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Abstract—This paper describes an efficient numerical solution to speed up transient simulations of analog circuits on a many-core 

computer. The technique is based on an explicit integration method, parallelised on a multiprocessor architecture. Although the 
integration step is smaller than the required one by traditional simulation methods based on Newton–Raphson iterations, explicit methods 
do not require to compute complex calculations such us matrix factorizations, which lead to long CPU simulation times. The proposed 
technique has been implemented on a NVIDIA GPU and has been demonstrated simulating Gaussian filtering operations performed by 
a CMOS vision chip. These type of devices, which are used to perform computation on the edge, include built-in image processing 
functions, turning them into very complex and time consuming circuits during their design. The proposed method is faster that Ngspice 
for different image sizes, and for 128 x 128 pixels image size it achieves a speed up of two orders of magnitude. 
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I.  INTRODUCTION 

Nowadays, the so called Deep Learning is monopolizing 
most of the research lines in the field of computer vision. 
However, the computational power and memory resources 
required for deep neural networks is notably larger than those 
used for classical computer vision algorithms. This represents a 
serious drawback for portable devices, where power resources 
are scarce, and so, specific low power hardware must be used 
[1]. As a consequence, edge computing based on low power 
devices represents an alternative to the cloud based computing. 
In this sense, current CMOS vision sensors used to perform 
computation on the edge are incorporating built-in image 
processing functions at pixel level, before the analog to digital 
conversion. Gaussian filtering is a basic task for early vision. It 
is used for reducing the noise associated to the image capture 
without affecting subsequent processing stages. Moreover, the 
utility of Gaussian filtering reaches its maximum level when the 
smoothing degree of the image, is under the control of the user. 
From a pure analog perspective, this can be achieved, using RC 
networks synthesised at pixel level, which can be implemented 
by means of MOS transistors working on the triode region 
whose channel resistance is controlled by their gate voltage [2]. 
This gives an idea of the increasing complexity of such vision 
chips, which consequently leads to extremely large simulation 
times during their design cycle. Thus, the acceleration of 
transient simulations required to evaluate these chips 
performance becomes a keystone to shorten the time to market.  

Nowadays, electronic design tools use SPICE [3] type 
simulators to perform transient simulations of analog circuits. 
These family of simulators are based on the modified nodal 
analysis, which use implicit differentiation techniques based on 
Newton–Raphson iterations to solve the analog equations at 

each time step. This technique has largely proven to be reliable 
and numerically stable. However it still consumes large CPU 
times which easily last hours or days. Faced with this technique, 
explicit integration methods can offer an advantage on 
simulation time. Although explicit methods require significantly 
smaller time steps compared to implicit ones, given that their 
computational work load is lighter, the overall computation time 
is smaller compared to that of implicit methods. An example of 
the use of such methods is demonstrated in [4] where a mixed 
signal system is modelled through space state equations and 
simulated using an explicit integration method.  

Nevertheless, new techniques are needed to speed up the 
simulation of increasingly complex circuits besides the 
introductions of alternative integration algorithms. Is in this 
context where parallelization becomes a keystone to increase the 
time performance of analog simulators. In the last years, 
different works have proposed the use of general purpose 
Graphic Processing Units (GPUs) to accelerate the simulation of 
analog circuits [5-7]. These platforms have become very popular 
since the advent of the so called Compute Unified Device 
Architecture (CUDA) [8], a programming model that allowed 
developers to use C as a high level programming language. More 
recently, the focus has been placed on the sparse matrix solver 
by LU factorization [9-12]. However, all of these proposals are 
still based on classical implicit methods used for SPICE-type 
simulators. This paper describes a numerical solution based on 
an explicit integration schema to model and speed up the 
simulation of CMOS vision chips. In particular, the paper 
focuses on the Gaussian filtering function, one of the more 
common functions used in computer vision algorithms. The 
integration technique comprises its parallelisation over a many-
core processor, which in this case is a general purpose NVIDIA 



GPU. The proposed technique uses a fourth order Adams–
Bashforth formula to solve circuit formulation based on state 
variables. The rest of the paper is organised as follows: Section 
II describes the linearized space state technique and the 
implementation of the algorithm on a GPU. The technique is 
demonstrated with an example of a CMOS-C imager in Section 
III. Finally, conclusions are drawn up in Section IV.  

II. PARALLELLIZATION OF THE LINEARIZED STATE SPACE 

TECHNIQUE 

Let (1) describe the linearized state equation of a given 
system at time point tk, k = 0, 1…: 

 𝑥ሶሺ𝑡௞ሻ ൌ 𝐽௞𝑥ሺ𝑡௞ሻ ൅ 𝐸𝑒௫ሺ𝑡௞ሻ (1) 
 

being x is the vector of N state variable wave-forms, ex a vector 
of excitations and Jx and E coefficient matrices. Jk is the 
Jacobian of the linearized model at the time point tk. This 
linearized state equation can be solved in a fast explicit march-
in-time integration process without Newton-Raphson iterations. 
However, the main drawback of an explicit integration process 
is that the step-size must be limited to ensure stability [13], and 
not only to control the accuracy of the solution. Stability control 
is a time consuming process given that the maximum 
eigenvalue λk of the Jacobian Jk at each step size must be 
computed [13]. However, in [4] an alternative stability 
technique is proposed, which takes advantage of the passivity 
of the system and uses a fast method for estimating the 
maximum allowed step size directly from the Jacobian entries. 
Thus, this is the technique used in this work to estimate the 
maximum allowed step size. Given a set of ordinary differential 
equations of the form: 
 𝑥ሶሺ𝑡ሻ ൌ 𝐴 ൉ 𝑥ሺ𝑡ሻ  (2) 

its Adams–Bashforth integration scheme is described by: 

𝑥௞ାଵ ൌ ሺ𝐼 ൅ ℎ𝛽଴𝐴ሻ𝑥௞ ൅ ℎ𝐴 ∑ 𝛽௜𝑥௞ି௜; 𝑘 ൌ 1, …௣
௜ୀଵ  (3) 
 

being h the time step and βi, i = 0, …, p the Adams-Bashforth 
coefficients [14]. The technique described in [4] proves that the 
stability of the integration scheme in (3) is achieved if: 

 ቚ1 െ 𝛽 ൉ ℎ ൉ 𝑚𝑎𝑥ห𝑎௥,௥หቚ ൑ 1; 𝑟 ൌ 1, … , 𝑁 (4) 

This method provides step sizes which are expected to be 
smaller than the maximum allowed step sizes used in implicit 
methods. However, the advantage of this technique is speed, 
given that time-consuming matrices factorization calculations in 
implicit methods are avoided.  

The linearized space state equation described in (1) must be 
computed at each time point tk.. The procedure used to compute 
the explicit integration schema is shown in Algorithm 1. The 
value of each individual variable 𝑥ሶ i at time point tk. is obtained 
working a sequence of multiply and accumulate operations, 
which can be carried out in parallel for each variable 𝑥ሶ i. At the 
end of each time point tk, the values of xk+1.are worked out and 
the process is repeated for the new tk+1. This means that each 
state variable can be computed at each time point independently 
of the rest of the state variables, and the algorithm can take 
advantage of a parallel implementation to speed up large 
transient simulations of analog circuits. 

 

So, for a given problem with N state variables, the algorithm 
can run on N parallel processing units, each one of them working 
out the value of a single variable 𝑥ሶ i.  

Regarding the general purpose GPUs, the programming 
model CUDA, defines GPUs as computing devices with their 
own memory and able to run many threads in parallel. The 
program running on a GPU is called kernel, and this kernel can 
launch several threads which are grouped into thread blocks. The 
thread blocks are physically distributed to different streaming 
multiprocessors (SMs). The architecture of current GPUs allows 
that each thread block can contain typically a maximum of 1024 
threads, being these threads grouped into warps, each one 
containing 32 threads. Thus, these different levels of parallelism 
inside a GPU, i.e. blocks, warps and threads, provide a wide 
range of possibilities when programming a given algorithm, 
which achieve different performance in terms of processing 
speed. So, some considerations must considered to obtain the 
best performance of high-performance parallel algorithms [15]. 
First, it must be taken into account that all threads running in a 
same thread block are able to access to a common shared 
memory, while the common memory for threads from different 
blocks is of type global. Given that global memory is slower that 
shared memory, one should make extensive use of the first one, 
depending on the possibilities of the algorithm. Second, all the 
threads inside a same warp are executed following a single-
instruction-multiple-threads (SIMT) pattern. So, any 
divergences of instructions between threads in a same warp, 
forces that threads corresponding to different instructions are 
executed serially. This leads to a decrease in the GPU efficiency. 
And third, each GPU kernel is launched and managed by the 
CPU, being the interaction between the CPU and the GPU 
process which consumes a lot of computational resources. To 
avoid this slowdown, data transfers between CPU and GPU 
should be reduced to the minimum and, if possible, the whole 
computation should be done inside the GPU. In this last case, the 
CPU would be used only to launch the kernel and to collect the 
final results.  

The implementation of the integration algorithm on a GPU 
proposed in this work is shown in Fig. 1.  

Algorithm 1: integration scheme 

t=0 
do    // Loops for simulation time 
 i=0; 
 do   // Loops for rows in J 
  𝑥ሶ௜,௞ ൌ 𝐸௝ ൉ 𝑒௫௞ 
  j=0; 
  do  // Loops for columns in J 
   𝑥ሶ௜,௞ ൌ 𝑥ሶ௜,௞ ൅ 𝑥௜,௝,௞𝐽௜,௝ 
   j++; 
  while (j<N) 
  𝑥௜,௞ାଵ ൌ 𝑥௜,௞ ൅ ℎ ∑ 𝛽௟𝑥௜,௞ି௟; 𝑘 ൌ 1, …௣

௟ୀଵ  
  i++; 
 while (i<N) 
 k++;   // Updates step and time 
 t=t+h; 
while (t<simulation time); 



 
Fig. 1. Distribution of multiply and accumulation operations to compute a 
state variable at a given time step in multiple threads. 

The figure is a simplified schema of the GPU architecture, 
interacting with a CPU. Each thread inside a block computes a 
single state variable and accesses its own registers for local 
variables. These on-chip registers are the fastest among the 
memory hierarchy but they are very limited in size. The CPU 
starts writing the values of the jacobian J to the GPU and then 
runs the integration loop. In each step the value of state variables 
at time tk are copied into the GPU, then the kernel is launched 
and finally the values of the variables at time tk+1 are read from 
the GPU. After this, the value of the current time is updated in 
the CPU. The integration schema for each single state variable x 
is executed on a single thread. This allows all the threads in a 
same block to access to the same shared memory and achieve a 
higher efficiency. The calculation of each new xj,k+1 requires to 
read the values of the xi,k variables, where i=1,…N. The values 
of xj,k+1 are then written into memory to be used in the next 
integration step. So, although each thread runs in parallel, the set 
of variables xj,k+1 is shared by all of them. The rest of blocks have 
the same architecture of that shown for block 0. 

III. EXAMPLE OF CMOS-C NETWORKS FOR TIME-
CONTROLLED GAUSSIAN SPATIAL FILTERING 

Fig. 2 shows an all-MOS implementation of a piece of an RC 
network which performs time-controlled Gaussian spatial 
filtering [2]. In the circuit, each node represents a single pixel in 
the imager, where the value on light intensity Vij is stored as the 
initial value in the respective capacitor Cij, as it is done in current 
CMOS imagers. Each capacitor is connected to adjacent 
capacitors through a MOS device acting as a resistor and whose 
channel resistance can be controlled though the gate voltage. So, 
once an image has been captured and stored in the array of 
capacitors, the Gaussian filtering starts when a given voltage is 
applied to the MOS devices to enable the channel resistance. For 
the coupled interconnect model shown in Fig 2, using nodal 
analysis and solving for dvij/dt the space state equation is 
obtained as: 

𝑅𝐶
ௗ௏೔,ೕ

ௗ௧
ൌ  െ4𝑉௜,௝ ൅ 𝑉௜,௝ାଵ ൅ 𝑉௜,௝ିଵ ൅ 𝑉௜ାଵ,௝ ൅ 𝑉௜ିଵ,௝   (6) 

 

where R is the MOS channel resistance. Solving this 
equation, it is proved that the evolution of the voltage along time 
is a Gaussian function with σ = (2t/RC)0.5, being t the time during 
which the MOS channels are ON [16]. 

 
Fig. 2. Circuit representation of the MOS-C network. 

 
Fig. 3. Matrix representation of the m x n pixels MOS-C imager. 

Pixels placed in an edge or in a corner of the image have only 
three or two neighbours respectively. Thus, the corresponding 
equations are modified accordingly. For an m x n pixels imager, 
described as in Fig. 3, its corresponding space state equation (2) 
is as follows: 

𝑅𝐶
ௗ

ௗ௧

⎝
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⎝

⎜
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⋮
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⎟
⎞

(7) 

 
being I, the identity matrix, 0 the null matrix, A1 and A2 all of 
them m x m submatrices which compose the n x n matrix A. The 
value of A1 is given by: 
 

 𝐴ଵ ൌ

⎝

⎜⎜
⎛

െ2 1 0 ⋯ 0 0
1 െ3 1 ⋯ 0 0
0 1 െ3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ െ3 1
0 0 0 ⋯ 1 െ2⎠

⎟⎟
⎞

 (8) 

 
while A2 is: 

 𝐴ଶ ൌ

⎝

⎜⎜
⎛

െ3 1 0 ⋯ 0 0
1 െ4 1 ⋯ 0 0
0 1 െ4 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ െ4 1
0 0 0 ⋯ 1 െ3⎠

⎟⎟
⎞

 (9) 

 
 



TABLE I.  CPU AND GPU TIMES FOR A TRANSIENT SIMULATION OF 1 µS 

Image size 
Explicit on 
GPU (ms) 

Ngspice on 
CPU (ms) 

Speedup 

4 x 4 0.000223 0.00154 6.918239 
8 x 8 0.000327 0.00434 13.28843 

16 x 16 0.000916 0.01638 17.886 
32 x 32 0.009622 0.24594 25.56071 
64 x 64 0.04382 3.78276 86.32497 

128 x 128 0.473508 84.72056 178.9211 
 

 

Fig. 4. Transient simulation of the MOS-C image Gaussian filter applied to a 
128 x 128 pixels image for σ =8.9. 

Matrix A is diagonally dominant and negative definite. 
Equation (5) has been obtained through nodal analysis and 
manual transformation. However, for circuits with increased 
complexity, the method described in [17] can be useful. 

The simulation technique described in previous section has 
been applied to the system described in equations (7) to (9) for 
different values of square imagers. The model has been 
described in C++ and programmed on a NVIDIA GPU 
following Algorithm 1. The algorithm has been coded so that 
each thread computes the value of a single state variable vi,j. 
Table I details the processor time required for a 1 µs transient 
simulation for different number of pixels. The many-core 
processor used has been a NVIDIA GeForce GTX 1080, 3584 
Core, 1531MHz and 11 GB of RAM GPU. To evaluate the speed 
up of the proposed technique, a MOS-C model of the imager has 
been also simulated using Ngspice on an AMD Ryzen 
Threadripper 1950X 16-Core Processor, 2180 MHz and 64 GB 
of RAM.  

The table shows the average simulation times for five runs 
for each image size and for each one of the methods, the 
proposed explicit one parallelised on GPU, and implicit on 
CPU. For all the image sizes, the explicit method is faster than 
the implicit one, being of two orders of magnitude for 128 x 128 
pixel images. Fig. 4 shows an example of an 128x128 pixels 
image Gaussian filtering for σ =8.9. For values of C=250 pF and 
a channel resistance of 10 Ω the channel resistances have been 
ON during 100 ns.  

IV. CONCLUSION 

This paper has presented a technique to speed up the 
simulation of computer vision functions implemented as analog 
CMOS circuits in complex vision chips. The technique is based 
on the combination of state variables modelling of analog 
circuits with explicit integration schemas parallelised over a 
many-core computer. Although the proposed technique has been 
demonstrated modelling and simulating the hardware 
implementations of a Gaussian filtering function in a CMOS 
vision chip, it can be used to model and simulate any other 

function. Moreover, the technique can be used to model and 
accelerate the simulation of other types of analog circuits. 
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