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[1] Radomes are usually made of lossy dielectric materials, and their accurate analysis is
often cumbersome because of their typical large electrical size and geometrical
complexity. In real reflector antenna structures, there are always complex interactions
between the radome, the reflector surfaces and the directional feeds, which are typically
neglected for the sake of simplicity. In this paper we will consider all such interactions in a
very accurate way, thus requiring a high number of unknowns for the numerical
solution of the problem. To overcome such drawback, an integral equation formulation
based on the Equivalence Principle in combination with the wavelet transform has been
employed, obtaining finally a robust and accurate CAD tool for the rigorous
analysis of arbitrarily shaped radomes containing continuous and discrete electromagnetic
sources. It will be shown that the use of wavelet-like bases substantially improves the
numerical efficiency and memory requirements of the original integral equation method.
For verification purposes, the results obtained with the new technique are
successfully compared with examples taken from the literature. Complex antenna
structures are then discussed in order to prove the usefulness of the new method.
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1. Introduction

[2] Radomes made of lossy dielectric layered materi-
als, including antenna reflectors and feeding sources, are
scattering problems whose accurate solution is typically
difficult to compute, mainly due to their large size and
complex geometries. For these reasons, it is a topic of
growing interest which is presently receiving consider-
able attention by the electromagnetic community [see
Zhao et al., 2005; Sukharevsky et al., 2005].
[3] Traditionally, radomes were first analyzed using

high frequency methods, such as Ray Propagation in

Gao and Felsen [1985], or the Geometrical Theory of
Diffraction in Duan et al. [1991]. Alternatively, rigorous
solutions for 2-D problems including canonical reflectors
and radomes, combined with complex sources, were
employed in Chang and Chan [1990], Svezhentsev et
al. [1995], Yurchenko et al. [1999], Oguzer [2001], and
Oguzer et al. [2004]. Although with reduced complexity,
the scattering analysis of 2-D structures finds useful
applications, for instance in the design of inductive or
capacitive waveguide filters widely used in mobile and
satellite systems. For these devices, the analysis can be
carried out by solving a 2-D scattering problem. Also,
cylindrical reflector antennas, which can be modeled as
2-D structures, are used in airborne navigation applica-
tions, as recognized in Nosich [1999]. These applications
show the interest of investigating efficient numerical
techniques for the study of 2-D scattering problems.
[4] Recently, solutions for 3-D radomes without reflec-

tors based on volume and surface formulations have also
appeared in Lu [2003] and Zhao et al. [2005], where the
analysis has been performed through the Adaptive Integral
Method [see Zhao et al., 2005], and the Multilevel Fast
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Multipole Algorithm proposed in Li and Li [2004] and
Lu [2003]. These 3-D radomes, typically used for fixed
earth stations, usually present a spherical geometry.
However, several cylindrical scenarios with arbitrary
geometries appear in naval radar systems [see Nosich,
1999], as well as in telecommunications towers with
radiant elements. In these complex real situations, multi-
layered radome materials are used, and metallic surfaces
and reflectors combined with directive complex sources
are often found in practice.
[5] In this paper, we propose to use the Equivalence

Principle in order to formulate an integral equation
problem for the analysis of 2-D cylindrical problems
with arbitrary geometries. To set up the formulation we
employ the Extinction Theorem to transform the classical
volume formulation for dielectric obstacles into a more
efficient surface approach. Proceeding in this way, the
unknowns of the problem are the equivalent electric and
magnetic surface currents defined only over the surfaces
of the different homogeneous objects. Therefore, follow-
ing this approach, a boundary integral equation fully
characterizes the problem. That approach was already
proposed in Arvas and Ponnapalli [1989] for small
radomes scattering problems, and a more complete
formulation for considering thin dielectric radomes under
TEz polarization was presented in Sadigh and Arvas
[1992]. In this paper, a Poggio Miller Chang Harrington
Wu Tsai (PMCHWT) field formulation of the type
shown in Kishk and Shafai [1986] for large dielectric
radomes under TMz and TEz polarization, including also
metallic reflectors and complex sources, will be pro-
posed. Furthermore, we have successfully combined
such new formulation with the wavelet-like transform.
If high accuracy is demanded, then the number of
unknowns grows even in the case of surface formulations
[see Peterson et al., 1998]. That is the case, for instance,
if a simple point-matching Method of Moments (MoM)
procedure is used to solve the problem involving elec-
trically large radomes, and/or very complex geometries.
Then, CPU cost becomes important, and the wavelet-like
transform can be efficiently used to decrease the amount
of required memory allocation and CPU computational
time.
[6] The use of wavelets to reduce the computational

burden associated to MoM solutions is not new, and the
idea has been used for instance in Wang [1995] to study
the scattering from metallic objects. In that work periodic
wavelet functions are used as basis functions in the
MoM, and the backscattering of several metallic objects
are successfully computed. Alternatively, in this paper
we propose a surface formulation for the analysis of both
metallic and dielectric objects, with subsequent appli-
cation of the wavelet-like transform. Following this
approach, the MoM formulation stays very simple
(pulse-point matching), while obtaining big gain in

computational cost through the use of the wavelet-like
transform.
[7] It will also be shown in this paper that the use of

the proposed surface formulation is very convenient for
speed acceleration, since it leads to a matrix equation
which naturally has a banded submatrix-type structure.
This banded structure is very well suited for a subsequent
introduction of the wavelet-like transform. An important
contribution of this paper is that the wavelet-like trans-
form is applied to each submatrix block, instead of using
a global transformation scheme. It has been proved that a
considerable gain in computational cost is obtained when
the wavelet-like transform is applied following the new
introduced subblock scheme. All these gains in CPU
time and memory requirements are not possible if other
volume based formulations [see Hsu and Auda, 1986;
Lu, 2003; Sukharevsky et al., 2005] are employed. This is
because a volume formulation produces full dense matri-
ces, thus loosing some of the matrix sparsity introduced
by the proposed surface formulation. Furthermore, the
volume formulation presents problems associated to the
sorting of the grid elements, which reduce the computa-
tion gain related to the application of the wavelet-like
transform.
[8] The structure of this paper is the following one.

First, the surface formulation employed is briefly
described. Then, the wavelet-like transformation is
applied in order to obtain very sparse matrices. The
theory is validated with general results obtained from
the literature, such as canonical reflectors and radomes.
Once the novel method is successfully verified, it has
been applied to analyze complex shaped reflector-in-
radome structures and arrays-in-radome antennas. The
results clearly show the validity and usefulness of the
new strategy proposed in this paper for the efficient
and accurate analysis of this kind of structures.

2. Theory

[9] Let us consider a cylindrical radome problem like
the one shown in Figure 1, where the radome can be
composed of a multilayered dielectric and/or magnetic
media with losses. We will consider that the dielectric
permittivity and the magnetic permeability are defined as
ei = e0eri and mi = m0mri respectively. We assume that a
TMz or TEz polarization can be selected as the excitation
for the n complex sources situated in the innermost layer,
where a Perfect Electric Conductor (PEC) may also be
present for modeling typically a reflector placed inside
the antenna structure.
[10] First, we will set up the integral equations that

arise for such problem following an equivalent surface
formulation, and then the wavelet-like transform will be
introduced to increase the computational efficiency of
the analysis technique.
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2.1. Equivalent Surface Formulation

[11] The scattering of homogeneous material bodies
can be efficiently accomplished by using the Surface
Equivalence Principle described in Balanis [1989] and
Chen [1989]. Following this technique, the scattered
fields in each region of the problem are due to equivalent
electric and magnetic surface current densities (~J (~r0),
~M (~r0)), and can be expressed as follows:

~Es
i ~rð Þ ¼ �jw~Ai ~rð Þ � rVi ~rð Þ � 1

�i
r�~Fi ~rð Þ ð1Þ

~Hs
i ~rð Þ ¼ �jw~Fi ~rð Þ � rUi ~rð Þ þ 1

mi

r�~Ai ~rð Þ ð2Þ

where the mixed potential representation for the fields
has been used, and the index (i) stands for each region in
the structure (see Figure 1). For a two dimensional
problem, the Green’s functions used in the kernel of the
integral equation takes the following form:

Gi ~r;~r 0ð Þ ¼ 1

4j
H

2ð Þ
0 kij~r�~r 0jð Þ ð3Þ

[12] The application of the equivalence principle to a
homogeneous body leads to four different integral
equations, two involving the electric field (one for the
interior problem and one for the exterior problem), and
the other two involving the magnetic field. However,
there are only two unknowns associated to the previous
four integral equations, namely the equivalent electric
and magnetic current densities defined on the surface of
the body. Consequently, different combinations are pos-
sible for the formulation of the final scattering problem.
If we choose the two equations involving only the
electric field, then the E-field formulation is obtained.

On the contrary, we may select the two equations
involving the magnetic field, therefore leading to the
H-field formulation. It is known that the previous two
formulations exhibit numerical difficulties at certain
frequencies, corresponding to the natural resonances of
the interior body [see Peterson et al., 1998]. To avoid
this undesired numerical behavior, one has to combine
the electric and magnetic field integral equations in a
precise way. Three other different formulations are
obtained in this manner, namely the combined or C-field,
the so called PMCHWT formulation proposed in Poggio
and Miller [1973], and the Müller formulation [see
Müller, 1969]. The combined or C-field strategy formu-
lates one equation for the exterior problem, by using a
linear combination of the corresponding electric and
magnetic field equations. In a similar way, the second
equation is obtained by linear combination of the electric
and magnetic field equations of the interior problem. On
the other hand, the PMCHWT formulation is based on
the direct imposition of the continuity of the tangential
electric and magnetic field through the scatterer contour.
Therefore, the first equation is obtained with the impo-
sition of the continuity of the electric field, while the
second equation is obtained through the imposition of the
continuity of the magnetic field across the boundary.
Finally, the Müller formulation is based on the
PMCHWT formulation, with the introduction of a slight
modification. In this case, the interior and exterior fields
are scaled by the corresponding constitutive parameters,
before imposing the field continuity. Either the PMCHWT
or Müller formulations avoid the problem of the internal
resonances, as recognized in Mautz and Harrington
[1979]. In this work we have employed the PMCHWT
alternative, which requires the imposition of the follow-
ing two boundary conditions:

n̂� ~Ei
s ¼ n̂�~Ea

iþ1 ð4Þ

n̂� ~Hi
s ¼ n̂� ~Ha

iþ1 ð5Þ

where superscript (s) stands for scattered field, (a) for the
total field that may contain an excitation component, and
n̂ is the outgoing normal unitary vector to the surface at
each point on the contour (see Appendix A for details).
[13] The imposition of the appropriate boundary con-

ditions leads to a system of coupled integral equations,
which is solved by the well-known Method of Moments
(MoM). The unknown equivalent electric and magnetic
current densities have been expanded in terms of pulse
basis functions, whereas delta functions have been
employed for testing (Point-Matching). The theory of
the complex sources to include directionality in point
sources has been used. This complex source model is a

Figure 1. Scattering of lossy dielectric and magnetic
multilayered radome with complex sources excitation
including the presence of a metallic obstacle, under 2-D
TM z or TE z excitation.
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simple way to simulate the aperture width of a realistic
horn feed, since an omnidirectional source in complex
space is a beam source in real space [see Suedan and
Jull, 1991]. In this case, the complex center of the point
sources is defined as follows:

~rs ¼ ~r0 þ j b cos b x̂þ sin b ŷð Þ ð6Þ

where ~r0 is the actual point source center, b determines
the source directivity, and b is the beam pointing
direction measured from the x̂ axis [see Oguzer et al.,
1995; Suedan and Jull, 1991]. It is also known that the
complex source beam is gaussian near its axis, as it
happens for the main beams of most realistic antennas
[see Suedan and Jull, 1991]. By properly adjusting both
the directivity and the beam pointing direction, it is easy
to model more realistic feeding structures for reflector
antennas, such as horns or arrays.
[14] The scattering of an object composed of N nested

homogenous layers is appropriately formulated on the
outer contour of each layer. Once the standard Point-
Matching method is applied to the numerical solution of
the integral equation (see more details in Arvas and
Ponnapalli [1989]), a banded MoM matrix of the follow-
ing form is obtained,

Z 
 I ¼ V ð7Þ

where the known voltage vector V directly depends on
the modal excitation in (4) and (5), and the current vector
I represents the unknown expansion coefficients of the
basis functions for the electric and magnetic current [see
Peterson et al., 1998]. These previous vectors adopt the
following general structure:

I ¼

I1JM

I2JM

..

.

..

.

INJM

2
66666666666664

3
77777777777775

;V ¼

V1
EH

V2
EH

..

.

..

.

VN
EH

2
66666666666664

3
77777777777775

: ð8Þ

[15] Finally, the impedance matrix Z is the standard
MoM matrix obtained from the overlapping integrals
between the Green’s functions (3) and the selected basis
and test functions, as proposed in Peterson et al. [1998].
For the case of N-nested layers, treated with the surface

integral equation, this impedance matrix can be further
decomposed into the following subblock structure:

Z ¼

Z11 Z12 0 
 
 
 0

Z21 Z22 . .
. . .

. ..
.

0 . .
. . .

. . .
.

0

..

. . .
. . .

.
Z N�1ð Þ N�1ð Þ Z N�1ð ÞN

0 
 
 
 0 ZN N�1ð Þ ZNN

2
6666664

3
7777775

ð9Þ

[16] As it can be seen in (9), the sparsity of this matrix
grows with the number of layers (N). This fact, together
with the wavelet-like transform proposed in this paper,
reduces the computational time and also the memory
requirements of the problem.
[17] Each of the submatrices ZQP of the impedance

matrix (9) can be further decomposed into four subma-
trices, each one representing the electric or magnetic
fields imposed on the Q layer contour, caused by the
equivalent magnetic or electric current surface densities
that flow on the contour P:

ZQP ¼
ZEQJP ZEQMP

ZHQJP ZHQMP

2
4

3
5 ð10Þ

[18] If the innermost layer N is a PEC, the expression
of the interaction matrices is slightly different due to the
lack of magnetic current density. In that case, the sub-
matrix ZNN presents a single subblock structure, and the
matrices involving the sub-indexes N and (N � 1)
contain only the corresponding 2 appropriate subblocks.
Consequently, the sub-vector IJM

N does only include
the electric surface current, and VEH

N considers the
corresponding boundary conditions for the metallic sur-
face. In the case of a closed metallic object a combined
field approach is used. This is done by introducing in
the integral equations a new parameter a suggested in
Peterson et al. [1998] (see Appendix A for details). This
parameter combines the EFIE and MFIE formulation for
a conductor, thus avoiding again the internal resonance
problem:

ZNN ¼ aZENJN þ 1� að ÞZHNJN½ � ð11Þ

Z N�1ð ÞN ¼
ZEN�1JN

ZHN�1JN

2
4

3
5 ð12Þ
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ZN N�1ð Þ ¼ a ZENJN�1
ZENMN�1

½ �

þ 1� að Þ ZHNJN�1
ZHNMN�1

½ �
ð13Þ

[19] In the above equations, a is selected between zero
and one, depending on the weight given to each electric
or magnetic type integral equation. For the problems
investigated in this paper we have used a value of a =
0.05 in order to give some importance to the MFIE, thus
avoiding resonance effects of the EFIE described in
Davis and Warnick [2005].
[20] The proposed impedance matrix presents many

submatrices that are systematically set to zero, since
there are no interactions between noncontiguous layers,
as it can be seen in (9).

2.2. Wavelet Transform

[21] The next stage in the solution of the coupled
integral equations system is the use of the wavelet
transform. Wavelet bases may be applied in two different
ways when solving integral equations through the MoM.
The most rigorous approach consists on considering the
wavelet family as base and test functions in the MoM
implementation [see Steinberg and Leviatan, 1993], thus
typically involving major computational efforts. An
alternative strategy, which consists on applying a wavelet
matrix transformation to the matrix arisen from the
conventional application of the MoM, has been recently
proposed in Baharav and Leviatan [1998], Sarkar and
Kim [1999], and Wagner and Chew [1995]. In this paper,
we have followed this second approach, which can
improve the efficiency and the memory requirements
when large matrices are involved in the numerical
solution of the integral equation, as it typically happens
when the objects are electrically large.

[22] In Vidal et al. [2004] and Sarkar et al. [2002],
wavelet-like bases were proposed to reduce the CPU
time and memory requirements related to the character-
ization of 2D large metallic objects. Due to such previous
experiences, the study of the wavelet families has not
been considered in this paper, and the wavelet-like
family described in the previous references has instead
been directly applied to our problem. Here, a brief
description of the wavelet-like transform is given. The
conversion of the discrete integral operator into the new
wavelet-like bases is equivalent to carry out a similarity
transformation. The similarity transformation matrix is
defined by a real and unitary matrix, T, whose rows
contain the new wavelet-like bases as described in Alpert
et al. [1993] and Vidal et al. [2004]. The wavelet-like
transformation matrix T is built from the discretization
grid S = {x1, x2, . . ., xMs}  R. Then, an orthonormal
basis for the Ms-dimensional space of functions defined
on S is constructed following Alpert et al. [1993]. We
assume that Ms = 2n 
 k, where n is an integer and k is the
wavelet-like order. The basis vectors present some funda-
mental properties: all but k basis vectors have k vanishing
moments, they preserve the condition number of the full
matrix and they present local support. Therefore, they
provide a multiresolution representation, although they
are not strictly dilations and translations of a mother
function like a conventional wavelet scheme. Instead, the
basis vectors are obtained by a number of Gram-Schmidt
orthogonalizations starting from polynomials based on S
(see Alpert et al. [1993] for details). The transformation
matrix T with its corresponding basis vectors are shown
in Figure 2 for an example of an equidistant grid S with
Ms = 64 and k = 4.
[23] The application of the wavelet-like method can

increase the sparsity of the original matrix Z (that contains
M2 elements including zero entries) shown in (9). So, an

Figure 2. An example of a wavelet-like transformation matrix T with order k = 4 and Ms = 64
showing the basis vectors.
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iterative sparse algorithm can be used to solve the new
problem with complexity O(M 0), where M 0 is the number
of nonzero elements in the sparse impedance matrix that
should be much lower than M2. This strategy compares
very favorably to the O(M3) operations that requires the
direct solution of the original problem using a standard
LU decomposition, or to the O(M2) operations that needs
an iterative solver that also depends on the condition
number of the matrix.
[24] The wavelet-like transform could directly be

applied to the complete matrix at once. However, the
numerical results obtained have revealed that much better
results are obtained for a subblock wavelet transform.
The idea of applying the wavelet transform, following a
subblock scheme, to the impedance matrix resulting from
the application of the surface formulation to radome
problems is an important contribution of this work, not
explored before to the authors’ knowledge. As an exam-
ple, the overall computational cost of the solution using
wavelet-like approach applied in one block to theZmatrix
takes 5 times more operations, leading to a much less
sparse matrix (80% versus 95%) than the subblock
decomposition proposed in this paper. The selected
problem to perform this comparative evaluation is the
broadcast square tower with circular sandwiched radome
described in section 3.2. Nevertheless, sparsity gains due
to this subblock scheme have been also observed for all
the examples considered in this paper, which are more
impressive when the number of layers grows. When
applying the wavelet transform to each subblock, we
must consider that all the submatrices are not square.
This is due to the fact that each contour needs a different

number of discretization segments, therefore requesting a
different transformation matrix TP for each layer P. The
original problem is now represented, in the wavelet-like
domain, as follows:

~Z~I ¼ ~V ð14Þ

~Z
QP ¼

TQZEQJPT
t
P TQZEQMP

Tt
P

TQZHQJPT
t
P TQZHQMP

Tt
P

2
4

3
5 ð15Þ

~I
P

JM ¼
TPJP

TPMP

2
4

3
5 ð16Þ

~V
Q

EH ¼
TQEQ

TQHQ

2
4

3
5 ð17Þ

where superscript (t) stands for the transpose of a matrix,
and the tilde indicates that the matrices are expressed in
the new wavelet-like bases. Due to the wavelet-like bases
properties, ~Z presents many negligible elements that are
set to zero through a hard threshold applied to each one
of the submatrices of ~Z. This last operation completes the
subblock transformation scheme proposed in this paper.
[25] However, the wavelet approach involves matrix

and vector transformations, whose cost should be included
within the global computational budget. The wavelet-like
transform of a submatrix can be evaluated in O(Ms

2)
operations [see Vidal et al., 2004; Sarkar et al., 2002],
where Ms is the number of unknowns for that submatrix.
This operation should be carried out for the (12N � 15)
submatrices that compose the total matrix Z in the case of
N-layers, including a final metallic object. For that reason,
this extra computation cost has been considered in all the
validation results.
[26] The transformed impedance matrix presents a

diagonal banded form usually known as finger structure,
as it can be seen in Figure 3 for the broadcast square
tower with circular sandwiched radome described in
section 3.2.

3. Validation Results

[27] In this section, several practical nonmagnetic
radome designs taken from the literature have been
successfully considered. Some of them could be ana-
lyzed following the approximate technique for electri-
cally thin radomes proposed in Sadigh and Arvas [1992].
However, the more accurate formulation described in this
paper has been employed in all the examples, since it can

Figure 3. Matrix ~Z after thresholding for the sand-
wiched radome for the broadcasting tower taken from
section 3.2, with TEz incidence and threshold equal to
0.5%.
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also be applied to thick radomes as well a considering the
possible use of magnetic materials.
[28] All the examples considered in this section con-

tain elements with large physical dimensions. As a
consequence, big computational savings can be obtained
when using the proposed wavelet-like approach. A
wavelet-like family of 8 vanishing moments has been
considered for all the examples, and ten points per free
space wavelength are used for discretization. The effi-

ciency study compares the number of floating point
operations (Mflops) required by each method including
the wavelet-like transform, using a standard command
provided by the commercial software Matlab#. The
threshold value has been adapted to the geometry of
each problem for the maximum computational gain,
considering a certain low error that preserves the nor-
malized field when compared with the conventional
MoM solution.

3.1. Circular Radome and Circular Reflector

[29] The first example has been taken from Svezhentsev
et al. [1995]; the geometry is shown in Figure 4. The
data for this reflector are er = 4, c = 15.915 l, a =
9.995 l, r0 = a/2, b = 0.796 l, t = 0.22 l and qap =
30�. The size of this structure is considerably large,
since the circular radome presents two contours of
approximately 100l of perimeter.
[30] The normalized electric fields obtained with the

original and the wavelet-like implementation are both
presented in Figure 5 for TMz polarization, where the
radiation pattern of the antenna without radome is also
shown for comparative purposes. The electric field also
compares very well with the same example solved with a
different method in Svezhentsev et al. [1995]. Further-
more, the wavelet-like transform introduces strong sav-
ings in CPU cost, preserving at the same time the
radiation pattern, where only small errors are observed
for very low sidelobe levels. The sparsity achieved in this
example reaches 83.4%, and the computational cost is
3.7 times lower than the one required by the direct MoM

Figure 4. Circular dielectric 2-D radome (e = ere0)
with a complex source excitation, including a concentric
circular metallic reflector.

Figure 5. Normalized electric field under TMz polarization, for the structure shown in Figure 4.
(In the legend, literature refers to data taken from Svezhentsev et al. [1995].)

RS5003 QUESADA-PEREIRA ET AL.: WAVELET-LIKE EFFICIENT ANALYSIS OF RADOMES

7 of 16

RS5003



method, for a relative mean square error of 0.04%, and
using a threshold level of 0.2%. The error has been
defined as the relative mean square difference between
the original MoM field and the wavelet-like MoM one.
[31] The normalized magnetic fields obtained with the

original MoM method and the wavelet-like implementa-
tion are successfully compared in Figure 6, in this case
for TEz polarization. The radiation pattern of the antenna
without radome has been also shown for comparative
purposes. The magnetic field provided by the wavelet-
like implementation also compares very well in this case
with the results given by the method proposed in
Svezhentsev et al. [1995]. In this second example, the
wavelet-like transform achieves 78% of matrix sparsity,
and the computational cost is 3.3 times lower than the
effort required by the direct MoM solution, for a relative
mean square error of 0.02%, and using a threshold level
of 0.07%.
[32] The next example was originally reported in

Yurchenko et al. [1999], with the geometry detailed in
Figure 7. The relevant dimensions in this case are: L =
4.271 l, er = 2, c = 5.984 l, a = 4.997 l, r0 = 0.56a, b =
0.414 l, t = 0.241 l and qap = 30�. The normalized
magnetic field obtained with the original and the wavelet-
like implementation are both presented in Figure 8 for
TEz polarization. The magnetic field again compares
very well with the same example solved with a different
method in Yurchenko et al. [1999]. In this case, the
wavelet-like transform achieves 91% of matrix sparsity,
and the computational cost is 7.3 times lower than the
direct method, for a very low relative mean square error

of 0.006%, and using a threshold of 0.08%. Again, this
error has been defined by comparing the original MoM
and the wavelet-like MoM.
[33] In addition to the scattering behavior of the

structure shown in Figure 7 at a given frequency, we
have investigated the accuracy and numerical stability of
the technique when the thickness of the radome
increases. Figure 9 shows the normalized radiated power
as a function of the radome thickness, while Figure 10

Figure 6. Normalized magnetic field under TEz polarization, for the structure shown in Figure 4.
(In the legend, literature refers to data taken from Svezhentsev et al. [1995].)

Figure 7. Circular dielectric 2-D radome (e = ere0)
with a complex source excitation, including a noncon-
centric circular metallic reflector.
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shows the directivity. Results reported in Yurchenko et al.
[1999] are shown for validation purposes. We can
observe in the figure very good agreement with
our technique, both for the radiated power and for

the directivity, and in the whole range of dimensions
considered.
[34] The agreement obtained in the above example is

very good since there are no natural resonances of the

Figure 8. Normalized magnetic field under TEz polarization for the example shown in Figure 7.
(In the legend, literature refers to data taken from Yurchenko et al. [1999].)

Figure 9. Normalized total radiation power as function of the radome thickness t for the structure
shown in Figure 7. (a) L = 4.271 l, c = 5.984 l, r0 = 0.56 a, and (b) L = 4.330 l, c = 6.0 l, r0 =
0.533 a. In both cases, the remaining dimensions are the same ones used to obtain Figure 8
(literature refers to Yurchenko et al. [1999]).
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structure for the parameters studied. An interesting
question that arises is how the developed IE surface
technique behaves close to such resonances [see Hower
et al., 1993]. We have investigated this important issue
for the example given in Hower et al. [1993], comparing
the technique developed in this paper with a volume
surface integral equation and an FDTD technique pre-
sented in Hower et al. [1993]. We have found that for a
similar level of discretization, the surface integral
equation leads to more accurate results than both the
volume formulation and the FDTD technique. In partic-
ular we have checked that the surface formulation
developed in this work is more accurate close to the
natural resonances of the body. However, to maintain the
same level of accuracy close to the resonance, we need
around four times higher number of unknowns than for a
region far from the resonance. Increasing the number of
basis functions, then, assures a good convergence of the
method even close to the natural resonances of the
structure. Alternatively, in order to solve this conver-
gence problem, a regularization technique proposed in
Nosich [1999] can be employed to smooth the kernel of
the integral equations close to singularities.

3.2. Circular Sandwich Radome Mounted on a
Telecommunications Tower With Square Basis

[35] The next example is taken from the cylindrical
geometry typically employed in broadcasting towers

considering hard weather conditions [see Sadigh and
Arvas, 1992]. This example involves several elements,
including a sandwiched circular radome, as shown in
Figure 11. In that case, the support of the tower is given
by a fiberglass plastic reinforced radome that presents
three layers. The core of low relative dielectric permit-

Figure 10. Directivity as function of the radome thickness t for the example shown in Figure 7.
(a) L = 4.271 l, c = 5.984 l, r0 = 0.56 a, and (b) L = 4.330 l, c = 6.0 l, r0 = 0.533 a. In both cases,
the remaining dimensions are the same ones used to obtain Figure 8 (literature refers to Yurchenko
et al. [1999]).

Figure 11. Circular dielectric 2-D radome with four
complex source points and a square metallic base. The
dimensions are: t1 = 1.8 mm, t2 = 37.5 mm, c1 = 0.82 m,
a = 0.41 m, r0 = 93.7 mm, er1 = 4.7(1� j 0.018) with e1 =
er1e0, er2 = 1.07 with e2 = er2e0.
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tivity (foam) is made of a Rohacell
1

material, while the
two side layers are made of thin fiberglass hard material,
whose dielectric properties have been derived from the
characteristics of a commercial fiber glass substrate,
known as Pyrex1. The complex sources present an
equivalent directivity of k0 b = 2.6, with TEz polarization
at a frequency of 800 MHz (UHF band). The complex
sources model accurately the directivity and the radiation
performance of the real wire antennas mounted on a
telecommunications tower.
[36] In this analysis, we have first compared (see

Figure 12) the solution given by the conventional
MoM with the wavelet-like results. The agreement
between both data is very good, achieving a 95% of
matrix sparsity, and a computational cost reduction factor
of 6, using a threshold of 0.5%. The resulting error in the
normalized magnetic field reconstruction has been in this
case very low (0.008%).
[37] In order to assess the influence of the sandwiched

radome in the radiation pattern of a realistic telecommu-
nication tower, we have analyzed the same structure
shown in Figure 11 but with two different one-layer

configurations. First, we have studied a radome com-
posed only by the low permittivity foam material layer
with its corresponding width t2, whereas in the second
case the layer is considered to be formed of a thin layer
of fiberglass material of width t1. In Figure 13, we can
see a considerable increase in the sidelobe levels of the
antenna when the radome is modified. These results
clearly show that a careful design of the radome consid-
ering the three layers of material is needed if low side-
lobe levels are requested in a practical application.

3.3. Half-Circular Dielectric Shell With Metallic
Back Plate

[38] The following example considers a uniform
phased array composed of 31 filaments, fed with cosine
law amplitudes and with constant separation of 0.6 l
with TEz polarization. The array is located inside a half
dielectric circular shell with a finite metallic back plate,
as shown in Figure 14. A similar example was studied in
Sukharevsky et al. [2005] with the only difference that an
infinite metallic back plate was used. The normalized
electric field is shown in Figure 15, where it is success-

Figure 12. Normalized magnetic field produced by the structure shown in Figure 11. The results
for the sandwiched radome obtained with direct MoM are shown with solid line, and the ones
obtained with the wavelet-like solution are represented by dotted symbols.
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fully compared with the analytical results given in
Sukharevsky et al. [2005]. The results compare very well
for observation angles from 0 to approximately 60,
where the effects of the finite back plate geometry begin
to be important in a realistic scenario. In this case, the
wavelet-like matrix sparsity is of 89%, providing a
reduction in computational cost of 6.8 using a threshold
of 0.08%. The resulting error in the normalized electric
field reconstruction has been of 0.03% when the wavelet-
like technique is compared with the conventional MoM.

3.4. Ogive Radome With Parabolic Reflector

[39] An example considering a complex arbitrary ra-
dome surface is finally considered. A cylindrical parabolic
reflector illuminated by a directive complex source with
TEz excitation is enclosed by an ogive-shaped radome. A
similar problem has already been studied in Kukobko et
al. [2005]. The simulated structure has not been opti-
mized, since the objective is to show that its analysis is
possible using the proposed technique. In our case, the

Figure 13. Normalized magnetic field produced by wavelet-like method for the original
sandwiched radome (three layers) in solid line, and for two different simpler radomes. The dashed-
dotted line shows the results obtained for a radome composed of only one layer of fiberglass
material of width t1 = 1.8 mm, while the dotted line shows the results when the single layer is made
of foam with a width of t2 = 37.5 mm.

Figure 14. Dielectric half circular 2-D radome with a
current array excitation and a back PEC finite plane. The
dimensions are: D = 22 l, t = 0.2 l, L = 0.25 l and er = 4
with e = ere0.
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parametric curve for the ogive is taken from the super-
spheroidal profile y2 = (D/2L)2(Ln � xn)2/n, with n =
1.449 [see Zhao et al., 2005]. The analysis has been
performed including a parabolic reflector with the geom-
etry shown in Figure 16. The resulting normalized
magnetic field is shown in Figure 17. In this example,
the number of unknowns is 4224. The original sparsity
before wavelet transformation is equal to 4.4%, and the
transformed matrix sparsity is equal to 94.5%. The orig-
inal computation cost is 195.5 
 109 floating point oper-
ations and the wavelet solution is achieved in 19.4 
 109
floating point operations, thus providing a reduction
factor in computational cost of 10, using a threshold of
0.07%. The resulting error in the normalized magnetic
field reconstruction has been of 0.01%. This last result
shows the versatility of the technique implemented,
which leads to low error levels and large computational
savings even for very complex antenna-radome struc-
tures. Then, some useful radome features may be easily
obtained. In this example, the boresight error has been
evaluated for gimbal angles up to 40 degrees, obtaining
0.3 degrees of maximum absolute error.
[40] It is interesting to note the presence of a sharped

nose in the considered ogive radome, which typically
requires a finer meshing than the smoother boundaries in
order to recover convergent results. This fact obviously
involves additional CPU effort on the practical imple-
mentation of the proposed surface IE technique. In order
to recover the convergent results shown in Figure 17, the
authors have observed that the number of unknowns in

the sharp nose must be at least 2 times higher than those
required by the smoother sections.

4. Conclusions

[41] This paper presents a surface formulation MoM
solution for cylindrical complex radomes composed of
multilayered lossy dielectric material with arbitrary

Figure 15. Normalized magnetic field obtained by the current array in the half-circular dielectric
radome structure shown in Figure 14 (literature refers to Sukharevsky et al. [2005]).

Figure 16. Dielectric 2-D radome with a complex
source excitation and a parabolic metallic reflector. The
dimensions are: D = 12 l, L = 14 l, t = 0.125 l, f = 4 l,
qap = 45, r0 = 5.875 l, er = 2 with e = ere0 and k0b = 2.6.
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shape, arbitrary reflector surfaces, and directive complex
sources. It provides an accurate and efficient method to
study any type of large radome structure, thanks to the
use of the wavelet-like transform. The use of a surface
formulation together with the application of the wavelet-
like transform following a subblock scheme, converts the
original problem into a highly sparse one exhibiting a
strong banded structure. Results are given showing the
accuracy and efficiency of the technique even for very
complex radome-antenna structures. Therefore, this ap-
proach opens the possibility for the analysis of large and
complex antenna-in-radome structures using a conven-
tional computer.

Appendix A: Details of the Integral

Equation

[42] The continuity relations for the tangent compo-
nents of the fields across an interface between two
different homogenous media (see (4) and (5)) can be
expanded in terms of their mixed-potentials expressions
(see (1) and (2)), and the Green’s functions of a homoge-
nous medium with constitutive parameters (�i, mi) (see (3)),
yielding to a coupled system of integral equations, as
follows:
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where ~r0 and ~r stand for the source and the observation
points, whereas ~J (~r0) and ~M (~r0) are respectively the
electric and magnetic equivalent surface current densities

Figure 17. Normalized magnetic field obtained in the reflector-in-radome structure shown in
Figure 16.

ðA1Þ
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on a dielectric interface C between media, with
constitutive parameters (�i, mi) and (�i+1, mi+1). On the

other hand, (~Ei
(exc)(~r), ~Hi

(exc)(~r)) and (~Ei+1
(exc)(~r), ~Hi+1

(exc)(~r))
are the excitation fields on each side of the dielectric
interface delimited by contour C, and are produced by
point complex sources and/or equivalent surface currents
corresponding to other material interfaces.
[43] On the other hand, the inner conducting reflectors

are characterized by means of a Combined Field Integral
Equation (CFIE) in order to avoid the internal resonance
problem associated to either an Electric Field Integral
Equation (EFIE) or a Magnetic Field Integral Equation
(MFIE) [see Peterson et al., 1998]. The CFIE is a linear
combination of an EFIE and an MFIE, where a parameter
a is used to adjust the weight of each integral equation.
Nevertheless, for the particular case of an open reflector,
a is set to one, since an MFIE can not inherently be
formulated for the electromagnetic analysis of closed
conductors. The general expression for the CFIE used to
analyze the inner reflector inside the radome is given
below:
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where~J (~r0) is the induced surface electric current density
on the reflector contour C, placed inside an homogenous
medium with constitutive parameters (�i, mi). Moreover,
(~Ei

(exc)(~r), ~Hi
(exc)(~r)) are the electromagnetic fields

imposed on the conducting body by complex sources
and/or equivalent currents on an adjacent interface
between media. This last step completes the integral
equation formulation used for the analysis of the radome
problems presented in the paper.
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