
Simulation acceleration of image filtering on CMOS
vision chips using many-core processors

Ginés Doménech-Asensi
Dpto. de Electrónica, Tec. de Computadoras y Proyectos

Universidad Politécnica de Cartagena
Cartagena, Spain

gines.domenech@upct.es

Tom J. Kazmierski
Dpt. of Electronics and Computers Science

University of Southampton
Southampton, UK

tjk@ecs.soton.ac.uk

Abstract—This paper describes an efficient numerical solution to speed up transient simulations of analog circuits on a many-core

computer. The technique is based on an explicit integration method, parallelised on a multiprocessor architecture. Although the
integration step is smaller than the required one by traditional simulation methods based on Newton–Raphson iterations, explicit methods
do not require to compute complex calculations such us matrix factorizations, which lead to long CPU simulation times. The proposed
technique has been implemented on a NVIDIA GPU and has been demonstrated simulating Gaussian filtering operations performed by
a CMOS vision chip. These type of devices, which are used to perform computation on the edge, include built-in image processing
functions, turning them into very complex and time consuming circuits during their design. The proposed method is faster that Ngspice
for different image sizes, and for 128 x 128 pixels image size it achieves a speed up of two orders of magnitude.

Keywords—simulation acceleration; state-space technique; GPU; CMOS vision chip

I. INTRODUCTION

Nowadays, the so called Deep Learning is monopolizing
most of the research lines in the field of computer vision.
However, the computational power and memory resources
required for deep neural networks is notably larger than those
used for classical computer vision algorithms. This represents a
serious drawback for portable devices, where power resources
are scarce, and so, specific low power hardware must be used
[1]. As a consequence, edge computing based on low power
devices represents an alternative to the cloud based computing.
In this sense, current CMOS vision sensors used to perform
computation on the edge are incorporating built-in image
processing functions at pixel level, before the analog to digital
conversion. Gaussian filtering is a basic task for early vision. It
is used for reducing the noise associated to the image capture
without affecting subsequent processing stages. Moreover, the
utility of Gaussian filtering reaches its maximum level when the
smoothing degree of the image, is under the control of the user.
From a pure analog perspective, this can be achieved, using RC
networks synthesised at pixel level, which can be implemented
by means of MOS transistors working on the triode region
whose channel resistance is controlled by their gate voltage [2].
This gives an idea of the increasing complexity of such vision
chips, which consequently leads to extremely large simulation
times during their design cycle. Thus, the acceleration of
transient simulations required to evaluate these chips
performance becomes a keystone to shorten the time to market.

Nowadays, electronic design tools use SPICE [3] type
simulators to perform transient simulations of analog circuits.
These family of simulators are based on the modified nodal
analysis, which use implicit differentiation techniques based on
Newton–Raphson iterations to solve the analog equations at

each time step. This technique has largely proven to be reliable
and numerically stable. However it still consumes large CPU
times which easily last hours or days. Faced with this technique,
explicit integration methods can offer an advantage on
simulation time. Although explicit methods require significantly
smaller time steps compared to implicit ones, given that their
computational work load is lighter, the overall computation time
is smaller compared to that of implicit methods. An example of
the use of such methods is demonstrated in [4] where a mixed
signal system is modelled through space state equations and
simulated using an explicit integration method.

Nevertheless, new techniques are needed to speed up the
simulation of increasingly complex circuits besides the
introductions of alternative integration algorithms. Is in this
context where parallelization becomes a keystone to increase the
time performance of analog simulators. In the last years,
different works have proposed the use of general purpose
Graphic Processing Units (GPUs) to accelerate the simulation of
analog circuits [5-7]. These platforms have become very popular
since the advent of the so called Compute Unified Device
Architecture (CUDA) [8], a programming model that allowed
developers to use C as a high level programming language. More
recently, the focus has been placed on the sparse matrix solver
by LU factorization [9-12]. However, all of these proposals are
still based on classical implicit methods used for SPICE-type
simulators. This paper describes a numerical solution based on
an explicit integration schema to model and speed up the
simulation of CMOS vision chips. In particular, the paper
focuses on the Gaussian filtering function, one of the more
common functions used in computer vision algorithms. The
integration technique comprises its parallelisation over a many-
core processor, which in this case is a general purpose NVIDIA

GPU. The proposed technique uses a fourth order Adams–
Bashforth formula to solve circuit formulation based on state
variables. The rest of the paper is organised as follows: Section
II describes the linearized space state technique and the
implementation of the algorithm on a GPU. The technique is
demonstrated with an example of a CMOS-C imager in Section
III. Finally, conclusions are drawn up in Section IV.

II. PARALLELLIZATION OF THE LINEARIZED STATE SPACE

TECHNIQUE

Let (1) describe the linearized state equation of a given
system at time point tk, k = 0, 1…:

 𝑥ሶሺ𝑡௞ሻ ൌ 𝐽௞𝑥ሺ𝑡௞ሻ ൅ 𝐸𝑒௫ሺ𝑡௞ሻ (1)

being x is the vector of N state variable wave-forms, ex a vector
of excitations and Jx and E coefficient matrices. Jk is the
Jacobian of the linearized model at the time point tk. This
linearized state equation can be solved in a fast explicit march-
in-time integration process without Newton-Raphson iterations.
However, the main drawback of an explicit integration process
is that the step-size must be limited to ensure stability [13], and
not only to control the accuracy of the solution. Stability control
is a time consuming process given that the maximum
eigenvalue λk of the Jacobian Jk at each step size must be
computed [13]. However, in [4] an alternative stability
technique is proposed, which takes advantage of the passivity
of the system and uses a fast method for estimating the
maximum allowed step size directly from the Jacobian entries.
Thus, this is the technique used in this work to estimate the
maximum allowed step size. Given a set of ordinary differential
equations of the form:
 𝑥ሶሺ𝑡ሻ ൌ 𝐴 ൉ 𝑥ሺ𝑡ሻ (2)

its Adams–Bashforth integration scheme is described by:

𝑥௞ାଵ ൌ ሺ𝐼 ൅ ℎ𝛽଴𝐴ሻ𝑥௞ ൅ ℎ𝐴 ∑ 𝛽௜𝑥௞ି௜; 𝑘 ൌ 1, …௣
௜ୀଵ (3)

being h the time step and βi, i = 0, …, p the Adams-Bashforth
coefficients [14]. The technique described in [4] proves that the
stability of the integration scheme in (3) is achieved if:

 ቚ1 െ 𝛽 ൉ ℎ ൉ 𝑚𝑎𝑥ห𝑎௥,௥หቚ ൑ 1; 𝑟 ൌ 1, … , 𝑁 (4)

This method provides step sizes which are expected to be
smaller than the maximum allowed step sizes used in implicit
methods. However, the advantage of this technique is speed,
given that time-consuming matrices factorization calculations in
implicit methods are avoided.

The linearized space state equation described in (1) must be
computed at each time point tk.. The procedure used to compute
the explicit integration schema is shown in Algorithm 1. The
value of each individual variable 𝑥ሶ i at time point tk. is obtained
working a sequence of multiply and accumulate operations,
which can be carried out in parallel for each variable 𝑥ሶ i. At the
end of each time point tk, the values of xk+1.are worked out and
the process is repeated for the new tk+1. This means that each
state variable can be computed at each time point independently
of the rest of the state variables, and the algorithm can take
advantage of a parallel implementation to speed up large
transient simulations of analog circuits.

So, for a given problem with N state variables, the algorithm
can run on N parallel processing units, each one of them working
out the value of a single variable 𝑥ሶ i.

Regarding the general purpose GPUs, the programming
model CUDA, defines GPUs as computing devices with their
own memory and able to run many threads in parallel. The
program running on a GPU is called kernel, and this kernel can
launch several threads which are grouped into thread blocks. The
thread blocks are physically distributed to different streaming
multiprocessors (SMs). The architecture of current GPUs allows
that each thread block can contain typically a maximum of 1024
threads, being these threads grouped into warps, each one
containing 32 threads. Thus, these different levels of parallelism
inside a GPU, i.e. blocks, warps and threads, provide a wide
range of possibilities when programming a given algorithm,
which achieve different performance in terms of processing
speed. So, some considerations must considered to obtain the
best performance of high-performance parallel algorithms [15].
First, it must be taken into account that all threads running in a
same thread block are able to access to a common shared
memory, while the common memory for threads from different
blocks is of type global. Given that global memory is slower that
shared memory, one should make extensive use of the first one,
depending on the possibilities of the algorithm. Second, all the
threads inside a same warp are executed following a single-
instruction-multiple-threads (SIMT) pattern. So, any
divergences of instructions between threads in a same warp,
forces that threads corresponding to different instructions are
executed serially. This leads to a decrease in the GPU efficiency.
And third, each GPU kernel is launched and managed by the
CPU, being the interaction between the CPU and the GPU
process which consumes a lot of computational resources. To
avoid this slowdown, data transfers between CPU and GPU
should be reduced to the minimum and, if possible, the whole
computation should be done inside the GPU. In this last case, the
CPU would be used only to launch the kernel and to collect the
final results.

The implementation of the integration algorithm on a GPU
proposed in this work is shown in Fig. 1.

Algorithm 1: integration scheme

t=0
do // Loops for simulation time
 i=0;
 do // Loops for rows in J
 𝑥ሶ௜,௞ ൌ 𝐸௝ ൉ 𝑒௫௞
 j=0;
 do // Loops for columns in J
 𝑥ሶ௜,௞ ൌ 𝑥ሶ௜,௞ ൅ 𝑥௜,௝,௞𝐽௜,௝
 j++;
 while (j<N)
 𝑥௜,௞ାଵ ൌ 𝑥௜,௞ ൅ ℎ ∑ 𝛽௟𝑥௜,௞ି௟; 𝑘 ൌ 1, …௣

௟ୀଵ
 i++;
 while (i<N)
 k++; // Updates step and time
 t=t+h;
while (t<simulation time);

Fig. 1. Distribution of multiply and accumulation operations to compute a
state variable at a given time step in multiple threads.

The figure is a simplified schema of the GPU architecture,
interacting with a CPU. Each thread inside a block computes a
single state variable and accesses its own registers for local
variables. These on-chip registers are the fastest among the
memory hierarchy but they are very limited in size. The CPU
starts writing the values of the jacobian J to the GPU and then
runs the integration loop. In each step the value of state variables
at time tk are copied into the GPU, then the kernel is launched
and finally the values of the variables at time tk+1 are read from
the GPU. After this, the value of the current time is updated in
the CPU. The integration schema for each single state variable x
is executed on a single thread. This allows all the threads in a
same block to access to the same shared memory and achieve a
higher efficiency. The calculation of each new xj,k+1 requires to
read the values of the xi,k variables, where i=1,…N. The values
of xj,k+1 are then written into memory to be used in the next
integration step. So, although each thread runs in parallel, the set
of variables xj,k+1 is shared by all of them. The rest of blocks have
the same architecture of that shown for block 0.

III. EXAMPLE OF CMOS-C NETWORKS FOR TIME-
CONTROLLED GAUSSIAN SPATIAL FILTERING

Fig. 2 shows an all-MOS implementation of a piece of an RC
network which performs time-controlled Gaussian spatial
filtering [2]. In the circuit, each node represents a single pixel in
the imager, where the value on light intensity Vij is stored as the
initial value in the respective capacitor Cij, as it is done in current
CMOS imagers. Each capacitor is connected to adjacent
capacitors through a MOS device acting as a resistor and whose
channel resistance can be controlled though the gate voltage. So,
once an image has been captured and stored in the array of
capacitors, the Gaussian filtering starts when a given voltage is
applied to the MOS devices to enable the channel resistance. For
the coupled interconnect model shown in Fig 2, using nodal
analysis and solving for dvij/dt the space state equation is
obtained as:

𝑅𝐶
ௗ௏೔,ೕ

ௗ௧
ൌ െ4𝑉௜,௝ ൅ 𝑉௜,௝ାଵ ൅ 𝑉௜,௝ିଵ ൅ 𝑉௜ାଵ,௝ ൅ 𝑉௜ିଵ,௝ (6)

where R is the MOS channel resistance. Solving this
equation, it is proved that the evolution of the voltage along time
is a Gaussian function with σ = (2t/RC)0.5, being t the time during
which the MOS channels are ON [16].

Fig. 2. Circuit representation of the MOS-C network.

Fig. 3. Matrix representation of the m x n pixels MOS-C imager.

Pixels placed in an edge or in a corner of the image have only
three or two neighbours respectively. Thus, the corresponding
equations are modified accordingly. For an m x n pixels imager,
described as in Fig. 3, its corresponding space state equation (2)
is as follows:

𝑅𝐶
ௗ

ௗ௧

⎝

⎜
⎛

𝑣଴,଴
𝑣଴,ଵ

⋮
𝑣௠,௡ିଵ

𝑣௠,௡ ⎠

⎟
⎞

ൌ

⎝

⎜
⎜
⎛

𝐴ଵ 𝐼 0 ⋯ 0 0
𝐼 𝐴ଶ 𝐼 ⋯ 0 0
0 𝐼 𝐴ଶ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐴ଶ 𝐼
0 0 0 ⋯ 𝐼 𝐴ଵ⎠

⎟
⎟
⎞

⎝

⎜
⎛

𝑣଴,଴
𝑣଴,ଵ

⋮
𝑣௠,௡ିଵ

𝑣௠,௡ ⎠

⎟
⎞

(7)

being I, the identity matrix, 0 the null matrix, A1 and A2 all of
them m x m submatrices which compose the n x n matrix A. The
value of A1 is given by:

 𝐴ଵ ൌ

⎝

⎜⎜
⎛

െ2 1 0 ⋯ 0 0
1 െ3 1 ⋯ 0 0
0 1 െ3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ െ3 1
0 0 0 ⋯ 1 െ2⎠

⎟⎟
⎞

 (8)

while A2 is:

 𝐴ଶ ൌ

⎝

⎜⎜
⎛

െ3 1 0 ⋯ 0 0
1 െ4 1 ⋯ 0 0
0 1 െ4 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ െ4 1
0 0 0 ⋯ 1 െ3⎠

⎟⎟
⎞

 (9)

TABLE I. CPU AND GPU TIMES FOR A TRANSIENT SIMULATION OF 1 µS

Image size
Explicit on
GPU (ms)

Ngspice on
CPU (ms)

Speedup

4 x 4 0.000223 0.00154 6.918239
8 x 8 0.000327 0.00434 13.28843

16 x 16 0.000916 0.01638 17.886
32 x 32 0.009622 0.24594 25.56071
64 x 64 0.04382 3.78276 86.32497

128 x 128 0.473508 84.72056 178.9211

Fig. 4. Transient simulation of the MOS-C image Gaussian filter applied to a
128 x 128 pixels image for σ =8.9.

Matrix A is diagonally dominant and negative definite.
Equation (5) has been obtained through nodal analysis and
manual transformation. However, for circuits with increased
complexity, the method described in [17] can be useful.

The simulation technique described in previous section has
been applied to the system described in equations (7) to (9) for
different values of square imagers. The model has been
described in C++ and programmed on a NVIDIA GPU
following Algorithm 1. The algorithm has been coded so that
each thread computes the value of a single state variable vi,j.
Table I details the processor time required for a 1 µs transient
simulation for different number of pixels. The many-core
processor used has been a NVIDIA GeForce GTX 1080, 3584
Core, 1531MHz and 11 GB of RAM GPU. To evaluate the speed
up of the proposed technique, a MOS-C model of the imager has
been also simulated using Ngspice on an AMD Ryzen
Threadripper 1950X 16-Core Processor, 2180 MHz and 64 GB
of RAM.

The table shows the average simulation times for five runs
for each image size and for each one of the methods, the
proposed explicit one parallelised on GPU, and implicit on
CPU. For all the image sizes, the explicit method is faster than
the implicit one, being of two orders of magnitude for 128 x 128
pixel images. Fig. 4 shows an example of an 128x128 pixels
image Gaussian filtering for σ =8.9. For values of C=250 pF and
a channel resistance of 10 Ω the channel resistances have been
ON during 100 ns.

IV. CONCLUSION

This paper has presented a technique to speed up the
simulation of computer vision functions implemented as analog
CMOS circuits in complex vision chips. The technique is based
on the combination of state variables modelling of analog
circuits with explicit integration schemas parallelised over a
many-core computer. Although the proposed technique has been
demonstrated modelling and simulating the hardware
implementations of a Gaussian filtering function in a CMOS
vision chip, it can be used to model and simulate any other

function. Moreover, the technique can be used to model and
accelerate the simulation of other types of analog circuits.

ACKNOWLEDGEMENTS

This work has been partially funded by Spanish government
through project RTI2018-097088-B-C33 and by EPSRC (the
UK Engineering and Physical Sciences Research Council) under
grant EP/N0317681/1. The research stays at University of
Southampton (UK) have been supported by Ministerio de
Educación, Cultura y Deporte within the “Programa Estatal de
Promoción del Talento y su Empleabilidad en I+D+i,
Subprograma Estatal de Movilidad, del Plan Estatal de I+D+I”
under grant PRX18/00565 and by Universidad Politécnica de
Cartagena - Campus de Excelencia Internacional Mare Nostrum.

REFERENCES
[1] Sze, V. et al., “Efficient Processing of Deep Neural Networks: A Tutorial

and Survey”. Proc. of IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017.

[2] J. Fernandez-Berni and R. Carmona-Galan, “All-MOS implementation
of RC networks for time-controlled Gaussian spatial filtering”, Int. J.
Circ. Theor. Appl. 2012; vol. 40, pp. 859–876

[3] L. W. Nagel, “SPICE 2: A computer program to stimulate semiconductor
circuits,” Ph.D. dissertation, University of California, Berkeley,
California, US, 1975.

[4] T. J. Kazmierski. L. Wang. B. M. Al-Hashimi and G. V. Merrett. "An
Explicit Linearized State-Space Technique for Accelerated Simulation of
Electromagnetic Vibration Energy Harvesters." IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems. vol. 31, pp.
522-531. April 2012.

[5] K. Gulati, J. F. Croix, S. P. Khatri and R. Shastry, "Fast circuit simulation
on graphics processing units," Asia and South Pacific Design Automation
Conference, Yokohama, 2009, pp. 403-408.

[6] R. E. Poore, "GPU-accelerated time-domain circuit simulation" IEEE
Custom Integrated Circuits Conference, Rome, 2009, pp. 629-632.

[7] L. Han and Z. Feng, "TinySPICE Plus: Scaling up statistical SPICE
simulations on GPU leveraging shared-memory based sparse matrix
solution techniques," IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Austin, TX, 2016, pp. 1-6.

[8] NVIDIA. CUDA C Programming Guide Version 7.0. Accessed: Mar. 5,
2018. [Online]. Available: http://docs.nvidia.com/cuda/cudac-
programming-guide/

[9] X. Chen, L. Ren, Y. Wang and H. Yang, "GPU-Accelerated Sparse LU
Factorization for Circuit Simulation with Performance Modeling" IEEE
Trans. on Parallel and Dist. Systems, vol. 26, pp. 786-795, March 2015.

[10] O. Schenk and K. Gartner, “Solving unsymmetric sparse systems of linear
equations with PARDISO,” Future Generat. Comput. Syst., vol. 20, no. 3,
pp. 475–487, Apr. 2004.

[11] W. Lee, R. Achar and M. S. Nakhla, "Dynamic GPU Parallel Sparse LU
Factorization for Fast Circuit Simulation," IEEE Transactions on Very
Large Scale Integration Systems. doi: 10.1109/TVLSI.2018.2858014.

[12] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, a direct sparse
solver for circuit simulation problems,” ACM Trans. Math. Softw., vol.
37, no. 3, Sep. 2010, Art. no. 36

[13] L. O. Chua and P. Y. Lin. Computer-Aided Analysis of Electronic
Circuits: Algorithms and Computational Techniques. Englewood Cliffs.
NJ: Prentice-Hall. 1975.

[14] D. Zwillinger, Handbook of Differential Equations, 2nd ed. San Diego,
CA: Academic, 1989.

[15] CUDA C best practices guide, October 2018,. [Online]. Available:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

[16] B.E. Jahne “Multiresolutional signal representation”. In Chapter 4,
Handbook of Computer Vision and Applications. Volume 2: Signal
Processing and Pattern Recognition, Academic Press, 1999.

[17] Y. Kang and J. Lacy. “Conversion of mna equations to state variable form
for nonlinear dynamical circuits.” Electronics Letters. vol. 28, pp. 1240–
1241, 1992.

