodules. The development of novel methods that may be applicable to both black copper
minerals and manganese nodules is thus especially relevant for the Chilean context. Experiment-based
parameterization of analytical models is a necessary step to developing alternative leaching methods
for potential feeds that are not currently being treated.
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4. Conclusions

In the present investigation, the fitting of an analytical model for the extraction of manganese from
marine nodules results in an exponential function, which considers the most critical static variables:
MnO2/Fe2O3 ratio and temperature. This work demonstrates the use of laboratory-level testing for
the extraction of manganese from marine nodules in an acid medium at different temperatures, and
with the use of iron-containing tailings, as a potential step toward industrialization of the process.
This source of iron is indeed an effective reducing agent. Future experimental work will be carried out
to characterize the constants in Equation (15) better through more batch tests, and to represent the
effects of different time scales [30,32]. From the modelling perspective, future work will be to simulate
an industrial implementation, and test potential operational responses to feed variations and related
risks [38].

On the other hand, the form of developing an analytical model can be extended to other scales of
time, and can be modified according to the kinetics that describe or dominate the operation. The Dixon
and Hendrix′s model [31,33] was used to identify the dimensionless times, but the fit to experimental
design can be applied to other models proposed within the literature, considering operational scales
how pile height [18–20,29]. The generation of analytical models to represent complex processes such
as mineral leaching could be used for analysis, scale-up, and in optimization tasks, given that they
capture the essence of the process to be modeled, they are rapid and relatively precise, and could be
used to predict interpolations and extrapolations of Mn recuperation, at least with regard to time,
particle size, H2SO4 concentration, Fe2O3/MnO2 ratio, stirring speed and temperature.
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Abstract 

Covellite is a relatively rare copper sulfide with slow dissolution kinetics. The present investigation 
used the surface optimization methodology to evaluate the effect of three independent variables (time, 
chloride concentration and sulfuric acid concentration) on the rate of extracting Cu from covellite. The 
effects of chloride concentration and temperature over time were also studied. An ANOVA indicated 
that the linear variables of time and chloride concentration have the greatest influence, this being 
highly representative (R2 = 0.9945). The highest copper extraction rate (71.23%) at room 
temperature, was obtained with a high chloride concentration (100 g/L), a low concentration of sulfuric 
acid (0.5 M), and a leaching period of 600 h. The dissolution is described by the model of the 
unreacted core, the rate of leaching of the covellite is controlled by the chemical surface reaction at 
temperatures between 50 and 90°C, with concentrations of 0.5 M of H2SO4, 100 g/L of chloride, and 
a leaching period of up to 6 hours, where an activation energy of 72.36 kJ/mol was obtained. 

 

Keywords: Leaching, covellite, chloride media, kinetic study 

1. Introduction 

While Covellite is not abundant, it is found in many copper deposits as a supergenic mineral, 

usually as a coating in the sulfide enrichment zone. It is associated with other minerals, mainly 

chalcocite, chalcopyrite, bornite and enargite, from which it is derived by alteration (Klein & Hurlbut, 

1996). Covellite is of interest because of the quantity found in oxide ores, and because it is an 

intermediate product in converting chalcopyrite (Lundström et al., 2016) and in transforming digenite 

to covellite in oxygenated media (Ruiz et al., 1998; Senanayake, 2007) 

Sulfurized copper ores are generally treated by flotation-smelting-refining (Schlesinger et al., 

2011; Shuva et al., 2016; Turan et al., 2017).  Although they have reported economic (Kelm et al., 

2014) and metallurgical viability, there are environmental problems associated with the emission of 

sulfur dioxide and arsenic (Afif et al., 2008; Dijksira et al., 2017; Dimitrijević et al., 2009; Sánchez de 

la Campa et al., 2008; Serbula et al., 2017). Arsenic emissions, which have been increasing steadily 

in recent decades with increasing extraction of copper sulfide (Balladares et al., 2018), present a 

danger to human health related to higher incidence of cardiovascular and respiratory diseases and 

cancer (World Health Organization, 2018). This has resulted in stricter environmentally-motivated 

controls. Hydrometallurgical methods are generally preferred to recover copper from complex low-

grade minerals because of the low cost, short construction time, operational simplicity, and good 
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performance (Baba et al., 2017), as well as environmental benefits (González et al., 2005; Lü et al., 

2018; Rabadjieva et al., 2009), in terms of yielding solid waste that is not considered hazardous.  

Sulfuric acid and an oxidizing agent are required to break down sulfurized copper ores and release 

Cu2+ in solution. All copper sulfides require the presence of Fe3+ and O2 as oxidizing agents for 

leaching to occur. Copper sulfide is oxidized by the presence of Fe3+. The resulting Fe2+ is reoxidized 

to Fe3+ by O2. The redox pair Fe2+/Fe3+ act as a catalyst in these reactions. The following reactions 

occur with the main secondary copper mineral, chalcocite, when the temperature is high (Equation 1) 

and the sulfur is in the form of sulphate and not elemental sulfur, as in natural conditions (Equations 

2 and 3) (Schlesinger et al., 2011): 

 
Cu2S + Fe2(SO4)3 ↔ Cu2+ + SO4

2- + CuS + 2FeSO4 (1) 

Cu2S + 2Fe3+ ↔ Cu2+ + 2Fe2+ (2) 

CuS + 2Fe3+ ↔ Cu2+ + 2Fe2+ + S0 (3) 

Several investigations into leaching covellite have proposed hydrometallurgical approaches with 

different dissolution media, including ammonia (Baba et al., 2017; Reilly & Scott, 1976), nitrates 

(Fisher, 1994; Vračar, et al., 2003), chlorides (Cheng & Lawson, 1991; Miki et al., 2011; Nicol & 

Basson, 2017; Senanayake, 2007) and bioleaching with bacteria like thiobacillus ferrooxidans, 

acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans, which can grow under anaerobic 

conditions where ferric ions are used as electron receptors (Donati et al., 1997; F. Monteiro et al., 

1999; Falco et al., 2003; Lee et al., 2011). 

The oxidative dissolution of the chalcocite occurs in two stages in sulphated or chlorinated media 

(Cheng & Lawson, 1991; Miki et al., 2011; Niu et al., 2015; Ruiz et al., 2007; Senanayake, 2009). 

Cu2S + 2Fe3+ → Cu2+ + 2Fe2+ + CuS (4) 

CuS + 2Fe3+ → Cu2+ + 2Fe2+ + S0 (5) 

According to Niu et al. (2015), leaching from chalcocite to covellite is rapid (Equation 4) because 

of the low activation energy needed (4-25 kJ/mol), the reaction being controlled by the diffusion of the 

oxidant on the mineral surface, while the process expressed in Equation 5 is slower. Ruan et al. 

(2013) and Miki et al. (2011) argued this Equation 5 is slow because this reaction is chemically and/or 

electrochemically controlled and therefore requires activation energy of around 71.5-72 kJ/mol to 

transform covellite into dissolved copper. Nicol & Basson (2017) recently suggested that covellite 

oxidation occurs as an intermediate stage in which it is transformed into polysulfide CuS2: 

Cu2S2 → CuS2 + Cu2+ + 2e- (6) 

CuS2 → Cu2+ + 2S0 + 2e- (7) 

Covellite can be oxidized over a wide range of chloride concentrations or potential to the CuS2 

polysulfide, but oxidation of CuS2 can only occur under conditions of high chloride concentrations or 

high potentials (Nicol & Basson, 2017). 

Copper chloride-based processes are especially suitable for leaching non-ferrous minerals like 

chalcocite, digenite and covellite, since in these cases the leaching solutions contain low levels of 

dissolved iron (Ruiz et al., 1998). 

In this study, two pure covellite leaching tests will be carried out in a chlorided medium in addition 
to oxygen. The first one will be under temperature and pressure ambient to determine the influence 
of the parameters to be statistically analyzed; such as sulfuric acid dosage, sodium chloride dosage 



and the effect of time in copper extraction until a representative quadratic model of copper extraction 
is obtained based on these parameters. The second part consists of tests with the temperature to 
analyze its effect on the kinetics of copper dissolution, calculate the activation energy and the 
controlling stage of the mineral under the described conditions and according to the model of the 
unreacted core. 

 

Thermodynamics 

A covellite leaching is performed with the injection of O2 at ambient pressure into a solution of 

H2SO4-NaCl. In this leaching investigation of copper sulfide, no ferric ions are added but copper-

chloride complexes are added, hence, the leaching agents change. It is proposed to obtain a soluble 

product of Cu𝐶𝑙2
−so the general reaction is:  

2CuS + 0,5O2 + 2H+ + 4Cl- = 2Cu𝐶𝑙2
− + 2S0 + H2O (8)     

The general reaction for the dissolution of a sulfide with metal in a chlorinated environment is 

described by Lundstrom et al. (2016) in equation: 

 
MeSx + 2CuCl++ 2Cl- = Me2+ + 2 Cu𝐶𝑙2

− + xS0  (9) 

And in the case of the leaching of covellite in chlorinated environment, the following reaction is 

obtained: 

CuS + 2CuCl+ + 2Cl- = Cu2+ + 2Cu𝐶𝑙2
− + S0 (10) 

According to the information given in table 1, the difference between equation 8 and 10 is the 

addition of O2 and H+, with equation 8 above 10 being very favorable due to the diffusion of oxygen 

in covellite leaching. 

Cu2+, CuCl+ and Cu𝐶𝑙2
− are the stable species of  Cu2+/Cu+ in a solution at 25 ° C, and with a 

chloride concentration range of between 0.02 - 2 M. According to Senanayake (2007), CuCl+ is the 

predominant species of Cu2+ at a low chloride concentration (<0.5 M) (Cheng & Lawson, 1991), while 

Cu𝐶𝑙2
− is the predominant Cu+ species at 25 ° C. In contrast, CuCl2 is the most stable Cu2+ species at 

high temperature (102 °C) and high concentrations of chloride.  

Within the reactions that occur in the leaching of covellite with the use of NaCl, Cu2+ and the 

addition of O2, leaching agents, such as Cu2+, CuCl+, CuCl2 and Cu𝐶𝑙3
−, are continuously generated 

during leaching (Herreros & Viñals, 2007; Senanayake, 2007) where finally a soluble product of Cu𝐶𝑙2
− 

(chloro complex), and a residue of elemental sulfur (S0) will be obtained.  

Cu+2 + Cl- = CuCl+  (11) 

CuCl+ + Cl- = CuCl2    (12) 

CuCl2 + Cl- = CuCl3
−  (13) 

CuCl3
− + Cl- =CuCl4

−2  (14)    

Table 1 shows all the interesting reactions within the leaching of covellite in a chlorinated medium, 

analyzing the free energy of Gibbs at temperatures of 25 ° C and 90 ° C.Equilibrium constants are 

based on Outokumpu HSC 5,1 Software.  

  



Table 1. Equilibrium constants for reactions at temperatures of 25°C and 90°C. 

No Rx 
Equilibrium constant (K) Gibbs free energy (kJ) 

25°C 90°C 25°C 

3 4,433x10^4 6.962x10^5 -26,521 

8 6,253x10^14 6.942x10^11 -84,448 

10 5,033x10^-7 2.276x10^-5 35,946 

11 2,982 5.343 -2,708 

12 2,843x10^-5 1.185x10^-3 25,947 

13 6,053x10^1 1.318 -10,17 

14 5x10^-3 1.207x10^-3 13,133 

15 4,249x10^-3 3.206x10^-1 13,536 

16 1,425x10^-3 6.002x10^-2 16.244 

17 2,924x10^23 9.513x10^16 -133,93 

18 3,245x10^-2 4,501x10^-2 8,497 

 

In the reactions of the covellite solution, there is the possibility of obtaining a solid product of CuCl, 

although this can be reoxidized in CuCl+ which is used as a leaching agent.  

CuS + Cu2+ + 2Cl- = 2CuCl+ S0       (15) 

CuS + CuCl+ + Cl- = 2CuCl + S0      (16)           

2CuCl +0,5O2 + 2H+ = 2CuCl+ + H2O (17) 

It is emphasized that with the addition of oxygen and H+, this reaction is spontaneous. 

The CuCl can also be reduced to Cu𝐶𝑙2
− (18) CuCl + Cl- = Cu𝐶𝑙2

−      

However, this reaction is not spontaneous even at a temperature of 90 ° C.  
 

2. Experimental 
 
2.1 Materials 
 
The covellite sample used in this research was obtained from Michilla mine Using a porcelain 

mortar, the sample (apparently pure) was reduced to a size range of -150 to +106 μm, and then 

chemically analyzed by atomic emission spectrometry via induction-coupled plasma (ICP-AES) at the 

applied geochemistry laboratory of the Geological Sciences Department of the Universidad Católica 

del Norte. Table 2 shows the chemical composition of the samples. 

 

Table 2. Chemical analysis of the covellite ore 
 

 Element Cu S Ca O H   

  Mass (%) 56.14 31.08 3.66 8.76 0.36   

 



The studied sample was also analyzed mineralogically. Fig. 1 shows the chemical species 

identified by QEMSCAN. Covellite was the most abundant mineral present (84.29%), followed by a 

much lower percentage of gypsum (15.71%). 

 
 

Fig. 1. Detailed modal mineralogy 
 
2.2 Reagent and leaching test 

The sulfuric acid used in the leaching tests was grade P.A, Merck brand, with a purity of 95-97%, 

a density of 1.84 kg/L, and a molecular weight of 98.08 g/mol. 

The leaching tests were carried out in a 50-mL glass reactor with a 0.01 S/L ratio of leaching solution. 

A total of 200 mg of covellite ore was maintained in agitation and suspension in a 5-position magnetic 

stirrer (IKA ROS, CEP 13087-534, Campinas, Brazil) at a speed of 600 rpm with an oxygen addition 

of 6 mL/min connecting a hose to the reactor. The tests were conducted at a room temperature of 

25°C, with variations in sulfuric acid and chloride concentrations and leaching time. In the 

temperature-controlled experimental trials, a coolant was added to the top, thereby avoiding 

evaporation losses. The coolant was added in combination with water, at ambient temperature (25°C), 

and interacts with the outgoing hot gas, causing it to condense back into liquid form. Also, the tests 

were performed in duplicate, measurements (or analyses) were carried on 5 mL undiluted samples 

using atomic absorption spectrometry with a coefficient of variation ≤ 5% and a relative error between 

5 to 10%. Measurements of pH and oxidation-reduction potential (ORP) of leach solutions were made 

using a pH-ORP meter (HANNA HI-4222). The solution ORP was measured in a combination ORP 

electrode cell composed of a platinum working electrode and a saturated Ag/AgCl reference 

electrode. 

2.3 Experimental Design 

The effects of independent variables on Cu extraction rates from leaching covellite were studied 

using the response surface optimization method (Aguirre et al., 2016; Bezerra et al., 2008; Dean et 

al., 2017; Toro et al., 2018). The central composite face design (CCF) and a quadratic model were 

applied to the experimental design for leaching CuS. 

Twenty-seven experimental tests were carried out to study the effects of time, and chloride and 

H2SO4 concentrations as independent variables. Minitab 18 software was used in the modeling and 

experimental design to study the linear and quadratic effects of the independent variables. The 

experimental data were fitted by multiple linear regression analysis to a quadratic model, considering 

only those factors that helped to explain the variability of the model. The empirical model contained 

coefficients of linear, quadratic, and two-factor interaction effects. 
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The general form of the experimental model is represented by (Equation 19): 

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + 𝑏23𝑥2𝑥3 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 + 𝑏33𝑥3
2                          (19) 

Where, 𝑥1 is time, 𝑥2 is Chloride, 𝑥3 is H2SO4 concentration, and 𝑏 is the variable coefficients 

Table 3 shows the ranges of the parameters used in the experimental model. The following 

equation (Equation 20) transformed real values (Zi) into coded values (Xi) according to the 

experimental design: 

𝑋𝑖 =
𝑍𝑖 −

𝑍ℎ𝑖𝑔ℎ + 𝑍𝑙𝑜𝑤

2
𝑍ℎ𝑖𝑔ℎ − 𝑍𝑙𝑜𝑤

2

         (20) 

Where 𝑍ℎ𝑖𝑔ℎ  𝑎𝑛𝑑 𝑍𝑙𝑜𝑤 are respectively the highest and lowest levels of a variable (Montgomery, 

2012). 

Table 3. Experimental configuration and Cu extraction data 

Exp. No. Time (h) Cl (g/L) H2SO4 (M) Cu extraction rate (%) 

1 48 20 0.5 2.50 

2 48 50 0.5 3.50 

3 48 100 0.5 6.00 

4 48 20 1 3.00 

5 48 50 1 3.63 

6 48 100 1 9.13 

7 48 20 2 3.25 

8 48 50 2 5.50 

9 48 100 2 11.38 

10 72 20 0.5 5.13 

11 72 50 0.5 8.75 

12 72 100 0.5 11.25 

13 72 20 1 5.88 

14 72 50 1 9.25 

15 72 100 1 13.88 

16 72 20 2 6.38 

17 72 50 2 11.63 

18 72 100 2 18.75 

19 144 20 0.5 24.63 

20 144 50 0.5 24.88 

21 144 100 0.5 28.75 

22 144 20 1 26.25 

23 144 50 1 29.75 

24 144 100 1 35.00 

25 144 20 2 28.75 

26 144 50 2 31.25 

27 144 100 2 38.75 

 



The statistical R2, R2
adj, p-values and Mallows’s Cp indicate whether the model obtained is 

adequate to describe Cu extraction under a given domain. The R2 coefficient is a measure of the 

goodness of fit, that is, it measures the proportion of total variability of the dependent variable with 

respect to its mean, which is explained by the regression model. The p-values represent statistical 

significance, which indicates whether there is a statistically significant association between the 

response variable and the term. The predicted R2 was used to determine how well the model predicts 

the response for new observations. Finally, Mallows's Cp is a precise measure in the model, 

estimating the true parameter regression (Montgomery et al., 2012). 

3. Results 

3.1. Methodology 

An ANOVA analysis (Table 4) showed no significant effect of the interaction {time, Cl} (p > 0.05) 

on the copper extraction rate. The effects of the curvature of chloride are not significant in explaining 

the variability of the model. However, the effects of the curvature of time and H2SO4 must also be 

considered (p < 0.1). 

Table 4. ANOVA Cu extraction 

Source F-Value p-Value 

Regression 371.42 0.000 

Time 2624.36 0.000 

Cl 257.04 0.000 

H2SO4 105.5 0.000 

Time*Time 9.7 0.006 

Cl*Cl 0.56 0.466 

H2SO4*H2SO4 3.39 0.083 

Time*Cl 0.81 0.379 

Time*H2SO4 11.22 0.004 

Cl*H2SO4 22.6 0.000 

 

The contour plot in Fig. 2 shows that the Cu extraction rate increases with more time, and higher 

concentrations of chloride and H2SO4. 
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Fig. 2. Experimental contour plot of Cu extraction in response to the independent variables of 

time and chloride (a), time and H2SO4 concentration (b), and chloride concentration and H2SO4 

concentration (c). 

Fig. 3 and 4 show that the interactions of time, chloride and H2SO4 concentration, and of time-

H2SO4 and Cl-H2SO4 affected the Cu extraction rate.  
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Fig. 3. Linear effect plot for Cu extraction 
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(c) 

Fig. 4. Plot for the effect on Cu extraction of the Interactions of time-chloride (a), time-H2SO4 

concentration (b), and chloride-H2SO4 (c). 

Equation (21) presents the Cu extraction rate over the range of experimental conditions after 

eliminating non-significant coefficients. 

 

% 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0,16969 +  0,12332 𝑥1 +  0,03904 𝑥2 +  0,02502 𝑥3 +  0,01782 𝑥1
2 −  0,00870 𝑥3

2  

+  0,00921 𝑥1𝑥3  +  0,01347 𝑥2𝑥3 

(21) 

where 𝑥1, 𝑥2 𝑦 𝑥3 are codified variables that respectively represent time and chloride and H2SO4 

concentrations. 

An ANOVA test indicated that the quadratic model adequately represents Cu extraction from CuS 

under the established ranges of the parameters. The model did not require adjustment and was 

validated by the R2 (0.9945) and R2
adj values (0.9925). The ANOVA showed that the indicated factors 

influence Cu extraction from CuS, as indicated by regression Freg (371.42) > FT,95% confidence level F7,19 

(2.543). 

The p-value of the model is 0.000 < 0.05, as represented by Equation (21), which indicates that 

the model is statistically significant. 

The Mallows’s Cp = 7.37 (constant + 7 predictors) indicates that the model is accurate and does 

not present bias in estimating the true regression coefficients. It also allows for prediction with an 

acceptable margin of error of R2
pred = 0.9888.  

Finally, the adjustment of the ANOVA analysis indicated that the factors considered explained the 

variations in the response. The difference between R2 and R2
pred of the model was minimal, thus 

reducing the possibility that the model was overly adjusted, that is, a lower probability that the model 

only fits the sample data. The ANOVA analysis indicated that time, chloride and H2SO4 

concentrations, and the interactions of time-H2SO4 and chloride-H2SO4 are the most important factors 

in explaining the behavior of the system for the sampled data set. 

 

  



3.2 Effect of chloride concentration 

 

 

Fig. 5. Extraction of Cu (%) vs time (h), depending on the addition of chloride 

Fig. 5 shows that the highest rate of copper extraction (71.23%) was obtained with high 

concentrations of chloride ions (100 g/L), thus demonstrating the effect of a higher chloride ion 

concentration on copper extraction (Miki et al., 2011;Senanayake, 2007). However, according to 

Cheng and Lawson (1991), there is a ceiling of 0.25 M, above which higher concentrations of chloride 

have insignificant effects on covellite dissolution, while in the range of 20 to 50 (g/L), chloride has no 

positive effects based on the leaching time, obtaining maximum copper extractions of 44.87 and 

56.23%, respectively. This concurs with the results of other investigations (Miki et al., 2011), which 

indicate that CuS oxidation to CuS2 is possible with any chloride concentration, but the oxidation of 

CuS2 is only possible with very high potential or high chloride concentrations (Nicol & Basson, 2017). 

 

3.3 Effect of temperature 

 

Fig. 6. Cu extraction (%) vs time (h), based on the T ° C 

Fig. 6 shows the effect of temperature on a covellite solution in a medium with a high concentration 

of chloride and a low concentration of sulfuric acid. The copper extraction rate varied by up to 74% 

with temperatures of 90 °C and 50 °C, with a leaching period of 6 hours. The analysis of the effect of 
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temperature on the copper extraction rate confirmed the significant effect of this parameter on 

leaching, and in this case, the increase in leaching kinetics with 0.5 M of H2SO4, 100 g/L of chloride 

and a leaching time of up to 9 hours. According to Ruan et al. (2013) and Miki et al. (2011), covellite 

dissolution is controlled by chemical surface reaction. The unreacted core model is used to describe 

the kinetics of covellite leaching with the application of Equation 22: 

Kt=1-(1-α)1/3 (22) 

where: 

α is the fraction of dissolved copper, t is leaching time, and k is the reaction rate constant 

Using the slopes of the extraction curves as a function of temperature, the linear zones were 

shortened by approximately 2 hours), yielding the Arrhenius plot in Fig. 7, and resulting in an 

activation energy of 72.36 kJ/mol, which was similar to the levels in other investigations under similar 

conditions, such as in Cheng and Lawson (1991), who obtained an activation energy of 77 kJ/mol 

with the addition of 0.5 M of H2SO4 and 0.5 M of NaCl, and in Miki et al. (2011), who obtained an 

activation energy of 72 kJ/mol, with low temperature (25-45 °C), an extended leaching period, and 

the addition of iron and copper catalysts. 

 

 

Fig. 7: Arrhenius plot for covellite dissolution using linear slopes of the curves in Fig. 6. 

Residues analysis: 

 

Fig. 8: X-ray diffractogram for the covellite mineral after being leached at 90 ° C in a time of two 

hours. 
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Fig. 9: X-ray diffractogram for the covellite mineral after being leached at 90 ° C in a time of six 

hours 

An analysis is made about the XRD of the residues comparing them with the initial state which 

contains an approximate 15.71% of gypsum. In fig. 8, the difractogram is presented where the 

transformation of the covellite is observed after a leaching of two hours at a temperature of 90 ° C 

under conditions of 1 M H2SO4 and 100 g/L NaCl a 35% of copper is extracted in solution, with 85.34% 

covellite and 14.66% elemental sulfur remain in the residue. In fig. 9, the XRD shows the covellite 

transformation after six hours of leaching at a temperature of 90 ° C under conditions of 1 M H2SO4 

and 100 g/L NaCl, achieving the extraction of 76% of copper, remaining in the residual of 47% 

“synthetic covellite”, which is presumed to be CuS and CuS2, as mentioned by Nicol & Basson (2017). 

Although the XRD only shows a synthetic covellite, accompanied by 53% of elemental sulfur, what 

stands out is that the gypsyum remains that were present in the initial mineral were not observed in 

figures 8 and 9. The CuS2 mineral is slower than the covellite and therefore requires more demanding 

conditions and/or longer times to complete the extraction of Cu.  

4. Conclusions 

The present investigation shows the laboratory results of dissolving Cu from covellite in chlorinated 

media. The highest Cu extraction rate was obtained with high concentrations of chloride in the system. 

The findings of this study were: 

1. The linear variables of time and chloride concentration have the greatest influence in the 

model. 

2. Under normal conditions of pressure and temperature, H2SO4 concentration-time and 

chloride concentration-time have synergistic effects on copper extraction from covellite. 

3. The Anova analysis indicates that the presented quadratic model adequately represents 

copper extraction, which is validated by the R2 value (0.9945). 

4. The highest copper extraction rate working at room temperature of 71.23% was obtained with 

a low concentration of sulfuric acid (0.5 M), a high concentration of chloride (100 g/L) and an 

extended leaching time (600 h). 

5. Regarding the temperature control (50-90°C) in leaching conditions of 0.5 M of H2SO4, 100 

g/L chloride and leaching time of 6 hours, an activation energy of 72.36 kJ/mol is observed, 

indicating that the rate of dissolution of the mineral is indeed limited by the chemical reaction. 

6. In the XRD carried out in the leaching residues at 2 and 6 hours at a temperature of 90 ° C, 
the formation of elemental sulfur is observed, which is expected as a stable and non-polluting 
residue. 
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8. Conclusiones 

El presente estudio muestra los resultados mediante el uso de modelos 

estadísticos, así como curvas de extracción versus tiempo para investigar la lixiviación 

de dos tipos de minerales, sulfuros de cobre (primarios y secundarios) y minerales con 

altos contenidos de MnO2 (nódulos de manganeso y cobres negros). Para todas las 

pruebas se trabajó en un medio ácido con el uso de H2SO4 y temperatura ambiente (25 

°C). Los principales hallazgos son los siguientes: 

Minerales de Manganeso 

• Trabajar a razones de agente reductor/MnO2 sobre 1/1, permite obtener 

extracciones de Mn sobre un 70% en tiempos inferiores a 10 min. 

• Una razón de agente reductor/MnO2 de 3/1 presenta las mayores 

extracciones de Mn en cortos periodos de tiempo, aunque presentando 

muy poca diferencia respecto a razones de 2/1. 

• Altas concentraciones de agente reductor (hierro) en el sistema, permiten 

trabajar en rangos de potencial y pH que favorecen la generación de Fe2+ y 

Fe3+; así, se evita la formación de precipitados de Fe. Además, vuelve 

irrelevante la concentración de ácido sulfúrico en la disolución de Mn. 

Minerales sulfurados de Cobre 

• El agua de descarte presenta mejores resultados para la disolución de Cu 

desde minerales sulfurados, respecto al agua de mar, en donde 

compuestos presentes en el agua de descarte como MgO y CaSO4 no 

afectaron significativamente en la extracción de cobre. Además, se resalta 

que se generan residuos estables y no contaminantes, como el azufre 

elemental. 

• Bajo condiciones normales de presión y temperatura, sólo la concentración 

de cloruro en el sistema ejerce un efecto significativo en la extracción de 

cobre desde calcosina. 

• Altas concentraciones de MnO2 (4/1 y 5/1) en el sistema, permiten valores 

de potencial entre 580 y 650mV, favoreciendo la disolución de CuFeS2. 
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Se puede apreciar en base a los resultados obtenidos en la presente investigación, 

que es posible extraer los elementos de interés a partir de minerales refractarios a 

procesos convencionales, adicionando los aditivos adecuados (aguas de descarte, agua 

de mar, MnO2, Fe2+), proporcionando los rangos de potencial y pH adecuados para su 

disolución. A pesar de que ninguno de los procesos propuestos en este estudio han sido 

aplicados a escala industrial (excepto uso de agua de mar), y no se ha estudiado en el 

presente manuscrito u otras publicaciones a la fecha su viabilidad económica, no se ve 

un impedimento en hacer pruebas a nivel escala piloto, para su posible futura 

implementación en la gran minería. Esto debido a que los aditivos adicionados son 

principalmente residuos industriales masivos, que no tienen un costo económico de por 

medio. Sólo en el caso del MnO2 se presenta una dificultad para obtener nódulos de 

manganeso, sin embargo, se tiene una gran cantidad de minerales de cobre negro en la 

gran minería del cobre, los cuales son considerados como residuos actualmente por la 

industria, y podrían ser un reemplazo viable. 

En futuros trabajos es necesario hacer un análisis más detallado de los residuos 

sólidos, y también un análisis sobre todos los iones presentes en la solución líquida 

posterior a la lixiviación. Esto debido a que la visión industrial, desde mi punto de vista, 

se enfocará en cómo poder utilizar aguas alternativas y no solamente el agua de mar. 

Para poder satisfacer los problemas hídricos que se presentan a nivel mundial a causa 

del cambio climático, y el nuevo impulso de tecnologías limpias y economía circular con 

el fin de disminuir la contaminación. Por este motivo, mis investigaciones futuras 

tratarán sobre procesos de lixiviación con aguas residuales de otros procesos 

industriales, más el tratamiento de sus residuos. 
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Abstract: Based on the results obtained from a previous study investigating the dissolution of Mn
from marine nodules with the use of sulfuric acid and foundry slag, a second series of experiments
was carried out using tailings produced from slag flotation. The proposed approach takes advantage
of the Fe present in magnetite contained in these tailings and is believed to be cost-efficient. The
surface optimization methodology was used to evaluate the independent variables of time, particle
size, and sulfuric acid concentration in the Mn solution. Other tests evaluated the effect of agitation
speed and the MnO2/Fe2O3 ratio in an acid medium. The highest Mn extraction rate of 77% was
obtained with an MnO2/Fe2O3 ratio of 1/2 concentration of 1 mol/L of H2SO4, particle size of −47
+ 38 µm, and 40 min of leaching. It is concluded that higher rates of Mn extraction were obtained
when tailings instead of slag were used, while future research needs to focus on determination of the
optimum Fe2O3/MnO2 ratio to improve dissolution of Mn from marine nodules.

Keywords: secondary products; reducing agent; waste reuse; acid media

1. Introduction

Ferromanganese (Fe–Mn) deposits are present in the oceans across the world, marine ridges,
and plateaus where the currents have delivered sediments for millions of years [1]. These deposits
form through the accumulation of iron and manganese oxides in seawater, within either volcanic or
sedimentary rocks that act as substrates, as observed in the central and northeastern ocean beds of the
Pacific [2]. They may have economic potential [3], due to the high concentrations of Co, Ni, Te, Ti, Pt,
and rare earth elements [4]. These Fe–Mn oceanic deposits include ferromanganese crusts, as well as
cobalt-rich crusts, polymetallic nodules, and hydrothermal infusions [5]. Polymetallic nodules have a
particular importance for the steel industry as an they may eventually become an alternate source of
manganese [6].

In order to extract manganese and other metals from marine nodules, the use of a reducing
agent is necessary [7]. Acid leaching of marine nodules, with the use of iron as a reducing agent, has
shown good results [8–10]. In a previous study carried out by Toro et al. [11], several parameters were
evaluated for dissolving Mn from marine nodules using slag at room temperature in an acid medium.
This study established that high MnO2/Fe2O3 ratios significantly shorten the manganese dissolution
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time from 30 to 5 min. They also conclude that MnO2 particle size does not significantly affect the Mn
extraction rate in an acid medium in the presence of Fe contained in ferrous slag.

The positive effect of Fe as a reducing agent for dissolving Mn from marine nodules was noted
when lower Mn/Fe ratios were used [8–11]. Bafghi et al. [12] and Toro et al. [11] determined that
sulfuric acid concentration is less important than Fe concentration in dissolving Mn.

The Mn extraction rate increases with a higher agitation speed [13–15]. Jiang et al. [13] evaluated
the kinetic aspects of manganese and silver extraction during leaching of pyrolusite in sulfuric acid
solutions in the presence of H2O2, and concluded that agitation speed was one of the most important
variables affecting the Mn extraction rate. Su et al. [14] indicated that the Mn extraction rate increases
significantly when the agitation speed increases from 100 to 700 rpm because high speed improves
mixing and allows better contact between reagents and reactants. Jiang et al. [13] also reported that the
extraction rate decreases slightly at 1000 rpm because excessive agitation can cause material to adhere
to the walls of the reactor and prevent it from being leached. Velásquez et al. [16] indicated that it is
only necessary to keep particles in suspension and prevent agglomeration.

The addition of Fe as a reducing agent in temperature-controlled acid media has already been
studied [8,10,12]. In particular, Zakeri et al. [10] used ferrous ions with a Fe2+/MnO2 ratio of 2.4 and
sulfuric acid as a leaching agent with a H2SO4/MnO2 ratio of 2.0 over a temperature range of 20 to
60 ◦C, and found out that Mn extraction was notably higher at 60 ◦C and reached 96% after 60 min.
Bafghi et al. [12] used Fe sponge with a molar ratio of 2, and H2SO4 with a molar ratio of 4 (both
ratios with respect to MnO2), under the same temperatures as Zakeri et al. [10]; at 60 ◦C, 100% of the
Mn present within the nodules was dissolved in 3 min. Both cases demonstrate the positive impact
of higher temperature on the extraction rate; however, the positive impact of the presence of iron
indicated that effective processing may take place even at ambient temperatures. Furthermore, both
studies demonstrate that the acid concentration is less significant than the Fe/MnO2 ratio.

The present work investigates the effect of using of tailings, obtained after flotation of slag
at the Altonorte Foundry Plant, on the dissolution of Mn from marine nodules. A report by
SERNAGEOMIN [17] indicates that the production of copper concentrate in Chile has been increasing
steadily, and is expected to almost double by 2026 from its 2014 level, from 3.9 to 5.4 million tons.
For every ton of Cu concentrate obtained by flotation, 151 tons of tailings are generated [18], which
are disposed of in tailing dams and have significant impacts on the environment [19]. Consequently,
it is necessary to find new uses for tailings with the application of more environmentally friendly
hydrometallurgical techniques [20]. This results in an attractive proposal given the quantities of waste
generated in the country by flotation, providing an added value for this material while introducing a
new initiative in the context of the need to overcome stagnation in the mining sector [21].

2. Materials and Methods

2.1. Manganese Nodule Sample

The marine nodules used in this work were the same as those used in Toro et al. [11]. They were
composed of 15.96% Mn and 0.45% Fe. Table 1 shows the chemical composition. The sample material
was analyzed with a Bruker®M4-Tornado µ-FRX tabletop device (Fremont, CA, USA). The µ-XRF
data shows that the nodules were composed of fragments of preexisting nodules that formed their
nuclei, with concentric layers that precipitated around the nuclei in later stages.

Table 1. Chemical analysis (in the form of oxides) of manganese nodules.

Component MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO2 Fe2O3

Weight (%) 3.54 3.69 2.97 7.20 1.17 0.33 22.48 1.07 29.85 26.02
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2.2. Tailings

The sample of tailings used in this study was obtained after flotation of slag during the production
of copper concentrate at the Altonorte Smelting Plant. The methods used to determine the chemical
and mineralogical composition of the tailings were the same as those used to determine marine nodule
content. Chemical species were determined by QEMSCAN. Several iron-containing phases were
present, while the Fe content was estimated at 41.9%. Table 2 shows the mineralogical composition of
the tailings. As the Fe was mainly in the form of magnetite, the most appropriate method of extraction
was the same as that used in Toro et al. [11].

Table 2. Mineralogical composition of tailings, as determined by QEMSCAN.

Mineral Amount % (w/w)

Chalcopyrite/Bornite (CuFeS 2/Cu5FeS4) 0.47
Tennantite/Tetrahedrite (Cu 12As4S13/Cu12Sb4S13) 0.03

Other Cu Minerals 0.63
Cu–Fe Hydroxides 0.94

Pyrite (FeS 2) 0.12
Magnetite (Fe 3O4) 58.52

Specular Hematite (Fe 2O3) 0.89
Hematite (Fe 2O3) 4.47

Ilmenite/Titanite/Rutile (FeTiO 3/CaTiSiO5/TiO2) 0.04
Siderite (FeCO 3) 0.22

Chlorite/Biotite (Mg)3(Si)4O10(OH)2(Mg)3(OH)6/K(Mg)3AlSi3O10(OH)2 3.13
Other Phyllosilicates 11.61
Fayalite (Fe 2SiO4) 4.59

Dicalcium Silicate (Ca2SiO4) 8.30
Kirschsteinite (CaFeSi O4) 3.40

Forsterita (Mg2SiO4) 2.30
Baritine (BaSO4) 0.08

Zinc Oxide (ZnO) 0.02
Lead Oxide (PbO) 0.01

Sulfate (SO4) 0.20
Others 0.03
Total 100.00

2.3. Reagents Used—Leaching Parameters

The sulfuric acid used for the leaching tests was grade P.A., with 95%–97% purity, a density of
1.84 kg/L, and a molecular weight of 98.8 g/mol. The leaching tests were carried out in a 50 mL glass
reactor with a 0.01 solid/liquid ratio. A total of 200 mg of Mn nodules were maintained in suspension
with the use of a 5-position magnetic stirrer (IKA ROS, CEP 13087-534, Campinas, Brazil) at a speed of
600 rpm. The tests were conducted at a room temperature of 25 ◦C, while the parameters studied were
additives, particle size, and leaching time. Also, the tests were performed in duplicate, measurements
(or analyses) were carried on 5 mL of undiluted samples using atomic absorption spectrometry with a
coefficient of variation ≤5% and a relative error between 5% to 10%.

2.4. Experimental Design

The effect of the independent variables on the extraction rate of Mn from manganese nodules was
studied using the response surface method [22,23], which helped in understanding and optimizing
the response by refining the determinations of relevant factors using the model. An experiment was
designed involving three factors that could influence the response variable, and with three levels
for each factor for a total of 27 experimental tests (Table 3), the purpose of which was to study the
effects of H2SO4 concentration, particle size, and time on the dependent variable. Minitab 18 software
was used for modeling and experimental design, providing the same analytical approach as used in
Toro et al. [11].
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Table 3. Experimental configuration and Mn extraction data.

Exp. No. Time (min) Sieve Fraction (Tyler Mesh) Particle Size (µm) Sulfuric Acid Conc. (mol/L) Mn Extraction (%)

1 10 −320 + 400 −47 + 38 0.1 8.12
2 20 −100 + 140 −150 + 106 0.5 29.10
3 20 −320 + 400 −47 + 38 1 55.51
4 30 −320 + 400 −47 + 38 1 71.00
5 10 −200 + 270 −75 + 53 0.5 19.12
6 20 −100 + 140 −150 + 106 0.1 7.63
7 30 −100 + 140 −150 + 106 1 49.8
8 30 −200 + 270 −75 + 53 0.1 17.79
9 10 −100 + 140 −150 + 106 0.5 13.98

10 10 −100 + 140 −150 + 106 1 41.22
11 20 −320 + 400 −47 + 38 0.5 52.51
12 30 −100 + 140 −150 + 106 0.1 10.89
13 20 −320 + 400 −47 + 38 0.1 19.12
14 10 −100 + 140 −150 + 106 0.1 5.24
15 10 −320 + 400 −47 + 38 1 46.23
16 10 −200 + 270 −75 + 53 0.1 9.54
17 20 −200 + 270 −75 + 53 0.1 11.11
18 20 −200 + 270 −75 + 53 0.5 29.41
19 30 −320 + 400 −47 + 38 0.1 19.43
20 30 −320 + 400 −47 + 38 0.5 59.16
21 10 −200 + 270 −75 + 53 1 46.77
22 20 −200 + 270 −75 + 53 1 54.00
23 20 −100 + 140 −150 + 106 1 47.24
24 30 −200 + 270 −75 + 53 0.5 33.67
25 10 −320 + 400 −47 + 38 0.5 38.23
26 30 −200 + 270 −75 + 53 1 63.50
27 30 −100 + 140 −150 + 106 0.5 30.00

The response variable can be expressed as showed in Equation (1):

Y =(overall constant) + (linear effects) + (interaction effects) + (curvature effects) (1)

Table 4 shows the ranges for values of the parameters used for the experimental design.

Table 4. Experimental conditions.

Parameters/Values Low Medium High

Sieve fraction (Tyler mesh) −100 + 140 −200 + 270 −320 + 400
Particle size (µm) −150 + 106 −75 + 53 −47 + 38

Time (in min) 10 20 30
H2SO4 (mol/L) 0.1 0.5 1

The levels of the factors are coded as (−1, 0, 1), where each number represents a particular value
of the factor, with (−1) as the lowest value, (0) as the intermediate, and (1) as the highest. Equation (2)
is used to transform a real value (Zi) into a coded value (Xi) according to the experimental design:

Xi =
Zi −

Zhigh+Zlow
2

Zhigh−Zlow
2

(2)

where Zhigh and Zlow are, respectively, the highest and lowest values of a variable [22].
The statistics used to determine whether the model can adequately describe the extraction of Mn

from marine nodules are similar with those used in the study of Toro et al. [11].

2.5. Effect of Stirring Speed

The effect of particle size was evaluated by Toro et al. [11]. It was concluded that this variable
did not significantly influence the manganese solutions. Consequently, the present work assessed the
effect of agitation speed on Mn dissolution kinetics.
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This investigation determined the effect of increasing agitation speed (200, 400, 600, 800, and 1000
rpm) on leaching manganese nodules, using a particle size of −75 + 53 µm, MnO2/Fe2O3 ratio of 1,
leaching solution volume of 20 mL, 1 mol/L sulfuric acid, and room temperature (25 ◦C).

2.6. Effect of the MnO2/Fe2O3 Ratio

The present study evaluated the effect of the MnO2/Fe2O3 ratio on leaching time with the use of
tailings, using a particle size of −75 + 53 µm, agitation speed of 600 rpm, leaching solution volume of
20 mL, 1 mol/L sulfuric acid, and room temperature (25 ◦C).

3. Results and Discussion

3.1. Effect of Variables

Based on the information obtained from the ANOVA analysis (Table 5), the linear effects of particle
size, H2SO4, and time contribute greatly to explaining the experimental model, as shown in the contour
plots (Figures 1 and 2), while there was no significant effect of any of the curvatures and interactions of
the variables considered (p >> 0.05) on the manganese extraction rate.

Table 5. ANOVA of the Mn extraction rate.

Source F-Value p-Value

Regression 32.13 0.000
Time 27.12 0.000

Particle size 30.39 0.000
Sulfuric acid 226.50 0.000
Time × Time 0.43 0.522

Particle size × Particle size 0.67 0.423
Sulfuric acid × Sulfuric acid 0.39 0.542

Time × Particle size 1.81 0.196
Time × Sulfuric acid 1.57 0.228

Particle size × Sulfuric acid 0.34 0.568
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Figure 1. Experimental contour plot of Mn extraction (25 ◦C; −150 + 106, −75 + 53, −47 + 38 µm particle
size; 10, 20, 30 min leaching time).
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Figure 2. Experimental contour plot of Mn extraction (25 ◦C; 10, 20, 30 min leaching time; 0.1, 0.5,
1 mol/L H2SO4).

Figures 3–5 show that the linear effects of time, particle size, and H2SO4 concentration had the
most significant impact on Mn extraction rates.
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After eliminating non-significant coefficients, the model developed to predict ore extraction over
the range of experimental conditions is presented in Equation (3).

Mn Extraction =0.3294+0.0704x1 + 0.0746x2 + 0.2036x3 (3)

where x1, x2, and x3 are coded variables representing time, particle size, and H2SO4 concentration, respectively.
Figure 6 shows the order of adding parameters to the model, graphically showing the contribution

to explaining the variability of each new parameter.
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The ANOVA indicates that the model adequately represents Mn extraction under the range of
established parameters. The model does not require adjustment and is validated by the value of R2

(0.9275) (Figure 7). The ANOVA shows that the effect of the indicated factors on manganese extraction
is Fregression (98.07) > FTable, at the 95% confidence level F4.22 (2.8167).
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Additionally, the p-value (Figure 8) of the model represented by the Equation (3) indicates that
the model is statistically significant.
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Figure 8. Statistic p.

In favor of the above analysis, the number of parameters plus the constant of the regression does
not differ greatly from Mallows’ Cp statistic, which indicates that the model is relatively accurate and
does not present a bias in estimating the true coefficients of the regression, in addition to making
predictions with an acceptable margin of error (Rpred = 90.02%).

The data points from the normality test applied to the residuals resulting from the regression
in Figure 9 are relatively close to the adjusted normal distribution line, and the p-value of the test
is greater than the level of significance of 0.05, so it is not possible to reject the assumption of the
regression model, that the residuals are distributed normally.
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Figure 10 shows that residuals do not correlate, indicating that they are independent of each other
as there are no obvious trends or patterns.
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The response surface graphs in Figure 11A show that manganese extraction increases with time
and particle size, while Figure 11B shows, graphically, that the effect of the variable H2SO4 concentration
is greater than that of time, resulting in a more significant increase in extraction only when the acid
concentration increases. The effect described above occurs analogously with variations in particle size
and sulfuric acid concentration (Figure 11C).
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Mn extraction.

3.2. Effect of Agitation Speed

In Figure 12, it can be seen that higher Mn extraction rates are obtained at higher agitation speeds.
In this study, the highest rate of 69% was obtained with a speed of 600 rpm and a time of 30 min.
The extraction rate was lower at 800 and 1000 rpm because, at these speeds, some of the mineral
breaks away and adheres to the reactor wall. Jiang et al. [13] had a similar observation at the speed of
1000 rpm. The extraction rate, at 400 rpm (58%), was not significantly different from what was obtained
at 600 rpm, while at a low speed of 200 rpm, the Mn extraction rate was only 35% at 30 min. It was
observed that not all the particles were in suspension at a stirring speed of 200 rpm, which explains
why the extraction rate was so much lower. This is consistent with what Velásquez et al. [16] found in
a study of leaching chalcopyrite mineral in chlorinated media. These authors concluded that agitation
speed was not the most important factor in determining extraction rates as long as all the particles of
the system are kept in suspension.
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Figure 12. Effect of stirring speed on manganese extraction (25 ◦C, MnO2/Fe2O3 ratio of 1, −75 + 53 µm,
1 mol/L H2SO4).

3.3. Effect of the MnO2/Fe2O3 Ratio

The results presented in Figure 13 show the benefit of operating at high concentrations of reducing
agent (Fe) in terms of shortening the dissolution time. The highest Mn extraction of 77% was obtained
after 40 min with an MnO2/Fe2O3 ratio of 1/2. Notably, at this MnO2/Fe2O3 ratio, the leaching time
required to reach a 70% extraction rate has been shortened significantly, while 67% extraction was
reached in 5 min. However, the extraction graph shows asymptotic behavior, with no significant
increase in the extraction rate vs. time. It can be observed that the extraction rate for 30 min with
an MnO2/Fe2O3 ratio of 1/1 is close to that obtained with a ratio of 1/2. However, the differences in
dissolution rates are more significant for short periods of time (between 5 and 20 min). Finally, the Mn
extraction rate was lower (maximum of 47% in 40 min) with an MnO2/Fe2O3 ratio of 2/1 than with the
ratios mentioned above. The tests conducted in this investigation were in pH ranges between −2 to 0.1,
and potentials from −0.4 to 1.4 V, because the presence of Fe2O3 maintains the regeneration of ferrous
ions, which results in high levels of ferrous ion concentration and activity, favoring the dissolution of
Mn and avoiding the formation of precipitates through oxidation–reduction reactions.
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Figure 13. Effect of the MnO2/Fe2O3 ratio on manganese extraction (25 ◦C, −75 + 53 µm, 1 mol/L
H2SO4).

Table 6 compares the results using Fe present in slag and tailings as a reducing agent for Mn
dissolution under the same operational conditions. In both cases, dissolution over a short period of time
(5 min) immediately reached values close to 70%, with almost identical levels in the two investigations.
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However, better results were obtained at 40 min using tailings instead of slag, although the difference
is small (7%). This is possibly due to the presence of 13.07% Cu in the slag, which consumes protons.
However, this issue requires additional study, since the reactivity of Cu in acid media is associated
with slag mineralogy, and the presence of high silica often results in gel formation when leaching is
carried out in low pH values [24]. In addition, the tailings are more reactive since they are derived
from flotation, and have been attacked by chemicals, resulting in exposure of their surface [25]. These
results are promising for future hydrometallurgical studies to investigate the use of slag and tailings as
reducing agents for manganese ores. In future studies, it is proposed that this research be continued
under the same operating parameters and by applying elemental iron (Fe0) to determine if it is possible
to achieve better results within short periods of time (5 min). In addition, when slag and tailings are
used for Mn reduction, the effect of temperature should be evaluated to determine if it is possible to
obtain 100% extraction in short periods of time. Finally, an optimal MnO2/Fe2O3 ratio must be found.

Table 6. Comparison of the experimental results.

Experimental Conditions Toro et al. [11] (2018) Present Investigation

Temperature (◦C) 25 25
Particle size of Mn nodules and slag/tailings (µm) −75 + 53 −75 + 53

H2SO4 concentration (mol/L) 1 1
MnO2/Fe2O3 ratio 1/2 1/2

Mn dissolution rate at 5 min (%) 68 67
Mn dissolution rate at 40 min (%) 70 77

For the recovery of Mn from the solution, the use of zerovalent iron (ZVI) is proposed. In a study
by Bartzas et al. [26], the performance of a Fe0 permeable reactive barrier (PRB) was evaluated for
the treatment of acid leachates, where it was observed that metals, such as aluminum, manganese,
nickel, cobalt, and zinc, were mainly removed from solution, as metal hydroxides, by precipitation.
This can be an attractive proposal because zerovalent iron is a cheap byproduct obtained from the
metal finishing industries.

Table 6 shows a comparison of the experimental results of Mn extraction from marine nodules
with the use of slag and slag flotation tailings.

4. Conclusions

This investigation presents the results of dissolving Mn from marine nodules in an acid medium
at room temperature (25 ◦C) with the use of tailings obtained from flotations of smelter slag. The Fe
present in the tailings proved to be a good reducing agent, increasing MnO2 dissolution kinetics. The
findings of this study are as follows:

(1) The ANOVA test indicates that sulfuric acid is the factor that has the greatest impact on manganese
extraction under the studied conditions.

(2) The manganese dissolution rate was generally higher when tailings were used instead of slag,
possibly because tailings are more reactive to leaching.

(3) Increase of the agitation speed did not significantly increase Mn extraction.
(4) The highest Mn extraction rate of 77% was obtained at an MnO2/Fe2O3 ratio 0.5, 1 mol/L H2SO4,

particle size of −47 + 38 µm, and leaching time of 40 min.

In future work, the leaching of marine nodules should be studied using different Fe reducing
agents but under the same operational conditions. It is also necessary to determine the optimal
MnO2/Fe2O3 ratio that improves dissolution of Mn. In addition, SEM studies need to be carried out on
the tailings and manganese nodules after leaching, in order to observe their morphology and determine
the possible formation of any iron precipitates.
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Abstract: The importance of mine planning is often underestimated. Nonetheless, it is essential in
achieving high performance by identifying the potential value of mineral resources and providing an
optimal, practical, and realistic strategy for extraction, which considers the greatest quantity of options,
materials, and scenarios. Conventional mine planning is based on a mostly deterministic approach,
ignoring part of the uncertainty presented in the input data, such as the mineralogical composition of the
feed. This work develops a methodology to optimize the mineral recovery of the heap leaching phase by
addressing the mineralogical variation of the feed, by alternating the mode of operation depending on
the type of ore in the feed. The operational changes considered in the analysis include the leaching of
oxide ores by adding only sulfuric acid (H2SO4) as reagent and adding chloride in the case of sulfide
ores (secondary sulfides). The incorporation of uncertainty allows the creation of models that maximize
the productivity, while confronting the geological uncertainty, as the extraction program progresses.
The model seeks to increase the expected recovery from leaching, considering a set of equiprobable
geological scenarios. The modeling and simulation of this productive phase is developed through a
discrete event simulation (DES) framework. The results of the simulation indicate the potential to address
the dynamics of feed variation through the implementation of alternating modes of operation.

Keywords: process optimization process; heap leaching; modes of operation; discrete event simulation

1. Introducion:

1.1. Overview

Conventional mine planning is traditionally applied in the industry through methodologies that
consider an important part of the data to be deterministic. However, critical information used for mining
calculations may exhibit statistical variations [1]. When a parameter is uncertain, the expected result is
uncertain, since the calculations have considered a potentially unrepresentative value of the parameter,
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instead of another that could have the same or different probability of occurrence. Due to this, modern
approaches consider the uncertainty and the risk associated with input parameters, which provide a wider
vision of the possible losses and gains of the project [2]. The uncertainty of not knowing the real value of
the metal content of interest to a certain process is indeed a real risk, so finding a way to organize resources
or define alternative operational strategies is a very difficult calculation problem, mainly due to variables
that are subject to geological uncertainty; there is generally a range of possible scenarios of mineral grade
distribution, process capacities, and commodity market conditions, among others [3,4].

Modern approaches to mine production require simulation frameworks that can increase mineral
recovery and are robust in mitigating feed variations [5]. This work presents a methodology for the
evaluation of heap leaching, incorporating information of the mineralogical composition of the inputs;
the approach is based on discrete event simulation (DES). In general, DES models are used to study
systems and processes, in which state changes are computed only at discrete points in time (i.e., discrete
events); the changes that occur between these events are not computed explicitly, but can be inferred
a posteriori. The simulation of the heap leaching allows the planner to estimate the impact on the
productivity of the implementation of different modes of operation [6] in response to variations in the
mineralogical composition of ores.

1.2. Heap Leaching

After the comminution phase, the copper ores pass to the leaching stage, where the metals
present in the mineralized rock are extracted through the application of water and leaching agents.
This process is comparatively effective for low- to medium-grade copper oxide minerals (0.3–0.7%).
Secondary copper sulfides and low-grade gold ores are also processed in this way [7–9], since it
provides a low cost of capital compared to other methods, and since it does not require an intensive use
of energy [10]. The agglomeration of the fines around the larger particles with water and concentrated
sulfuric acid is known as “curing”. This process improves the resistance of the material while having
a good permeability of the mineral in the heap leaching, in order to reach adequate heap heights,
improve copper recovery rates, and control processing times [11,12]. The acid solution is distributed
by sprinklers or drippers, in which the copper (Cu2+) dissolves in the leaching solution as it percolates
the heap. The realization of tests at the laboratory level and in pilot plants determine the effectiveness
of a heap. The amount of ore to be treated can vary considerably from hundreds to more than one
million tons [12], depending on the mine.

Another emerging method is biohydrometallurgy, which plays an important role in the recovery
of copper from copper sulfides with economic, environmental, and social benefits [13]. To date, many
investigations on acid bioleaching of secondary sulfides [14,15] and primary sulfides [16–18] have been
reported presenting good results.

Even in its role as a surplus generator, large-scale mining faces great challenges. These include an
increase in costs due to various factors, such as the deterioration of grades and other factors associated
with the aging of deposits and increased operating costs to be compatible with sustainable development
demands. In typical operations, heap leaching processes operate in approximate times of three months
for sulfide ores in chloride media, and also with lower ore grades [19].

2. Materials and Methods

There are several processes through which minerals can be leached, depending mainly on the
physical and chemical considerations, such as the solubility of the metal, the kinetics of the solution,
the consumption of the reagent, etc. [20]. Heap leaching is currently the most common leaching method
in the Chilean mining industry.
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2.1. Discrete Event Simulation

With a DES framework, an event is a random occurrence that occurs at a discrete point in time,
and whose outcome depends on chance. An event is considered simple if it consists of a specific result
or compound if it consists of two or more independent events [21].

Within a system of discrete events, one or more phenomena of interest change their value in
discrete points in time [22]. Discrete event simulation considers the evolution of the system, but the
states are modified only at discrete moments of time, and they are caused by the occurrence of some
event. For this, the state of the system does not explicitly consider variations between two consecutive
events. The event n occurs at time tn, and event n + 1 will occur at time tn+1, as the simulation clock
jumps directly to the instant tn+1. Upon advancing to tn+1, the system statistics and state variables are
updated, and this process repeated until a termination condition is met [23].

2.2. Mathematical Modeling of Heap Leaching

Around 20% of the world's copper production is obtained by heap leaching. This process has
been modeled by many authors; however, the validation, verification and implementation of these
models are difficult since there is uncertainty about the operating conditions and parameters of the
leaching model [24–26].

The performance of heap leaching depends on many input variables (operational and design),
which means its optimization is complex [27]. The materials are leached with various chemical
solutions that extract valuable minerals. These chemical solutions are a weak sulfuric acid solution
for copper oxide ores, and chloride media [28] for copper secondary sulfides. The valuable minerals
are irrigated with a chemical solution that dissolves the valuable metal of the ore, as the resulting
pregnant leaching solution (PLS) passes through the ore, and is recuperated at the base of the heap.
The valuable material is then extracted from the PLS, and the chemical solution is recycled back into
the heap. The most common methods for recovery of valuable minerals are solvent extraction and
electro-winning processes [12].

The following is an analytical model for heap leaching developed by Mellado et al. [29–31], using
a system of first order equations:

∂y
∂τ

= −kτynτ (1)

where “y” is a dynamic quantity, such as the concentration or recovery Rt, kτ are kinetic constants
associated with the characteristics of the heap and grade of the mineral respectively, and nτ is the
order of the reaction. The subscript τ represents a time scale that depends on the phenomenon to be
modeled. To solve Equation (1), an initial condition is required. Mellado et al. introduced a delay
(i.e., a timeωwhere Rt begins to change (Rt(ω) = 0)); the general solution for nτ = 1 is given by (see
Mellado et al. [29] for the general solution):

Rτ = R∞τ
(
1− e−kτ(τ−ω)

)
(2)

Dixon and Hendrix [32,33] considered that the leaching phenomenon occurs at different scales
of size and time, and that different phenomena participate in the leaching process. On the other
hand, Mellado et al. [31] incorporated the different scales in an analytical model of the leaching
process, introducing the parameters Kθ and Kτ, related to size and time, respectively, as can be seen in
Equation (3):

R(t) =
α

Zγ + β

[
1–λeKθ(t−ω∗)–(1–λ)eKτ(t−ω∗)

]
(3)

Mellado et al. develop the parameters Kθ, Kτ, andω* in Equations (4)–(6) respectively:

Kθ = kθ
µs

εbZ
(4)
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Kτ = kτ
DAe

εor2 (5)

ω∗ =
εbZ
µs
ω (6)

where α, β, and γ are mathematical constants of fit, Z is the height of the heap, λ is a factor of kinetic
weight, kθ and kτ are kinetic constants, µs is the surface velocity of the leaching flow in the heap, εb

is the volumetric fraction of the bulk solution in the heap, ω is the delay of the reaction, DAe is the
effective diffusivity of the solute within the pores of the particles, εo is the porosity of the particles,
and r is the radius of the particles.

The goodness-of-fit statistics used to study the model adjusted to observations (operational data
supplied from an industrial heap leaching operation at a copper mine in Antofagasta, Chile) are: The
mean absolute deviation (MAD, Equation (7)), a statistic that measures the dispersion of forecast error;
the mean square error (MSE, Equation (8)), measure of error dispersion that penalizes the periods or
values where the error module is higher than the average value; and the absolute average percentage
error (MAPE, Equation (9)), a statistic that gives the deviation in percentage terms, calculating the
averages of the absolute values between the real value [21].

MAD =

∑
|Real− Forecast|

n
(7)

MSE =

∑
(Real− Forecast)2

n
(8)

MAPE =
1
n

∑
|Real− Forecast|

|Real|
(9)

2.3. Adjustment of the Analytical Model for the Recovery of Copper from Copper Oxides

Adjusting the analytical model by means of a linear optimization model that minimizes the error
measurements of the adjustment to operational data, considering the theoretical restrictions of the
analytical model, results in the following equation:

R(t) = 0.9993
(
1− 0.4e−0.0844(t−2.3684)

− 0.6e−0.0055(t−2.3684)
)

(10)

Figure 1 shows the adjusted models from operational data and analytical model respectively for
the leaching process operating only with sulfuric acid as a leaching agent, while the goodness-of-fit
statistics are shown in Table 1.
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Figure 1. Operational fit curve versus analytical fit curve for copper recovery from oxide ores.
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Table 1. Statistics of analytical models of leaching of copper oxides adding sulfuric acid.

Curve/Statistic MAD MSE MAPE

R(t) (Oxides) 1.008 × 10−2 1.222 × 10−4 1.28 × 10−2

The interpretation of the error statistics indicates the degree to which the generated model explains
the system to be modeled, from which it is possible to conclude that the difference between the real and
predicted values is negligible, which means that the analytical model explains the operational values.

2.4. Adjustment of Analytical Model for Copper Recovery from Secondary Copper Sulfides

The analytical model for copper recovery as a function of time for sulfide minerals (secondary
sulfides) is modeled by Equation (11).

R(t) = 0.8841
(
1− 0.2e−0.0072(t−1.91)

− 0.8e−0.0771(t−1.91)
)

(11)

The adjusted curve of Figure 2 and the error measures of the adjusted model presented in Equation (3)
have the goodness-of-fit statistics and low error statistics shown in Table 2, indicating that the analytical
model fits the sample data of the operation.
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Figure 2. Operational fit curve versus analytical fit curve for copper recovery from sulfide ores.

Table 2. Statistics of analytical models of leaching of secondary copper sulfides adding sulfuric acid.

Curve/Statistic MAD MSE MAPE

R(t) (Oxides) 6.63 × 10−4 5.068 × 10−7 8.93 × 10−4

2.5. Adjustment of Analytical Models for Copper Recovery from Secondary Copper Sulfide Ores Adding Chlorides

Adjusting the curves for the leaching of copper sulfide minerals for two levels of chloride
concentration (20 and 50 g/L) as shown in Figure 3, produces the following equations:

R(t)[Chloride 20 g/L] = 0.9159
(
1− 0.3e−0.0168t−2.3684

− 0.7e−0.0057t−2.3684
)

(12)

R(t)[Chloride 50 g/L] = 0.9291
(
1− 0.3e−0.0633t−2.3684

− 0.7e−0.0071t−2.3684
)

(13)
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Figure 3. Copper recovery from oxide and sulfide ores using H2SO4 and chlorides as an additive.

The goodness-of-fit statistics for the leaching of copper sulfide minerals for two levels of chloride
concentration (20 and 50 g/L) are shown in Table 3. Low error statistics indicate that the generated
analytical model fits the sample data

Table 3. Statistics of analytical models of leaching adding chlorides.

Curve/Statistic MAD MSE MAPE

R(t) (Chloride 20 g/L) 1.68 × 10−4 4.59 × 10−7 5.40 × 10−4

R(t) (Chloride 50 g/L) 9.17 × 10−5 5.23 × 10−7 5.89 × 10−4

The expected recovery of copper for the different configurations in 90 days of leaching is presented
in Table 4.

Table 4. Recovery for each configuration in a 90-day leaching time.

Configuration Recovery (%)

Leaching of secondary copper sulfides with sulfuric acid 40.5
Leaching of secondary copper sulfides adding chlorides (20 g/L) 46.5
Leaching of secondary copper sulfides adding chlorides (50 g/L) 58.1

Leaching of copper oxides with sulfuric acid 64.6

2.6. Modeling and Simulation of Heap Leaching Using a DES Framework

Once the process workflow of heap leaching has been characterized, it is possible to model the heap
leach stage sequentially with the Arena simulation software. The update of copper recovery over time
is simulated by parametrizing the analytical models retrieved from the literature, and incorporating
them into the Arena simulation [23].

The schematic of the simulation model is presented in Figure 4, next to the subprocess responsible
for the update in discrete time. The update of the recovery state is carried out whenever a production
campaign is in development, while the use of the operational parameters is updated in the module
“Assignment of attributes to the piles”, and the recovery of ore is obtained from the analytical models
derived from Equations (1) and (2), (these equations depend on the leaching time and operating
conditions of the site).
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The heap leaching process is modeled by production campaigns, whose start is determined by the
availability of inventories of the crushing phase, the development of the campaign corresponding to
the production of each heap, the limited production capacity due to available physical space, and the
downstream storage capacity. For each heap, the expected recovery of ore is measured according to the
adjusted analytical models and the production in tons considering the variations in ore grades of the feed.

The storage of crushed material works under the logic of inventory theory [3], where the
comminution product is kept waiting until the end of the leaching campaign. The module “Post
crushed storage” stores the ore that will enter the leaching process when its respective mode of
operation is activated. Each mode of operation is determined by the type of ore to be leached, and the
decision to apply a given mode depends on the maximum and minimum stock levels established for
each type of mineral. The current context considers two modes of operation:

• Mode A: Leaching of copper oxides.
• Mode B: Leaching of copper sulfide minerals (secondary sulfides).

The assignment of attributes to the heaps, such as the grade of each type of copper ore, is obtained
from ore data from the Empresa Nacional de Minería (ENAMI), which is a Chilean state-owned enterprise.
These attributes are taken as input variables for the analytical models used to estimate the expected
recovery of ore under operational conditions. After a simulated leaching campaign, recovery results
are saved. A comparative analysis of simulated leaching operations, with and without an additional
mode, allows us to quantify the benefit of implementing the additional mode.

3. Discussion of Results

3.1. Simulated Scenarios

With the objective of evaluating the variation in the leaching productivity through the incorporation
of analytical models that integrate mineralogical characteristics under conditions of uncertainty,
the following scenarios are defined:

• Scenario 1 (standard operation): Leaching of copper oxides and secondary copper sulfides adding
sulfuric acid only. The leaching of secondary sulfides with sulfuric acid slows down the process
of extracting ore from the rock, increasing the time required until the marginal extraction of ore is
negligible [12,34].

• Scenario 2 (proposed operation): Leaching of oxides with sulfuric acid and leaching of secondary
sulfides with chloride. The leaching of secondary sulfides by adding chloride accelerates the
recovery of copper from sulfide minerals, decreasing the leaching time [34–37].
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Scenario 1:

From the graphical analysis of copper recovery for each production campaign (see Figure 5),
a decrease in the expected recovery of copper ore can be observed in sulfide mineral leaching campaigns
using sulfuric acid as reagent (without incorporating additives), due to the slower dissolution kinetics
of the secondary copper sulfides.
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Figure 5. Copper recovery of base case maintaining a single mode of operation

Then the average copper recovery is approximately 65% in the case of oxide ores, and 40% in
the case of sulfide ores. Of the total production time, 61% of the time was for processing oxide ores,
and 39% for sulfide ores, hence an average recovery of approximately 55%.

Scenario 2:

A similar analysis for scenario 2 reveals that 61% of the time was spent on oxide ores, for which
only sulfuric acid was used as reagent, while 39% was on sulfide minerals, using sulfuric acid and
chlorides as additives. The average recovery of ore is maintained at 65% for operational mode A and
increases to 58% for mode B (improvements in extraction derived from the addition of chlorides),
working at a chloride concentration of 50 g/L. The resulting average recovery is approximately 62%.

The benefit of having alternate modes of operation is illustrated in Figures 6 and 7, showing that
the expected copper recovery from sulfide ores is greater when varying the mode of operation, being
independent of the characteristics of the feed and considering that the leaching time remains constant.
(Leaching time is kept constant due to the increase in opportunity costs of maintaining a longer time of
a leaching heap whose recovery rate decreases over time).
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Figure 7. Mode of operation for the proposed scenario.

Considering two modes of operation, the objective is to optimize production by alternating the
modes of operation as a function of the feed, avoiding instances of lower recovery of copper with
mode A (leaching of oxide ores with sulfuric acid) whenever mode B (leaching of sulfides by adding
chloride) will be more appropriate; this is the case when there are sufficient sulfides that a detrimental
passivation layer will form in the presence of sulfuric acid. This passivation causes a decrease in
recoveries when leaching secondary sulfides with sulfuric acid, that can be mitigated with longer
exposure time to the leaching agent, but this means an increase in production costs, considering the
increases in the consumption of acid and the opportunity costs of the use of the leaching equipment;
the chloride counteracts this phenomenon.

3.2. Comparison of Samples

In order to compare the productivity of the leaching phase under the scenarios considered,
a hypothesis test is carried out [38], for which the null hypothesis is defined as:

H0:µ2 = µ1

where µ2 represents the average production in thousands of tons of the leaching phase considering
changes in the modes of operation, and µ1 represents the average value of production considering a
single mode of production. The alternate hypothesis is given by:

Ha:µ2 > µ1

Developing the hypothesis test in the statistical analysis software Minitab 18 [39], and considering
a sample size of 100 simulations, it can be concluded that the size of the production average of the
proposed situation is greater than the current situation, as shown in Figure 8. It is further concluded
that the hypothesis test is significant, since the p-value is less than the level of significance, as shown in
Figure 9.
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Figure 9. p-value of the hypothesis test.

The confidence interval quantifies the uncertainty associated with the estimation of the difference
in the means from the data of the samples, so it is possible to have more than 90% certainty that the true
difference is between −625.08 and −468.71, and a 95% assurance that it is less than −468.71, as shown
in Figures 10 and 11.
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Figure 11. A 90% confidence interval for the difference.

Finally, comparing the data distributions for both samples (Figure 12), the difference of the mean
values of the samples can be observed graphically. Although the distributions have some overlap,
the means are several error bars away.
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Figure 12. Distribution of production for both samples.

In summary, when copper recovery is carried out by means of a single mode of operation
(simulation based on analytical models extracted from the literature, which does not consider variations
in reagent concentrations), there may not be a systemic response to the changing mineralogical
characteristics of the feed, resulting in lost production.
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4. Conclusions

4.1. Conclusions

Mineral deposits tend to be heterogeneous, which forces the processing parameters to evolve over
time. In this document, a simulation of the production sequence of the heap leaching was considered,
simplifying the feeding to only two types of ore. However, the framework could be extended to a
greater number of mineral types that could come from a range of geological domains in a mine, as long
as the ore to be processed is of interest and it is technically and economically possible to process it
through the hydrometallurgical route.

The use of alternating modes of operation has the potential to improve the strategic mine plan,
making the value chain more flexible by making a better use of assets and improving mineral recovery,
addressing the varying mineralogical characteristics of the feed. The hypothesis test indicates the
average production increase to incorporate the dynamics of operating modes in heap leaching, in this
case increasing the expected recovery of copper, from 55% to 62%.

The quantification of the improvements by addressing uncertainty in the processing of minerals
through alternating modes of operation, the incorporation of analytical models for the unit processes
and the sequential simulation through a discrete event simulation framework constitute an opportunity
to effectively model and plan leaching operations, from a system-wide perspective. The approach can
assist in local and ultimately global mine optimizations for cash flows and asset utilization.

4.2. Future Work

To further advance the operation research of leaching processes, the following avenues are being
considered:

1. Include other modes of operation and analytical models that incorporate more operational
variables to the process, together with parameters that have a significant impact on recovery.

2. Study the impact on an industrial scale of operating the leaching process with alternating modes
of operation, including the analysis operating and capital costs.
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Abstract: Exotic type deposits include several species of minerals, such as atacamite, chrysocolla,
copper pitch, and copper wad. Among these, copper pitch and copper wad have considerable
concentrations of manganese. However, their non-crystalline and amorphous structure makes it
challenging to recover the elements of interest (like Cu or Mn) by conventional hydrometallurgical
methods. For this reason, black copper ores are generally not incorporated into the extraction circuits
or left unprocessed, whether in stock, leach pads, or waste. Therefore, to dilute MnO2, the use of
reducing agents is essential. In the present research, agitated leaching was performed to dissolve Mn
of black copper in an acidic medium, comparing the use of ferrous ions and tailings as reducing agents.
Two samples of black copper were studied, of high and low grade of Mn, respectively, the latter with
a high content of clays. The effect on the reducing agent/black copper ratio and the concentration of
sulfuric acid in the system were evaluated. Better results in removing Mn were achieved using the
highest-grade black copper sample when working with ferrous ions at a ratio of Fe2+/black copper of
2/1 and 1 mol/L of sulfuric acid. Besides, the low-grade sample induced a significant consumption of
H2SO4 due to the high presence of gangue and clays.

Keywords: waste treatment; reducing agent; manganese

1. Introduction

Copper mining is Chile’s most important economic activity, accounting for 10% of the gross
national product (GNP) [1]. According to the latest figures from the Chilean Copper Commission,
5.83 million metric tons of copper were produced in 2018, making Chile the leading copper producer,
accounting for 27.7% of global copper production. Experts from the Chilean Association of Geologists
have stated that Chile has the largest copper deposits in the world [2], with a total copper reserve of
170 million metric tons [3].
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Porphyry minerals in deposits like pyrite oxidize when submitted to geological agents. When
pyrite reacts with water, it generates sulfuric acid, promoting the mobility of metals like copper that
can be transported under certain potential and pH conditions, precipitating downstream and forming
what are termed exotic deposits [4–8].

These deposits are composed of different copper containing phases such as chrysocolla, atacamite,
copper pitch, and copper wad [6,9]. The latter two are defined as mineraloids because they crystalize
amorphously [2]. They are also termed silicates rich in Si-Fe-Cu-Mn [10].

Some examples of exotic deposits in Chile are Mina Sur in Chuquicamata [11], Damiana in
El Salvador [7], Huanquintipa in Collahuasi [12], and La Cascada, Lomas Bayas Spence, El Tesoro [2],
and Angélica in Tocopilla [13]. The copper and manganese of this type of deposit are often associated
with oxidized minerals, mainly chrysocolla, which, in turn, are associated with gangue that can
negatively affect leaching [11]. Silicates and aluminosilicates, like mica and clay minerals, have the
capacity to consume some of the acid generated by oxidization [14]. Clay minerals, like montmorillonite,
kaolinite, and smectite, easily absorb acid [15]. Other minerals, like chlorites and biotite, also consume
large amounts of acid over the long term [15]. Helle et al. [11] studied the effect of gangue and clay
minerals on the leaching of copper oxides such as atacamite, chrysocolla, and malachite. The copper
oxides were treated with a strong solution of sulfuric acid (265 g/L) in small columns at ambient
temperature (18 to 21 ◦C), with the addition of synthetic rocks composed of 57% quartz, 1% phase
mineral, and 42% reactive gangue. The authors concluded that copper retention and acid consumption
were the result of the presence of smectite, mordenite gangue, kaolinite, illite, and quartz.

Researchers have indicated that it is not possible to recover copper associated with these silicates
using conventional hydrometallurgical methods for oxidized copper because of their non-crystalline
or amorphous structure [16]. However, recent studies on techniques for extracting manganese have
found that silicates can be recovered by treating them in a similar manner to treatment for manganese,
owing to the similarity in their metallurgical behavior [17].

It has been demonstrated that a reducing agent is required to extract Mn from MnO2 in acid
media [18,19]. Other studies have obtained good results dissolving MnO2 with different reducing
agents like H2SO3 [20], SO2 [21], wastewater from producing molasses-based alcohol [22], and various
iron-based reducing agents [20,23,24]. Iron, which is abundant and inexpensive, has proven to be a
good alternative when working with MnO2 in acid media.

Zakeri et al. [25] obtained an Mn extraction rate of 90% in 20 min at ambient temperature with the
addition of ferrous ions to the system, with an Fe2+/MnO2 molar ratio of 3.0 and H2SO4/MnO2 ratio of
2.0. They proposed the following series of reactions for MnO2 dissolution:

MnO2 + 4H+ + 2e− = Mn2+ + 2H2O (1)

2Fe2+ = 2Fe3+ + 2e− (2)

MnO2 + 2Fe2+ + 4H+ = Mn2+ + 2Fe3+ + 2H2O (3)

Toro et al. [26] leached Mn nodules using tailings with high Fe3O4 contents (58.52%) from slag
flotation for the recovery of Cu from the Alto Norte Foundry Plant and optimized the working
parameters (Fe2O3/MnO2 ratio and H2SO4 concentration). They found that for short periods of time
(5 to 20 min), the optimal MnO2/Fe2O3 ratio is 1/3, with H2SO4 concentration of 0.1 mol/L, giving Mn
extraction rates of approximately 70%. The authors proposed the following reactions to dissolve MnO2

with the addition of iron oxides:

Fe2O3(s) + 3 H2SO4(aq) = Fe2(SO4)3(s) + 3 H2O(l) (4)

Fe3O4(s) + 4H2SO4(l) = FeSO4(aq) + Fe2(SO4)3(s) + 4 H2O(l) (5)

2 FeSO4(aq) + 2 H2SO4(aq) + MnO2(s) = Fe2(SO4)3(s) + 2 H2O(l) + MnSO4(aq) (6)
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The following reactions are proposed to dissolve manganese from black copper:

(CuO ×MnO2 × 7H2O)(s) + 3 H2SO4(aq) + 2 FeSO4(aq) = Fe2(SO4)3(aq) + MnSO4(aq) + CuSO4(aq) + 10 H2O(l) (7)

(CuO ×MnO2 × 7H2O)(s) + 11 H2SO4(aq) + 3 Fe3O4(s) = 3 Fe2(SO4)3(aq) + MnSO4(aq) + CuSO4(aq) + 18 H2O(l) (8)

Equation (5) gives the reaction of magnetite with sulfuric acid forming ferrous sulfate, which is a
good reducing agent for the leaching of MnO2. This is shown in Equation (6), where Mn4+ is reduced
to Mn2+. In Equation (7), the solution of manganese from black copper (copper wad) is proposed,
using ferrous sulfate expressed in Equation (5). In general, Equation (8) represents the dissolution of
manganese with iron oxide as a reducing agent, which demands high concentrations of sulfuric acid
to first form FeSO4 from Fe3O4 and then continues to dissolve manganese until a manganese sulfate
solution is obtained.

In Chile, big copper mining poses new challenges and needs. It seeks to diversify the extractions
of other elements (besides the Cu) in order to boost the export of commodities and raise employment.
Black copper ores are resources that are generally not incorporated into the extraction circuits or
left untreated, whether in stock, leach pads, or waste [27]. These exotic minerals have considerable
amounts of Mn (approximately 29%), which represent a commercial appeal. Besides, according to
the study conducted by Benavente et al. [27], by dissolving black copper ores in a reducing condition,
the decrease in redox potential favors the dissolution of manganese. This would allow the subsequent
extraction of the Cu present in black copper, given the potential commercial value of these “wastes”.

This work aimed to study the dissolution of MnO2 from black copper in acid media comparing
the use of iron and iron oxide tailings as reducing agents.

2. Methodology

2.1. Black Oxide Samples

Two samples of black copper, obtained from different mines in northern Chile, were used in
this investigation. One sample, black copper sample-1 (BCS-1), was from a high-grade vein and
was almost 100% pure, while the other, black copper sample-2 (BCS-2), was low-grade and taken
from the mine dumpsite. The black oxides ores were ground in a porcelain mortar to sizes ranging
from −173 to +147 µm. Chemical composition was determined by inductively coupled plasma
atomic emission spectrometry (ICP-AES). Table 1 shows the chemical composition of the samples.
A QEMSCAN analysis was applied, which is an electronic scanning microscope that was modified both
in hardware and software. This performed the identification and automated quantification of ranges of
elementary definitions that can be associated with inorganic solid phases (minerals, alloys, slags, etc.).
To determine the mineralogical composition, the samples were mounted on briquettes and polished.
The identification, mapping of 2-D distribution, and quantification of inorganic phases, was done by
combining the emissions of retro-dispersed electrons (BSE) with a Zeiss EVO series, a Bruker AXS
XFlash 4010 detector (Bruker, Billerica, MA, USA) and the iDiscover 5.3.2.501 software (FEI Company,
Brisbane, Australia). The QEMSCAN analyses are based on the automated obtaining of EDS spectra
(dispersed energy from X-rays) in hundreds of thousands or millions of collected analysis points, each
in a time of milliseconds. The classification of mineralogical phases is done by classifying each EDS
spectrum in a hierarchical and descending compositional list known as the “SIP List”. The BSE image
is used to discriminate between resin and graphite in the sample, to specify entries in the SIP list,
and to establish thresholds for acceptance or rejection of particles. As a result, pixelated, 2-D and false
color images of a specimen or a representative subsample of particles are obtained. Each pixel retains
its elementary and BSE brightness information, which allows subsequent offline data processing.
Through software, customized filters are generated that allow the quantification of ore and gangue
species, mineral release, associations between inorganic phases, and the classification of particles
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according to criteria of shape, size, texture, etc. Figure 1 shows the chemical species to black oxides
using QEMSCAN.

Table 1. Chemical composition of black oxide samples.

Sample Mn (%) Fe (%)

Black Copper Sample-1 22.01 7.92
Black Copper Sample-2 0.51 3.88
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Figure 1. Detailed modal mineralogy.

Table 2 shows the mineralogical composition of the black copper samples. Copper wad refers to a
subgroup of copper composed of manganese and copper hydroxides, as well as also traces of other
elements such as Co, Ca, Fe, Al, Si, and Mg.

Table 2. The mineralogical composition of the black copper samples as determined by QEMSCAN.

Mineral (% Mass) Black Copper Sample-1 Black Copper Sample-2

Native Cu/Cuprite/Tenorite 0.12 0.00
Cu-Mn Wad 78.90 4.64
Chrysocolla 16.72 0.03

Other Cu Minerals 2.69 0.03
Pyrite 0.00 0.01

Goethite 0.01 2.39
Other Fe Oxides/Sulphates 0.00 3.15

Quartz 1.41 30.20
Feldspars 0.02 35.11

Kaolinite Group 0.01 7.08
Muscovite/Sericite 0.01 0.67

Chlorite/Biotite 0.01 4.45
Montmorillonite 0.00 4.56

Others 0.09 7.35
Total 100 100

2.2. Ferrous Ions

The ferrous ions used for this investigation (FeSO4 × 7H2O) were WINKLER brand, with a
molecular weight of 278.01 g/mol.
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2.3. Iron Oxide Tailings

The iron oxide tailings used were from the Altonorte Smelting Plant. The particle sizes were
in a range between −75 to +53 µm. The methods used to determine its chemical and mineralogical
composition were the same as those used in black copper ores. Table 3 shows the minerals (and
chemical formulas) from QEMSCAN analysis, noting that several iron-containing phases were present
from which the Fe content was estimated at 41.9%. As the Fe was mainly in the form of magnetite,
the most appropriate method of extraction was the same as that used by Toro et al. [26].

Table 3. Mineralogical composition of tailings, as determined by QEMSCAN.

Mineral Amount % (w/w)

Chalcopyrite/Bornite (CuFeS 2/Cu5FeS4) 0.47
Tennantite/Tetrahedrite (Cu 12As4S13/Cu12Sb4S13) 0.03

Other Cu Minerals 0.63
Cu–Fe Hydroxides 0.94

Pyrite (FeS 2) 0.12
Magnetite (Fe 3O4) 58.52

Specular Hematite (Fe 2O3) 0.89
Hematite (Fe 2O3) 4.47

Ilmenite/Titanite/Rutile (FeTiO 3/CaTiSiO5/TiO2) 0.04
Siderite (FeCO 3) 0.22

Chlorite/Biotite (Mg)3(Si)4O10(OH)2(Mg)3(OH)6/K(Mg)3AlSi3O10(OH)2 3.13
Other Phyllosilicates 11.61
Fayalite (Fe 2SiO4) 4.59

Dicalcium Silicate (Ca2SiO4) 8.30
Kirschsteinite (CaFeSiO4) 3.40

Forsterite (Mg2SiO4) 2.30
Barite (BaSO4) 0.08

Zinc Oxide (ZnO) 0.02
Lead Oxide (PbO) 0.01

Sulfate (SO4) 0.20
Others 0.03
Total 100.00

2.4. Reagent and Leaching Test

The sulfuric acid used for the leaching tests was grade P.A., with 95–97% purity, a density of
1.84 kg/L, and a molecular weight of 98.80 g/mol. The leaching tests were carried out in a 50 mL glass
reactor with a 0.01 solid/liquid ratio. A total of 200 mg of black oxide ore was maintained in suspension
with the use of a five-position magnetic stirrer (IKA ROS, CEP 13087-534, Campinas, Brazil) at a speed
of 600 rpm. The tests were conducted at a room temperature of 25 ◦C, while variations were iron
additives, particle size, and leaching time. The tests were performed in duplicate and measurements
(or analyses) were carried out on 5 mL undiluted samples using atomic absorption spectrometry with
a coefficient of variation ≤ 5% and a relative error between 5 to 10%. The measurements of pH and
oxidation-reduction potential (ORP) of the leach solutions were made using a pH-ORP meter (HANNA
HI-4222 (HANNA instruments, Woonsocket, Rhode Island, USA)). The solution ORP was measured in
a combination ORP electrode cell composed of a platinum working electrode and a saturated Ag/AgCl
reference electrode.

2.5. The Effect of the Fe/MnO2 Ratio

Other investigations have shown that variables of particle size and stirring speed do not have
significant effects when working with a high Fe/MnO2 ratio [26,28]. Given this result, we decided
to work with the following parameters: Fe/MnO2 ratios of 1/1, 2/1 and 3/1, a particle size range of
−75–+53 µm, a stirring speed of 600 rpm, 1 mol/L sulfuric acid, and room temperature (25 ◦C).
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2.6. The Effect of the Acid Concentration on the System

The present research studied the effect of the sulfuric acid concentration on the system, working
with H2SO4 concentrations of 0.5, 1, 2, and 3 mol/L under the following operating conditions: Reducing
agent/black copper ratio of 1/2, particle size range of −75 + 53 µm, stirring speed of 600 rpm, and a
temperature of 25 ◦C.

3. Results

3.1. The Effect of the Fe2+/MnO2 Ratio

Figure 2a,b show the results for the dissolution of two black copper samples using Fe2+ in acid
media. As can be seen, better results were achieved with the sample BCS-1, which was due to the high
presence of clay in sample BSC-2. It was observed that high Mn extraction rates can be achieved in
short periods of time using MnO2/Fe2+ ratios of 1/2 or less, achieving dissolution rates of over 78% in
5 min with sample BCS-1, and 65% in 5 min with sample BCS-2. The results shown in Figure 2a are
similar to the 90% recovery obtained by Zakeri et al. [25] in 20 min leaching MnO2 from manganese
nodules with an Fe2+/MnO2 ratio of 3, and an H2SO4/MnO2 molar ratio of 2/1. A 1/1 Fe2+/MnO2 ratio
resulted in a lower MnO2 dissolution kinetics, with an extraction of 40% in 5 min with sample A and
31% in 5 min with sample B. In general, Mn dissolution rates were similar with a longer period (30 min).
However, the dissolution kinetics were slower for the sample BCS-2.

Metals 2019, 9, x FOR PEER REVIEW 6 of 10 

 

2.6. The Effect of the Acid Concentration on the System 

The present research studied the effect of the sulfuric acid concentration on the system, working 
with H2SO4 concentrations of 0.5, 1, 2, and 3 mol/L under the following operating conditions: 
Reducing agent/black copper ratio of 1/2, particle size range of −75 + 53 µm, stirring speed of 600 rpm, 
and a temperature of 25 °C. 

3. Results 

3.1. The Effect of the Fe2+/MnO2 Ratio 

Figure 2a and 2b show the results for the dissolution of two black copper samples using Fe2+ in 
acid media. As can be seen, better results were achieved with the sample BCS-1, which was due to 
the high presence of clay in sample BSC-2. It was observed that high Mn extraction rates can be 
achieved in short periods of time using MnO2/Fe2+ ratios of 1/2 or less, achieving dissolution rates of 
over 78% in 5 min with sample BCS-1, and 65% in 5 min with sample BCS-2. The results shown in 
Figure 2a are similar to the 90% recovery obtained by Zakeri et al. [25] in 20 min leaching MnO2 from 
manganese nodules with an Fe2+/MnO2 ratio of 3, and an H2SO4/MnO2 molar ratio of 2/1. A 1/1 
Fe2+/MnO2 ratio resulted in a lower MnO2 dissolution kinetics, with an extraction of 40% in 5 min with 
sample A and 31% in 5 min with sample B. In general, Mn dissolution rates were similar with a longer 
period (30 min). However, the dissolution kinetics were slower for the sample BCS-2. 

  

(a) (b) 

Figure 2. The effect of the Fe2+ concentration on MnO2 dissolution (a) Black copper sample-1 (BSC-1); 
(b) Black copper sample-2 (BCS-2), 25 °C, particle size range of −75–+53 µm, 1 mol/L H2SO4. 

3.2. The Effect of the Fe2O3/MnO2 Ratio 

Figure 3a and 3b show Mn dissolution with two black copper samples using Fe2O3 in acid media. 
As in earlier investigations by Toro et al. [26,28], working with an Fe2O3/MnO2 ratio of 2/1 or higher 
significantly increased MnO2 dissolution kinetics. There was little difference in the Mn extraction 
rates working with Fe2O3/MnO2 ratios of either 2/1 or 3/1, while the Mn extraction fell significantly 
when the quantity of Fe2O3 was reduced. Potential and pH levels were respectively in the ranges of 
−0.5 to 1.3 V and −1.5 to 0.4 in all the tests in this study. 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40

M
n 

Ex
tr

ac
ti

on
, 

%

Time, min

1:1 MnO2/Fe2+ ratio

1:2 MnO2/Fe2+ ratio

1:3 MnO2/Fe2+ ratio

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40

M
n 

Ex
tr

ac
ti

on
, 

%

Time, min

1:1 MnO2/Fe2+ ratio

1:2 MnO2/Fe2+ ratio

1:3 MnO2/Fe2+ ratio

Figure 2. The effect of the Fe2+ concentration on MnO2 dissolution (a) Black copper sample-1 (BSC-1);
(b) Black copper sample-2 (BCS-2), 25 ◦C, particle size range of −75–+53 µm, 1 mol/L H2SO4.

3.2. The Effect of the Fe2O3/MnO2 Ratio

Figure 3a,b show Mn dissolution with two black copper samples using Fe2O3 in acid media.
As in earlier investigations by Toro et al. [26,28], working with an Fe2O3/MnO2 ratio of 2/1 or higher
significantly increased MnO2 dissolution kinetics. There was little difference in the Mn extraction rates
working with Fe2O3/MnO2 ratios of either 2/1 or 3/1, while the Mn extraction fell significantly when
the quantity of Fe2O3 was reduced. Potential and pH levels were respectively in the ranges of −0.5 to
1.3 V and −1.5 to 0.4 in all the tests in this study.



Metals 2019, 9, 1112 7 of 10Metals 2019, 9, x FOR PEER REVIEW 7 of 10 

 

  

(a) (b) 

Figure 3. The effect of the iron oxide tailings concentration on MnO2 dissolution (a) BSC-1; (b) BSC-2, 
25 °C, particle size range of −75–+53 µm, 1 mol/L H2SO4. 

3.3. The Effect of the H2SO4 Concentration 

Figure 4 shows the effect of the acid concentration on dissolving Mn dissolution from the two 
black copper samples with the addition of high concentrations of iron oxides from tailings or ferrous 
ions. It can be seen from Figures 4a and 4c that for sample BCS-1, the sulfuric acid concentration was 
not significant in either case when working with high concentrations of the reducing agent. 
Differences in the effect of the acid concentration could only be noted with very low concentrations 
of iron oxide tailings (0.5 mol/L). The above concurs with findings of previous studies by Toro et al. 
[24,26] on extraction of MnO2 from manganese nodules. The Mn extraction rate from the BCS-2 
sample increased with higher concentrations of H2SO4, possibly owing to the high consumption of 
acid generated by the presence of mineral impurities in this sample, mainly montmorillonite, 
kaolinite, and chlorite. This is consistent with what was previously found by Helle and Kelm [29], 
where the leaching of exotic Cu minerals (atacamite, chrysocolla, and malachite) required higher acid 
consumption by incorporating reactive bargains into the system. This was driven by smectites, 
mordenite bargain, and the presence of kaolinite, illite, and quartz.  

  

(a) (b) 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40

M
n 

Ex
tr

ac
tio

n,
 %

Time, min

1:1 MnO2/Fe2O3 ratio

1:2 MnO2/Fe2O3 ratio

1:3 MnO2/Fe2O3 ratio

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40

M
n 

Ex
tr

ac
ti

on
, 

%

Time, min

1:1 MnO2/Fe2O3 ratio

1:2 MnO2/Fe2O3 ratio

1:3 MnO2/Fe2O3 ratio

55

57

59

61

63

65

67

69

0 5 10 15 20 25

M
n 

Ex
tr

ac
tio

n,
 %

Time, min

0.5 Mol/L

1 Mol/L

2 Mol/L

3 Mol/L

40

45

50

55

60

65

70

0 5 10 15 20 25

M
n 

Ex
tr

ac
tio

n,
 %

Time, min

0.5 Mol/L

1 Mol/L

2 Mol/L

3 Mol/L

Figure 3. The effect of the iron oxide tailings concentration on MnO2 dissolution (a) BSC-1; (b) BSC-2,
25 ◦C, particle size range of −75–+53 µm, 1 mol/L H2SO4.

3.3. The Effect of the H2SO4 Concentration

Figure 4 shows the effect of the acid concentration on dissolving Mn dissolution from the two
black copper samples with the addition of high concentrations of iron oxides from tailings or ferrous
ions. It can be seen from Figure 4a,c that for sample BCS-1, the sulfuric acid concentration was not
significant in either case when working with high concentrations of the reducing agent. Differences in
the effect of the acid concentration could only be noted with very low concentrations of iron oxide
tailings (0.5 mol/L). The above concurs with findings of previous studies by Toro et al. [24,26] on
extraction of MnO2 from manganese nodules. The Mn extraction rate from the BCS-2 sample increased
with higher concentrations of H2SO4, possibly owing to the high consumption of acid generated by the
presence of mineral impurities in this sample, mainly montmorillonite, kaolinite, and chlorite. This is
consistent with what was previously found by Helle and Kelm [29], where the leaching of exotic Cu
minerals (atacamite, chrysocolla, and malachite) required higher acid consumption by incorporating
reactive bargains into the system. This was driven by smectites, mordenite bargain, and the presence
of kaolinite, illite, and quartz.
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Figure 4. The effect of the sulfuric acid concentration on the system (a) BSCe-1; (b) BSC-2, MnO2/Fe2O3

ratio of 1/2; (c) BSC-1; (d) BSC-2, MnO2/Fe2+ ratio of 1/2.

4. Conclusions

This study presents the results obtained for dissolving Mn from black copper using iron oxides
(and specifically magnetite) from tailings and Fe2+ as reducing agents in acid media. Both reducing
agents yielded good results with the two samples studied. Similar behavior was observed with the
two samples in relation to Mn extraction, with the best results obtained in all the experiments with the
BCS-1 sample. These encouraging results give new options to extract the Cu present in these exotic
minerals, which are considered as industrial waste today. The main findings are the following:

(1) The ferrous ions were a better reducing agent than iron oxides to dissolve MnO2 in black copper.
(2) The optimal reducing agent/black copper ratio was 2:1 for the studied reducing agents studied.
(3) High concentrations of H2SO4 had a positive effect on the dissolution of Mn with the BCS-2

sample owing to the high content of clay (montmorillonite and kaolinite) and gangue (chlorite),
which consume significant amounts of acid. The acid concentration was not significant with the
BCS-1 sample.

(4) The best results in this study were obtained working with the sample with fewer impurities
(BCS-1), with an Fe2+/black copper ratio of 2:1, and 1 mol/L of sulfuric acid.

Despite the good results obtained with BCS-1, BCS-2 was more like the mineralogy found at the
industrial scale. It should be noted that although lower Mn extraction rates are obtained using tailings
instead of ferrous ions, tailings can be a more attractive additive for leaching black copper because
they are an industrial waste with no economic value. Given the above results, future investigations
should aim to optimize operational parameters for leaching black copper minerals with high gangue
content using industrial waste or wastewater as reducing agents, with the aim of taking this process to
the industrial scale.
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