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Resumen 
Gracias a su habilidad para fijar el nitrógeno atmosférico, los sistemas de cultivo basados 

en leguminosas son considerados como una estrategia sostenible para reducir el aporte 

externo de fertilizantes nitrogenados, disminuyendo así las emisiones de gases de efecto 

invernadero. Además, la inclusión de leguminosas en rotación puede dar como resultado 

la mejora de la calidad y fertilidad del suelo, y la mejora del rendimiento de los cultivos 

posteriores. Esta contribución depende de las especies de plantas, las propiedades del 

suelo, las condiciones climáticas o las prácticas de manejo. Además, la introducción de 

bacterias fijadoras de nitrógeno en el suelo podría ser una práctica efectiva para mejorar 

la eficiencia del nitrógeno, mientras que la inoculación con micorrizas está relacionada 

con el aumento del crecimiento de las plantas, la absorción de nutrientes inmóviles y la 

resistencia a patógenos. Estos efectos positivos de los cultivos de leguminosas pueden 

mejorar la rentabilidad de la agricultura orgánica, que tiende a tener rendimientos más 

bajos en comparación con la agricultura convencional. 

En base a rotaciones de cultivos basados en leguminosas, establecimos un experimento 

con tres objetivos diferentes. En primer lugar, nuestro objetivo fue evaluar el efecto de 

dos especies de leguminosas diferentes (caupí, poco común en el área de estudio, y haba, 

tradicional en el área de estudio) sobre el carbono orgánico del suelo (COS), la agregación 

del suelo, la fertilidad del suelo y los rendimientos de los cultivos posteriores de hortalizas 

(brócoli y melón, respectivamente) cultivados bajo prácticas de manejo convencionales y 

orgánicas después de dos ciclos de cultivo de rotación. Los resultados mostraron que el 

cultivo previo de caupí, en comparación con el cultivo de haba, era una alternativa más 

efectiva en términos de producción sostenible para aumentar el COS, la fertilidad del 

suelo y el rendimiento de los cultivos posteriores mediante procesos de rizodeposición. 

En el cultivo de brócoli, la práctica de manejo convencional se relacionó positivamente 

con los depósitos de carbono y nitrógeno. La práctica de manejo orgánico se relacionó 

con mejoras en la estructura del suelo, pero también con el rendimiento del cultivo. En 

segundo lugar, nuestro objetivo fue evaluar el efecto de dos cultivares de caupí (Feijão 

frade de fio preto y Feijão frade de fio claro) en la fertilidad del suelo, el rendimiento, la 

calidad del cultivo y la composición nutricional del cultivo de brócoli posterior cultivado 

bajo prácticas de manejo convencional y orgánica durante tres ciclos de rotación de 

cultivos, mientras que las tasas de fertilización se redujeron un 20% en comparación con 

el cultivo de brócoli. Los resultados mostraron que el cultivo de caupí era una buena 
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estrategia para la diversificación de cultivos y para reducir la dependencia de fertilizantes 

nitrogenados, ya que contribuyó a un aumento del fósforo disponible del suelo mientras 

que mantuvo el rendimiento y la calidad del cultivo de brócoli después de tres rotaciones 

de cultivos bajo ambas prácticas de manejo. La práctica de manejo convencional aumentó 

el diámetro y los rendimientos de las pellas de brócoli. La práctica de manejo orgánico 

mejoró la estructura del suelo y la actividad microbiana. En tercer lugar, nuestro objetivo 

fue evaluar el efecto de diferentes especies de leguminosas (caupí, poco común en el área 

de estudio, y haba, tradicional en el área de estudio) en los depósitos de carbono en el 

suelo, el contenido de nitrógeno y actividades enzimáticas del suelo de los cultivos 

posteriores de hortalizas (brócoli y melón, respectivamente) cultivados bajo prácticas de 

manejo convencional y orgánica después de dos ciclos de rotación de cultivos. Los 

resultados mostraron que el cultivo previo de caupí en comparación con el cultivo de haba 

fue mejor para aumentar el COS, el nitrógeno y las actividades enzimáticas del suelo del 

cultivo posterior de hortalizas debido a procesos de rizodeposición. En el cultivo de 

brócoli, la práctica de manejo convencional aumentó el COS. La práctica de manejo 

orgánico se relacionó con un mayor secuestro de carbono. El cultivar de la leguminosa 

afectó el contenido de nitrógeno en el suelo y la actividad deshidrogenasa. Además, 

también evaluamos el efecto de un cultivo de leguminosa y no leguminosa (haba y 

brócoli) durante dos años sobre el rendimiento del cultivo, las emisiones de gases de 

efecto invernadero (GEI) (N2O, CO2 y CH4) y las actividades enzimáticas del suelo, 

cultivados bajo prácticas de manejo convencional y orgánica. El año de cultivo afectó las 

emisiones de GEI, el rendimiento de los cultivos y las actividades enzimáticas. El cultivo 

de haba mostró las mayores emisiones de GEI, mientras que el cultivo de brócoli mostró 

mayores actividades enzimáticas en el suelo. La práctica de manejo convencional resultó 

en mayores rendimientos para ambos cultivos, mientras que la práctica de manejo 

orgánico condujo a mayores emisiones de N2O y CO2 y actividades enzimáticas del suelo 

en ambos cultivos. El rendimiento de los cultivos estuvo relacionado con menores 

emisiones de GEI y mayor actividad enzimática. 

Finalmente, establecimos un experimento adicional para evaluar la efectividad de 

diferentes tratamientos de inoculación con los géneros Rhizobium y Burkholderia (BFN) 

y / o hongos micorrícicos arbusculares (HMA) a través de inoculación individual y dual 

en la nutrición vegetal, la fijación biológica de nitrógeno (FBN) y el rendimiento y calidad 

de dos cultivares de haba (Muchamiel y Palenca), con un 20% de disminución en la tasa 
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de fertilización en comparación con los cultivos no inoculados durante dos años. Los 

resultados mostraron que la composición nutricional de la planta no se vio afectada por 

el tratamiento de inoculación o el menor aporte de fertilizantes. La FBN se vio afectada 

por el cultivar, con valores más altos en la parte aérea del cultivar Muchamiel. La 

inoculación dual en comparación con la inoculación individual mostró un mayor 

contenido de nitrógeno en la parte aérea de ambos cultivares de haba. La inoculación con 

bacterias pertenecientes al género Burkholderia (B. cenocepacia) en comparación con 

Rhizobium mostró un mayor contenido de nitrógeno en la raíz. Aunque no hubo 

diferencias en el contenido de nitrógeno en las partes aéreas con la inoculación, el 

contenido de proteína en el grano fue mayor después del tratamiento de inoculación, lo 

que sugiere una mayor eficacia en la asimilación de nitrógeno después de la inoculación. 
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Abstract 

Thanks to their ability to fix atmospheric N, legume-based cropping systems are 

considered as a sustainable approach to reduce external input of N fertilizers, decreasing 

overall greenhouse gas emissions. Furthermore, inclusion of legumes in multiple 

cropping can result in the improvement of soil quality and fertility and the enhancement 

of the yield of subsequent crops. This contribution depends on plant species, soil 

properties, climatic conditions or management practices. In addition, the inclusion of N-

fixing bacteria to the soil could be an effective practice to improve N efficiency while 

mycorrhiza inoculation is linked to plant growth increase, the uptake of immobile 

nutrients and the resistance to pathogens. These positive effects of legume crops can 

enhance the profitability of organic farming, which tends to have lower yields compared 

to conventional farming.  

Using legume-based multiple cropping, we established one experiment with three 

different objectives. Firstly, we aimed to assess the effect of two different legume species 

(cowpea -unusual in the study area- and fava bean –traditional in the study area) on soil 

organic carbon (SOC), soil aggregation, soil fertility and crop yields of subsequent 

vegetable crops (broccoli and melon, respectively) grown under conventional and organic 

management practices after two multiple cropping cycles. The results showed that 

previous cowpea, compared to fava bean crop, was a more effective alternative in terms 

of sustainable production for increasing SOC, soil fertility and crop yield of the 

subsequent vegetable crop by rhizodeposition processes. In broccoli crop, conventional 

management practice was positively linked to C and N pools. Organic management 

practice was linked to improvements is soil structure but also crop yield. Secondly, we 

aimed to assess the effect of two cowpea cultivars (Feijão frade de fio preto and Feijão 

frade de fio claro) on soil fertility, yield, crop quality and nutritional composition of 

subsequent broccoli crop grown under conventional and organic management practices 

during three multiple cropping cycles, while fertilization rates were reduced 20% 

compared to broccoli crop. The results showed that cowpea crop was a good strategy for 

crop diversification and for reducing N fertilizer dependency, since it contributed to an 

increase of soil available P while it maintained crop yield and quality in broccoli crop 

after three multiple cropping under both management practices. Conventional 

management practice increased broccoli head diameter and yields. Organic management 

practice improved soil structure and microbial activity. Thirdly, we aimed to evaluate the 
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effect of different legume species (cowpea -unusual in the study area- and fava bean –

traditional in the study area) on soil C pools, N content and soil enzyme activities of 

subsequent vegetable crops (broccoli and melon, respectively) grown under conventional 

and organic management practices after two multiple cropping cycles. The results showed 

that previous cowpea compared to fava bean crop was better for increasing soil organic 

C (SOC), N and soil enzyme activities of the subsequent vegetable crop due to 

rhizodeposition processes. In broccoli crop, conventional management practice increased 

SOC. Organic management practice was linked to higher C sequestration. Legume 

cultivar affected soil N content and dehydrogenase activity. In addition, we also assessed 

the effect of a legume and non-legume crop (fava bean and broccoli) during two years on 

crop yield, GHG emissions (N2O, CO2 and CH4) and soil enzyme activities, grown under 

conventional or organic management practices. Crop year affected GHG emissions, crop 

yield and enzyme activities. Fava bean crop showed the highest GHG emissions, while 

broccoli crop showed higher soil enzyme activities. Conventional management practice 

resulted in higher crop yields for both crops, while organic management practice led to 

higher N2O and CO2 emissions and soil enzyme activities in both crops. Crop yield was 

related to lower GHG emissions and higher enzyme activities.  

Finally, we established an additional experiment to assess the effectiveness of different 

inoculation treatment with Rhizobium and Burkholderia genera (NFB) and/or arbuscular 

mycorrhiza fungi (AMF) through individual and dual inoculation on plant nutrition, BNF, 

and crop yield and quality of two fava bean cultivars (Muchamiel and Palenca), with 20% 

decrease in fertilization rate compared to non-inoculated crop during two seasons. The 

results showed that nutritional composition of plant was not affected by inoculation 

treatment or lower input of fertilizers. BNF was affected by cultivar, with higher values 

in shoot of Muchamiel cultivar. Dual compared to individual inoculation showed higher 

N content in shoot for both fava bean cultivars. Inoculation with bacteria belonging to 

Burkholderia genus (B. cenocepacia) compared to Rhizobium showed a higher N content 

in root. Although there was no difference in N content in shoots with inoculation, protein 

content in grain was higher after inoculation treatment, suggesting higher efficiency in N 

assimilation after inoculation.  
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1.1. Benefits of legume production for human consumption 
Legumes belong to the family Fabaceae, which is considered the third largest 

group of plants on the planet. The world has lived an increase in the production of legumes 

of 31% between 1990 and 2014, with a total production in 2014 of 77.6 million tonnes 

(FAO, 2016). Pea (Pisum sativum L.), fava bean (Vicia faba L.), and cowpea (Vigna 

unguiculata (L.)  Walp.) are three of the most important legume crops grown around the 

world. However, soybean is the top legume crop globally, representing 50% of the world's 

legume crop growing area (Herridge et al., 2008). Among the most important features of 

legumes is their ability to fix atmospheric nitrogen (N), an important milestone with a 

special relevance to the soil enrichment. Legumes influence our world through nutrition, 

health, climate change, biodiversity and food security (FAO, 2016). Nutritionally, they 

are consumed as a perfect complement to cereals mainly because they are rich in protein 

and essential amino acids (FAO, 2016). In addition to this, they provide carbohydrates, 

micronutrients and dietary fibre of high quality (Muehlbauer and McPhee, 1997).  In 

health terms, these are able to control the weight through their low fat and high fibre 

content. They reduce risk of heart diseases due to high doses of potassium and fibre; 

potassium helps to reduce the blood pressure while fibre reduces LDL colesterol 

(Anderson et al., 1999; Afshin et al., 2014; Anand et al., 2015). In turn, they prevent 

anomalies related to nervous system due to their content of folic acid, they avoid the iron 

deficiency and alleviate the food allergies, since they are exempt from gluten (Messina, 

1999; Blancquaert et al., 2010; Miñarro et al., 2012). In this sense, legumes are postulated 

as a reality for the global food in the future, since they double the protein content 

compared to cereals, and they grow in several types of productive lands in the world, with 

a great crop yield as well as their seeds can be retained for a long period without loss of 

of properties. Furthermore, legumes play a major role in mitigating climate change, since 

they improve absorption of carbon in soil, and thus reduce CO2 emissions (FAO, 2016). 

In turn, their ability to fix atmospheric N through biological nitrogen fixation (BNF) 

process allows them to be cultivated with a low input of N fertilizers (Turpin et al., 2012). 

This biological ability to fix N in the soil has positive implications on biodiversity of 

productive land, since the legumes active microorganisms linked to BNF. These 

microorganisms infect their roots, and structures known as nodules are formed (Voisin 

and Gastal, 2015; Aschi et al., 2017). These nodules give shelter to bacteria, which receive 

energy, while the plant takes the N from the atmosphere and it is transported to the soil 



 

4 
 

(Rascio and La Bocca, 2013). Legume crop residues possess a biochemical composition 

significantly different from the rest of crops, with higher N content, and thus they are 

used as green manure, which allows to generate higher crop yields in subsequent multiple 

cropping, improve the soil biodiversity by catalyzing the development of microorganisms 

involved for the improvement of the soil structure and nutrients availability (Franke et a., 

2018). 

  

1.2. Characteristics of fava bean (Vicia faba L.) 
The Vicia L. genus is distributed throughout the Mediterranean regions of Eurasia, 

America and Africa. Origin of fava bean crop is scarce and disputed (Shiran et al., 2014). 

It is a cool season-crop, which is capable of growing in different soil and agro-climatic 

conditions. In cool-temperate areas, fava bean is sown in spring to avoid frost damage 

(Sallan et al., 2015), while in warm-temperate areas, it is sown in autumn (Bilalis et al., 

2003). This is used for food, feed and green manure purposes. In the human diet, it has a 

great importance due to its high fiber and protein concentration along with low fat content 

in comparison to soybean. Protein content in dry seeds ranges from 17.6 and 34.5 % (Duc 

et al., 2015). Fava bean has a high efficiency to establish simbiosis with nitrogen fixing 

bacteria (NFB), which results in BNF. Its N2 fixation capacity reaches up to 200 kg ha-1 

(Neugschwandtner et al., 2015). BNF acts as a N sustainable source, which can replace 

or complement mineral fertiliser inputs in arable lands as well as it increases soils 

biological activity. Most of nitrogen fixed by legumes is harvested by seed yield or fed to 

animals, although legumes can deposit significant N amounts in the soil (Fustec et al., 

2010; Jensen et al., 2012). In addition, the benefits related to BNF of legumes, including 

their crop in rotation, multiple cropping or intercropping legumes with non-fixing crops 

such as cereal or horticultural (Jensen et al., 2010). 

 

1.3. Characteristics of cowpea (Vigna unguiculata (L.) Walp.) 
The Vigna genus includes more than 200 species mainly found in Africa and Asia 

(Fery, 2002). Origin of cowpea is presumed to have occurred in Africa, in the sub-Saharan 

territory (Coulibaly et al., 2002; Smykal et al., 2015). It is a warm-season crop, well 

adapted to semi-arid and subtropical climates, and it is cultivated throughout the 

Mediterranean Basin. Its cultivation in temperate areas lasts from spring to autumn. This 

legume has a great agronomic interest due to its resistence to acidity, drought and high 
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temperatures (Ehlers and Hall, 1997; Hall, 2011). Cowpea is mainly used for human food 

but also for fodder (Tarawali et al., 1997a). Protein content in dry seeds is around of 17.4-

31.7% (Antova et al., 2014; Dominguez-Perles et al., 2016; Gonçalves et al., 2016). 

Regarding human consumption, dry grain is the most important part, although leaves, 

immature pods and green seeds are also consumed (Singh et al., 2003). Cowpea is 

considered a promiscuous species for its ability to nodulate with several bacterial species 

and leave a net gain of N in the field. In addition, when this is inoculated with NFB, it 

can fix approximately 145 and 224 kg ha-1 of N which can potentially be used by 

intercrops, multiple crops or rotated crops (Creamer et al. 2000; Clark, 2008). Its N2 

fixation capacity is up to 40-80 kg ha-1 (Quin, 1997). This is mainly nodulated by bacteria 

belonging to the genus Bradyrhizobium (Allen and Allen, 1981; Jordan, 1982; Thies et 

al., 1991). 

 

1.4. Benefits of the use of legumes in crop rotations or multiple 

cropping 
The intensification of conventional agricultural practices affects agroecosystem 

sustainability through loss of soil organic matter (SOM), erosion, soil and groundwater 

pollution, greenhouse gas emissions (GHG) and low biodiversity (Tilman et al., 2001). 

Thus, diversification of crops with rotations or multiple cropping plays an important role, 

since the mineralization of preceding crop residues can release important quantity of 

nutrients, which maintain soil fertility while create suitable habitats for soil biota in 

subsequent crops (Askegaard and Eriksen, 2007; Raphael et al., 2016). Higher legume 

residue inputs and lower rates of decomposition under cool and dry conditions allow to 

persist the effect of legume crop for years after its crop (Grant et al., 2016). In addition to 

this, plant roots release substances containing C coming from photosynthesis such as 

simple sugars, organic acids, phenolics, inorganic compounds, exoenzymes or root border 

cells (Marschner, 1995; Dakora and Phillips, 2002; Nguyen, 2003; Paterson, 2003), but 

also substances containing N such as NO3-, NH4+ and amino acids, whose content is 

higher in root exudates of legumes than non-legumes. This is due to their ability of N2-

fixation in symbiosis with NFB (Rovira, 1956; Hale et al., 1978; Brophy and Heichel, 

1989; Wacquant et al., 1989). Rhizodeposition depends on biotic factors such as plant 

species, genotype, physiological status, fertilizer application, soil microorganims and N2-

fixation or photosynthetic capacity of the plant (Van der Krift et al., 2001; Nguyen, 2003), 
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but also abiotic factors such as drought, soil texture, anaerobic conditions, light intensity, 

atmospheric CO2 concentration or nutrient deficiency (Rovira, 1956; Merckx et al., 1985; 

Lynch and Whipps, 1990; Whipps, 1990a; Whipps, 1990b; Nguyen, 2003; de Graaf et 

al., 2007). The amount of carbon exuded by the plant can be determined in the absence 

of soil such as sterile hydroponic culture (Nguyen, 2003). Legumes, through their ability 

to symbiotically fix atmospheric N2 after their association with NFB, are considered 

essential to reduce the use of N fertilizers, while they influence soil microbial 

communities directly and SOM dynamics (Stevenson, 1982; Voisin and Gastal, 2015). In 

turn, enhancing SOM plays a part in the reduction of GHG emissions mainly due to 

carbon storing in soils, but also to changes in soil structure (Mutegi et al., 2010; Powlson 

et al., 2011). Legumes with a high harvest N index have a low contribution to the soil N 

content, despite the non-harvest residue are incorporated into the soil (Senaratne and 

Hardarson, 1988). However, the effects of legumes crop on soil physical and chemical 

properties are manifested after a long period (Yusuf et al., 2009). In addition, N 

contribution of legumes to subsequent crops depends on the legume species, but also if 

legume seed is harvested or returned to the soil as a green manure crop (Peoples et al., 

2009; St Luce et al 2013). 

 

1.5. Biological nitrogen fixation 
Nitrogen is present in atmosphere in the form of diatomic molecule (N2), but its 

structure makes N2 molecule inert. Then, Prokaryotic microorganisms as diazotrophs fix 

atmospheric N2 in the form of ammonia (NH3) (Riggs et al., 2001; Galloway et al., 2008). 

BNF process begins with the exchange off signals between the bacterium and plant. Plant 

root continuously exudes flavonoids into the rhizosphere, with a higher concentration in 

the presence of specific NFB (Zuanazzi et al., 1998). The flavonoids activate the 

expression of nod genes in NFB, which are the responsable for the synthesis of Nod 

factors, that are necessary for the initiation of nodules (Dénarié et al., 1996; Peck et al., 

2006; Wang et al., 2012). Bacteria fix N2 through a complex enzyme system called 

nitrogenase, which is formed by two components (dinitrogenase reductase and 

dinitrogenase metal cofactor) (Kim and Rees, 1994). The chemical reaction of microbial 

N2 fixation is: 

N2 + 8 H+ + 8 e− + 16 Mg ATP → 2 NH3 + H2 + 16 Mg ADP + 16 Pi (Postgate, 1998) 
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BNF results in a good alternative with regard to N fertilizers, since this process 

offers a higher efficiency in terms of the utilization of N by the plant, reduction of N 

leaching along soil and water pollution (Peoples et al., 1995). The NFB-legumes 

association is highly specific, since each bacteria strain has a host range (Perret et al., 

2000). NFB belong mainly to alpha- and beta-proteobacteria. Members of the α-

proteobacteria, such as Rhizobium and Bradyrhizobium are the most studied N-fixing 

symbionts of legumes, although other genera, such as Burkholderia belonging to the β-

proteobacteria class, also promote high levels of BNF (Glick, 2012; Nadeem et al., 2014; 

Zaidi et al., 2015).  

In addition to bacteria, arbuscular mycorrhizal fungi (AMF) also represent a 

significant portion of soil rhizosphere microorganisms involved to BNF. Besides 

increasing the root surface area, so that the plant can absorb water and nutrients more 

efficiently, they protect the plant from a variety of stresses such as drought, soil 

pathogens, salinity and heavy metals.  AMF benefit BNF process by increasing uptake of 

relatively inmobile phosphate ions from non-labile sources (Nadeem et al., 2014). 

Benefits can be achieved by direct or indirect mechanisms. Direct stimulation involves 

the production of 1-aminocyclopropane-1-carboxylate (ACC)-deaminase to reduce high 

levels of ethylene, the production of plant growth regulators such as cytokinins, 

gibberellins and auxins through BNF, facilitating the uptake of nutrients from the soil, 

solubilizing minerals like phosphates or modulating phytohormone levels (Glick, 2012; 

Nadeem et al., 2014). Indirect stimulation is related to the inhibition of pathogens through 

the synthesis of antibiotic and lytic enzymes, or by increasing the resistance of the host 

plant against pathogenic organisms. In this context, bacterial genera as Pseudomonas, 

Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium, Microccocus, 

Aereobacter, Flavobacterium and Erwinia along with fungi have mobilized poorly 

available phosphorus (Rodríguez and Fraga, 1999; Barroso and Nahas, 2005; Pandey et 

al., 2005; Rivas et al., 2006; Ahmad et al., 2008).  

After N, P is the most limiting nutrient for crops (Vance et al., 2000). It is vital in 

the metabolic energy processes in nodules, since this drives symbiotic N2 fixation into 

NH3 (Le Roux et al., 2006; Le Roux et al., 2008; Sulieman et al., 2013), and its subsequent 

conversion into organic N as amino acid and ureides, since it forms part of ADP and ATP 

availability (Plaxton and Podesta, 2006). In addition to its role in ATP requirements for 

nitrogenase function, P is critical in the nodule activity due to its involvement in signal 

transduction, membrane biosynthesis, and nodule function and development (Ribet and 
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Drevon, 1995; Al-Niemi et al., 1997). High N2 fixation, however, requires the presence 

of adequate numbers of highly effective rhizobia in the soil, legume cultivar, N and P 

fertilization and soil properties (Schubert et al., 1990; Thies et al., 1991; Adak and 

Kibritci, 2016, Argaw and Mnalku, 2017).  

For many legumes and soils, either the homologous rhizobia are absent, occur in 

low numbers, or are not highly effective and thus not capable of satisfying the N 

requirements of the crop. A legume is considered as a traditional crop when the soil 

contains adequate number of native NFB for an effective inoculation (Thompson et al., 

1991). The inclusion of bacteria to the soil is an advisable agricultural practice when this 

soil does not contain specific NFB able to nodulate the legume that is cultivated by the 

absence of previous crop of same or symbiotically linked to legume or poor nodulation 

despite this legume was grown on the land previously, the soil has a low N content 

(Catroux et al., 2001; Allen and Allen, 1961). Bacteria inoculants must compete with the 

indigenous populations for nodule occupancy and effective in N2 fixation, although their 

effectiveness is difficult to predict. Moreover, selected bacteria are influenced by local 

abiotic environmental factors (Dowling and Broughton, 1986). On the other hand, native 

population of NFB generates a competitive barrier to the introduced strains, and thus it 

leads to a failed inoculation (Thies et al., 1991). In turn, symbiotic effectiveness of native 

strains may be low as a consequence of their adaptation to agroclimatic conditions 

(Zahran et al., 1999) or horizontal gene transfer mechanisms, which promote their 

competitiveness without the need of symbiosis. In addition to this, native strains are 

widely distributed in the soil while the introduced strains are concentrated around the seed 

(López-García et al., 2002). Bacteria may be introduced to legumes by inoculation of the 

seed or soil. Seed may be inoculated prior to sowing or with coating facilities to be sown 

within a week (Gemmell et al., 2002). Alternative methods to these include direct 

inoculation of the soil using peat inoculants suspended in water or inoculants formulated 

as liquids or granules (Brockwell, 1977; Gemmell et al., 2002). The success of an 

introduced inoculant is depending on inoculant quality, that is the number of viable 

rhizobia per unit of inoculant and the number of introduced rhizobia required to root 

infection, because bacteria mobility in soil is limited under field conditions, but also on 

the effectiveness and infectivity of indigenous NFB (Puppi et al., 1994; Giller, 2001; 

Rodríguez-Navarro et al., 2010; Ronner et al., 2016). In turn, the ability of NFB strains 

to nodule and fix N with their specific host legume varies according to legume species 

and cultivar (Dowling and Broughton, 1986). The survival of these bacterial inoculants 
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in soil is influenced by soil pH, drought, nutrient deficiencies, salinity or temperature 

(Zahran, 1999; Hungria and Vargas, 2000; Giller, 2001).  

 

1.6. Methodologies for estimating biologically fixed-N 

There are different ways for measuring the BNF, such as acetylene reduction assay 

(ARA), N difference method, 15N enrichment and 15N natural abundance. ARA was used 

widely in the past, it provides an instantaneous and indirect measure of nitrogenase 

activity. This method is based on nitrogenase enzyme to reduce acetylene (C2H2) to 

ethylene (C2H4) in the presence of high levels of acetylene. The ethylene produced is 

detected by gas chromatography (Hardy et al., 1968). N difference method is based on 

the fact that the N2-fixing plants and reference plants (non N2-fixing) use exactly the 

same amount of soil N, thus the difference in uptake of N of the N2-fixing and reference 

plants is the amount of N2 fixed (Unkovich et al., 2008). The use of 15N isotopes to 

quantify the role of biological N2 fixation in the N economy of the soil-plant system has 

become a familiar feature. The 15N isotopic techniques (natural abundance and 

enrichment) are the most commonly employed because they offer an overall estimate of 

the contribution of BNF over the entire growth period. The strategy applied in the 15N 

natural abundance technique is to assume that reference plants, which are unable to obtain 

N from N2 fixation, accumulate N only from the soil. If N2-fixing legumes have 

significantly lower 15N abundance than the reference plants, then the difference can be 

interpreted quantitatively to assess the contribution of BNF by bacteria. However, when 

necessary, the difference between soil N and N2 is expanded after the incorporation of 
15N enriched compounds into the soil. This is the 15N enrichment method, which is 

currently less used as a consequence of the improvement in the precision of mass 

spectrometers (Unkovich et al., 2008). 

 

1.7. Conventional and organic farming 

Conventional farming has played an important role in the improvement of food to 

support human demands but it has a strong impact on the environment due to its largely 

dependent of synthetic fertilizers, pesticides and herbicides (Tu et al., 2006). In this 

context, organic farming is considered a promising solution, since this is characterized by 

the ban of chemical pesticides and fertilizers. Organic farming systems rely on ecological 
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practices as biological pest control, the addition of organic matter (green manure 

including legumes, compost, farmyard manure…), the use of biofertilizers and crop 

diversification (Fliebach et al., 2007). In addition, organic agriculture provides a higher 

total C input than conventional agriculture (Gattinger et al., 2013), which is as a 

consequence of higher external C inputs as organic amendments. However, in this kind 

of agriculture, the supply of sufficient plant-available N can be a problem, since N 

availability to plants is dependent on mineralization rates of SOM, and this may result in 

lower yields, in which case more hectares would be needed to produce the same amount 

of food as the conventional agriculture (Seufert et al., 2012). On the other hand, the timely 

delivery of N to the plant may affect legume crops, since the proliferation of N2-fixing 

rhizobacteria at the initial cropping stages inmobilizes inorganic N forms (Oberson et al., 

2013).  

 

1.8. Greenhouse gas emissions 
Intensification of agricultural systems mainly through the increase in the use of 

mineral N fertilizers has led to highest GHG emissions, particularly nitrous oxide (N2O). 

N2O has a global warming potential 300 times greater than carbon dioxide (CO2) and is 

the major contributor to the depletion of the ozone layer in the stratosphere (Ravishankara 

et al., 2009; Van Beek et al., 2010). Cultivation of legumes is linked to the emission of 

CO2, N2O, and methane (CH4) from the soil (Forster et al., 2007). Although CO2 is the 

main anthropogenic greenhouse gas, the agricultural sector is dominated by N2O and CH4 

emissions (Schulze et al., 2009). The CO2 emission from the soil for agricultural use to 

the atmosphere results from carbon input in the form of crop residues and biomass 

through the decomposition of their organic matter. This decomposition can be affected 

by changes that affect soil microbial communities such as substrate quality, soil moisture 

or temperature as well as changes within soil microbial communities (Ohta, 1990; Lips 

and Hofstede, 1998; Jug et al., 1999; Chapela et al., 2001). In addition to this, increases 

of above and belowground biomass production of the crops involve a greater amount of 

residue returned to the soil and thus an increase in the CO2 emission (Curtin et al., 2000; 

Al-Kaisi and Yin, 2005). On the other hand, the increase of the belowground biomass 

production results in a higher rhizodeposits and root turnover along with the rhizosphere 

respiration (Amos et al., 2005) but also the increase in soil respiration (respiration from 

root and microorganims of rhizosphere) (Kuzyakov, 2006).  
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Emissions of N2O originate from denitrification and nitrification processes in 

soils. Denitrification is driven by the presence of denitrifying bacteria sources coming 

from metabolizable organic carbon, anoxic soil conditions, as well as the presence of 

nitrate, while nitrification is driven by dissolved ammonium, pH, oxic soil conditions, 

and, temperature (Tiedje, 1988). Moreover, NFB may also contribute to N2O emissions 

in several ways, such as nitrification and denitrification of biologically fixed N 

(Galloway, 1998), providing N-rich residues for decomposition (Baggs et al., 2000; 

Huang et al., 2004) and directly by some NFB that are able to denitrify, producing N2O 

(O’Hara and Daniel, 1985). N fertilizer applications to soils (organic or mineral), animal 

wastes and biological N2 fixation result in N2O emissions, since this gas is a subproduct 

of the transformation of N compounds of fertilizers (IPCC, 1996; Firestone and Davidson, 

1998). However, contradictory results are reported in literature regarding the increase or 

decrease of GHG emissions after the aplication of N fertilizers.  

The excess in N may also have other negative impact such as nitrate leaching 

(Oelmann et al., 2007). In this context, the management of cropping systems is considered 

a powerful tool for the mitigation of GHG emissions in agriculture (Zhong et al., 2009; 

Rees et al., 2012; Sainju et al., 2012), with the reduction of N fertilizers supplied to crops 

through multiple cropping systems with legumes or the use of organic fertilizers (Flessa 

et al., 2002; Burger et al., 2005). In turn, organic fertilizers used in organic agriculture 

are associated with increased rates of organic matter decomposition, which may enhance 

N2O and CO2 emissions. CH4 has a global warming potential 25 times greater than CO2 

(IPCC 2007). Soils used for crop are minor sources of CH4, except after application of 

manure or other organic materials under flooded conditions (Johnson et al., 2007; 

Dendooven et al., 2012). CH4 emission originates mainly from the enteric fermentation 

in ruminant animals, flooded rice fields, and animal waste processing in anaerobic 

environments (IPCC, 1996), although agricultural practices influence CH4 atmospheric 

concentration by affecting its consumption in aerated soils (Prather et al., 1995).   
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1.9. Relevance of the work 

This doctoral thesis emerged with the aim of promoting and extending the 

sustainable protein legumes crop, resolving the problem of the deficit of protein sources, 

which currently exists in Europe, as well as reducing the dependence on the consumption 

of imported legumes such as soybean. Soybean can enter European market without tariffs, 

which reduces the profitability of local production. However, a large proportion of 

soybean crops introduced into Europe are genetically modified, which makes that there 

is a growing need to stimulate local production. In addition, there is a need to find out 

sustainable farming practices including legumes to reduce the dependance on external N 

inputs which can provoke soil, water and atmosphere contamination. Thus, fostering the 

use of legume crops in horticulture can be an effective solution to enhance the European 

protein crops while contributing to long-term sustainability of the agro-ecosystems.  

 

1.10. Objetives 
The main objective of this thesis is to assess the sustainability of the inclusion of 

legume crops in multiple cropping with horticultural crops to promote soil quality and 

fertility and to enhance the biological nitrogen fixation efficiency and the use of 

biologically-fixed N by the plant. In addition, the added value of the legume crop will be 

evaluated in subsequent non-legume horticultural crops grown in multiple cropping to 

assess if there are benefits in crop yield and quality.  

The specific objectives of the doctoral thesis are to:  

- Asses the improvement of soil quality and fertility after growing legume 

crops in multiple cropping with non-legume horticultural crops under conventional 

and organic management practices compared with non-legume monocultures. 

- Quantify the improvements in the crop yield and quality of subsequent 

horticultural crops in multiple cropping with legumes compared to monocrop. 

- Quantify the GHG emissions (N2O, CO2 and CH4) in legume and non-

legume horticultural crops under conventional and organic magament practices, and 

then be able to asses the effect of management practice and cultivation type. 

- Determine if legumes monocrop or multiple cropping favors carbon 

sequestration in soil. 

- Asses the biological nitrogen fixation by different legume cultivars.  
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- Asses the effect of the selection of N-fixing bacteria and arbuscular 

mycorrhiza fungi on improving biological nitrogen fixation in the legume crop. 
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Comparing legumes for use in multiple cropping 
to enhance soil organic carbon, soil fertility, 
aggregates stability and vegetables yields under 
semi-arid conditions 
 
Abstract 

Including legumes in multiple cropping systems may be regarded as a sustainable 

way to improve soil quality and fertility for subsequent crops. Improvements in soil 

quality depend on inherent soil properties, climatic conditions, adopted management 

practices, type of fertilization (organic, chemical, legumes or biological). Hence, the aim 

of this study was to compare the effect of two legume species (cowpea and fava bean) on 

soil organic carbon (SOC), total nitrogen (Nt), NO3-, NH4+, available P, soil aggregate 

stability and the subsequent yields of two vegetable crops (broccoli and melon) grown 

under conventional or organic systems after two multiple cropping cycles. A comparison 

of a broccoli monoculture, broccoli grown after cowpea (multiple cropping), a melon 

monoculture and melon grown after fava bean (multiple cropping) showed that the 

broccoli / cowpea double cropping was significantly more effective for increasing SOC 

and Nt than melon/fava bean double cropping. For the cowpea/broccoli multiple 

cropping, conventional management contributed to increasing SOC and Nt, while organic 

management increased available P, aggregate stability and crop yield, although this effect 

was cultivar dependent. The effect of management practice was not significant for the 

fava bean/melon except as regard crop yield, the melon yield being greater than monocrop 

under conventional management. Thus, the use of cowpea in multiple cropping was better 

for increasing SOC, soil fertility and crop yield of the subsequent crop than the use of 

fava bean, probably due to rhizodeposition processes. Hence, this crop could regarded as 

a viable alternative for sustainable crop production under semi-arid conditions.  

Keywords: Soil fertility, legume, broccoli, melon, soil organic carbon, soil nitrogen.
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2.1. Introduction 
Maintaining current crop yield, sustaining soil quality and delivering ecosystem 

services are encouraged with an adoption of legume in rotation (different crops in the 

same area in different years) and multiple cropping (different crops in the same area in 

different seasons within the same year) (Yusuf et al., 2009; St Luce et al., 2015). Crop 

rotation and multiple cropping have long been recognized as a way of influencing soil 

physical properties through the reduction of soil erosion, improvements in soil structure 

and enhanced permeability. The same practice also improves soil fertility as a 

consequence of increased soil microbial activity and a higher organic matter content 

(Bullock, 1992; Karlen et al., 1994). 

Positive effects of legume rotations and multiple cropping on subsequent crops yield 

have been reported by several authors (Shah et al., 2003; Smith et al., 2016), and it is 

primarily due to their ability to fix atmospheric nitrogen (N) through biological nitrogen 

fixation (BNF), and thus provide extra available N (Unkovich et al., 2008). N2 fixation in 

legumes mainly occurs by symbiotic association with nodulating bacteria known as 

rhizobia, including bacterial genera such as Rhizobium, Sinorhizobium, Mesorhizobium 

and Bradyrhizobium (Unkovich et al., 2008). Such legume-rhizobia symbioses can 

benefit not only the host crop but may also have positive effects for subsequent crops due 

to a reduction in the amount of N fertilizers required by BNF, increasing subsequent crop 

yields through improved soil quality and fertility and controlling weeds (Díaz-Ambrona 

and Mínguez, 2001; St Luce et al., 2015). In turn, a reduction in the use of N fertilizers 

reduces farmers’ costs, and the environment risks linked to the release of greenhouse gas 

emissions (Jensen et al., 2012). Crop rotation/multiple cropping also offers diversified 

cropping systems, which means greater market opportunities in the face of low 

commodity prices and even reducing exposure to adverse climatic factors (Zegada-

Lizarazu and Monti, 2011).  

The establishment of an effective symbiosis between nitrogen-fixing bacteria and 

legumes commonly grown in a particular area provide suitable habitat for soil 

microorganisms. This is achieved through processes that influence nutrient cycling, such 

as the mineralization of preceding legume crop residues after harvest (Arcand et al., 2014) 

and the release of root exudates during plant development, which tend to be N-rich in 

legumes plant species (Fustec et al., 2010). Thus, both processes may influence the 

quantity, quality and distribution of soil organic matter and, therefore, sustain soil quality 
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and fertility. After N, phosphorus is the most limiting nutrient for crops (Vance et al., 

2000). This element can affect BNF directly, since it is involved in the development and 

functioning nodules (Pacyna et al., 2006; Sulieman and Schulze, 2010). The integration 

of legumes in rotation or multiple cropping provides available C and N sources, and thus 

promotes the abundance of gram-negative bacteria such as those belonging to Rhizobium 

genus (Voisin and Gastal, 2015; Aschi et al., 2017). Strains from the genera Rhizobium 

are phosphate-solubilizing bacteria that mobilize inorganic P through the production of 

organic acids, making it available for plants (Rodríguez and Fraga, 1999). In addition, 

species belonging to Leguminosae family contain secondary plant products with 

allelopathic potential (Rice, 1984; Razavi, 2011). These compounds are released through 

residues crop decomposition, root exudation or volatilisation from the aboveground plant 

parts to suppress the growth and size of several plant species (Akemo et al., 2000; Jabran 

et al., 2015). As a consequence, the use of legumes in rotations or multiple cropping could 

contribute to reduce weed incidence in crops (Razavi, 2011). 

The influence of legumes on soil fertility is normally evident after a long period 

(Yusuf et al., 2009; Kirkegaard and Ryan, 2014). However, the choice of legume that will 

result in sustainable improvements in crop productivity is a complex matter since the 

selected legume has to be well adapted to local biophysical constraints such as soil type 

or climatic conditions, and to the particular cropping system (e.g. organic or 

conventional) (Peoples et al., 2001; Peoples et al., 2009). In addition, a given legume’s 

ability to fix N2 is limited by the amount of effective rhizobia in the soil or specific 

rhizobial strains that will form an effective symbiosis (Unkovich et al., 2008).  

With regard to management practices, organic farming is associated with a higher 

external carbon input compared with conventional practices (Tuomisto et al., 2012; 

Gattinger et al., 2013).  The application of materials of organic origin to the soil results 

in an improvement in soil structure (Blair et al., 2006; Tejada et al., 2008). However, at 

the same time, organic farming is related to lower crop yields, mainly due to a lower 

nitrogen use efficiency, which is limited by mineralization-immobilization processes 

(Mallory and Griffin, 2007; Seufert et al., 2012; Alaru et al., 2014).  

In line with the benefits reported in literature about the use of multiple cropping, 

mostly under organic management practices, we designed a two-year field experiment 

with two vegetable crops with different harvesting season - melon (summer) and broccoli 

(winter) - cultivated as monocrops or grown after legumes (fava bean and cowpea) under 

conventional and organic management practices in order to compare the benefits of 
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including legumes in multiple cropping with regard to vegetable species. The use of 

different management practices allowed their impact on SOC, soil fertility, aggregates 

stability and yield to be compared in these vegetable, which, to the best of our knowledge, 

has not previously been investigated. We hypothesized that the traditionally cultivated 

legume in the region (fava bean) may promote higher increases in SOC, soil fertility, 

aggregates stability and crop yield in a subsequent vegetable crop (melon) as a result of 

BNF than cowpea that has been never cultivated, due to a selection of symbiotic 

microorganisms for the fava bean host. Hence, the main objectives of this study were to: 

i) assess the effect of a preceding legume crop, considering two different legume cultivars 

as well as two different management practices, on SOC, soil aggregation, soil fertility and 

the yield of vegetable crops; and ii) to ascertain whether any such effects depend on the 

specific legume species.  

 

2.2. Materials and methods 

2.2.1. Study site and experimental design 
This study was carried out in Cartagena, southeast Spain (37º 41` N 0º 57` E), at 

the “Tomás Ferro” Experimental Agro-Food Station of the UPCT. In this station, previous 

crops were always developed under conventional management practices. However, for 

this study, we established different plots to assess conventional and organic management 

practices. As a consequence, organic management was firstly implemented in the study 

area with this experiment, with the aim of assessing its effect. Nonetheless, to avoid 

negative effects of the use of pesticides/herbicides in the organic plots by dispersion from 

the conventional plots, pests and diseases in all plots were controlled as in the organic 

management. The field experiment was designed in a complete randomized block with 

four replications, using plots of 10 m2. The area is characterized by a semi-arid 

Mediterranean climate, with a mean annual temperature of 18 ºC and mean annual rainfall 

of 275 mm. The soil was a Haplic Calcisol (IUSS, 2014) with a clay loam texture. Soil 

characteristics are shown in Table 2.1. The inclusion of legumes in multiple cropping 

with two traditional vegetables in the region (broccoli and melon) was studied during two 

years. The monthly precipitations during the two years that the field experiments lasted 

are shown in Figure 2.1. Legume residues were removed from the field and so not applied 

in the soil as green manure. 
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Figure 2.1: Monthly precipitations from the beginning of the experiment to the end of the second melon 
crop cycle. 
 

Table 2.1: Main soil characteristics. Values shown are mean ± standard deviation (n=4). 
Parametera   

pH 8.4±0.1 

EC (µScm-¹) 343±72 

SOC (g kg-¹) 12.8±0.3 

Bulk density (g cm-³) 1.0±0.0 

CEC (cmol+ kg-¹) 4.2±1.1 

CaCO3 (%) 30.2±1.2 

Clay (%) 34.5±0.16 

Silt (%) 21.3±1.06 

Sand (%) 44.2±0.92 

Aggregates stability (%) 7.3±0.6 

Nt (g kg-¹) 0.9±0.1 

NO₃- (mg kg-¹) 150±5 

NH₄⁺ (mg kg-¹) 7.7±2.7 

Available P (mg kg-¹) 25.5±3.0 
a:EC: electrical conductivity; SOC: soil organic carbon content; CEC: cation exchange capacity; Nt: total 
nitrogen. 
 

2.2.1.1. Crop 1: cowpea-broccoli multiple cropping system 
We assessed the effect of two local Portuguese cultivars (Feijão frade de fio preto 

(FP) and Feijão frade de fio claro (FC)) of cowpea (Vigna unguiculata (L.) Walp.) grown 

with broccoli as multiple cropping on SOC, soil fertility, aggregates stability and yield, 

compared with a broccoli monocrop. The broccoli monocrop was left fallow during the 

cowpea season (no cultivation of cowpea). Cowpea was grown during two summer 

seasons (29/05/2014-13/08/2014 and 03/06/2015-14/09/2015). Cowpea is not normally 
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cultivated in the region. After each cowpea crop, the soil was prepared to cultivate 

broccoli (Brassica oleracea L. var. italica) cv Parthenon with only a surface tillage (0-20 

cm) in the same furrow direction. The broccoli crop was grown during the successive two 

winter seasons (13/11/2014-26/02/2015 and 1/12/2015-24/02/2016).  

Both crops were established under drip irrigation with two management practices: 

conventional and organic. Cowpea seeds were sown and broccoli plants were planted with 

a spacing of 100 cm between rows and 20 cm between plants (5 plants m-2). No herbicide 

treatment was applied, and the crops were kept free of weeds through hand-hoeing when 

necessary. In the cowpea crop, 30 kg ha-1 of N and 2.4 kg ha-1 of P2O5 were applied as 

ammonium nitrate (33.5% N) and monoammonium phosphate (61% P2O5, 12% N) in the 

conventional practice, and using a commercial organic fertilizer (Bombardier, 

Agroquímicos los Triviños, Spain; 10.7% w/v N, 0.7% w/v P2O5) in the organic practice. 

In broccoli crop, 250 kg ha-1 N, 100 kg ha-1 P2O5 and 300 kg ha-1 K2O were applied by 

fertigation as ammonium nitrate (33.5% N), monoammonium phosphate (61% P2O5, 

12% N) and potassium sulphate (50% w/v K2O, 18% S) in the conventional practice, and 

using two commercial organic fertilizers (Heronatur 4-2-8 and Heronatur 7-2-4; Herogra 

Fertilizantes, Spain; 4% w/v N, 2% w/v P2O5 and 8% w/v K2O, and 7% w/v N, 2% w/v 

P2O5 and 4% w/v K2O) in the organic practice. 

 

2.2.1.2. Crop 2: fava bean-melon multiple cropping system 
We assessed the effect of two local Spanish cultivars (Muchamiel (M) and Palenca 

(P) - of fava bean (Vicia faba L.)) grown with melon as multiple cropping on SOC, soil 

fertility, aggregates stability and yield, compared with a melon monocrop. The melon 

monocrop was left fallow during the fava bean season (no cultivation of fava bean). Fava 

bean was grown during two winter seasons (24/10/2014-02/03/2015 and 05/11/2015-

13/04/2016). Fava bean is a traditional legume crop in the region. After the fava bean 

crop, the soil was prepared to grow a melon Cucumis melo L. cv. Hidalgo with only a 

surface tillage (0-20 cm) in the same furrow direction. The melon crop was grown during 

the successive two summer seasons (15/06/2015-08/09/2015 and 13/06/2016-

23/08/2016).  

Both crops were established under drip irrigation with two management practices: 

conventional and organic. Fava bean seeds were sown with a spacing of 100 cm between 

rows and 40 cm between plants (2.5 plants m-2) while melon plants were planted with a 
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spacing of 200 cm between rows and 120 cm between plants (0.8 plants m-2). No herbicide 

treatment was given, and the crops were kept free of weeds through hand-hoeing when 

necessary. In the fava bean crop, 20 kg ha-1 of N and 1.2 kg ha-1 of P2O5 were applied as 

ammonium nitrate (33.5% N) and monoammonium phosphate (61% P2O5, 12% N) in the 

conventional practice, and using a commercial organic fertilizer (Bombardier, 

Agroquímicos los Triviños, Spain; 10.7% w/v N, 0.7% w/v P2O5) in the organic practice. 

In the melon crop, 200 kg ha-1 N, 120 kg ha-1 P2O5 and 340 kg ha-1 K2O were applied by 

fertigation as ammonium nitrate (33.5% N), monoammonium phosphate (61% P2O5, 

12% N) and potassium sulphate (50% w/v K2O, 18% S) in the conventional practice, and 

using a commercial organic fertilizer (Espartán Agroindustrial Kimitec S.L, Spain; 3.8% 

w/v N, 2.9% w/v P2O5 and 3.6% w/v K2O) and potassium sulphate (50% w/v K2O, 18% 

S) in the organic practice. 

 

2.2.2. Soil sampling and crop yield  
Soil samples (0-20 cm) were collected at the beginning of the experiments before 

sowing the legumes and upon harvesting each vegetable at the end of the second multiple 

cropping cycle. Three random soil samples per plot were collected and homogenized to 

obtain a composite sample. Samples were air-dried for 7 days, sieved < 2 mm and stored 

at room temperature until analyses, except for NH4+ and NO3-, where an aliquot of each 

sample was stored at 4ºC to avoid undesirable mineralization/oxidation processes and 

sieved < 2 mm previously to analyses, within 4 days from sampling. 

Broccoli crop yield was determined by weighing all the heads per plot when the 

buds of the head were firm and tight, while the melon yield was determined by weighing 

all the fruits per plot when they were ripe and ready for consumption. With regard to 

legumes, all the pods in each plot were harvested when the seeds were dried at the end of 

the crop cycle for cowpea, and were continuously harvested and weighed when the seeds 

were fresh for fava bean. 

 

2.2.3. Soil analyses 
Bulk density was measured using the cylinder method (5 cm diameter x 5 cm high) 

(Blake and Hartage, 1986); soil pH and electrical conductivity (EC) were measured in 

deionized water (1:2.5 and 1:5 w/v, respectively); soil texture was determined by the 

Bouyoucos hydrometer method (Dewis and Freitas, 1970); soil aggregate stability (AS) 
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was assessed with the rainfall simulator method according to Roldán et al. (1994). For 

equivalent calcium carbonate the volumetric method (Bernard calcimeter) was used 

(Cobertera, 1993); SOC was determined by the wet oxidation method using K2Cr2O7 

(Walkley and Black, 1934); total nitrogen (Nt) was analyzed by the Kjeldahl method 

(Hoeger, 1998); NO3- and NH4+ were extracted with 2M KCl in a 1:10 soil:extractant 

ratio (Keeny and Nelson, 1982); then, NO3- was measured by ion chromatography 

(Metrohm 861), and NH4+colorimetrically (Kandeler and Gerber, 1988); cation exchange 

capacity was determined using BaCl2 as exchangeable salt (Roig et al, 1980); available 

phosphorus (P) was extracted according to the Burriel-Hernando method (Díez, 1982) 

and measured using ICP-MS (Agilent 7500CE). 

 

2.2.4. Statistical analyses 
Data were checked to ensure normal distribution using the Kolmogorov–Smirnov test 

and transformed when necessary to ensure normal distribution. The average value of soil 

parameters measured at the beginning of the experiment was subtracted from values at 

the end of the second cycle and divided by the initial values to obtain the increment data 

(time Δ data) according to the following equation 1: 

 

time Δ data = [(Final value – Initial value) / Initial value] × 100   (1) 

  

Similarly, the average value of soil parameters and crop yield measured from each 

vegetable monocrop was subtracted from its respective crop grown after legumes and 

divided by the monocrop values to obtain the multiple cropping Δ data according to the 

following equation 2:  

 

Multiple cropping Δ data = [(Legume multiple cropping value – Monocrop value) / 

Monocrop value] × 100 (2) 

 

Using this approach, the relative increases or decreases for all properties can be 

used to compare all the properties between both crop systems since the unit can be 

homogenized to percentage of variation.  

The Δ data were submitted to three-way ANOVA to assess the differences among 

previous legume cultivars, vegetable crop type and management practices at the end of 
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the experiments. Relationships among the Δ data were studied using Pearson's 

correlations. Multiple linear regression analysis (Y=m1X1 +m2X2 +···+mnXn +b) was 

carried out with the multiple cropping Δ data after two years of multiple cropping with 

legumes using stepwise and backward methods, with available phosphorus as 

independent variable and SOC, aggregates stability, NH4+ and NO3- as dependent 

variables. Standardized coefficient (β) and partial correlation values were used for the 

analysis. The β coefficient is the estimated value resulting from the analysis performed 

on variables that have been standardized to have a variance of 1 in order to determine 

which of the independent variables has a greater effect on the dependent variable. 

Therefore, variables with larger β coefficients contribute more to the model. The partial 

correlation indicates the correlation between the dependent variable and one independent 

variable when the linear effects of the remaining variables have been eliminated. The 

unstandardized coefficients (m) were used to fit the values of phosphorus versus the 

values calculated using the regression model. Furthermore, a principal components 

analysis (PCA) was performed with all Δ data of multiple cropping with regard to 

monocrops to study the structure of dependence and correlation established among the 

variables studied in both vegetable cropping systems. Statistical analyses were performed 

with the software IBM SPSS for Windows, Version 22.  

 
2.3. Results 

2.3.1. Changes in soil properties 
Variation rate in the studied soil properties with regard to initial value (time Δdata) 

are presented in Table 2.2 (absolute values are shown in the Table 2.3). The variation of 

soil properties (Table 2.2) with regard to initial soil characteristics (Table 2.1) was 

significantly influenced by type of vegetable crops and previous legume cultivars, except 

ΔSOC in the case of previous legume cultivar (Table 2.2).  
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Table 2.2: Variation rates (%) ± standard deviation of the studied soil properties in both vegetables 

(broccoli and melon) after two years of multiple cropping with legumes with regards to initial values at the 

beginning of the experiments. 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; ** P < 0.01; *P < 0.05; ns: not significant (P > 0.05). 
SOC: soil organic carbon content; Nt: total nitrogen; AS: aggregates stability. 
  

Previous 
 legume 
cultivara 

Management 
practice 

ΔSOC 
 

ΔNt 
 ΔAS ΔNH₄⁺ 

 

 
ΔNO₃- 

 

 
ΔP 

 

Broccoli 

FP cowpea Conventional -2.8±7.4 39.1±3.1 90.8±100.8 -7.1±51.7 162.1±118.8 -28.8±22.1 

FC  cowpea Conventional -3.1±6.1 34.1±8.5 97.9±55.1 -17.1±19.3 60.8±97.5 3.1±14.7 

Fallow Conventional -19.6±24.3 -91.2±0.4 33.4±37.2 -73.7±5.2 7480±2625 74.3±4.5 

FP  cowpea Organic 0.9±16.1 22.5±3.5 157.9±33.3 -78.7±4.0 95.1±82.9 -17.1±9.0 

FC  cowpea Organic -7.5±4.5 31.1±3.0 160.8±83.7 -9.7±27.5 466.0±44.0 -30.9±25.8 

Fallow Organic -10.9±2.4 -91.2±0.3 44.6±53.6 -34.8±15.2 5926±2664 29.9±34.6 

Melon 

M fava bean Conventional -1.6±4.9 12.7±0.6 351.9±33.4 -2.1±5.1 -73.6±2.8 122.7±14.9 

P  fava bean Conventional 9.2±9.3 20.2±2.9 399.1±86.7 -0.8±9.0 -76.1±0.1 178.9±31.3 

Fallow Conventional 17.6±8.3 -91.0±0.9 165.3±13.5 281±4.6 -35.2±126 398±0.8 

M  fava bean Organic -0.1±1.9 23.0±1.8 320.5±121.2 -7.3±10.3 -45.2±30.9 161.2±3.1 

P  fava bean Organic 2.1±4.5 28.2±6.0 399.1±86.7 -17.6±0.0 -56.6±6.9 116.0±12.8 

Fallow Organic 8.4±6.1 -90.6±0.5 212.7±19.5 600.0±0.7 -43.7±130 416.0±45.2 

F-valueb 

Vegetable crop type (VCT) 15.4*** 34.1*** 84.2*** 9.1** 39.2*** 913.2*** 

Previous legume cultivar (PLC) 0.1ns 4313.3*** 15.8*** 10.8*** 41.9*** 218.6*** 

Management practice (MP) 0.1ns 0.0ns  1.2ns 2.1ns 0.1ns 2.6ns 

VCT x PLC 6.0** 10.8*** 2.2ns 2.5ns 30.7*** 72.5*** 

VCT x MP 1.2ns 28.7*** 0.8ns 0.0ns 0.5ns 1.8ns 

PLC x MP 0.5ns 1.8ns 0.0ns 6.1** 0.4ns 7.9** 

VCT x PLC x MP 0.6ns 10.4** 0.8ns 7.5** 0.9ns 3.1ns 
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Table 2.3: studied soil properties at the beginning of the experiments and at harvest of both vegetable crops 

(broccoli and melon) after the second year of multiple cropping with legumes. Values are mean ± standard 

deviation (n=4). 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
SOC: soil organic carbon; Nt: total nitrogen. 
 
 

Previous 
legume 
cultivara 

Management 
Practice 

SOC 
(g kg-1) 

 

Nt 
(g kg-1) 

 

Aggregates 
stability 

 (%) 

NH₄⁺ 
(mg kg-1) 

 

 
NO₃-  

(mg kg-1) 
 

 

Available P 
(mg kg-1) 

Broccoli 

Fallow (initial) - 12.86±0.36 0.91±0.03 7.28±0.61 7.70±2.77 150±5 25.48±3.04 

FP cowpea Conventional 12.50±0.95 1.28±0.03 13.90±7.35 7.15±3.98 394±179 18.14±5.64 

FC cowpea Conventional 12.47±0.79 1.23±0.08 14.43±4.02 6.39±1.49 242±146 26.29±3.75 

Fallow  Conventional 10.35±3.09 1.13±0.05 17.17±4.79 13.38±0.67 975±337 22.43±0.59 

FP cowpea Organic 12.99±2.07 1.13±0.03 18.80±2.43 1.64±0.31 293±124 21.11±2.31 

FC cowpea Organic 11.90±0.58 1.20±0.03 19.01±6.10 6.95±2.12 852±66 17.59±6.58 

Fallow Organic 11.46±0.31 1.13±0.04 18.36±6.90 8.38±1.95 775±334 16.72±4.46 

Melon 

Fallow (initial) - 12.86±0.36 0.91±0.03 7.28±0.61 7.70±2.77 150±5 25.48±3.04 

M fava bean Conventional 12.66±0.90 1.03±0.01 32.93±3.44 7.54±0.56 39±6 56.76±5.38 

P fava bean Conventional 14.05±1.70 1.10±0.04 36.37±8.94 7.63±0.98 36±0 71.08±11.31 

Fallow Conventional 15.14±1.62 1.15±0.17 34.15±2.47 8.33±0.84 49±23 64.16±0.15 

M fava bean Organic 12.85±0.36 1.13±0.02 30.64±12.49 7.14±1.12 82±66 66.58±1.12 

P fava bean Organic 13.15±0.82 1.18±0.08 36.37±8.94 6.35±0.00 65±15 55.04±4.62 

Fallow Organic 13.95±1.11 1.21±0.09 40.25±3.55 7.24±0.14 90.21±23.70 66.45±8.23 
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In terms of ΔSOC, soils under broccoli crop showed higher decreases than melon 

crop (P < 0.001). Soil Nt and aggregate stability (AS) increased after two years in both 

multiple cropping systems compared with initial values (P < 0.001). ΔNt was significantly 

higher in the broccoli than in melon (P < 0.001), but was significantly lower in the 

monocrop (P < 0.001). The melon showed more pronounced increase in ΔAS (320-399%) 

than the broccoli (91-161%), and was significantly higher in the multiple cropping 

systems than in the monocrop, underlining the positive effect of the legume in increasing 

soil fertility and structure. Available N forms (NH4+ and NO3-) behaved differently 

according to the type of vegetable crop. The ΔP was significantly different in terms of 

type of vegetable crop and previous legume cultivars, generally being negative for 

broccoli in multiple cropping and positive for melon in multiple cropping. The 

management practice did not significantly influence any of the soil properties studied. 

The interaction of vegetable crop type with management practice was only significant for 

ΔNt (P < 0.001). 

Multiple linear regression analysis (Table 2.4) showed that the variation in soil 

available P in both vegetable crops after multiple cropping was positively related to 

ΔSOC, Δaggregates stability and ΔNH4+, and was negatively related to ΔNO3- (R2 = 0.87, 

F = 34.34, P < 0.001).  

Table 2.4: Multiple linear regression model for ΔP in both vegetable crops in multiple cropping (broccoli 

and melon) after two years of multiple cropping with legumes with regard to initial values at the beginning 

of the experiments.  

Y X m 
Partial 
correlat

ion 
β R² R² 

adj F value 

ΔP 

Constant (b) 1.52   

0.87 0.85 34.34*** 
ΔSOC 2.43 0.50 0.22 

ΔAS  0.34 0.81 0.57 

ΔNH₄⁺ 0.81 0.61 0.28 

ΔNO₃- -0.14 -0.56 -0.29 
m: unstandardized coefficients; β: standardized coefficients. Significant at ***P<0.001 
P: phosphorus; SOC: soil organic carbon content; AS: aggregates stability 
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2.3.2. Effect of multiple cropping with legumes on soil 

properties and crop yield  
Table 2.5 shows the variation rate of multiple cropping systems with regard to 

monocrop (multiple cropping Δdata) in the studied soil properties (absolute values are 

shown in the Table 2.6). Vegetables significantly influenced the variation in soil 

properties such as SOC, Nt and NO3-. Broccoli grown after cowpea increased the values 

of SOC and Nt with regards to broccoli monocrop, while both properties decreased in the 

melon grown after fava bean compared with melon grown as a monocrop (P < 0.001). The 

ΔNO3- was significantly lower in both crops in multiple cropping than when grown as 

monocrops (P < 0.01). NH4+ also decreased in multiple cropping with regard to monocrop 

except in the case of broccoli grown after cowpea under conventional management 

practice, in which case ΔNH4+ was positive and significantly different from the values 

obtained with organic management (P < 0.01). Type of vegetable crops, previous legume 

cultivar or management practice did not influence ΔAS. The interaction of previous 

legume cultivar with management practice was significant for ΔP. ΔP was highest in 

broccoli after growing FP compared with monocrop under organic practice; however, ΔP 

was highest in melon after P fava bean cultivar compared with monocrop under 

conventional practice (P < 0.01). On the other hand, the interaction of type of vegetable 

crops with management practice significantly influenced ΔSOC, ΔNt, and ΔNH4+ (P < 

0.05; P < 0.001 and P < 0.01, respectively). 
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Table 2.5: Variation rates (%) ± standard deviation of the studied soil properties and crop yield in both 

vegetable crops (broccoli and melon) at the end of the second crop cycle with regards to broccoli and melon 

monocrops. 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; ** P < 0.01; *P < 0.05; ns: not significant (P > 0.05). 
SOC: soil organic carbon content; Nt: total nitrogen; AS: aggregates stability. 
 

  

Previous 
 legume 
cultivara  

Management 
practice 

ΔSOC 
 

ΔNt 
 ΔAS ΔNH₄⁺ 

 

 
ΔNO₃- 

 

 
ΔP  

 
ΔCrop yield 

Broccoli 

FP cowpea Conventional 20.8±9.2 13.1±2.5 -19.0±42.8 111.6±117.8 -59.5±18.3 -19.1±25.1 -9.6±4.2 

FC  cowpea Conventional 20.5±7.6 9.0±6.9 -15.9±23.3 89.0±43.9 -75.1±15.0 17.2±16.7 -0.8±8.6 

FP  cowpea Organic 13.3±18.0 -0.4±2.8 2.3±13.2 -80.4±3.7 -62.1±16.1 26.2±13.8 3.3±9.9 

FC  cowpea Organic 3.8±5.0 6.6±2.4 3.5±33.2 -17.0±25.3 9.9±8.5 5.2±39.3 4.5±2.7 

Melon 

M fava bean Conventional -16.4±4.2 -10.3±0.5 -3.5±7.1 -9.5±4.7 -19.1±8.6 -11.5±5.9 -2.4±9.2 

P  fava bean Conventional -7.2±7.9 -4.3±2.3 6.5±18.5 -8.4±8.3 -26.8±0.3 10.8±12.4 -2.9±0.2 

M  fava bean Organic -7.9±1.8 -6.8±1.3 -23.8±21.9 -1.4±10.9 -8.6±51.7 0.2±1.2 -11.7±1.5 

P  fava bean Organic -5.8±4.1 -2.8±4.5 -9.6±15.6 -12.3±0.0 -27.5±11.7 -17.1±4.9 -11.5±7.5 

F-valueb 

Vegetable crop type (VCT) 46.2*** 86.0*** 0.0ns  3.2ns 8.7** 2.3ns  0.1ns 
Previous legume cultivar 

(PLC) 0.0ns 5.1* 0.5ns 0.1ns 0.7ns 0.4ns 0.2ns 

Management practice (MP) 1.0ns 3.6ns  0.0ns 15.5** 6.7* 0.3ns 1.0ns 

VCT x PLC 2.2ns 1.5ns 0.2ns 0.4ns 5.4* 0.1ns 0.2ns 

VCT x MP 5.8* 13.5*** 3.7ns 16.4** 4.2ns 2.5ns 0.8ns 

PLC x MP 1.3ns 2.5ns 0.0ns 0.9ns 4.6ns 9.8** 2.0ns 

VCT x PLC x MP 0.0ns 5.3* 0.0ns 1.7ns  7.7* 0.3ns 2.2ns 
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Table 2.6: studied soil properties and crop yield in both vegetable crops (broccoli and melon) at the end of 

the second crop cycle. Values are mean ± standard deviation (n=4). 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
SOC: soil organic carbon, Nt: total nitrogen. 

Previous 
legume 
cultivara 

Management 
Practice 

SOC 
(g kg-1) 

 

Nt 
(g kg-1) 

 

 
Aggregates 

Stability 
 (%) 

NH₄⁺ 
(mg kg-1) 

 

 
 

NO₃-  

(mg kg-1) 
 

 

Available P  
(mg kg-1) 

Crop yield 
(kg ha-1) 

Broccoli 

FP cowpea Conventional 12.50±0.95 1.28±0.03 13.90±7.35 7.15±3.98 394±179 18.14±5.64 27200±1261 

FC cowpea Conventional 12.47±0.79 1.23±0.08 14.43±4.02 6.39±1.49 242±146 26.29±3.75 29.850±3295 

Fallow Conventional 10.34±3.09 1.12±0.05 17.17±4.79 3.37±0.67 975±337 22.43±0.59 30100±1559 

FP cowpea Organic 12.99±2.07 1.13±0.03 18.80±2.43 1.64±0.31 293±124 21.11±2.31 23400±3317 

FC cowpea Organic 11.90±0.58 1.20±0.03 19.01±6.10 6.95±2.12 852±66 17.59±6.58 19350±2600 

Fallow Organic 11.45±0.31 1.12±0.04 18.36±6.90 8.37±1.95 775±342 16.72±4.46 22650±4743 

Melon 

M fava bean Conventional 12.66±0.90 1.03±0.01 32.93±3.44 7.54±0.56 39.73±5.99 56.76±5.38 17240±1640 

P fava bean Conventional 14.05±1.70 1.10±0.04 36.37±8.94 7.63±0.98 35.96±0.24 71.08±11.31 17160±40 

Fallow Conventional 15.14±1.62 1.15±0.17 34.15±2.47 8.33±0.84 49.14±23.10 64.16±0.15 17680±1360 

M fava bean Organic 12.85±0.36 1.13±0.02 30.64±12.49 7.14±1.12 82.46±65.95 66.58±1.12 18400±320 

P fava bean Organic 13.15±0.82 1.18±0.08 36.37±8.94 6.35±0.00 65.37±14.90 55.04±4.62 18440±1560 

Fallow Organic 13.95±1.11 1.21±0.09 40.25±3.55 7.24±0.14 90.21±23.70 66.45±8.23 20840±3720 
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The PCA performed with Δ values of most studied soil properties and crop yield 

of multiple cropping systems with regard to monocrops (multiple cropping Δdata; Figure 

2.2) showed that 66.3% of the total variation could be explained by the first two PCs. 

PC1, which explained 36.5% of variation, separated the broccoli crop (positive scores) 

from melon (negative scores). Cowpea/broccoli multiple cropping system was related to 

higher increases in SOC and Nt, and higher decreases in NO3- (Table 2.7). In the case of 

broccoli, PC1 also separated the conventional management practice from organic 

practice, with greater increases in SOC and Nt, and greater decreases in NO3- in the 

conventional management. PC2, which explained 29.8% of the variation, slightly 

separated management practices in both crops. In broccoli grown after FP, organic 

management led to higher factor scores, and so was associated with higher increases in 

P, AS and crop yield. By contrast, in melon, conventional management provided the 

highest factor scores in PC2.  
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Figure 2.2: PCA factor scores of variations in soil properties and crop yields in vegetable crops grown after 

grain legumes with regard to monocrops, considering different previous legume cultivars and management 

practices. Color represents vegetable crop type (red: broccoli crop; blue: melon crop), figure type represents 

management practice (square: conventional; circle: organic) and figure filling represents previous legume 

cultivar (filled figure: FP and M in broccoli and melon, respectively; empty figure: FC and P in broccoli 

and melon, respectively). Broccoli grown after FP cowpea under conventional management practice 

(FPCBRO), broccoli grown after FC cowpea under conventional management practice (FCCBRO), 

broccoli grown after FP cowpea under organic management practice (FPOBRO), broccoli grown after FC 

cowpea under organic management practice (FCOBRO), melon grown after M fava bean under 

conventional management practice (MCME), melon grown after P fava bean under conventional 

management practice (PCME), melon grown after M fava bean under organic management practice 

(MOME) and melon grown after P fava bean under organic management practice (POME). 
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Table 2.7: Matrix of PCA obtained with variation rates (%) of the most of studied soil properties of 

vegetable crops in multiple cropping and monocrop. 

Variance explained PC1 
(36.5%) 

PC2 
 (29.8%) 

ΔSOC 0.940 -0.002 

ΔNt 0.862 -0.105 

ΔNO₃- -0.703 -0.165 

ΔAvailable P 0.201 0.835 

ΔAggregates stability -0.160 0.594 

ΔCrop yield 0.079 0.837 
SOC: soil organic carbon content; Nt: total nitrogen. 
 

2.4. Discussion 
 
There is little information available on the effect of traditional and “non-usual” 

legumes grown in multiple cropping with vegetable crops under semi-arid conditions 

including different management practices. In the present case, the introduction of multiple 

cropping including a legume not commonly grown in the region - cowpea cultivated with 

broccoli in the same year - performed better than the traditional crop of fava bean grown 

with melon mainly for improving SOC and total and available N contents. The positive 

effects of legume-based multiple cropping on soil are related to their ability to fix 

atmospheric nitrogen, which provides N to the agro-ecosystem, compared to non-legume 

monocultures. Biologically fixed N is incorporated into the soil through roots, 

rhizodeposits and the mineralization of above-ground residues after harvest (Laberge et 

al., 2009). Ball et al. (2005) observed that the introduction of legumes in multiple 

cropping provided better soil structure, which, in turn, involves better root growth, water 

and nutrient uptake and thus increased yields (Lipiec and Hatano, 2003).  

The increases in SOC and available N associated with a previous cowpea crop 

compared with broccoli monocrop may be due to a higher release of substances derived 

from rhizodeposition by cowpea, since there was a lack of nodules in cowpea roots (data 

not shown). This last observation suggests the absence of specific rhizobial strains that 

form an effective association with cowpea. The inoculation of rhizobia in cowpea crops 

where this species has not been previously cultivated may even enhance its positive 

effects on soil. In fact, rhizobia could increase soil fertility since their symbioses with 

legume represents an N supply for the plant via BNF. This is translated into a direct 

increase of nutrients as a consequence of soil organic matter degradation derived from 

plant residues or root exudation (Hountin et al., 1997). Plant photosyntethically fixed C 

is the primary source of rhizodeposited C (Nguyen, 2003). Apart from this, legume roots 
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also deposit N-compounds such as NH4+ (Brophy and Heichel, 1989). The quantity and 

quality of root exudates vary according to the plant genetic and growth stage (Jones et al., 

2004). In contrast to cowpea, fava bean roots were nodulated (data not shown), which 

indicates that BNF was taking place. However, SOC and soil fertility in the subsequent 

melon crop did not much improve compared with the melon monocrop. This may be due 

to the fact that fava bean removed a higher amount of fixed N in the seed at harvest, which 

may limit its contribution to positive soil balances (Peoples and Craswell, 1992). This 

idea was supported by the fact that the N content was significantly higher in fava bean 

seeds (44 g kg-1) than in cowpea seeds (34 g kg-1) (Table 2.8).  
 

Table 2.8: Nitrogen content in cowpea and fava bean seeds at harvest of the second crop cycle. Values are 

mean ± standard deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001. 
 

  

Previous 
legume 
cultivara 

Management 
Practice 

 
N in seeds  

(g kg-1) 
 

FP cowpea Conventional 31.2±3.1 

FC cowpea Conventional 32.3±0.9 

FP cowpea Organic 38.1±5.7 

FC cowpea Organic 34.5±1.6 

M fava bean Conventional 44.2±2.1 

P fava bean Conventional 43.4±2.0 

M fava bean Organic 44.9±2.9 

P fava bean Organic 44.4±1.5 

F-valueb 12.7*** 
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In addition, the difference between both legumes in terms of improvement of SOC 

and soil fertility in the subsequent vegetable crop may have been aided by the fact that 

plant genetics influence the rhizodeposition process (Nguyen, 2003), and cowpea seems 

to be more active in releasing root exudates than fava bean. Furthermore, precipitations 

during September 2015 (72.60 mm) after the second cowpea cycle, as well as March 2016 

(47.80 mm) after the second fava bean cycle (Figure 2.1), may have affected the nitrate 

concentration in soil because of leaching processes (Huang et al., 2017), which implies 

the loss of the main N source for crop nutrition.  

The improvement of soil physical properties such as AS after multiple cropping compared 

to fallow period suggests that diversification of crops plays an important role in terms of 

quality of soil organic matter (SOM) accumulated in the soil by litter, green manure and 

rhizodeposition (Raphael et a., 2016). Improvements in SOM quantity and quality may 

have enhanced the formation of soil aggregates through associations of the sources of 

carbon with cations and soil particles (Bronick and Lal, 2005). In contrast, fallow periods 

do not receive any organic matter supply, which results in lower aggregates stabilization.  

There was a positive relationship between the variations in soil properties, such as 

SOC, AS and NH4+, with variations in available P. Mechanisms such as the inclusion of 

diversified cropping systems tend to increase organic matter storage in aggregates, which 

may also increase P retention and stabilization. In addition, macro-aggregates represent 

important sites for organic P storage (Nesper et al., 2015). C and N dynamics are 

associated with P availability through processes as N fixation or C sequestration (Tiessen, 

2008). In the former process, P is vital in the metabolic energy processes that drive 

symbiotic N2 fixation (Sulieman et al., 2013) while in the latter, it acts as an important 

structural element in nucleic acid, which regulates energy storage and transfer (Wang et 

al., 2013a). Thus, this could explain the positive correlation observed between increases 

in the phosphorus content with increases in SOC and AS. 

With regard to management practices, the conventional practice resulted in 

increased in SOC, Nt and NH4+ and declined in NO3- content in broccoli grown after 

cowpea compared with the monocrop (Figure 2.2 and Table 2.5). Conventional 

management also stimulated higher increases in P, AS and crop yield in melon grown 

after fava bean compared with the monocrop (Figure 2.2). These results reveal the lower 

available nutrient contents and subsequent declined crop yields after the use of organic 

practices in melon, which could be because the supplied N is organically bound and so 

depends on the mineralization of soil organic matter to become available to the plant. In 
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turn, lower crop yields under organic management practices may lead to lower carbon 

inputs to the soil from photosynthesis, (Leifeld et al., 2013), and/or higher SOM 

mineralization by active microbial populations, which can cause positive priming effect 

by addition of external organic inputs (Blagodatskaya and Kuzyakov 2008). Previous 

research has shown that in spite of addition of organic amendments into the soil, SOC 

content does not necessarily increase owing to priming effect, since it is controlled by the 

amount of organic amendment applied in relation to the soil organic matter (Fontaine et 

al., 2004; Kuzyakov 2010). 

Therefore, this agroecosystem requires a longer period to supply sufficient plant-

available N, which implies the need for more land to produce the same amount of food 

(Seufert et al., 2012). By contrast, organic management led to slight increases in crop 

yield in broccoli grown after cowpea compared with monocrop (Table 2.5). This may be 

explained by the fact that cowpea can grow under low-input farming systems and is well 

adapted to adverse conditions such as high temperatures or drought (Elhers and Hall, 

1997; Santiago de Freitas et al., 2012). 

 

2.5. Conclusions 
In conclusion, our results showed, contrary to our initial hypothesis, that the 

inclusion of cowpea, despite being an unusual crop in SE Spain, improved SOC and soil 

fertility in a subsequent broccoli crop compared with the broccoli monocrop, probably 

due to active rhizodeposition. The establishment of a traditional crop such as fava bean 

grown with melon did not greatly improve SOC and soil fertility with regard to the 

monocrop because a higher amount of fixed N was removed in the seed at harvest. 

Increases in available phosphorus were directly linked to increases in organic C, N and 

soil aggregation through N fixation and C sequestration processes. Conventional 

management was positively related to C and N pools in the broccoli crop. Organic 

management was related to improvements in soil structure and crop yield in the broccoli 

crop. Thus, cowpea crop in multiple cropping was seen to represent a good alternative for 

sustainable production, since it led to improvements in soil structure and subsequent crop 

yield under organic management. 
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Comparison of soil organic carbon pools and 
microbial activity in two horticultural multiple 
cropping systems under Mediterranean conditions  
 
Abstract 
 

Multiple cropping with legumes may play an important role in nutrient cycle 

through soil organic matter dynamic and biological activity, although this contribution 

depends on the specific plant species. Organic management is in addition expected to 

decrease the negative impacts of conventional intensive farming through soil C 

sequestration and activation of microbial populations. Thus, the aim of this study was to 

compare the effect of different cultivars of two legume species (cowpea –unusual in the 

study area- and fava bean –traditional in the study area) on C content and pools, N content 

and soil enzyme activities of subsequent vegetable crops (broccoli and melon, 

respectively) grown under conventional or organic systems after two multiple cropping 

cycles. Cowpea/broccoli multiple cropping was significantly more effective than fava 

bean grown after melon for increasing soil organic C (SOC), N and soil enzyme activities 

compared with monocrop. For the cowpea/broccoli multiple cropping, organic 

management contributed to higher C sequestration, while for the fava bean/melon 

multiple cropping was the conventional management practice that more increased SOC. 

The legume cultivar significantly affected soil N and dehydrogenase activity. Hence, 

previous cowpea crop in multiple cropping resulted in a sustainable alternative under 

semiarid conditions, since it increased soil quality of the subsequent vegetable crop likely 

due to active rhizodeposition, with more efficiency than fava bean. 

 

Keywords: Vigna unguiculata; Vicia faba; diversification; management practices; 

carbon dynamic; nitrogen dynamic. 
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3.1. Introduction 
Diversification of crop along rotations or multiple cropping plays an important 

role in nutrient cycle through soil organic matter (SOM) dynamic, although this 

contribution depends on the specific plant species (Raphael et al., 2016; Tivet et al., 

2013). In this context, the inclusion of grain legumes in rotation and multiple cropping 

assumes a good alternative from environment, agricultural and economic viewpoint. 

Positive effects of legume rotation and multiple cropping are primarily due to their ability 

to fix atmospheric nitrogen (N) through their association with Rhizobium bacteria, and 

thus provide extra available N, which can lead to a decrease in the use of external 

fertilizers (Jensen et al., 2012; Unkovich et al., 2008). The establishment of an effective 

legume-rhizobia symbiosis results in a suitable habitat for soil microorganisms through 

processes that influence nutrient cycling, such as the mineralization of legume crop 

residues after harvest (Arcand et al., 2014) or the release of root exudates during plant 

development, which tend to be N-rich in legumes plant species (Fustec et al., 2010). Both 

processes influence the SOM content, which not only contributes to improve soil structure 

and increase soil fertility, but also improves biological properties (Hargreaves et al., 2003; 

Kaiser et al., 2008). In addition, excessive use of external inputs can decrease soil 

microbial diversity and biological soil processes (Paul and Clark, 1996). The assay of soil 

enzyme activities is more sensitive than soil physicochemical properties. They play an 

important role in soil organic matter decomposition, nutrient availability and soil fertility 

(Bastida et al., 2008; Nannipieri et al., 2002). 

SOM and nutrients content can be enhanced by the management practice due to 

the introduction of different external inputs into the agro-ecosystem. With this regard, 

organic management practice is linked to an increase in SOM and microbial activity 

compared to conventional management (Melero et al., 2006). Agricultural practices such 

as N fertilization or crop rotations/multiple cropping influence capture and storage of 

atmospheric C through C sequestration (López-Bellido et al., 2010). Soil organic carbon 

(SOC) is divided into different pools (recalcitrant and labile). Recalcitrant fraction is 

composed of organic materials that are highly resistant to microbial decomposition; 

because of this, it is linked to efficient C storage and sequestration. Labile organic C is 

composed of those fractions of C easily mineralizable by soil microorganisms (Haynes, 

2005; Laganiere et al., 2010). In terms of soil organic carbon decomposition, plants 

provide C and N compounds through root exudation, which promote soil microbial 
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activity and thus, faster decomposition (Sugiyama and Yazaki, 2012). In addition, root 

exudates of legumes are especially rich in N (Fustec et al., 2010). However, the increase 

of N availability in the soil may lead to a reduction in the production of enzymes to 

mineralize N derived from recalcitrant organic matter (Craine et al., 2007).  

A key factor for the sustainable agricultural management is the choice of legume 

species that result in effective improvements in soil quality and crop production and 

quality, by active root exudation and efficient soil microbial rhizostimulation. In this 

sense, the selected legume has to be well adapted to the local biophysical characteristics, 

since its ability to fix atmospheric N is limited by the amount of effective soil rhizobia or 

specific rhizobial strains that will form an effective symbiosis (Peoples et al., 2001; 

Peoples et al., 2009; Unkovich et al., 2008). 

In this study we have designed a two-year field experiment with two vegetable 

crops with different harvesting season - melon (summer) and broccoli (winter) -  

cultivated as monocrops or grown after legumes (fava bean and cowpea, respectively) 

under conventional and organic management practices in order to compare the benefits 

of including legumes in multiple cropping compared to non-legume vegetables. The use 

of different management practices allows to evaluate their impact on soil C sequestration 

and microbial activity compared with vegetable monocrops. We hypothesized that fava 

bean, being a traditional crop in the study region, may stimulate with higher intensity soil 

microbial populations, with increases in recalcitrant and labile organic carbon pools in a 

subsequent vegetable crop (melon) as a result of BNF through effective symbiosis with 

soil microorganisms. Contrarily, unusual legume crops such as cowpea, due to the 

absence of specific rhizobia strains adapted to the host, should result in lower microbial 

stimulation and C sequestration. Thus, the main objectives of this study were to: i) assess 

the effect of a preceding legume crop, considering two different legume cultivars as well 

as two different management practices, on SOC content and C pools and soil microbial 

activity; and ii) to ascertain whether any such effects depend on the specific legume 

species. 

 

3.2. Materials and methods 

3.2.1. Study site and experimental design 
This study was carried out in Cartagena, southeast Spain (37º 41` N 0º 57` E). The 

field experiment was designed in a complete randomized block with four replications, 
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using plots of 10 m2. The area is characterized by a semiarid Mediterranean climate, with 

a mean annual temperature of 18 ºC and mean annual rainfall of 275 mm. The soil was a 

Haplic Calcisol (IUSS, 2014) with a clay loam texture. The main soil characteristics are 

shown in Table 3.1. The inclusion of legumes in multiple cropping with two traditional 

vegetable crops in the region (broccoli and melon) was studied through the establishment 

of two parallel experiments during two years. The monthly precipitations during the two 

years that the field experiments lasted are shown in the Table 3.2. 
 
Table 3.1: Main soil characteristics. Values shown are mean ± standard deviation (n=4). 
 

Parametera   

pH 8.4±0.1 

EC (µScm-¹) 343±72 

SOC (g kg-¹) 12.8±0.3 

Nt (g kg-¹) 0.9±0.1 

Bulk density (g cm-³) 1.0±0.0 

CEC (cmol+ kg-¹) 4.2±1.1 

CaCO3 (%) 30.2±1.2 

Clay (%) 34.5±0.16 

Silt (%) 21.3±1.06 

Sand (%) 44.2±0.92 

Aggregates stability (%) 7.3±0.6 
a:EC: electrical conductivity; SOC: soil organic carbon content; Nt: total nitrogen; CEC: cation exchange 
capacity. 

 

Table 3.2: climatic conditions in the legumes (cowpea and fava bean) and vegetable crops (broccoli and 

melon) during the two crop cycles. 

 

  
Crop 
type 

Crop 
cycle 

Rainfall 
(mm) 

 

Maximum 
Temperature (ºC) 

Mean 
Temperature (ºC) 

Minimum 
Temperature (ºC) 

Cowpea 
29/5/14-13/8/14 13.20 28.10 24.13 17.51 

3/6/15-14/9/15 69.60 29.95 25.62 20.33 

Broccoli 
13/11/14-26/2/16 25.20 18.79 11.85 5.68 

1/12/15-24/2/16 7.25 17.42 12.71 8.84 

Fava bean 
24/10/14-2/3/15 31.50 19.13 12.55 5.68 

5/11/15-13/4/16 40.45 19.18 13.37 8.32 

Melon 
15/6/15-8/9/15 67.60 29.95 26.28 20.33 

13/6/16-23/8/16 1.00 28.41 24.92 20.81 
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3.2.1.1. Crop 1: cowpea-broccoli multiple cropping system 
Two local Portuguese cultivars (Feijão frade de fio preto (FP) and Feijão frade de 

fio claro (FC)) of cowpea (Vigna unguiculata (L.) Walp.) were grown during two summer 

seasons (29/05/2014-13/08/2014 and 03/06/2015-14/09/2015). Cowpea is not normally 

cultivated in the region. After each cowpea crop, the soil was prepared to cultivate 

broccoli (Brassica oleracea L. var. italica) cv Parthenon with only a surface tillage (0-20 

cm) in the same furrow direction. The broccoli crop was grown during the successive two 

winter seasons (13/11/2014-26/02/2015 and 1/12/2015-24/02/2016). A broccoli 

monocrop was also used with plots left fallow during the cowpea season (no cultivation 

of cowpea) to check the effect of multiple cropping with the legume on soil quality and 

fertility. 

Both crops were established under drip irrigation with two management practices: 

conventional and organic. Cowpea seeds were sown and broccoli plants were planted with 

a spacing of 100 cm between rows and 20 cm between plants (5 plants m-2). No herbicide 

treatment was applied, and the crops were kept free of weeds through hand-hoeing when 

necessary. In the cowpea crop, 30 kg ha-1 of N and 2.4 kg ha-1 of P2O5 were applied as 

ammonium nitrate (33.5% N) and monoammonium phosphate (61% P2O5, 12% N) in the 

conventional practice, and using a commercial organic fertilizer (Bombardier, 

Agroquímicos los Triviños, Spain; 10.7% w/v N, 0.7% w/v P2O5) in the organic practice. 

In the broccoli crop, 250 kg ha-1 N, 100 kg ha-1 P2O5 and 300 kg ha-1 K2O were applied 

by fertigation as ammonium nitrate (33.5% N), monoammonium phosphate (61% P2O5, 

12% N) and potassium sulphate (50% w/v K2O, 18% S) in the conventional practice, and 

using two commercial organic fertilizers (Heronatur 4-2-8 and Heronatur 7-2-4; Herogra 

Fertilizantes, Spain; 4% w/v N, 2% w/v P2O5 and 8% w/v K2O, and 7% w/v N, 2% w/v 

P2O5 and 4% w/v K2O) in the organic practice. 

 

3.2.1.2. Crop 2: fava bean-melon multiple cropping system 
Two local Spanish cultivars - Muchamiel (M) and Palenca (P) - of fava bean (Vicia 

faba L.) were grown during two winter seasons (24/10/2014-02/03/2015 and 05/11/2015-

13/04/2016). Fava bean is a traditional legume crop in the region. After the fava bean 

crop, the soil was prepared to grow a melon crop (Cucumis melo L.) cv Hidalgo with only 

a surface tillage (0-20 cm) in the same furrow direction. The melon crop was grown 

during the successive two summer seasons (15/06/2015-08/09/2015 and 13/06/2016-
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23/08/2016). A melon monocrop was also used with plots left fallow during the fava bean 

season (no cultivation of fava bean) to check the effect of multiple with the legume on 

soil quality and fertility. 

Both crops were established under drip irrigation with two management practices: 

conventional and organic. Fava bean seeds were sown with a spacing of 100 cm between 

rows and 40 cm between plants (2.5 plants m-2) while melon plants were planted with a 

spacing of 200 cm between rows and 120 cm between plants (0.8 plants m-2). No herbicide 

treatment was given, and the crops were kept free of weeds through hand-hoeing when 

necessary. In the fava bean crop, 20 kg ha-1 of N and 1.2 kg ha-1 of P2O5 were applied as 

ammonium nitrate (33.5% N) and monoammonium phosphate (61% P2O5, 12% N) in the 

conventional practice, and using a commercial organic fertilizer (Bombardier, 

Agroquímicos los Triviños, Spain; 10.7% w/v N, 0.7% w/v P2O5) in the organic practice. 

In the melon crop, 200 kg ha-1 N, 120 kg ha-1 P2O5 and 340 kg ha-1 K2O were applied by 

fertigation as ammonium nitrate (33.5% N), monoammonium phosphate (61% P2O5, 

12% N) and potassium sulphate (50% w/v K2O, 18% S) in the conventional practice, and 

using a commercial organic fertilizer (Espartán Agroindustrial Kimitec S.L, Spain; 3.8% 

w/v N, 2.9% w/v P2O5 and 3.6% w/v K2O) and potassium sulphate (50% w/v K2O, 18% 

S) in the organic practice. 

 

3.2.2. Soil sampling  
The soil was sampled at the beginning of the experiments before sowing the 

legumes and upon harvesting each vegetable crop at the end of the second multiple 

cropping cycle. Thus, two soil samplings were carried out per crop system. All plots were 

sampled at 0-20 cm (plough depth). Three random soil samples per plot were collected 

and homogenized to obtain a composite sample. Samples were air-dried for 7 days, sieved 

< 2mm and stored at room temperature until analyses. Enzyme activities were measured 

in air-dried samples since these properties in Mediterranean semiarid soils are medium-

term stable in stored air-dried samples (Zornoza et al., 2009a)
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3.2.3. Soil analyses 
Bulk density was determined using the cylinder method; soil pH and electrical 

conductivity (EC) were measured in deionized water (1:2.5 and 1:5 w/v, respectively); 

soil texture was determined by the Bouyoucos method (Dewis and Freitas, 1970); soil 

aggregate stability (AS) was assessed with the rainfall simulator method according to 

Roldán et al. (1994); for equivalent calcium carbonate the volumetric method (Bernard 

calcimeter) was used (Cobertera, 1993); SOC was determined by the wet oxidation 

method using K2Cr2O7 (Walkley and Black, 1934); recalcitrant carbon (RC) and labile 

carbon (LC) were measured by the method of the double acid hydrolysis (Rovira and 

Vallejo, 2007); total nitrogen (Nt) was analyzed by the Kjeldahl method (Hoeger, 1998); 

cation exchange capacity was determined using BaCl2 as exchangeable salt (Roig et al, 

1980); β-glucosidase (Glu) activity was based on the determination of p-nitrophenol 

released after incubation at 37 °C with β-D-glucopyranoside (Tabatabai, 1982); β-

glucosaminidase (Glm) activity was based on the determination of p-nitrophenol released 

after incubation with p-nitrofenil-β-D-glucopyranoside at 37 °C (Parham and Deng, 

2000); dehydrogenase (Dhs) activity was determined using p-iodo-nitro-tetrazolium 

chloride as substrate and measuring the absorbance of the iodonitrotetrazolium formazam 

(INTF) produced (Von Merci and Schinner, 1991); arylesterase (Aryl) activity was based 

on the determination of p-nitrophenol released after incubation with p-nitrophenil acetate 

at 37°C (Zornoza et al., 2009b); cellulase (Cel) activity was assessed by determination of 

gearboxes sugars using amorphous cellulose as substrate (García-Álvarez and Ibáñez, 

1994; Nelson, 1994); urease (Ure) activity was based on the determination of ammonium 

released after incubation of the soil with urea at 37°C (Nannipieri et al., 1978). 

 

3.2.4. Statistical analyses 
The average value of soil parameters measured at the beginning of the experiment 

was subtracted from values at the end of the second cycle and divided by the initial values 

to obtain the increment data (time Δ data) according to the following equation 1: 

 

time Δdata = [(Final value – Initial value) / Initial value] × 100   (1) 

 

Similarly, the average value of soil parameters measured from each vegetable 

monocrop was subtracted from its respective crop grown after legumes and divided by 
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the monocrop values to obtain the multiple cropping Δ data according to the following 

equation 2:  

 

Multiple cropping Δdata = [(Legume multiple cropping value – Monocrop value) / 

Monocrop value] × 100 (2) 

 

Using this approach, the relative increases or decreases for all properties can be 

used to compare all properties between both crop systems since the unit can be 

homogenized to percentage of variation.  

Data were checked to ensure normal distribution using the Kolmogorov–Smirnov 

test and transformed when necessary to ensure normal distribution. The Δdata of 

properties following a normal distribution were submitted to three-way ANOVA to assess 

the differences among previous legume cultivars, vegetable crop type and management 

practices at the end of the experiments. The Δdata of those properties without normal 

distribution were submitted to a one-way non-parametric ANOVA (Kruskal-Wallis test) 

for the factors: legume cultivar, vegetable crop type and management practice. Multiple 

linear regression analysis (Y=m1X1 +m2X2 +···+mnXn +b) was carried out with the time 

Δdata using stepwise and backward methods, with RC and LC as independent variable 

and SOC, RC, LC, Nt and enzyme activities as dependent variables. Standardized 

coefficient (β) and partial correlation values were used for the analysis. The β coefficient 

is the estimated value resulting from the analysis performed on variables that have been 

standardized to have a variance of 1 in order to determine which of the independent 

variables has a greater effect on the dependent variable. Therefore, variables with larger 

β coefficients contribute more to the model. The partial correlation indicates the 

correlation between the dependent variable and one independent variable when the linear 

effects of the remaining variables have been eliminated. The unstandardized coefficients 

(m) were used to fit the values of RC or LC versus the values calculated using the 

regression model. Furthermore, a principal components analysis (PCA) was performed 

with all multiple cropping Δdata to study the structure of dependence and correlation 

established among the variables in both vegetable cropping systems. Statistical analyses 

were performed with the software IBM SPSS for Windows, Version 22. 
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3.3. Results 

3.3.1. Soil organic carbon content and pools, total nitrogen and 

enzyme activities after two multiple cropping cycles 
Table 3.3 shows the variation rate (Δ values) in SOC, Nt, RC and RL at the end 

of the second cycle compared to initial values (time Δdata) (absolute values are shown in 

the Table 3.4). Vegetable crop type only significantly affected ΔSOC, with no significant 

effect on ΔNt, ΔRC and ΔLC. The other factors had no significant effect on the variation 

of these properties. The broccoli crop showed significantly higher decreases in SOC than 

melon crop (P < 0.001) after two years of cultivation, mainly under conventional 

management. The highest SOC decreases were observed in the broccoli monocrops (after 

a fallow period), with values at the end of the experiment 19.6% lower than initial values. 
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Table 3.3: Variation rates (%) ± standard deviation of soil organic carbon, total nitrogen, recalcitrant and 

labile carbon in both vegetable crops (broccoli and melon) after two years of multiple cropping with 

legumes compared with initial values at the beginning of the experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; ns: not significant (P > 0.05). Different letters within each crop type indicate 
significant differences (P > 0.05). 
SOC: soil organic carbon content; Nt: total nitrogen; RC: recalcitrant carbon; LC: labile carbon. 

Previous 
 legume 
cultivara 

Management 
practice 

 
ΔSOC 

 

 
ΔNt 

 
ΔRC ΔLC 

Broccoli 

FP cowpea Conventional -2.8±7.4 39.1±3.1 97.6±8.3 -71.1±7.2 

FC  cowpea Conventional -3.1±6.1 34.1±8.5 80.2±41.5 -59.7±18.5 

Fallow Conventional -19.6±14.3 -91.2±0.4 -92.2±0.2 -98.3±0.3 

FP  cowpea Organic 0.9±16.1 22.5±3.5 138.6±116.4 -47.1±24.8 

FC  cowpea Organic -7.5±4.5 31.1±3.0 123.6±14.4 -90.5±8.8a 

Fallow Organic -10.9±2.4 -91.2±0.3 -92.7±0.7 -98.3±0.5 

Melon 

M fava bean Conventional -1.6±4.9 12.7±0.6 109.3±8.1 -76.9±13.8 

P  fava bean Conventional 9.2±9.3 20.2±2.9 80.5±3.7 -51.2±10.0 

Fallow Conventional 17.6±8.3 -91.0±0.9 -91.0±0.3 -97.2±0.5 

M  fava bean Organic -0.1±1.9 23.0±1.8 30.9±22.5 -21.5±18.5 

P  fava bean Organic 2.1±4.5 28.2±6.0 65.9±26.7 -29.5±33.7 

Fallow Organic 8.4±6.1 -90.6±0.5 -91.8±0.2 -97.3±0.3 

χ2 value 

Vegetable crop type (VCT) 14.41*** 2.02ns 0.19ns 3.02ns 

Previous legume cultivar (PLC) 0.12ns 1.61ns 0.03ns 0.08ns 

Management practice (MP) 0.62ns 0.01ns 0.57ns 0.4ns 
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Table 3.4: soil organic carbon, total nitrogen, recalcitrant and labile carbon at the beginning of the 

experiments and at harvest of both vegetable crops (broccoli and melon) after the second year of multiple 

cropping with legumes. Values are mean ± standard deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bC: conventional; O: organic. 
SOC: soil organic carbon; Nt: total nitrogen; RC: recalcitrant carbon and LC: labile carbon. 
 
  

Previous 
legume 
cultivara 

Management 
practiceb 

SOC 
(g kg-1) 

 

Nt 
(g kg-1) 

 

RC 
 (%) 

LC 
(%) 

 

Broccoli 

Initial value at the beginning of the experiment - 12.86±0.36 0.91±0.03 0.52±0.02 0.76±0.05 

FP cowpea C 12.50±0.95 1.28±0.03 1.03±0.04 0.22±0.06 

FC cowpea C 12.47±0.79 1.23±0.08 0.94±0.22 0.31±0.14 

Fallow  C 10.35±3.09 1.13±0.05 1.00±0.02 0.21±0.04 

FP cowpea O 12.99±2.07 1.13±0.03 1.24±0.61 0.41±0.19 

FC cowpea O 11.90±0.58 1.20±0.03 1.16±0.08 0.07±0.07 

Fallow O 11.46±0.31 1.13±0.04 0.93±0.09 0.21±0.06 

Melon 

Initial value at the beginning of the experiment - 12.86±0.36 0.91±0.03 0.52±0.02 0.76±0.05 

M fava bean C 12.66±0.90 1.03±0.01 1.09±0.06 0.18±0.15 

P fava bean C 14.05±1.70 1.10±0.04 0.94±0.03 0.38±0.11 

Fallow C 15.14±1.62 1.15±0.17 1.15±0.06 0.36±0.10 

M fava bean O 12.85±0.36 1.13±0.02 0.68±0.17 0.60±0.20 

P fava bean O 13.15±0.82 1.18±0.08 0.86±0.20 0.54±0.37 

Fallow O 13.95±1.11 1.21±0.09 1.05±0.05 0.35±0.06 
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The variation in Glu, Dhs, Ure and Cel was significantly influenced by vegetable 

crop type (Table 3.5), with significantly higher increases of Glu, Dhs, Ure and lower 

decreases in Cel in the broccoli crop compared with melon (P < 0.01). Glm and Aryl were 

not significantly affected by vegetable crop type. None enzyme activity was significantly 

affected by legume cultivar or management practice. 
 

Table 3.5: Variation rates (%) ± standard deviation of soil enzyme activities in both vegetable crops 

(broccoli and melon) after two years of multiple cropping with legumes with regards to initial values at the 

beginning of the experiments. 
 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; ** P < 0.01; ns: not significant (P > 0.05). Different letters within each crop 
type indicate significant differences (P > 0.05). 
Glu: β-glucosidase; Glm: β-glucosaminidase; Aryl: Arylesterase; Dhs: Dehydrogenase; Ure: urease and 
Cel: cellulase activities. 

  

Previous 
 legume 
cultivara 

Management 
practice ΔGlu ΔGlm ΔAryl ΔDhs ΔUre ΔCel 

Broccoli 

FP cowpea Conventional 203.5±81.8 149.8±52.2 -13.6±21.6 1565.3±242.1 3.0±15.4 -78.6±9.4 

FC  cowpea Conventional 186.4±57.6 89.8±24.8 -21.4±5.1 1792.2±365.5 143.1±137.6 -85.4±8.6 

Fallow Conventional -96.5±0.3 -98.8±0.3 526.3±248.8 -93.3±1.5 -96.6±1.0 -88.5±6.5 

FP  cowpea Organic 209.4±67.3 60.4±12.1 -29.8±20.2 1681.1±198.2 190.9±214.4 -86.6±6.9 

FC  cowpea Organic 341.3±14.6 167.1±45.7 -18.1±17.6 2018.7±383.8 181.2±208.1 -76.3±5.5 

Fallow Organic -95.7±0.7 -98.8±0.2 850.7±253.2 -93.8±2.5 -97.4±1.1 -94.7±1.8 

Melon 

M fava bean Conventional 0.1±8.9 107.0±58.1 -29.6±12.1 -63.4±8.7 -100.0±0.0 -99.9±0.0 

P  fava bean Conventional -24.0±1.4 119.7±49.6 -44.7±5.3 -42.0±10.7 -100.0±0.0 -99.9±0.0 

Fallow Conventional -97.9±0.2 -98.7±0.0 899.3±327.4 -99.7±0.0 -100.0±0.0 -99.9±0.0 

FP  cowpea Organic 17.5±12.4 83.6±71.6 -55.2±2.5 -56.9±17.3 -100.0±0.0 -99.9±0.0 

FC  cowpea Organic -24.0±1.4 120.9±12.3 -26.2±3.6 -17.3±26.9 -100.0±0.0 -99.9±0.0 

Fallow Organic -97.2±0.7 -98.8±0.1 433.9±44.6 -99.6±0.0 -100.0±0.0 -99.9±0.0 

χ2value 

Vegetable crop type (VCT) 4.58** 0.03ns 2.02ns 8.10** 30.01*** 26.27*** 

Previous legume cultivar (PLC) 0.40ns 1.76ns 0.65ns 2.25ns 0.09ns 0.08ns 

Management practice (MP) 0.46ns 0.06ns 0.16ns 0.16ns 0.06ns 0.53ns 
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Multiple linear regression analysis (Table 3.6) showed that the variation in RC for 

both vegetable crops was positively related to ΔNt, and negatively related to ΔLC (R2 = 

0.86, F = 106069, P < 0.001). ΔLC was positively related to ΔNt, and negatively related 

to ΔCel (R2 = 0.71, F = 26.80, P < 0.001). 
 

Table 3.6: Multiple linear regression model for ΔRC and ΔLC in both vegetable crops (broccoli and melon) 

after two crop years with regard to initial values at the beginning of the experiments.  
  

Y X m Partial 
correlation β R² R² adj F value 

ΔRC 

Constant (b) -18.33   

0.86 0.85 106069*** ΔNt 1.88 0.91 1.10 

ΔLC -1.03 -0.55 -0.32 

    

ΔLC 

Constant (b) -155.41   
0.71 0.69 26.80*** ΔNt 0.78 0.77 1.48 

ΔCel -1.11 -0.53 -0.35 

       
m: unstandardized coefficients; β: standardized coefficients. Significant at ***P<0.001 
Nt: total nitrogen; RC: recalcitrant carbon; LC: labile carbon; Cel: cellulase activity. 

 

The PCA performed with time Δdata (Figure 3.1) showed that 77.2% of the total 

variation could be explained by the first two PCs. PC1, which explained 44.4% of 

variation, separated multiple cropping (positive scores) from monocrops (negative scores) 

in both crops. Multiple cropping systems with legume were related to higher increases in 

Nt, Glm, RL and LC, and higher decreases in Aryl (Table 3.7). PC2, which explained 

32.8% of the variation, separated both vegetable crops. Cowpea/broccoli multiple 

cropping system (positive scores) was related to higher increases in Cel, Dhs, Glu and 

Ure activities, and higher decreases in SOC.  
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Figure 3.1: PCA factor scores of variations in soil properties in both vegetable crops (broccoli and melon) 

in multiple cropping with grain legumes compared with initial values at the beginning of the experiments, 

considering different previous legume cultivars and management practices. Color represents vegetable crop 

type (red: broccoli crop; blue: melon crop), figure type represents management practice and cropping 

system (square: conventional multiple cropping; circle: organic multiple cropping; triangle: conventional 

monocrop; rhombus: organic monocrop) and figure filling represents previous legume cultivar (filled 

figure: FP and M in broccoli and melon, respectively; empty figure: FC and P in broccoli and melon, 

respectively). FP: Fio preto cultivar; FC: Fio claro cultivar; M: Muchamiel cultivar; P: Palenca cultivar; C: 

conventional management; O: organic management, BRO: broccolic crop; ME: melon crop.  
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Table 3.7: Matrix of PCA obtained with variation rates (%) of the studied soil properties in both vegetable 

crops (broccoli and melon) after two crop years with regard to initial values at the beginning of the 

experiments (time Δdata). 

Variance explained PC1 
(44.4%) 

PC2 
 (32.8%) 

ΔNt 0.945 0.262 

ΔGlm 0.909 0.234 

ΔAryl -0.897 -0.167 

ΔRC 0.822 0.370 

ΔLC 0.793 -0.305 

ΔCel 0.057 0.909 

ΔDhs 0.381 0.874 

ΔGlu 0.563 0.763 

ΔUre 0.304 0.734 

ΔSOC 0.234 -0.443 
SOC: soil organic carbon content; Nt: total nitrogen; RC: recalcitrant carbon; LC: labile carbon; Glu: β-
glucosidase, Glm: β-glucosaminidase; Aryl: Arylesterase; Dhs: Dehydrogenase; Ure: urease and Cel: 
cellulase activities. 

 

3.3.2. Effect of legume-based multiple cropping against 

monocrop on organic carbon content and pools, soil nitrogen 

and enzyme activities 

Table 3.8 shows the variation rate of multiple cropping systems compared with 

monocrops (multiple cropping Δdata) in SOC, Nt, RL and RC (absolute values are shown 

in the Table 3.4). Vegetable crop significantly influenced the variation in SOC, Nt and 

RC (P<0.001), with highest increases in the cowpea/broccoli multiple cropping system. 

Previous legume cultivar significantly influenced ΔNt (P<0.05), with highest increases in 

broccoli grown after FP cultivar under conventional practice, and in melon grown after P 

cultivar under organic practice. The management practice did not significantly influence 

any of these soil properties. ΔLC was not significantly affected by any factor of study.  
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Table 3.8: Variation rates (%) ± standard deviation of soil organic carbon, total nitrogen, labile carbon and 

recalcitrant carbon in both vegetable crops grown after legumes (broccoli and melon) at the end of the 

second crop cycle with regards to broccoli and melon monocrops. 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; *P < 0.05; ns: not significant (P > 0.05). Different letter within each crop type 
indicate significant differences among means (P > 0.05).  
SOC: soil organic carbon content; Nt: total nitrogen; LC: labile carbon; RC: recalcitrant carbon. 
 
Table 3.9 shows the variation rate of multiple cropping systems compared with monocrop 

(multiple cropping Δdata) in the soil enzyme activities (absolute values are shown in the 

Table 3.10). Vegetable crop significantly influenced ΔGlu, ΔAryl, ΔDhs and ΔCel 

(P<0.05), with significant general increases in broccoli grown after cowpea. Contrarily, 

these soil enzyme activities tended to decrease in the melon crop grown after fava bean 

compared with melon grown as monocrop. Nonetheless, ΔAryl significantly increased in 

the melon crop grown after fava bean only under organic management practice. Previous 

legume cultivar only significantly influenced ΔDhs (P<0.01), with highest increases in 

broccoli grown after FC cultivar, and in melon grown after P cultivar. Management 

practice significantly affected ΔUre and ΔCel (P<0.05), with highest increases under 

organic management practice in the cowpea/broccoli system. 
  

Previous  legume 
cultivara 

Management 
practice ΔSOC ΔNt ΔLC (%) ΔRC (%) 

Broccoli 

FP cowpea Conventional 20.8±9.2 13.1±2.5 4.4±26.3 2.4±4.3 

FC  cowpea Conventional 20.5±7.6 9.0±6.9 45.7±67.1 -6.6±21.5 

FP  cowpea Organic 13.3±18.0 -0.4±2.8 90.6±89.5 33.1±64.9 

FC  cowpea Organic 3.8±5.0 6.6±2.4 -65.7±32.0 24.7±8.0 

Melon 

M fava bean Conventional -16.4±4.2 -10.3±0.5 -50.7±29.5 -5.7±3.6 

P  fava bean Conventional -7.2±7.9 -4.3±2.3 4.5±21.5 -18.7±1.7 

M  fava bean Organic -7.9±1.8 -6.8±1.3 74.7±41.1 -35.1±11.1 

P fava bean Organic -5.8±4.1 -2.8±4.5 56.8±74.9 -17.8±13.2 

  F-valueb F-value F-valueb χ2value 

Vegetable crop type (VCT) 46.2*** 86.0*** 0.0ns 10.4*** 

Previous legume cultivar (PLC) 0.0ns 5.1* 0.8ns 0.0ns 

Management practice (MP) 1.0ns 3.6ns 3.0ns 0.0ns 
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Table 3.9: Variation rates (%) ± standard deviation of soil enzyme activities in both vegetable crops 

(broccoli and melon) at the end of the second crop cycle with regards to broccoli and melon monocrops. 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001; ** P < 0.01; *P < 0.05; ns: not significant (P > 0.05). Different letter within 
each crop type indicate significant differences among means (P > 0.05). 
Glu: β-glucosidase; Glm: β-glucosaminidase; Aryl: Arylesterase; Dhs: Dehydrogenase; Cel: cellulase; 
Ure: urease. 

 

  

Previous  
legume 
cultivara 

Management 
practice ΔGlu (%) ΔGlm (%) ΔAryl (%) ΔDhs (%) ΔCel (%) ΔUre (%) 

Broccoli 

FP cowpea Conventional 43.3±38.6 13.7±23.8 76.8±44.2 32.5±19.2 15.4±50.9 -41.5±8.8 

FC  cowpea Conventional 35.3±27.2 -13.6±11.3 60.8±10.5 50.6±29.1 -21.2±46.4 38.0±78.1 

FP  cowpea Organic 18.4±25.8 -25.7±5.6 -5.4±27.2 51.7±16.8 55.2±80.1 118.7±161.3 

FC  cowpea Organic 68.9±5.6 23.7±21.2 10.5±23.8 80.5±32.7 175.1±64.1 111.5±156.5 

Melon 

M fava bean Conventional -21.3±7.0 -16.5±23.4 -9.6±15.5 -39.1±14.5 -38.6±15.9 0.0±0.0 

P  fava bean Conventional -40.3±1.1 -11.3±20.0 -29.0±6.8 -3.5±17.8 -46.1±33.6 0.0±0.0 

M  fava bean Organic -31.9±7.2 -18.5±31.8 7.6±6.1 -36.2±25.5 -24.1±52.04 0.0±0.0 

P  fava bean Organic -56.0±0.8 -1.9±5.5 77.1±8.8 22.4±39.9 -44.8±22.74 0.0±0.0 

  F-valueb F-value F-value F-value F-value χ2value 

Vegetable crop type (VCT) 98.5*** 2.0ns 7.4* 41.4*** 23.4*** 2.2ns 

Previous legume cultivar (PLC) 0.0ns 1.8ns 1.9ns 11.2** 0.5ns 1.1ns 

Management practice (MP) 0.3ns 0.0ns 0.0ns 3.4ns 10.4** 4.4* 
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Table 3.10: Soil enzyme activities at the beginning of the experiments and at harvest of both vegetable 

crops (broccoli and melon) after the second year of multiple cropping with legumes. Values are mean ± 

standard deviation (n=4). 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bC: conventional; O: organic. 
Glu: β-glucosidase; Glm: β-glucosaminidase; Aryl: Arylesterase; Dhs: Dehydrogenase; Ure: urease; Cel: 
cellulase activities; PNP: pnitrophenol and INTF: iodonitrotetrazolium formazan. 

The PCA performed with Δvalues (Figure 3.2A and B) showed that 72.1% of the total 

variation could be explained by the first three PCs. PC1, which explained 30.7% of 

variation, slightly separated the broccoli crop (positive scores) from melon crop (negative 

scores). Cowpea/broccoli multiple cropping system was related to higher increases in Nt, 

SOC and Aryl, Glu and Glm (Table 3.11). PC2, which explained 23.4% of the variation, 

slightly separated management practices in both crops. In broccoli crop, organic 

management showed higher factor scores, and so was associated with higher increases in 

Cel and RC, and higher decreases in LC. By contrast, in melon, conventional management 

provided the highest factor scores in PC2. PC3, which explained 18.0% of variation, 

separated the broccoli crop under organic management (positive scores) from the rest of 

Previous 
legume 
cultivara 

Management 
practiceb 

 
Glu 

(µmol PNP g-1 h-

1) 
 
 

 
Glm 

(µmol PNP g-

1 h-1) 
 
 

Aryl 
(µmol PNP g-1 

h-1) 

 
Dhs 

(µmol INTF 
g-1 h-1) 

 

 
Ure  

(µmol 
NH4

+ g-1 
h-1) 

 

 
Cel 

(nmol 
glucose g-1 

h-1) 

Broccoli 

Initial value at 
the beginning 

of the 
experiment 

- 0.20±0.05 0.06±0.02 165±12 0.07±0.05 0.24±0.12 7.96±1.69 

FP cowpea C 0.63±0.17 0.17±0.04 142±35.66 1.13±0.16 0.25±0.04 1.70±0.75 

FC cowpea C 0.60±0.12 0.13±0.02 129±8.51 1.29±0.25 0.60±0.34 1.16±0.69 

Fallow  C 0.44±0.05 0.15±0.04 80±32.02 0.85±0.20 0.4±0.13 1.48±0.84 

FP cowpea O 0.65±0.14 0.11±0.01 115±33.35 1.21±0.13 0.72±0.53 1.06±0.55 

FC cowpea O 0.92±0.03 0.18±0.03 135±29.16 1.44±0.26 0.69±0.51 1.88±0.44 

Fallow O 0.55±0.09 0.15±0.02 122±32.59 0.80±0.33 0.33±0.15 0.68±0.23 

Melon 

Initial value at 
the beginning 

of the 
experiment 

- 0.20±0.05 0.06±0.02 165±12 0.07±0.05 0.24±0.12 7.96±1.69 

M fava bean C 0.21±0.03 0.14±0.06 116±28 0.02±0.01 0.00±0.00 0.01±0.00 

P fava bean C 0.16±0.00 0.15±0.05 91±12 0.04±0.01 0.00±0.00 0.00±0.00 

Fallow C 0.27±0.04 0.17±0.01 128±60 0.04±0.00 0.00±0.00 0.01±0.00 

M fava bean O 0.25±0.04 0.12±0.07 73±6 0.03±0.02 0.00±0.00 0.00±0.00 

P fava bean O 0.16±0.00 0.15±0.01 121±8 0.06±0.03 0.00±0.00 0.00±0.00 

Fallow O 0.36±0.14 0.15±0.03 68±8 0.05±0.01 0.00±0.00 0.01±0.00 
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treatments. Cowpea/broccoli multiple cropping system under organic management was 

related to higher increases in Ure and Dhs (Table 3.11).  
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Figure 3.2: PCA factor scores for PC1, PC2 and PC3 of variations in soil properties in vegetable crops grown with grain legumes with regard to monocrops, considering 

different previous legume cultivars and management practices. Color represents vegetable crop type (red: broccoli crop; blue: melon crop), figure type represents management 

practice (square: conventional; circle: organic) and figure filling represents previous legume cultivar (filled figure: FP and M in broccoli and melon, respectively; empty figure: 

FC and P in broccoli and melon, respectively). Legend abbreviations are described in Figure 1 caption.  
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Table 3.11: Matrix of PCA obtained with variation rates (%) of the studied soil properties in both vegetable 

crops grown after legumes (broccoli and melon) at the end of the second crop cycle with regards to broccoli 

and melon monocrops. 

Variance explained PC1 
(30.7%) 

PC2 
 (23.4%) 

PC3 
 (18.0%) 

ΔNt 0.904 0.242 0.102 

ΔSOC 0.813 -0.124 0.457 

ΔAryl 0.718 -0.310 -0.124 

ΔGlu 0.645 0.500 0.320 

ΔGlm 0.562 0.375 -0.152 

ΔLC 0.107 -0.809 0.351 

ΔCel 0.192 0.742 0.324 

ΔRC 0.072 0.692 0.364 

ΔUre -0.028 0.075 0.870 

ΔDhs 0.540 0.312 0.569 

SOC: soil organic carbon content; Nt: total nitrogen; LC: labile carbon; Glu: β-glucosidase; Glm: β-
glucosaminidase; Aryl: Arylesterase; Dhs: Dehydrogenase; Ure: urease and Cel: cellulase activities. 
 

3.4. Discussion 
The comparative study of soil C and N dynamics in two different vegetable crops 

grown after legume species (traditional and “non-usual”) under semiarid conditions 

considering conventional and organic management practices is novel. In this respect, the 

inclusion of cowpea in multiple cropping with broccoli, which has not been previously 

grown in the study region, led to an improvement in SOC, RC, Nt and enzyme activities 

compared to the traditional crop of fava bean grown after melon, contrary to our initial 

hypothesis. Legume crops provide N to the agro-ecosystem through biological N fixation 

process. In turn, this biologically fixed N is incorporated into the soil through root 

exudation or by the mineralization of above-ground residues after harvest (Laberge et al., 

2009). The increase in SOC, Nt and soil enzyme activities in broccoli grown after cowpea 

compared to monocrop was not related to higher nodulation in cowpea roots. In fact, there 

was absence of nodules in cowpea roots in both crop cycles. This finding makes us believe 

that cowpea is more active in rhizodeposition and rhizostimulation than fava bean, 

although, as far as we are concerned, there is no previous research to confirm this 

hypothesis. Plant photosyntethically fixed C is the primary source of rhizodeposited C 

(Nguyen, 2003), which may be contributing to increase SOC in the cowpea multiple 

cropping system compared to monocrop. Legume species also provide N-rich root 

exudates which enhances soil N content and stimulated microbial populations (Fustec et 

al., 2010). Nonetheless, quantity but also quality of root exudates depends on plant 

genotype, explaining the differences found with regard to legume cultivars in some 
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enzyme activities, which may be differently stimulated with regards to root exudates 

quality (Jones et al., 2004). It is well known that plant-derived organic inputs provide 

substrate for soil microbial communities, reflected in increases in the enzyme activities 

(Barrios, 2007). The good behavior of cowpea in the study area despite the lack of 

selected rhizobia strains for nodulation should be related to the physiological features of 

this species. Cowpea is a species well adapted to stressful environments caused by high 

temperatures, drought or low fertility, and so a suitable alternative in arid and semiarid 

regions (Chicoye et al., 2014; Elhers and Hall, 1997), such as that present in SE Spain.  

In contrast to cowpea, fava bean roots were nodulated (data not shown), which 

indicates that BNF was taking place owing to effective symbiosis of the plant with local 

rhizobia strains. However, SOC, Nt and enzyme activities in the subsequent melon crop 

did not improve, as a general trend, compared with the melon monocrop. This result may 

indicate that fava bean removed higher amount of fixed N in the seed at harvest (Peoples 

and Craswell, 1992), since the N content in seeds was significantly higher in fava bean 

than in cowpea seeds (N content in fava seed was 29% higher than in cowpea seed) (Table 

3.12). 
 
Table 3.12: Nitrogen content in cowpea and fava bean seeds at harvest of the second crop cycle. Values 

are mean ± standard deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro; M: Muchamiel; P: Palenca. 
bSignificant at ***P < 0.001. 
 

With regard to management practices, the organic practice resulted in higher 

increases in RC, Ure and Cel (Figure 3.2A and B; Table 3.9) and higher decreases in LC 

(Figure 3.2A) in broccoli grown after cowpea compared with the monocrop. However, 

conventional management stimulated higher increases in RC and Cel and higher 

Previous 
legume 
cultivara 

Management 
Practice 

 
N in seeds  

(g kg-1) 
 

FP cowpea Conventional 31.2±3.1 

FC cowpea Conventional 32.3±0.9 

FP cowpea Organic 38.1±5.7 

FC cowpea Organic 34.5±1.6 

M fava bean Conventional 44.2±2.1 

P fava bean Conventional 43.4±2.0 

M fava bean Organic 44.9±2.9 

P fava bean Organic 44.4±1.5 

F-valueb 12.7*** 
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decreases in LC in melon grown after fava bean compared with the monocrop (Figure 

3.2A). These results reveal the influence of agricultural management on soil quality, and 

its interaction with crop type. Both management practices achieved the same results but 

with different crop systems: organic practice contributed to C sequestration in broccoli 

but conventional practice did in melon, due to the increase in the recalcitrant fraction and 

decrease in the labile fraction. This is a promising result for climate change mitigation 

(Jonhson et al., 2007), and confirms that management practice significantly interacts with 

crop type and no generalization should be given. Legumes introduction in multiple 

cropping is efficient to mitigate SOC losses (Plaza-Bonilla et al., 2016). In turn, these 

crops allow to reduce crop intensification, since the amount of C and N are returned to 

soil through application of crop residues while also reducing N fertilizers (Sainju et al., 

2003). In addition to this, other factor to consider is the C:N ratio, which is low in legumes 

(Sánchez et al., 2004). However, an easily decomposition of crop residues can also lead 

to an increase of soil microbial activity and thus, increased SOC decomposition 

(Kuzyakov, 2010). 

There was a positive relationship between the variations in soil properties, such as 

RC and LC with variations in Nt, as well as a negative relationship between both carbon 

pools and Cel activity. These correlations are focused on SOC pools, which represent a 

source of essential elements for biological activity such as nitrogen and optimize soil 

physical, chemical and biological processes through the improvement of soil aggregation, 

exchangeable cations or enzymatic activities (Lal, 2014). The incorporation into the soil 

of crop residues such as legumes, rich in N, normally leads to higher microbial activity 

and thus, enhanced SOC decomposition (Kuzyakov, 2010; Sánchez et al., 2004), but also 

may lead to enhanced humification with increases in RC. In this sense, Christopher and 

Lal (2007) highlighted the importance of N as a limiting component of the humification 

process that is essential for SOC accumulation. In addition, the activity of soil carbon 

cycle-related enzymes such as cellulase, which provides metabolic requirements of soil 

microbial community could be reduced as a result of the increase of available C resources 

(Veres et al., 2015). 
 

3.5. Conclusions 

In conclusion, our results showed, contrary to our initial hypothesis, that the 

inclusion of cowpea, despite being an unusual crop in SE Spain, improved SOC content 
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and microbial activity in a subsequent broccoli crop compared with the broccoli 

monocrop, probably due to active rhizodeposition and rhizostimulation. The 

establishment of a traditional crop such as fava bean in multiple cropping with melon did 

not greatly improve SOC content and microbial activity compared with the monocrop, 

likely due to higher amount of fixed N removed in the seed at harvest. Legume genotype 

had influence on N content and enzyme activities, indicating that rhizostimulation is 

regulated by genotype. Soil C sequestration was affected by management practice and its 

interaction with the specific crop type, with enhanced C sequestration under organic 

management in broccoli and under conventional management in melon. Thus, cowpea 

crop in multiple cropping represented a good alternative for sustainable production, since 

it led to improvements in soil quality along with C sequestration under organic 

management.



 

 
Chapter 4 
Does the use of cowpea in multiple 
cropping with a vegetable crop 
improve soil quality and crop yield 
and quality? A field study in SE 
Spain 
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Does the use of cowpea in multiple cropping with 
a vegetable crop improve soil quality and crop 
yield and quality? A field study in SE Spain 
 
Abstract 

Information on the effect of cowpea-based multiple cropping in horticulture under 

arid and semiarid environments are scarce despite the potential for increasing soil quality 

and fertility. Cowpea is a suitable legume in rotated cropping systems due to its relative 

tolerance to drought. The main goal of this study was to assess the effect of two cowpea 

cultivars, Feijão frade de fio preto (FP) and Feijão frade de fio claro (FC), during three 

multiple cropping cycles, on soil fertility, yield, crop quality and nutritional composition 

of subsequent broccoli crops grown using mineral and organic fertilizers while decreasing 

fertilization rates by 20% compared with a broccoli monocrop. A cowpea crop was seen 

to contribute to increasing subsequent soil available P after three multiple cropping 

compared to monocrop, using both fertilizers type (an increase of 30 % and 120 % using 

mineral and organic fertilizers, respectively).  The use of mineral fertilizers increased 

broccoli head diameter (13-41 %) and yields (33-80 %), while the use of organic 

fertilizers increased soil aggregate stability (23-36 %) and soil enzyme activities (40-110 

%). The use of organic fertilizers improved broccoli crop yield with time, with similar 

values than those obtained from mineral fertilizers at the end of the experiment. Thus, the 

introduction of cowpea in multiple cropping under Mediterranean conditions was seen to 

be a good strategy for crop diversification and for reducing current N fertilizer 

dependency.  

 

Keywords: Vigna unguiculata; Brassica oleracea var. italica; multiple cropping; 

fertilizers; carbon dynamics; nitrogen dynamics. 
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4.1.  Introduction 
Cowpea (Vigna unguiculata L. Walp) is a grain legume native of southern Africa, 

although it is widely consumed all around the word (Singh, 2014). It is consumed for its 

seeds (green and mature), leaves, green pods or processed products (flour, flavour or 

paste) (Abudulai et al., 2017; Phillips et al., 2003). Cowpea seeds play an important role 

in the human diet due to its high nutritional value since it is a rich source of protein, 

calories, minerals and vitamins (Deshpande, 1992). In addition, cowpea is a species well 

adapted to stressful environments associated with high temperatures, drought or low 

fertility, and so is considered a suitable alternative crop in arid and semiarid regions 

(Chicoye et al., 2014; Elhers and Hall, 1997).  

Legumes improve soil fertility through biological nitrogen fixation (BNF), thus 

reducing the need for N fertilizers (St Luce et al., 2015). BNF occurs through the 

symbiosis between legumes and rhizobia, which are α− and β-proteobacteria with an 

ability to fix atmospheric N (Sawada et al., 2003). Cowpea is capable of establishing 

efficient symbiosis, especially with slow-growing rhizobia belonging to the genus 

Bradyrhizobium (Bejarano et al., 2014; Krasova-Wade et al., 2003), but also, to a lesser 

degree, with fast-growing rhizobia classified in the genus Rhizobium, Sinorhizobium and 

Mesorhizobium (Zhang et al., 2007). BNF depends on the host plant genotype, 

photosynthesis rate and the strain of rhizobia (Gourion et al., 2015). With regard to the 

latter, the symbiotic performance of rhizobia is directly linked with their population size, 

survival and effective association with host plant (Sanginga et al., 2000).  

The use of legumes in rotation and multiple cropping may regulate C and N 

storage through the production of belowground biomass, BNF, type and quantity of root 

exudates and the stimulation of soil microorganisms (Drinkwater et al., 1998). 

Furthermore, the introduction of legumes in rotation and multiple cropping provides other 

positive effects, such as inducing the growth of beneficial soil microorganism (Lupwayi 

and Kennedy, 2007) or reducing the need for pesticides because of crop diversification 

(Munier-Jolain, 2002). The N contribution of legumes to subsequent crops is difficult to 

forecast, and depends on legume species and genotypes, since these vary in their ability 

to biologically fix atmospheric N (Peoples et al., 2009). 

The replacement of mineral by organic fertilizers normally contributes to a higher soil 

organic matter content and increased microbial diversity and activity (Fließbach et al., 

2007; Kramer et al., 2006). However, organic crops normally produce lower yields 

http://www.sciencedirect.com/science/article/pii/S0929139310000843#bib26
http://www.sciencedirect.com/science/article/pii/S1161030107001104#bib30
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because the availability of sufficient N to the plant is dependent on the mineralization 

rates of soil organic matter (Seufert et al., 2012) and thus, the crops need more land to 

produce the same amount (Smith et al., 2007). However, the introduction of a legume in 

an organic multiple cropping system may provide more available N for successive crops, 

contributing to maintaining higher crop yields (Shah et al., 2003).    

There are very few attempts to show the effect of a suitable legume such as cowpea 

in a subsequent horticulture crop with the use of mineral and organic fertilizers under arid 

and semi-arid conditions with the aim of decreasing the external N dependence and 

increase soil quality. We hypothesized that cowpea would increase soil N availability 

through BNF, associated to increases in soil organic carbon content and microbial activity 

as a result of belowground rhizodeposition and phytostimulation. This would result in 

improved soil quality and higher broccoli crop yields, accompanied by a reduced need 

for the application of fertilizers. Any such effect may differ with the use of different 

fertilization strategy (organic or mineral) and the cowpea genotype, since both may 

influence plant growth, rhizodeposition rates and the efficiency to fix atmospheric N. 

Thus, the main objectives of the study were to: i) assess the effect of the introduction of 

cowpea in multiple cropping with broccoli on soil quality and fertility compared with a 

broccoli monocrop; ii) assess the impact of growing cowpea on broccoli yield, quality 

and nutritional status; iii) evaluate the influence of the fertilizer type (organic or mineral) 

on soil quality and broccoli yield; and iv) ascertain whether different cowpea genotypes 

differently impact the multiple cropping system. With this in mind, a three-year field 

experiment based on cowpea-broccoli multiple cropping using mineral and organic 

fertilizers was setup. The adoption of different fertilizer types allowed their impact on 

soil quality, plant nutrition and crop yield to be compared in an agricultural system under 

Mediterranean climatic conditions when combined with the introduction of a legume in 

the crop system.  

 

4.2. Materials and methods 

4.2.1. Study site and experimental design 
This study was carried out in the same field in Cartagena, south-eastern Spain (37º 

41` N 0º 57` E), for three years. The field experiment was designed as a complete 

randomized block with four replications, and each plot had a size of 10 m2. Two local 

Portuguese cultivars (Feijão frade de fio preto (FP) and Feijão frade de fio claro (FC)) of 
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cowpea (Vigna unguiculata (L.) Walp.) were grown during spring and summer in 2014 

(29/05/14-13/08/14), 2015 (03/06/15-14/09/15) and 2016 (01/06/16-22/08/16). After the 

cowpea crop, the soil was prepared for a broccoli crop (Brassica oleracea L. var. italica) 

with surface tillage (0-20 cm) in the same direction as the furrows. The broccoli crop was 

grown during autumn and winter in 2014/2015 (13/11/14-26/02/15), 2015/2016 

(01/12/15-24/02/16) and 2016/2017 (27/12/16-29/03/17). Both crops were drip irrigated 

and two fertilizer types were applied: mineral and organic. A broccoli monocrop was also 

used as a treatment with plots left fallow (no cultivation of cowpea) to check the effect of 

multiple cropping with cowpea on soil quality and fertility, soil microbial activity and 

broccoli yield and quality, using mineral and organic fertilizers.  

The soil was a Haplic Calcisol (IUSS, 2014) with a clay loam texture, the main 

characteristics of which are shown in Table 4.1. The mean annual temperature of the study 

area is 18 ºC and the mean annual precipitation is 275 mm. Annual potential 

evapotranspiration surpasses 900 mm. The meteorological conditions during the three 

cowpea and broccoli crop cycles are shown in Figure 4.1. Cowpea seeds were sown and 

broccoli plants were planted with a spacing of 100 cm between rows and 20 cm between 

plants (5 plants m-2). No herbicide treatment was provided, and the crops were kept free 

of weeds through hand-hoeing when necessary. 
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Table 4.1: Main soil characteristics. Values are mean ± standard deviation (n=4). 
  

Parametersa   

pH  8.40±0.09 

EC (dS m-¹) 0.34±0.07 

SOC (%) 1.19±0.18 

Bulk density (Mg m-³) 1.01±0.03 

CEC (cmol kg-¹) 4.24±1.10 

CaCO3 (%) 30.2±1.2 

Clay (%) 34.5±0.16 

Silt (%) 21.3±1.06 

Sand (%) 44.2±0.92 

Nt (%) 0.094±0.007 

NO3- (mg kg-¹) 156±45 

NH4+ (mg kg-¹) 5.69±1.12 

Available P (mg kg-¹) 30.0±5.4 

Exchangeable K (mg kg-¹) 369±63 

Exchangeable Ca (mg kg-¹) 2726±126 

Exchangeable Mg (mg kg-¹) 606±24 

Exchangeable Na (mg kg-¹) 301±31 
a:EC: electrical conductivity; SOC: soil organic carbon; CEC: cation exchange capacity; Nt: total 
nitrogen. 
 

 

 

Figure 4.1: Maximum air Ta, mean air Ta, minimum air Ta and rainfall from May 2014 to April 2017. 
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Every year, a surface application of 16,000 kg ha-1 of goat and sheep manure was 

carried out in all plots before sowing. This manure had the following characteristics: pH 

= 8.32±0.07; electrical conductivity = 21.2±1.01 mS cm−1; total organic carbon content = 

307±11 g kg-1; total nitrogen content = 13.4±0.7 g kg-1; P2O5 content = 1.8±0.08 % and 

K2O content = 4.6±0.2 %. Fertilizer application in the cowpea plots started between two 

or three weeks after sowing and continued until harvest. In the cowpea crops, 30 kg ha-1 

of N and 2.4 kg ha-1 of P2O5 were applied by fertirrigation as ammonium nitrate (33.5% 

N) and monoammonium phosphate (61% P2O5, 12% N) in the mineral fertirrigation, and 

using a commercial liquid organic fertilizer (Bombardier, Agroquímicos los Triviños, 

Spain; 10.7% w/v N, 0.7% w/v P2O5) in the organic fertirrigation. Fertilizer application 

in the broccoli plots started two weeks after planting and continued until harvest. In the 

broccoli monocrop, 250 kg ha-1 N, 100 kg ha-1 P2O5 and 300 kg ha-1 K2O were applied 

by fertirrigation as ammonium nitrate (33.5% N), monoammonium phosphate (61% 

P2O5, 12% N) and potassium sulphate (50% w/v K2O, 18% S) in the mineral 

fertirrigation, and using two commercial liquid organic fertilizers (Heronatur 4-2-8 and 

Heronatur 7-2-4; Herogra Fertilizantes, Spain; 4% w/v N, 2% w/v P2O5 and 8% w/v K2O, 

and 7% w/v N, 2% w/v P2O5 and 4% w/v K2O) in the organic fertirrigation. For broccoli 

grown after cowpea, the fertilizers were the same as those used for the monocrop, but the 

application rate was reduced by 20 % to check whether external inputs can be saved by 

introducing legumes in multiple cropping. Cowpea residues were removed from the field 

and so not applied in the soil as green manure. The irrigation was established on the basis 

of evapotranspiration rate, crop coefficient and climatic conditions as rainfalls. The 

irrigation amount was between 238-277 mm for broccoli crop in each year. 
 

4.2.2. Soil and plant sampling 
The soil was sampled at the beginning of the experiments before sowing cowpea 

and after harvesting the broccoli crop at the end of each multiple cropping cycle during 

three successive years. All plots were sampled at 0-20 cm (Ap horizon). Three random 

soil samples per plot were collected and homogenized to obtain a composite sample, 

which was air-dried for 7 days, sieved < 2 mm and stored at room temperature until 

analyses, except for NH4+ and NO3-, where an aliquot of each sample was stored at 4ºC 

to avoid undesirable mineralization/oxidation processes and sieved < 2 mm previously to 

analyses, within 4 days from sampling. Enzyme activities were also measured in air-dried 
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samples since this property is medium-term stable in stored air-dried samples of 

Mediterranean semiarid soils (Zornoza et al., 2009a). 

Broccoli crop yield was determined by weighing the heads when the buds of the 

head were firm and tight. Broccoli head and stem diameter were recorded as crop quality 

parameters. With regard to cowpea yield, all the pods in each plot were harvested when 

the seeds were dried at the end of the crop cycle (Table 4.2). 
 

Table 4.2: Cowpea crop yield at harvest of the crop cycle during three years. Values are mean ± standard 

deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; ns: not significant (P > 0.05). 
 
  

Previous  
cowpea 
cultivara 

Fertilizer 
 type 

Crop yield 
(kg ha-1) 

 

 2014  

FP  Mineral 2333±133 

FC   Mineral 2490±167 

FP   Organic 2135±306 

FC   Organic 2371±161 

 2015  

FP  Mineral 100±10 

FC   Mineral 216±144 

FP   Organic 121±70 

FC   Organic 366±152 

 2016  

FP  Mineral 3033±757 

FC   Mineral 4166±1171 

FP   Organic 2533±321 

FC   Organic 3366±1167 

χ2 value 

Year (Y) 17.31*** 

Previous cowpea cultivar (PCC) 1.29ns 

Fertilizer type (FT) 0.42ns 
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4.2.3. Soil analyses 
The following parameters were measured: bulk density by the cylinder method; soil 

pH and electrical conductivity (EC) in deionized water (1:2.5 and 1:5 w/v, respectively); 

soil texture by the Bouyoucos method (Dewis and Freitas, 1970); equivalent calcium 

carbonate using the volumetric method (Bernard calcimeter) (Cobertera, 1993); soil 

organic carbon (SOC) by the wet oxidation method using K2Cr2O7 (Walkley and Black, 

1934); aggregate stability (AS) by the method proposed by Roldán et al. (1994) based on 

the application of a simulated rainfall with known intensity; total nitrogen (Nt) by the 

Kjeldahl method (Hoeger, 1998); cation exchange capacity using BaCl2 as exchangeable 

salt (Roig et al, 1980). For its part, NO3- was extracted with deionized water in a 1:10 

soil:extractant ratio (Keeny and Nelson, 1982) and measured by ion chromatography 

(Metrohm 861); NH4+ was extracted with 2M KCl in a 1:10 soil:extractant ratio (Keeny 

and Nelson, 1982) and colorimetrically measured (Kandeler and Gerber, 1988); available 

phosphorus (P) was extracted according to the Burriel-Hernando method (Díez, 1982), 

using Burriel-Hernando solution (0.2g CaCO3, 0.17g Mg CO3, 5 ml glacial acetic acid 

and 0.2 ml H2SO4 in 2L deionized water) in a 1:25 soil:extractant ratio. Exchangeable 

Ca, Mg, Na and K were determined in the BaCl2 extract for CEC; P, Ca, Mg, Na and K 

concentrations were measured using ICP-MS (Agilent 7500CE); β-glucosidase activity 

was based on the determination of p-nitrophenol released after incubation at 37 °C with 

β-D-glucopyranoside (Tabatabai, 1982); β-glucosaminidase activity was based on the 

determination of p-nitrophenol released after incubation with p-nitrofenil-β-D-

glucopyranoside at 37 °C (Parham and Deng, 2000); dehydrogenase activity was 

determined using p-iodo-nitro-tetrazolium chloride as substrate and measuring the 

absorbance of the iodonitrotetrazolium formazam (INTF) produced (Von Merci and 

Schinner, 1991); arylesterase activity was based on the determination of p-nitrophenol 

released after incubation with p-nitrophenyl acetate at 37°C (Zornoza et al., 2009b); 

cellulase activity was assessed by determination of gearboxes sugars using amorphous 

cellulose as substrate (García-Álvarez and Ibáñez, 1994; Nelson, 1994) and  urease 

activity was based on the determination of the ammonium released after incubation of the 

soil with urea at 37 °C (Nannipieri et al., 1978). 
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4.2.4. Plant analyses 
Plant samples were oven dried and ground (A11 Basic, IKA) before incinerating 

at 500 ºC; the ashes were dissolved in 0.6N HNO3 and analysed for P, Ca, Mg, Na and K 

by ICP-MS (7500 CE, Agilent). Nitrogen (N) was determined by the Kjeldahl method 

(Hoeger, 1998). NO3- was extracted with deionized water in a 1:50 plant:extractant ratio 

(Keeny and Nelson, 1982) and measured by ion chromatography (Metrohm 861); total 

organic carbon (TOC) was quantified by total combustion.  

 

4.2.5. Statistical analyses 
Data were checked to ensure normal distribution using the Kolmogorov–Smirnov test 

and log-transformed when necessary to ensure normal distribution. Data were submitted 

to three-way ANOVA to assess the differences related with year, previous cowpea 

cultivar (fallow, FP and FC) and fertilizer type (mineral and organic) at each sampling 

time. Furthermore, data were submitted to two-way ANOVA to assess the differences 

among previous cowpea cultivar and fertilizer type at each sampling time. Those 

properties without normal distribution were submitted to a one-way non-parametric 

ANOVA (Kruskal-Wallis test) for the factors: year, previous cowpea cultivar and 

fertilizer type. Relationships among properties were studied using Pearson's correlations. 

Statistical analyses were performed with the software IBM SPSS for Windows, Version 

22. 

 

4.3. Results 

4.3.1. Soil physicochemical properties 
As a general pattern, crop year affected most of soil properties. SOC and AS were 

higher in 2016/17 than in the first two years (Table 4.3). Nt showed significantly lower 

values during the first year. P content gradually declined from 2014/15 to 2016/17 (Table 

4.3). 
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Table 4.3: Soil organic carbon, total nitrogen, aggregates stability and available phosphorus in soil of 

broccoli crops grown after cowpea or in monocrop using mineral and organic fertilizers over three years. 

Values are mean ± standard deviation (n=4).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; ns: not significant (P > 0.05). 
SOC: soil organic carbon content; Nt: total nitrogen; AS: aggregates stability. 
  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

SOC 
 (g kg-1) 

 

Nt 
(g kg-1) 

 

AS  
(%) 

 
P 

 (%) 
 

2014/15 

FP  Mineral 11.94±1.21 0.97±0.20 9.81±3.62 28.88±3.70 

FC   Mineral 12.25±1.20 0.91±0.17 10.34±2.86 41.00±17.83 

Fallow Mineral 11.70±0.93 0.94±0.10 16.69±2.79 27.76±11.92 

FP   Organic 11.22±0.83 0.92±0.11 9.39±0.96 26.22±7.95 

FC   Organic 11.87±1.78 0.91±0.05 14.61±2.15 24.57±6.56 

Fallow Organic 12.05±1.25 0.85±0.06 12.45±4.29 27.66±8.34 

2015/16 

FP  Mineral 12.50±0.95 1.28±0.03 13.90±7.35 18.14±5.64 

FC   Mineral 12.47±0.79 1.23±0.08 14.43±4.02 26.29±3.76 

Fallow Mineral 10.35±3.09 1.13±0.05 17.17±4.79 22.43±0.59 

FP   Organic 12.99±2.07 1.13±0.03 18.80±2.43 21.11±2.31 

FC   Organic 11.90±0.58 1.20±0.03 19.01±6.10 17.59±6.58 

Fallow Organic 11.46±0.31 1.13±0.04 18.36±6.90 16.72±4.46 

2016/17 

FP  Mineral 15.18±1.40 1.17±0.12 34.39±8.58 7.78±0.48 

FC   Mineral 16.97±2.04 1.26±0.17 38.93±13.99 8.22±1.28 

Fallow Mineral 17.48±0.90 1.16±0.19 49.43±6.57 6.16±2.88 

FP   Organic 15.53±0.65 1.23±0.29 54.04±3.69 13.80±4.17 

FC   Organic 15.87±0.36 1.20±0.13 55.48±6.61 7.58±2.52 

Fallow Organic 13.65±1.15 1.20±0.11 58.03±4.36 4.85±0.25 

F-valueb      

Year (Y) 48.41*** 26.75*** 200.11*** 46.35*** 

Previous cowpea cultivar (PCC) 1.44ns 0.81ns 3.69* 1.09ns 

Fertilizer type (FT) 1.64ns 0.71ns 14.53*** 2.65ns 

Y x PCC 1.30ns 0.17ns 0.78ns 0.65ns 

Y x FT 2.19ns 0.40ns 7.98*** 1.58ns 

PCC x FT 0.48ns 0.08ns 1.77ns 2.92ns 

Y x PCC x FT 1.96ns 0.54ns 0.29ns 0.73ns 
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The NO3- content showed the highest values in 2015/16, while NH4+ content was 

not significantly affected by any studied factor (Table 4.4). 
 

Table 4.4: ammonium and nitrate contents in soil of broccoli crops grown after cowpea or in monocrop 

using mineral and organic fertilizers over three years. Values are mean ± standard deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; not significant (P > 0.05). 
 

 

  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

NH₄⁺ 
(mg kg-1) 

 

 
NO₃-  

(mg kg-1) 
 

2014/15 

FP  Mineral 5.21±0.12 42±6 

FC   Mineral 6.23±0.91 46±1 

Fallow Mineral 7.28±0.44 34±2 

FP   Organic 5.44±1.25 39±6 

FC   Organic 6.84±1.03 43±1 

Fallow Organic 6.09±0.73 32±5 

2015/16 

FP  Mineral 7.15±3.98 135±49 

FC   Mineral 6.39±1.49 126±38 

Fallow Mineral 3.38±0.67 100±3 

FP   Organic 1.64±0.31 139±80 

FC   Organic 6.95±2.12 99±8 

Fallow Organic 8.38±1.95 138±68 

2016/17 

FP  Mineral 29.62±3.13 46±5 

FC   Mineral 30.92±10.45 51±8 

Fallow Mineral 40.73±7.21 69±12 

FP   Organic 19.64±11.59 16±22 

FC   Organic 25.00±6.30 41±5 

Fallow Organic 19.14±4.61 17±25 

χ2 value 

Year (Y) 1.15ns 26.27*** 

Previous cowpea cultivar (PCC) 2.11ns 1.68ns 

Fertilizer type (FT) 0.21ns 2.23ns 
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Exchangeable Mg and K were significantly lower in 2016/17 and 2014/15, 

respectively (Table 4.5). Previous cowpea cultivar influenced soil exchangeable Ca and 

AS. The influence of cowpea cultivar on Ca did not follow a clear pattern, but its content 

tended to decrease with the cultivation of cowpea, compared to broccoli monocrops. 

Broccoli monocrop showed higher AS than broccoli grown after cowpea. In addition, 

NO3- content tended to be significantly lower in soil cultivated with broccoli in multiple 

cropping with cowpea compared with the broccoli monocrop, mainly during the last two 

years. Fertilizer type affected AS and K content, with improved soil structure using 

organic fertilizers while K content tended to be higher with the mineral fertilizer. 

According to the two-way ANOVA at each sampling time, it was observed that during 

2015/16, fertilizer type significantly affected soil N, with significant lower values using 

organic than mineral fertilizers (P<0.05). The interaction previous cowpea cultivar x 

fertilizer type was significant for soil P during the last crop cycle, with higher values 

being obtained in the multiple cropping system compared to the broccoli monocrop with 

added organic fertilizer (P<0.05). The interaction year x fertilizer type was significant 

with respect to AS and Ca content. AS showed the highest values using organic fertilizers 

during 2015/16 and 2016/17, while Ca showed the highest values using both fertilizer 

types during 2014/15.  The interaction year x previous cowpea crop was significant for 

exchangeable cations content (Ca, Mg and K). Ca content after previous FP and FC 

cultivars was higher during 2014/15 than during the last two years, while in broccoli 

monocrop, Ca values were relatively stable over time. The interaction previous cowpea 

crop x fertilizer type was significant for Mg content, which was higher in broccoli crop 

grown after FP cowpea cultivar using mineral fertilizers during 2015/16. Finally, the 

interaction of the three factors (year, previous cowpea crop and fertilizer type) was 

significant for K content, with highest values in broccoli crop grown after FP cultivar 

using mineral fertilizers during 2015/16 (Tables 4.3, 4.4 and 4.5).  

Soil Mg was negatively related with SOC (r = - 0.74, P < 0.01), AS (r = - 0.81, P 

< 0.01) and NH4+ content (r = - 0.76, P < 0.01), and positively related with available P (r 

= 0.64, P < 0.01), β-glucosidase (r = 0.60, P < 0.01), arylesterase (r = 0.65, P < 0.01) and 

dehydrogenase (r = 0.74, P < 0.01).  
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Table 4.5: Exchangeable calcium, magnesium and potassium in soil of broccoli crops grown after 
cowpea or in monocrop using mineral and organic fertilizers for three successive. Values are mean ± 
standard deviation (n=4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; ** P < 0.01; ns: not significant (P > 0.05). 
Exc Ca: exchangeable calcium; Exc Mg: exchangeable magnesium; Exc K: exchangeable potassium. 

  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

Exc Ca 
(mg kg-1) 

 

Exc Mg 
(mg kg-1) 

 

Exc K  
(mg kg-1) 

2014/15 

FP  Mineral 2658±33 612±18 297±26 

FC   Mineral 2709±253 625±67 329±57 

Fallow Mineral 2587±47 553±14 350±25 

FP   Organic 2518±53 580±7 293±28 

FC   Organic 2538±173 599±40 244±21 

Fallow Organic 2552±113 566±13 257±28 

2015/16 

FP  Mineral 2203±106 710±66 853±97 

FC   Mineral 2051±29 568±23 651±53 

Fallow Mineral 2520±179 599±59 580±10 

FP   Organic 2289±90 590±29 518±21 

FC   Organic 2331±50 584±3 545±81 

Fallow Organic 2566±82 629±32 551±93 

2016/17 

FP  Mineral 2333±59 421±15 419±30 

FC   Mineral 2382±73 430±19 451±85 

Fallow Mineral 2359±126 407±29 512±42 

FP   Organic 2406±87 417±25 419±18 

FC   Organic 2374±113 409±16 446±37 

Fallow Organic 2550±206 431±34 447±31 

F-valueb 

Year (Y) 23.36*** 173.79*** 175.33*** 

Previous cowpea cultivar (PCC) 6.22** 2.56ns 0.89ns 

Fertilizer type (FT) 1.19ns 2.04ns 32.56*** 

Y x PCC 4.85** 4.14** 5.04** 

Y x FT 5.48** 0.58ns 8.02*** 

PCC x FT 0.29ns 5.35** 1.35ns 

Y x PCC x FT 1.44ns 2.47ns 7.49*** 
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4.3.2. Soil enzyme activities 
Enzyme activities were significantly influenced by the crop year (Table 4.6 and 

4.7). Dehydrogenase, β-glucosidase, β-glucosaminidase and arylesterase activities 

showed the lowest values during 2016/17. Urease and cellulase showed no activity at any 

time during the experimental period (data not shown). Previous cowpea crop only affected 

arylesterase activity. This soil enzyme activity was significantly higher in broccoli grown 

after FC cultivar.  Fertilizer type influenced β-glucosaminidase and arylesterase activities. 

β-glucosaminidase activity was higher with the use of organic fertilizer. Arylesterase 

activity showed higher values with application of mineral fertilizers during the first two 

crop years; however, this activity was higher with the use of organic fertilizer during the 

last year. The interaction year x previous cowpea crop was significant for dehydrogenase 

and β-glucosaminidase activities. The interaction year x fertilizer type was significant for 

β-glucosaminidase and arylesterase activities. β-glucosaminidase activity was higher in 

broccoli cultivated with organic fertilizers during 2014/15, while arylesterase activity was 

higher in broccoli cultivated with mineral fertilizers during the first two crop years. The 

interaction previous cowpea crop x fertilizer type was not significant for any enzyme 

activity (Table 4.6). 
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Table 4.6: Dehydrogenase, β-glucosaminidase and arylesterase activities in soil of broccoli crops grown 

after with cowpea or in monocrop using mineral and organic fertilizers for three successive  years. Values 

are mean ± standard deviation (n=4).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; *P < 0.05; ns: not significant (P > 0.05). 
Dhs: Dehydrogenase; Glm: β-glucosaminidase and Aryl: Arylesterase. 

  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

Dhs 
(µmol g-1 h-1) 

 

Glm 
(µmol g-1 h-1) 

Aryl 
(µmol g-1 h-1) 

 

2014/15 

FP  Mineral 0.31±0.16 0.13±0.04 156±32 

FC   Mineral 0.40±0.14 0.15±0.04 199±8 

Fallow Mineral 0.37±0.10 0.04±0.05 119±45 

FP   Organic 0.43±0.24 0.29±0.02 69±16 

FC   Organic 0.54±0.31 0.17±0.06 83±20 

Fallow Organic 0.27±0.12 0.17±0.01 90±12 

2015/16 

FP  Mineral 1.13±0.16 0.17±0.04 142±35 

FC   Mineral 1.29±0.25 0.13±0.02 129±8 

Fallow Mineral 0.85±0.20 0.15±0.04 80±32 

FP   Organic 1.21±0.13 0.11±0.01 115±33 

FC   Organic 1.44±0.26 0.18±0.03 135±29 

Fallow Organic 0.80±0.33 0.15±0.02 122±32 

2016/17 

FP  Mineral 0.06±0.01 0.03±0.02 17±12 

FC   Mineral 0.05±0.03 0.04±0.01 56±12 

Fallow Mineral 0.08±0.01 0.08±0.02 51±30 

FP   Organic 0.04±0.02 0.06±0.01 63±44 

FC   Organic 0.07±0.02 0.07±0.03 67±27 

Fallow Organic 0.16±0.01 0.07±0.02 63±7 

F-valueb 

Year (Y) 204.85*** 62.02*** 36.26*** 

Previous cowpea cultivar (PCC) 1.08ns 2.63ns 3.73* 

Fertilizer type (FT) 0.92ns 22.19*** 4.46* 

Y x PCC 5.62*** 9.09*** 1.28ns 

Y x FT 0.36ns 16.57*** 17.33*** 

PCC x FT 0.71ns 0.15ns 2.79ns 

Y x PCC x FT 1.86ns 7.37*** 2.13ns 
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Table 4.7: β-glucosidase activity in soil of broccoli crops grown after cowpea or in monocrop using mineral 

and organic fertilizers for three successive  years. Values are mean ± standard deviation (n=4).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ** P < 0.01; ns: not significant (P > 0.05). 
Glu: β-glucosidase. 

 

Previous 
cowpea 
cultivara 

Fertilizer 
type 

 
Glu 

(µmol g-1 h-1) 

2014/15 

FP  Mineral 0.21±0.03 

FC   Mineral 0.36±0.26 

Fallow Mineral 0.44±0.53 

FP   Organic 0.55±0.27 

FC   Organic 0.49±0.13 

Fallow Organic 0.34±0.11 

2015/16 

FP  Mineral 0.63±0.17 

FC   Mineral 0.60±0.12 

Fallow Mineral 0.44±0.05 

FP   Organic 0.65±0.14 

FC   Organic 0.92±0.03 

Fallow Organic 0.55±0.09 

2016/17 

FP  Mineral 0.13±0.02 

FC   Mineral 0.18±0.08 

Fallow Mineral 0.22±0.15 

FP   Organic 0.11±0.03 

FC   Organic 0.11±0.04 

Fallow Organic 0.10±0.06 

χ2 value 

Year (Y) 8.28** 

Previous cowpea cultivar (PCC) 0.36ns 

Fertilizer type (FT) 0.35ns 
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4.3.3. Broccoli yield, crop quality and nutritional 

characteristics 
As a general trend, year had a significant effect on the subsequent broccoli yield 

and quality and on the nutritional characteristics (Tables 4.8 and 4.9). Crop yield and 

broccoli head diameter were highest during 2015/16, while broccoli stem diameter was 

higher during 2016/17. Broccoli head nutritional content, was highest during 2014/15. 

Previous cowpea crop did not affect broccoli yield, crop quality parameters or nutritional 

characteristics. Fertilizer type significantly influenced crop yield and broccoli head 

diameter, with higher values for both parameters using mineral fertilizer. In addition, the 

two-way ANOVA performed separately for each sampling time showed that during 

2015/16, N and P content in broccoli head were significantly higher using organic than 

mineral fertilizers (P<0.05). The interaction year x fertilizer was significant for crop yield 

and broccoli head diameter, and nutrients such as P, with the highest values for both 

parameters using mineral fertilizers during 2015/16. P content in broccoli head did not 

follow a clear pattern. In addition, despite crop yield was significantly higher with the use 

of mineral fertilizers compared to organic fertilizers during the first year, during the last 

year, crop yield was similar (table 4.8), suggesting that organic fertilizer improved yield 

in the longer term. However, the interactions of previous cowpea crop with the other 

factors (year and fertilizers type) was not significant for broccoli crop yield, crop quality 

or nutritional characteristics, except for P content (Tables 4.8 and 4.9). 
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Table 4.8: Crop yield and quality of broccoli crops grown after cowpea or in monocrop using mineral and 

organic fertilizers for three successive  years. Values are mean ± standard deviation (n=4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; ** P < 0.01; *P < 0.05; ns: not significant (P > 0.05). 
  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

Crop yield 
 (kg ha-1) 

 

Broccoli 
head 

diameter 
(cm) 

 

Broccoli 
stem 

diameter 
(cm) 

2014/15 

FP  Mineral 24791±5301 19.46±3.91 3.68±0.17 

FC   Mineral 24012±8494 18.42±4.86 3.72±0.40 

Fallow Mineral 29151±4272 22.27±2.49 3.82±0.31 

FP   Organic 15537±4052 15.45±1.79 3.47±0.50 

FC   Organic 12141±1533 12.39±0.94 3.43±0.06 

Fallow Organic 15992±1324 15.57±1.13 3.59±0.08 

2015/16 

FP  Mineral 27200±1261 22.00±1.00 3.33±0.58 

FC   Mineral 29850±2600 23.67±3.21 3.33±0.42 

Fallow Mineral 30100±1559 23.33±2.08 3.35±0.61 

FP   Organic 23400±2258 20.67±0.58 3.67±0.48 

FC   Organic 19350±5817 20.00±2.65 3.34±0.23 

Fallow Organic 22650±4743 20.33±0.58 3.45±0.68 

2016/17 

FP  Mineral 26263±9277 16.55±3.75 4.04±0.10 

FC   Mineral 16607±2269 12.76±1.07 4.01±0.26 

Fallow Mineral 17108±4891 12.90±2.56 4.06±0.16 

FP   Organic 20978±1941 19.85±10.30 3.88±0.18 

FC   Organic 23591±2028 15.45±0.75 4.02±0.19 

Fallow Organic 16524±5056 12.14±31.70 3.86±0.21 

F-valueb 

Year (Y) 8.11*** 18.37*** 10.33*** 
Previous cowpea cultivar 

(PCC) 0.99ns 1.44ns 0.04ns 

Fertilizer type (FT) 25.14*** 5.54* 0.61ns 

Y x PCC 2.11ns 2.37ns 0.28ns 

Y x FT 8.05*** 5.35** 0.95ns 

PCC x FT 0.21ns 0.78ns 0.13ns 

Y x PCC x FT 1.90ns 0.14ns 0.18ns 
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Table 4.9: Nutrients content of broccoli heads in broccoli crops grown after cowpea or in monocrop using 

mineral and organic fertilizers for three successive  years. Values are mean ± standard deviation (n=4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFP: Feijão frade de fio preto; FC: Feijão frade de fio claro. 
bSignificant at ***P < 0.001; *P < 0.05; ns: not significant (P > 0.05). 
  

Previous 
cowpea 
cultivara 

Fertilizer 
type 

N 
(g kg-1) 

 

Ca 
(mg kg-1) 

Mg 
(mg kg-1) 

K 
(mg kg-1) 

 

 
P 

(mg kg-1) 
 

2014/15 

FP  Mineral 49.65±2.88 14706±6210 2973±707 48972±8399 9046±298 

FC   Mineral 48.78±6.21 7326±1020 2791±321 47105±6150 6558±1295 

Fallow Mineral 47.21±1.15 10909±1544 3096±826 50921±11729 7712±2151 

FP   Organic 47.93±5.84 7526±605 2610±646 44982±12079 7138±899 

FC   Organic 45.86±3.01 9408±5560 3381±687 54071±6770 7958±2018 

Fallow Organic 51.15±4.67 9318±3378 2747±385 49039±9562 8224±1022 

2015/16 

FP  Mineral 40.06±3.11 5828±1635 2371±426 41432±4843 5415±1134 

FC   Mineral 39.51±0.84 4447±847 1945±321 34230±5170 4686±1004 

Fallow Mineral 41.80±2.97 6228±1186 2523±397 41200±3865 6359±1019 

FP   Organic 45.37±4.24 5796±457 2504±119 41396±2321 7714±917 

FC   Organic 46.09±5.31 5781±924 2356±157 48667±5555 7116±246 

Fallow Organic 44.94±3.44 5210±940 2283±261 43297±3923 6827±760 

2016/17 

FP  Mineral 37.70±0.29 2728±330 1045±162 23753±2064 4449±458 

FC   Mineral 44.44±4.79 4425±859 2392±56 40075±1011 7893±208 

Fallow Mineral 42.43±9.89 4993±942 2447±266 42207±4583 8713±1317 

FP   Organic 46.89±5.50 3374±40 2098±49 36650±1057 6738±241 

FC   Organic 39.44±7.91 3687±196 2153±64 37509±3575 6691±284 

Fallow Organic 42.86±1.79 4125±215 2208±91 39050±619 7271±503 

F-valueb 

Year (Y) 9.02*** 64.68*** 22.29*** 20.42*** 8.43*** 

Previous cowpea cultivar (PCC) 0.22ns 2.07ns 2.56ns 3.34ns 3.00ns 

Fertilizer type (FT) 2.64ns 1.35ns 0.59ns 2.87ns 3.61ns 

Y x PCC 0.05ns 2.59ns 0.86* 1.27ns 3.69* 

Y x FT 1.41ns 1.35ns 0.37ns 0.84ns 4.45* 

PCC x FT 1.12ns 1.56ns 2.70ns 1.67ns 1.49ns 

Y x PCC x FT 1.68ns 2.52ns 3.09* 2.90ns 5.13** 
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4.4. Discussion 
The inclusion of a cowpea crop in multiple cropping did not increase, as a general 

pattern, soil properties or enzyme activities in subsequent broccoli crops. However, there 

was a 20 % reduction in fertirrigation compared to that supplied to the monocrop with no 

negative effects on soil nutrient content and crop yield and quality. The previous 

cultivation of cowpea acts as a source of different types of C through rhizodeposition, 

which stimulates the growth of rhizosphere microorganisms (Haichar et al., 2008) and 

facilitates nutrient availability to the plant (Mwafulirwa et al., 2016). Lower values of 

available P in the broccoli monocrop in the third year could be consequence of a low 

abundance of phosphate-solubilizing bacteria such as those belonging to Rhizobium genus 

(Rodríguez and Fraga, 1999), meaning a greater need for external inputs, mainly during 

this last year when soil P content decreased compared to the beginning of the experiment. 

Phosphorus is often immobilized by precipitation in insoluble forms such as Ca-P or Mg-

P, which are solubilized by soil microorganisms (bacteria and fungi) through the release 

of organic acids, and thus soil availability of P and Mg is increased (Rodríguez and Fraga, 

1999; Arcand and Schneider, 2006; Dighton, 2007). We observed no general effects of 

the specific cowpea cultivar on soil properties or broccoli yield and quality. It has been 

previously reported that the release of root exudates is controlled by the plant genotype 

(Merbach et al., 2000; Nguyen, 2003), and so crop genotype could have different effects 

on soil properties. However, this was not observed in our experiment, rejecting our initial 

hypothesis. On the other hand, the Ca content was lower in soil cultivated with broccoli 

in multiple cropping with cowpea compared with the broccoli monocrop. This suggests 

that cowpea took up this nutrient, which could be reincorporated into the soil through 

mineralization of cowpea residues if it is used as green manure. 

This study confirms that mineral fertilizers normally improve crop yields 

(Cavigelli et al., 2008; Thorup-Kristensen et al., 2012). The use of organic fertilizers was 

associated with improvements in soil structure and nutrient cycling through increased 

microbial activity, as previously reported by several authors (Barto et al., 2010; Zhang et 

al., 2014). N use efficiency in crops depends on the extent to which fertilizers are 

degraded and mineralized. The use of mineral fertilizers plays an important role in 

improving productivity, since it provides a source of readily available N, which is one of 

the major factors determining crop yields. However, the beneficial effect on crop yield 

due to the use of N synthetic fertilizers may compromise environmental quality through 

http://www.sciencedirect.com/science/article/pii/S0048969717314948#bb0195
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leaching or denitrification (Chien et al., 2009) if the total soil mineral N available is 

greater than the crop’s ability to take it up.  

Previous research has reported an increase in soil total N, nitrate and ammonium 

after the introduction of legume crops in multiple cropping as a result of BNF, thus 

contributing to increase soil fertility (Aschi et al., 2017; Biederbeck et al., 2005). 

However, we observed no such effect of the cowpea crop, or even an increase in the 

nitrate content, in 2015 in the broccoli monocrop, leading us to reject our initial 

hypothesis. This may have been due to the lack of nodules in cowpea roots (data not 

shown), suggesting the absence of specific rhizobial strains that form an effective 

association with cowpea, which is not commonly grown in our region. 

 The increase in AS with organic fertirrigation was not related to the increase in 

SOC, but more likely related to activation of microbial populations, which can be 

stimulated by organic compounds and the rhizodeposition process (Barros et al., 2007; 

Hannam et al., 2006), supporting our initial hypothesis. Bacteria, fungal hyphae and plant 

roots are involved in the formation of stable aggregates through the production secondary 

metabolites, organic inputs and the exudation that acts as glue between organic and 

inorganic soil constituents (Jastrow and Miller, 1998; Six et al., 2006). In this sense, Tang 

et al. (2011) reported the significant influence of bacteria and fungi on soil aggregate 

stability in agricultural systems. Improvements in soil structure contributes to enhancing 

soil quality, since it controls soil water retention and movement, aeration, nutrient 

dynamic, the movement of fauna and root penetration (Bronick and Lal, 2005). 

Worthington (2001) describes the better quality of organic food compared to 

conventionally-cultivated foods, which is line with the increase in essential nutrients (N 

and P) in the broccoli head cultivated under organic farming in this study. Although the 

increase in N recorded in broccoli heads seems go against the lower N content measured 

in the soil under organic fertirrigation, it seems to suggest the higher assimilation of 

available N under organic fertirrigation due to a synergistic effect with active 

microorganisms.  

The inclusion of cowpea, together with the reduction in external fertilizers, can be 

regarded as a sustainable alternative for saving on external inputs, with no detrimental 

effects on broccoli crop yield, quality or nutritional characteristics. In this regard, Plaza-

Bonilla et al. (2017) also observed that the yield and quality were maintained in wheat 

crops grown after legumes and cover crops using mineral fertilizers and decreased N 

fertilizer rates. Although the application of fertilizers is an indispensable agricultural 
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practice for enhancing plant nutrition and increasing crop yield, inorganic fertilizers may 

contribute to changing the soil environment by depressing soil microbial activity 

(Ramírez et al., 2012). In addition, N fertilization alters the fungal communities 

(Paungfoo-Lonhienne et al., 2015) which, together with bacteria, improve soil structure 

by promoting the formation of soil aggregates (Miller and Jastrow, 2000). Thus, the 

adoption of multiple cropping systems with legumes may enhance soil quality and 

biodiversity, while decreasing production costs. Furthermore, multiple cropping also 

provides diversification, increasing opportunities in the face of low commodity prices and 

decreasing exposure to adverse climatic factors (Zegada-Lizarazu and Monti, 2011). 

 

4.5. Conclusions 
In conclusion, our results show that the inclusion of cowpea in multiple cropping 

with a broccoli crop, accompanied by a 20% reduction in fertilizer rates, did not improve 

soil organic matter content or soil structure but maintained high soil nutrient content to 

promote high broccoli crop yield and quality despite the reduction in external inputs. 

Mineral fertilizers increased broccoli head quality and led to higher broccoli yields, while 

the organic fertilizers improved soil structure through the activation of soil microbial 

populations, and there was a long term effect on crop yield due to the use of organic 

fertilizers. Thus, the inclusion of cowpea in multiple cropping can maintain horticultural 

crop yields and quality likely due to activation of microbial populations that solubilize 

soil nutrients, decreasing production costs by saving on external inputs, widening market 

opportunities as a result of crop diversification.
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A comparative greenhouse gas emissions and 
enzyme activities analysis of legume and non-
legume crops grown in organic and conventional 
management 
 
Abstract 

Legume crops have been proposed as a way of reducing greenhouse gas (GHG) 

emissions because of their ability to fix atmospheric N and thus reduce the need for 

external N fertilizers. Moreover, the establishment of organic agriculture has been 

proposed as a sustainable strategy to enhance the delivery of ecosystem services, although 

crop yields are normally lower compared to conventional agriculture. The main objective 

of this study was to assess the effect of a legume and non-legume crop (fava bean and 

broccoli) during two years on crop yield, GHG emissions (N2O, CO2 and CH4) and soil 

enzyme activities, grown under conventional or organic management practices. GHG 

emissions, crop yield and enzyme activities differed between years. Fava bean generated 

the highest GHG emissions, while broccoli showed higher soil enzyme activities. 

Conventional management resulted in higher crop yields for both crops. Organic 

management led to higher N2O and CO2 emissions and soil enzyme activities in both 

crops, likely due to an increase of soil organic matter mineralization. Crop yield was 

related to lower GHG emissions and higher enzyme activities. Thus, legume crops may 

not reduce GHG emissions in all situations, and a thorough assessment should be carried 

out for each crop and pedoclimatic characteristics. This may be related to the ability of 

legumes to increase N availability through biological N fixation.  

 

Keywords: Vicia faba; Brassica oleracea var italica; nitrous oxide; carbon dioxide; 

methane; soil microorganisms. 
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5.1. Introduction 
The increasing demand for food from a growing human population has led to 

increase global agricultural land (Wang et al., 2013). Crop production has been related to 

a source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) (IPCC, 2007). Although CO2 is the main anthropogenic 

GHG, the agricultural sector is dominated by CH4 and N2O (Schulze et al., 2009).  

N2O is mainly produced by denitrification under anaerobic conditions or by 

nitrification under aerobic conditions (Ussiri and Lal, 2013). Both processes may be 

increased not only by the N fertilization but also by biological nitrogen fixation (BNF) 

process that takes place in legume crops (Lupwayi and Kennedy, 2007; Carter and 

Ambus, 2006). It is important to highlight that legume cultivation can also produce N2O 

emissions through N released by root exudates during the growing season (Wichern et 

al., 2008), which may be nitrified and denitrified by soil bacteria (Snyder et al., 2009), 

but also by the ability of some rhizobia for direct denitrification (O´Hara and Daniel, 

1985). In addition, the high microbial activity of the legume rhizosphere may also 

increase soil organic matter (SOM) mineralization and, as a consequence, CO2 emissions 

(Chapela et al., 2001). Rhizosphere is an enzymatic hotspot where microorganisms and 

living roots produce extracellular enzymes through rhizodeposition (Kuzyakov, 2002; 

Kuzyakov and Blagodatskaya, 2015). The release of root exudates is depending on plant 

physiology and root morphology (Nguyen, 2003) and its quality and composition vary 

between plant species (Aulakh, 2001; Jones et al., 2004). 

Thus, the effect of legume cultivation on soil GHG emissions is not totally 

understood and needs further attention. In this sense, BNF can be an environmentally 

friendly source of plant available N in the soil, allowing savings in N fertilizers, which 

are the major GHG emitters in agriculture (Carter and Ambus, 2006). Sources of CO2 

from soil include soil organic matter (SOM), dead plant residues (above and below 

ground) and organic substances released by living root through exudation (Kuzyakov, 

2006). However, the principle source of CH4 emission from agriculture comes from its 

production by methanogenesis and its consumption by methanotrophic microorganisms 

under anaerobic and aerobic conditions, respectively (Dutaur and Verchot, 2007). Thus, 

there is a need to monitor GHG emissions in legumes and other vegetable crops grown 

under the same soil, climatic and management conditions to really assess whether 
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legumes efficiently contribute to the reduction or increase of GHG fluxes, and if shifts in 

emissions are related to the rhizosphere activity.  

Cropping system and agricultural management assume a powerful tool for the 

mitigation of GHG emissions (Sainju et al., 2012). N inputs by fertilization assumes a 

great influence on GHG fluxes, although this is dependent on fertilizer type (Ding et al., 

2007). The N fertilization has a negative impact on the activity of methanotrophic 

microorganisms, which are responsible for CH4 oxidation, and, as a consequence, the 

production of CH4 is enhanced (Hütsch et al., 1996). Organic fertilizers could be a viable 

alternative to decrease N2O emissions in comparison with conventional inorganic 

fertilizers due to the reduced amount of N availability (Flessa et al., 2002). Nevertheless, 

the use of organic fertilizers is also associated with increased rates of organic matter 

decomposition and thus, higher N2O and CO2 emissions (Dendooven et al., 2012), mainly 

by activation of microbial populations and increased enzyme activities (Iqbal et al., 2009; 

De Forest et al., 2004). Burger et al. (2005) observed the positive relationship between 

the activity of certain microbial groups and N2O production in tomato crop grown under 

organic practices. The adoption of different management practices (conventional vs 

organic) offers the possibility to assess their influence on crop yield, soil enzyme 

activities and environmental pollution through GHG emissions.  

According to the latter approaches, a winter legume (fava bean) and a non-fixing 

N vegetable crop (broccoli) were cultivated under conventional and organic management 

practices during two years. The objectives of this study were to: i) assess the effect of two 

different crops under two different management practices on soil GHG emissions; and ii) 

infer if there is a relationship between GHG emissions, soil enzyme activities and crop 

yield. We hypothesized that the legume-nitrogen fixing bacteria association could 

increase soil N availability through BNF, that along with the use of N fertilizers may lead 

to higher GHG emissions, mainly N2O emissions, compared with the non-N-fixing 

vegetable crop. The adoption of organic management may reduce N2O emissions but 

increase CO2 emissions by increased soil organic matter mineralization.  
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5.2. Materials and methods 

5.2.1. Study site and experimental design 
This study was carried out in Cartagena, southeast Spain (37º 41` N 0º 57` E). The 

field experiment was designed in a complete randomized block with four replications, 

and each plot had 10 m2. A local Spanish cultivar - Muchamiel - of fava bean (Vicia faba 

L.) was grown during two winter seasons (24/10/2014-06/03/2015 and 05/11/2015-

13/04/2016). Simultaneously, a local Spanish cultivar -Parthenon - of broccoli (Brassica 

oleracea L. var italica) was also grown during the same winter seasons (13/11/2014-

26/02/2015 and 1/12/2015-2/03/2016). 

The area was characterized by a semiarid Mediterranean climate with a mean 

annual temperature of 18ºC and total annual precipitation of 275 mm. The climatic 

conditions during the two fava bean and broccoli years are shown in Table 5.1. 

Meteorological data were measured using an automatic weather station located in the 

experimental field. Soil temperature (T) and moisture (M) were measured using a 5 TM 

Soil Moisture and Temperature sensor (Decagon Devices, USA).  
 
Table 5.1: Climatic conditions during both fava bean and broccoli crop years  
 

Parameters Fava bean Broccoli 
2014/15 2015/16 2014/15 2015/16 

Minimum air T (°C) 5.68 8.32 5.68 8.84 
Mean air T (°C) 12.58 13.37 11.85 12.72 

Maximum air T (°C) 19.13 19.18 18.79 17.42 
Rainfall (mm) 31.50 40.45 25.24 7.25 

  
Both crops were established under drip irrigation with two management practices: 

conventional and organic. Fava bean seeds were sown with a spacing of 100 cm between 

rows and 40 cm between plants (2.5 plants m-2) while broccoli plants were planted with 

a spacing of 100 cm between rows and 20 cm between plants (5 plants m-2). No herbicide 

treatment was given, and the crops were kept free of weeds through hand-hoeing when 

necessary. In the fava bean crop, 20 kg ha-1 of N and 1.2 kg ha-1 of P2O5 were applied by 

fertirrigation as ammonium nitrate (33.5% N) and monoammonium phosphate (61% 

P2O5, 12% N) in the conventional practice, and using a commercial organic fertilizer 

(Bombardier, Agroquímicos los Triviños, Spain; 10.7% w/v N, 0.7% w/v P2O5) in the 

organic practice. In the broccoli crop, 250 kg ha-1 N, 100 kg ha-1 P2O5 and 300 kg ha-1 

K2O were applied by fertirrigation as ammonium nitrate (33.5% N), monoammonium 

phosphate (61% P2O5, 12% N) and potassium sulphate (50% w/v K2O, 18% S) in the 
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conventional practice, and using two commercial organic fertilizers (Heronatur 4-2-8 and 

Heronatur 7-2-4; Herogra Fertilizantes, Spain; 4% w/v N, 2% w/v P2O5 and 8% w/v K2O, 

and 7% w/v N, 2% w/v P2O5 and 4% w/v K2O) in the organic practice. 

 

5.2.2. Soil and plant sampling 
The soil was a Haplic Calcisol (IUSS, 2014) with a clay loam texture, the main 

characteristics of which are shown in Table 5.2.  

 
Table 5.2: Main soil characteristics. Values shown are mean ± standard deviation (n=4)  

Soil propertiesa   
pH  8.40±0.06 
EC (µScm-¹) 329±48 
SOM (%) 2.30±0.10 
Nt (g kg-¹) 0.75±0.05 
Bulk density (g cm-³) 1.01±0.03 
CEC (cmol+ kg-¹) 7.8±1.2 
CaCO3 (%) 30.2±1.2 
Clay (%) 34.5±0.16 
Silt (%) 21.3±1.06 
Sand (%) 44.2±0.92 

aEC: electrical conductivity; SOM: soil organic matter; Nt: total nitrogen; CEC: cation exchange capacity. 

A soil sampling was carried out at harvest for both fava bean and broccoli crops 

every year. All plots were sampled at 0-20 cm (plough depth). Three random soil samples 

per plot were collected and homogenized to obtain a composite sample. Samples were 

air-dried for 7 days, sieved < 2 mm and stored at room temperature until analyses. Enzyme 

activities were also measured in air-dried samples since these properties in Mediterranean 

semiarid soils are medium-term stable in stored air-dried samples (Zornoza et al., 2009a). 

Fava bean crop yield was determined by continuous collection and weighting of 

all pods in each plot when the seeds were fresh. Broccoli crop yield was determined by 

weighing the heads when they reached the marketable size.  

  



 

96 
 

5.2.3. Gas sampling 
During the two years, gas samples were taken once a week between 9:00 and 13:00 

to measure N2O, CO2 and CH4 emissions. The basic experimental procedure used in this 

study was the static gas chamber technique. The chamber was made of polycarbonate 

sheets, with a diameter of 30 cm and a height of 37cm, with a septum at the top for 

sampling. The chambers were inserted into the soil to a depth of 10 cm. Gas samples were 

collected at 0, 30 and 60 min after chamber closure and stored in previously evacuated 

10 mL blood containers (Vacutainers, Venojet) at room temperature. N2O, CO2 and CH4 

were quantified by gas chromatography (7890B GC Agilent Technologies) equipped with 

a flame ionization detector (FID) and an electron capture detector (ECD). Average N2O, 

CO2 and CH4 emissions were calculated and the cumulative values for each gas and 

treatment were estimated by numerical integration. 

 

5.2.4. Soil analyses 
Bulk density was determined by the method of the cylinder; soil pH and electrical 

conductivity (EC) were measured in deionized water (1:2.5 and 1:5 w/v, respectively); 

soil texture was determined by the Bouyoucos method (Dewis and Freitas, 1970); for 

equivalent calcium carbonate the volumetric method (Bernard calcimeter) was used 

(Cobertera, 1993); soil organic carbon was determined by the wet oxidation method using 

K2Cr2O7 (Walkley and Black, 1934) and then soil organic matter (SOM) was estimated 

by applying the factor 1.724; total nitrogen (Nt) was analyzed by the Kjeldahl method 

(Hoeger, 1998); cation exchange capacity (CEC) was determined by the use of BaCl2 as 

exchangeable salt (Roig et al, 1980); β-glucosidase activity (Glu) was based on the 

determination of p-nitrophenol released after incubation at 37 °C with β-D-

glucopyranoside (Tabatabai, 1982); β-glucosaminidase activity (Glm) was based on the 

determination of p-nitrophenol released after incubation with p-nitrofenil-β-D-

glucopyranoside at 37 °C (Parham and Deng, 2000); dehydrogenase activity (Dhs) was 

determined using p-iodo-nitro-tetrazolium chloride as substrate and measuring the 

absorbance of the iodonitrotetrazolium formazam (INTF) produced (Von Merci and 

Schinner, 1991); arylesterase activity (Aryl) was based on the determination of p-

nitrophenol released after incubation with p-nitrofenil acetate at 37°C (Zornoza et al., 

2009b). 
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5.2.5. Statistical analyses 
Data were checked to ensure normal distribution using the Kolmogorov–Smirnov 

test. Soil data were submitted to three-way ANOVA to assess the differences among year, 

crop and management practice. Crop yield in fava bean and broccoli crops were submitted 

to two-way ANOVA to assess the effect of year and management practice. Relationships 

among properties were studied using Pearson's correlations. Multiple linear regression 

analysis (Y=m1X1 +m2X2 +···+mnXn +b) was carried out using stepwise and backward 

methods, to quantify the contribution of soil enzyme activities and crop yield that might 

potentially affect GHG. Standardized coefficient (β) and partial correlation values were 

used for the analysis. The β coefficient is the estimated value resulting from the analysis 

performed on variables standardized to have a variance of 1 in order to determine which 

of the independent variables has a greater effect on the dependent variable. Therefore, 

variables with larger β coefficients contribute more to the model. The partial correlation 

indicates the correlation between the dependent variable and one independent variable 

when the linear effects of the remaining variables have been eliminated. The 

unstandardized coefficients (m) were used to fit the values of cumulative GHG emissions 

versus the values calculated using the regression model. A principal components analysis 

(PCA) was performed with all data to study the structure of dependence and correlation 

established among the variables studied in both crops. Statistical analyses were performed 

with the software IBM SPSS for Windows, Version 22.  

 

5.3. Results 

5.3.1. Crop yield 
Crop yield for both crops was significantly influenced by year and management 

practice (Table 5.3). Fava bean and broccoli crops showed higher crop yield during 

2015/2016 than in 2014/2015. Moreover, both crop yields were higher under 

conventional than organic management practice during both years. Fava bean yield was 

63% and 31 % higher under conventional management practice during 2014/2015 and 

2015/2016, respectively. Broccoli yield was 76% and 33 % higher under conventional 

management practice during 2014/2015 and 2015/2016, respectively. Thus, differences 

in yield between conventional and organic management decreased the second year.  
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Table 5.3: Crop yield in fava bean and broccoli crops during 2014/2015 and 2015/2016. Values shown are 

mean ± standard deviation (n=4) 
 
  
 

 

 

 

 

 

 

 

 

aSignificant at ***P < 0.001; **P < 0.01; *P < 0.05; ns: not significant (P > 0.05). 
 

5.3.2. Soil moisture and temperature 
Year did not affect soil temperature (Figure 5.1). Soil moisture showed higher 

values in 2014/15 for broccoli and in 2015/16 for fava bean. Crop significantly influenced 

soil moisture and temperature, with highest values in fava bean crop. Management 

practice significantly influenced soil moisture, with higher values under conventional 

than organic management practice for both crops, except for broccoli crop during the last 

year. The only significant interaction between factors was year x management practice 

for soil moisture.  

  

Management 
practice Year 

Fava bean 
crop yield 
(kg ha-1) 

Broccoli crop 
yield  

(kg ha-1) 
Conventional 

2014/2015 
15883±3543 24401±6896 

Organic 9750±876 13839±1419 

Conventional 
2015/2016 

53000±8887 28525±1212 
Organic 40250±6978 21375±3846 

F-valuea 

Year (Y) 97.27*** 6.19* 
Management practice (MP) 7.58* 14.29** 

Y × MP 0.93 ns 0.53 ns 
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Figure 5.1: Soil moisture, soil temperature and precipitation for both crops during 2014/2015 (A and C for fava bean and broccoli, respectively) and 2015/2016 (B and D for 

fava bean and broccoli, respectively). MC: soil moisture under conventional management; MO: soil moisture under organic management; P: precipitation; TC: soil temperature 

under conventional management; TO: soil temperature under organic management. F values and significance of the three-way ANOVA are shown at the bottom of the figure 

for soil temperature (left) and soil moisture (right). Significant at * P < 0.05, ** P < 0.01 and *** P < 0.001; ns: not significant (P > 0.05). 
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5.3.3. Soil CO2 emissions 
CO2 emission rates were similar in both crops during both years regardless of the 

management practice (Figure 5.2A, C and Figure 5.2E, G). However, organic practice led 

to higher emission rates during the second year in the broccoli crop. The highest CO2 

emission rate was 0.26 g m-2 h-1 for fava bean 83 days after the sowing, with no significant 

differences between organic and conventional management. The highest CO2 emission 

rate for broccoli was 0.27 g m-2 h-1 21 days after planting under organic management.   

Cumulative CO2 emission was, in average, 175 g m-2 and 84 g m-2 in fava bean 

crop during 2014/2015 and 2015/2016, respectively (Figure 5.2B, D). In broccoli, 

cumulative CO2 emission was, in average, 110 g m-2 and 100 g m-2 during 2014/2015 and 

2015/2016, respectively (Figure 5.2F, H). Thus, year significantly affected the cumulative 

CO2 emission, which was higher during the cycle 2014/2015 in fava bean crop. The 

cumulative CO2 emission was significantly affected by crop and management practice. 

Taking into account the crop, cumulative CO2 emission was higher in the fava bean than 

in the broccoli crop during 2014/2015. With regard to management practice, organic 

practice showed higher cumulative CO2 emission for broccoli crop during 2015/2016. 

The interaction between year and crop was significant, with highest values in fava bean 

during 2014/2015 (Figure 5.2B, D). Cumulative CO2 emissions were positively 

correlated with cumulative N2O emissions (R = 0.72, P < 0.01) and negatively to crop 

yield (R = - 0.60, P < 0.01). 

  



 

101 
 

 
 

Figure 5.2: CO2 emission rates and cumulative CO2 emissions for fava bean crop (left) and broccoli crop 

(right) during both crop cycles (2014/2015 and 2015/2016). F values and significance of the three-way 

ANOVA are shown at the bottom of the figure. Significant at ** P < 0.01 and *** P < 0.001; ns: not 

significant (P > 0.05). 
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5.3.4. Soil N2O emissions 
N2O emission rates decreased during the second year under both management 

practices in both crops (Figure 5.3A, C for fava bean and Figure 5.3E, G for broccoli). 

The highest N2O emission rate was 0.26 mg m-2 h-1 for fava bean in 17/02/2015 under 

conventional management. For broccoli, the highest N2O emission rate was 0.27 mg m-2 

h-1 in 21/12/2015 under organic management. As a general pattern, the highest N2O 

emissions were observed in fava bean crop compared with broccoli crop.  

Cumulative N2O emission was significantly affected by year, crop and 

management practice, with significant interactions year x crop and crop x management 

practice. Cumulative N2O emission was higher during the cycle 2014/2015 in fava bean 

crop. With regard to crop, cumulative N2O emission was, in average for both 

management practices, higher in fava bean (126 mg m-2) than in broccoli (78 mg m-2) 

during 2014/2015. Organic management led to highest cumulative N2O emission in fava 

bean crop during both years. Cumulative emission was 25% and 63% higher under 

organic management than under conventional management for 2014/2015 and 

2015/2016, respectively. Organic management also led to the highest cumulative N2O 

emission in broccoli crop during 2015/2016, with 44 % higher under organic than under 

conventional management. Cumulative N2O emissions were positively correlated with 

Glm (R = 0.656, P < 0.01), and negatively correlated with Dhs (R = - 0.657, P < 0.01) 

and crop yield (R = - 0.723, P < 0.01).  
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Figure 5.3: N2O emission rates and cumulative N2O emissions for fava bean crop (left) and broccoli crop 

(right) during both crop cycles (2014/2015 and 2015/2016). F values and significance of the three-way 

ANOVA are shown at the bottom of the figure. Significant at ** P < 0.01 and *** P < 0.001; ns: not 

significant (P > 0.05).  
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5.3.5. Soil CH4 emissions 
CH4 emission rates slightly increased during the second year under both 

management practices in both crops (Figure 5.4A, C for fava bean and Figure 5.4E, G for 

broccoli). The highest CH4 emission rate was 4.9 mg m-2 h-1 for fava bean in 19/12/2015 

under conventional management. In broccoli, the highest CH4 emission rate was 5.9 mg 

m-2 h-1 22 days after planting under conventional management. In general, CH4 emission 

rates were higher in fava bean than broccoli crop during the second year.  

Cumulative CH4 emission was, in average, 1192 mg m-2 and 2539 mg m-2 in fava 

bean crop during 2014/2015 and 2015/2016, respectively (Figure 5.4B, D). Cumulative 

CH4 emission was, in average, 1499 mg m-2 and 1470 mg m-2 in broccoli crop during 

2014/2015 and 2015/2016, respectively (Figure 5.4F, H).  Cumulative CH4 emission was 

significantly influenced by year, crop and management practice, and all interactions were 

significant.  

Cumulative CH4 emission was higher for fava bean than broccoli crop under both 

management practices during 2015/2016 (2539 mg m-2 in fava bean crop and 1470 mg m-

2 in broccoli crop). In fava bean, cumulative CH4 emission was higher during 2015/2016 

compared to 2014/2015 while in broccoli crop, this emission was higher during 

2014/2015 under conventional practice. Organic management led to higher cumulative 

CH4 emission during 2014/2015 in fava bean. However, conventional practice showed 

higher cumulative CH4 emission during 2014/2015 in broccoli crop (Figure 5.4B, D for 

fava bean and Figure 5.4F, H for broccoli). Cumulative CH4 emissions were negatively 

correlated to Glm (R= - 0.648, P < 0.01) and positively correlated to crop yield (R= 0.792, 

P<0.01). 
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Figure 5.4: CH4 emission rates and cumulative CH4 emissions for fava bean crop (left) and broccoli crop 

(right) during both crop cycles (2014/2015 and 2015/2016). F values and significance of the three-way 

ANOVA are shown at the bottom of the figure. Significant at ** P < 0.01 and *** P < 0.001; ns: not 

significant (P > 0.05).  
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5.3.6. Soil enzyme activities 
Glu, Glm and Dhs activities were significantly affected by year (Table 5.4); Glu 

and Dhs showed higher activity in both crops during 2015/2016, while Glm activity was 

the highest during 2014/2015. Glu and Aryl were significantly influenced by crop, with 

higher activities in broccoli than in fava bean crop. With regard to management practice, 

Glu and Dhs showed significantly higher activities under organic management, while 

Aryl showed significantly higher activity under conventional management. The 

interaction crop x year was significant for Glm, with higher activity in broccoli than in 

fava bean during 2015/2016. The interaction year x management practice was significant 

for Aryl, with higher activity under conventional management during 2014/2015 than 

during 2015/2016.  

 
Table 5.4: Soil enzyme activities in fava bean and broccoli crops during 2014/2015 and 2015/2016. Values 

shown are mean ± standard deviation (n=4) 

aSignificant at ***P < 0.001; **P < 0.01; *P < 0.05; ns: not significant (P > 0.05). 
Glu: β-glucosidase activity, Glm: β-glucosaminidase activity, Aryl: Arylesterase activity, Dhs: 
Dehydrogenase activity. 

Management practice Year 
Glu  

(µmol PNP g-1 

h-1) 

Glm 
 (µmol PNP g-1 

h-1) 

Aryl  
(µmol 

PNP g-1 h-

1) 

Dhs  
(µmol INTF 

g-1 h-1) 

Fava bean 

Conventional 
2014/2015 

0.196±0.009 0.367±0.084 123±12 0.367±0.261 

Organic 0.401±0.149 0.234±0.149 82±2 0.657±0.126 

Conventional 
2015/2015 

0.425±0.137 0.102±0.015 109±38 1.214±0.124 

Organic 0.475±0.080 0.113±0.044 88±21 1.310±0.199 

Broccoli 

Conventional 
2014/2015 

0.287±0.125 0.139±0.022 177±19 0.358±0.103 

Organic 0.521±0.093 0.229±0.037 77±17 0.487±0.081 

Conventional 
2015/2016 

0.616±0.126 0.148±0.020 136±22 1.210±0.200 

Organic 0.784±0.057 0.144±0.014 125±28 1.327±0.147 

F-valuea 

Crop (C) 16.59*** 2.13 ns 9.46** 0.38 ns 

Year (Y) 26.33*** 18.77*** 0.00 ns 140.67*** 

Management practice (MP) 14.16** 0.11 ns 22.59*** 5.51* 

C × Y 2.74 ns 8.48** 0.15 ns 0.50 ns 

C × MP 0.72 ns 3.86 ns 1.81 ns 0.27 ns 

Y × MP 1.62 ns 0.21 ns 8.99** 0.59 ns 

C × Y × MP 0.26 ns 5.01* 3.77 ns 0.46 ns 
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5.3.7. Interrelationship between GHG emissions, soil enzyme 

activities and crop yield 
Multiple linear regression analysis (Table 5.5) showed that the cumulative N2O 

emissions were positively related to the cumulative CO2 emissions, and negatively to 

crop yield and Glu activity (R2 = 0.77, F = 22577, P < 0.001). Cumulative CH4 emissions 

were positively related to crop yield and negatively to Glm activity (R2 = 0.69, F = 23.53, 

P < 0.001). 

 
Table 5.5: Multiple linear regression models for GHG emissions in fava bean and broccoli crops during 

2014/2015 and 2015/2016. 

Y X m 
Partial 
correlat

ion 
β R² R² 

adj F value 

Cumulative 
N2O emission  

(mg m-2) 

Constant (b) 107.97   

0.77 0.74 22577*** 
Crop yield (kg ha-1) -0.001 -0.64 -0.51 

Glu activity 
(µmol PNP g-1 h-1) -69.45 -0.59 -0.36 

Cumulative CO2 emission 
(g m-2) 0.25 0.45 0.32 

        

Cumulative 
CH4 emission  

(mg m-2) 

Constant (b) 1.3×106      

Crop yield (kg ha-1) 0.03 0.62 0.68 0.69 0.66 23.53*** 
Glm activity  

(µmol PNP g-1 h-1) -1.9×106 -0.30 -0.41    

Glu: β-glucosidase activity, Glm: β-glucosaminidase activity. 

The PCA performed with the studied cumulative GHG emissions, soil enzyme 

activities and crop yield of both crops showed that 76.4% of the total variation could be 

explained by the first three PCs. PC1, which explained 38.8 % of variation, separated 

crop cycle 2015/16 (positive scores) from crop cycle 2014/15 (negative scores) (Figure 

5.5A). In addition, for year 2014/15, PC1 separated broccoli from fava bean. This PC was 

related with cumulative N2O and CO2 emissions, Glu, Glm, Dhs and crop yield (Table 

5.6). PC2, which explained 24.1 % of variation, separated the fava bean crop (positive 

scores) from broccoli crop (negatively scores) (Figure 5.5A and B). Moreover, PC2 

slightly separated the conventional practice (higher scores) from the organic practice 

(lower scores). This PC2 was related with higher values of soil moisture and temperature, 

and cumulative CH4 emissions (Table 5.6). PC3, which explained 13.5 % of variation, 

separated the organic (negatively scores) from conventional management practice 

(positively scores) for both crops during 2014/15 (Figure 5.5B). Organic practice showed 

lower Aryl activity (Table 5.6).  
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Figure 5.5: PCA factor scores of variations in GHG emissions, soil enzyme activities and crop yield in fava bean and broccoli crop, considering different year, crop and 

management practices. Color represents crop (green: fava bean crop; red: broccoli crop), figure type represents year (square: 2014/2015; circle: 2015/2016) and figure filling 

represents management practice (filled figure: conventional management practice; empty figure: organic management practice). F: fava been; B: broccoli; C: conventional 

management, O: organic management: 14: 2014/2015 crop cycle; 15: 2015/2016 crop cycle. 
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Table 5.6: Matrix of PCA obtained with variation rates (%) of GHG emissions, soil enzyme activities and 

crop yield of fava bean and broccoli crops during two years. 

Variance explained PC1 
(38.8%) 

PC2 
(24.1%) 

PC3 
(13.5%) 

Cumulative N2O emissions (mg m-2) -0.916 -0.079 0.083 

Dhs activity (µmol INTF g-1 h-1) 0.803 0.124 0.342 

Cumulative CO2 emissions (g m-2) -0.780 0.022 0.253 

β-Glm activity (µmol PNP g-1 h-1) -0.767 -0.153 0.033 

Crop yield (kg ha-1) 0.693 0.654 -0.096 

β-Glu activity (µmol PNP g-1 h-1) 0.970 -0.499 0.450 

Soil temperature (⁰C) 0.017 0.804 0.289 

Soil moisture (%) 0.057 0.802 -0.340 

Cumulative CH4 emissions (mg m-2) 0.591 0.632 -0.082 

Aryl activity (µmol PNP g-1 h-1) 0.107 0.031 -0.863 
Dhs: Dehydrogenase activity; Glm: β-glucosaminidase activity; Glu: β-glucosidase activity;  
Aryl: Arylesterase activity. 
 
5.4. Discussion 

This study showed how year, crop and management practice affect crop yield, 

greenhouse gas fluxes and soil enzymatic activities of legume and non-legume crops. 

Crop yield and soil enzyme activities for both crops as well as CH4 emissions for fava 

bean increased during the second year, while CO2 and N2O emissions decreased for fava 

bean crop. In turn, the increase of crop yield and soil enzyme activities was linked to 

lower GHG emissions (CO2 and N2O). Despite the fact that the decomposition of biomass 

by soil microorganisms results in CO2 emission from soil through microbial respiration, 

the negative relationship between soil enzyme activities and GHG emissions can be 

explained because a higher proportion of C is retained in the soil through the formation 

of stable organic matter. This fact can occur when C inputs from photosynthesis exceed 

C losses through soil respiration, resulting in soil C sequestration (Lal, 2004). In turn, a 

higher C retention in soil could reduce N2O emissions, since available carbon controls 

denitrification rates and thus N2O production (Beauchamp et al., 1989; Mathieu et al., 

2006). The negative relationship between crop yield and N2O and CO2 emissions, as well 

as the negative relationship of soil enzyme activities with N2O and CH4 emissions may 

indicate that high crop yield is related to a more efficient soil microbial community in the 

use of C and N, which is not lost by rapid mineralization, and favours plant nutrient 

uptake. Tautges et al. (2016) also observed a positive relationship between soil fungal and 

bacterial abundance and crop yield in a pea crop, concluding that increased fungi and 

bacteria sizes may be providing a benefit for plants by greater nutrient availability.  
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Ecological factors such as soil moisture and temperature can be affected by 

different crops mainly due to vegetation attributes such as density and height (Özkan and 

Gökbulak, 2017). In this sense, higher soil moisture in fava bean compared with broccoli 

crop may be favoring anaerobic conditions, which are required for methanogenesis, 

explaining higher CH4 emissions in the legume crop. Legume crops can reduce the use 

of external N inputs by biological N fixation, and consequently decrease N2O emissions. 

However, legume-N-fixing bacteria symbioses may also produce N2O emissions through 

the nitrification and denitrification of biologically fixed N (Galloway, 1998) or by N-

fixing bacteria that are able to denitrify (O´Hara and Daniel, 1985). This process could 

explain higher N2O emissions in fava bean than broccoli crop during 2014/2015. This is 

opposite to the lower contribution of N2O emissions linked to N fixed through biological 

nitrogen fixation confirmed by Zhong et al. (2009). In addition, higher N2O emissions in 

soil cultivated with legumes can be due to the release of root exudates during the growing 

season, which tend to be N-rich in legumes plant species (Fustec et al., 2010). Increased 

CO2 emissions in fava bean compared to broccoli may be explained by an increase of C 

compounds released from root exudation or crop residues decomposition, which may also 

increase SOM mineralization. However, broccoli crop showed higher soil hydrolytic 

enzyme activities, which should be related to higher CO2 emissions than in fava bean. 

This contradictory result may be indicating that other enzymes and biochemical processes 

may be taking place in soil to favour increased GHG emissions in fava bean crop, not 

identified with the studied indicators.  

With regard to management practice, the use of conventional management led to 

higher crop yield. These results revealed that organic practice could be associated with a 

low N use efficiency, possibly due to a slow mineralization of applied organic inputs and 

the lack of synchrony between supplied and required N (Alaru et al., 2014). Organic 

practices have been considered as a possible strategy for reducing GHG emissions 

through C sequestration (Dalgaard et al., 2001; Flessa et al., 2002; Diacono and 

Montemurro 2010). However, crops grown under organic management in this experiment 

showed higher N2O and CO2 emissions and soil enzyme activities, which seems to 

indicate that organic fertilizers activated microbial populations, which favored the 

mineralization of the organic compounds (Kuzyakov, 2006). These results contradict 

those obtained by other researchers, which observed reduction of GHG emissions in soils 

cultivated under organic practices (Diacono and Montemuro, 2010; Abalos et al., 2016).  
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5.5. Conclusions 
In conclusion, the results based on the crop yield, GHG emissions and soil enzyme 

activities in legume and non-legume crops under conventional and organic practices 

during two years showed that second year offered lower N2O and CO2 emissions for fava 

bean crop together with an enhancing crop yield and higher levels of enzyme activities 

for both crops. Fava bean crop released more N2O, CO2 and CH4, while CO2 emissions 

were directly related to N2O emissions. The adoption of conventional management 

practice resulted in higher crop yields for both crops, while organic practice led to higher 

N2O and CO2 emissions as well as soil enzymatic activities. These results support our 

initial hypothesis concerning the legume-nitrogen fixing bacteria (NFB) association could 

increase soil N availability through BNF, that along with the use of N fertilizers can lead 

to higher GHG emissions, mainly N2O emission, compared to the non-N-fixing vegetable 

crop. The adoption of organic management increased N2O and CO2 emissions possibly 

due to an increase of soil organic matter mineralization. 
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Influence of different nitrogen-fixing bacteria and 
arbuscular mycorrhiza on biological nitrogen 
fixation and yield, quality and nutritional 
characteristics of a fava bean crop 
 
Abstract 

The introduction of nitrogen-fixing bacteria (NFB) into the soil is an advisable 

agricultural practice to improve N efficiency in the agro-ecosystems. Furthermore, 

arbuscular mycorrhizal fungi (AMF) inoculation have positive effects for the symbiotic 

plant by enhancing nutrient, water uptake, and tolerance to biotic and abiotic stresses. 

Hence, the aim of this work was to study plant nutrition, biological nitrogen fixation 

(BNF), and crop yield and quality of two fava bean cultivars (Muchamiel and Palenca) 

inoculated with NFB and/or AMF during two seasons. Both cultivars were inoculated 

with Rhizobium and Burkholderia genera NFB and/or AMF through individual and dual 

inoculation treatments, and fertigated with 20% decrease in fertilization rate compared to 

non-inoculated crop. Nutritional composition in plants was not significantly affected by 

inoculation treatments and the reduction in the use of fertilizers. BNF was influenced by 

cultivar, with higher values in shoot of Muchamiel. Protein content in grain was 17% 

higher after inoculation in Muchamiel cultivar during second season, showing a higher 

efficiency in the assimilation of N by the plant with inoculation. Dual inoculation showed 

higher N content in shoot (106 % and 24 % in Muchamiel and Palenca, respectively) 

compared to individual inoculation. The inoculation with Burkholderia cenocepacia 

showed 20-29% higher N content in roots compared to Rhizobium leguminosarum. Thus, 

the use of inoculation techniques in fava bean resulted in an environmental friendly 

alternative, reducing the input of fertilizers at the same time as it maintains crop yield and 

quality, with increases in grain protein content. 

 

Keywords: Vicia faba; Rhizobium sp.; Burkholderia sp.; biological nitrogen fixation; 

plant nutrition. 
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6.1. Introduction 
 The alarming increase of the worldwide population leads to greater fertilizer 

requirements to reach the required food production. The application of nitrogen-fixing 

bacteria (NFB) in plant cultivation is one of the most promising methods for an effective 

management of nitrogen fertilizers and increasing agricultural productivity (Lugtenberg 

et al., 2002). This is an important option for enhancing biological nitrogen fixation (BNF) 

in crop production systems, since it is a good alternative to i) reduce external inputs of 

fertilizers; ii) offer a higher efficiency in the utilization of N by the plant; and iii) reduce 

N leaching along soil profile and avoid water pollution (Peoples et al., 1995; Giller, 2001). 

BNF is affected by many factors including weather, water availability, soil pH, 

phosphorus content and management practices (Hungria et al., 2000; Vance et al., 2000). 

In this process, Rhizobia are bacterial symbionts of legumes that fix atmospheric N in 

specialized structures on plant roots called nodules. In exchange, bacteria receive carbon 

compounds derived from photosynthesis (Laranjo et al., 2014). In this group, most 

bacteria belong to the α-class of proteobacteria (Bradyrhizobium, Mesorhizobium, 

Rhizobium, and Sinorhizobium), although other bacteria from the β- and γ-class of 

proteobacteria can be found, such as Burkholderia and Enterobacter, respectively 

(Vandamme et al., 2002; Benhizia et al., 2004; Glick, 2012; Zaidi et al., 2015; Nadeem 

et al., 2014).  

 In addition to NFB, arbuscular mycorrhizal fungi (AMF) also play an important 

role in the BNF process, since they act as phosphate solubilizing microorganisms that are 

able to mineralize organic P and make available inorganic P (Sharda and Koide, 2010). P 

is considered the less available nutrient to plants, which is related to nodule formation 

and functioning, and it is essential for the action of the nitrogenase enzyme in the BNF 

process (Al-Niemi et al., 1997; Shen et al., 2011). Legumes often need inoculation 

techniques when they are grown in regions outside their areas of diversity, where they 

have not been traditionally grown or have not been grown for a long time (Brockwell et 

al., 1995). In addition to this, the inclusion of NFB into the soil is advisable when the 

legume is cultivated in a soil with an absence of previous crop of same or symbiotically 

linked microorganisms (Catroux et al., 2001). NFB may be introduced to legumes by 

inoculation of the seed or the soil at sowing. Seeds may be inoculated by farmers 

immediately prior to sowing or by local seed merchants, while soil is inoculated using 

inoculants suspended in water or formulated as liquids or granules (Deaker et al., 2004). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/crop-production
https://www.sciencedirect.com/science/article/pii/S0167880917303651#bib0035
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The survival of introduced bacteria species is depending on factors such as desiccation, 

the toxic nature of soluble seed coat exudates and unfavorable temperatures (Date, 1968; 

Vincent et al., 1962). In turn, tripartite symbiosis (NFB-AMF-legumes) against non-

inoculated control plant or plant inoculated with AMF or NFB alone, offers benefits to 

the plant such as enhanced plant growth, crop yield, phosphorus and nitrogen content 

(Pacovsky et al., 1986; Azcon et al., 1991). In this respect, research studies such as those 

carried out by Tajini et al. (2012) and Abd-Alla et al. (2014) showed that dual inoculation 

improved parameters of nodulation, nitrogenase activity, mycorrhization and nutrients 

content (N and P) in plant compared with individual inoculation. 

 Based on these approaches, we designed an experiment involving two fava bean 

cultivars inoculated with NFB belonging to Rhizobium and Burkholderia genera, and 

arbuscular mycorrhizal fungi. The objectives of the study were to assess: i) the 

effectiveness of such dual inoculation on crop yield and quality; ii) whether the dual 

inoculation can increase BNF by the crop, and hence root nodulation and the content of 

grain protein; and iii) the different response of cultivars to dual inoculation. We 

hypothesized that the tripartite symbiosis between NFB, AMF and the plants would 

increase crop yield and the protein content of the edible grain through enhanced biological 

N fixation. This response may be cultivar dependent, since plant´s genetic controls 

microbial activity in the rhizosphere through root exudation. 

 

6.2. Materials and methods 

6.2.1. Study site and experimental design 
This study was carried out in Cartagena, southeast Spain (37º 41` N 0º 57` E). The 

climate of the area is semiarid Mediterranean with a mean annual temperature of 18ºC 

and annual precipitation of 290 mm. Potential evapotranspiration surpasses 900 mm. The 

soil of the study site is a Haplic Calcisol (IUSS, 2014) with clay loam texture. The field 

experiment was designed in a complete randomized block with four replications, and each 

plot had 10 m2. Two different cultivars (Muchamiel and Palenca) of fava bean (Vicia faba 

L.) were grown under drip irrigation under conventional management practice during two 

seasons. Both cultivars were subjected to eight treatments: 1. individual inoculation with 

Rhizobium leguminosarum (RL); 2. individual inoculation with Burkholderia 

cenocepacia (BC); 3. individual inoculation with Burkholderia vietnamiensis (BV); 4. 

individual inoculation with AMF (Rhizophagus irregularis, Claroideoglomus 
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etunicatum, Claroideoglomus claroideum and Funneliformis mosseae), 5. combined 

inoculation of Rhizobium leguminosarum with AMF; 6. combined inoculation of 

Burkholderia cenocepacia with AMF; 7. combined inoculation of Burkholderia 

vietnamiensis with AMF; and 8. non-inoculated crop (control). A non-inoculated crop of 

broccoli (Brassica oleracea var. italica L.) was included as the reference non-nitrogen 

fixing species to assess the BNF, also grown under drip irrigation.  

In the first season, sowing took place on 6 November 2015, starting to flower on 

10 and 24 February 2016 for Palenca and Muchamiel cultivars, respectively, and 

harvesting from 28 March to 18 April 2016 for Palenca and from 6 to 25 April 2016 for 

Muchamiel. Broccoli was planted on 1 December 2015 and its plant was sampled at 

legume sampling time to assess BNF. In the second season, sowing was established on 9 

November 2016, flowering started on 20 and 27 February 2017 for Palenca and 

Muchamiel cultivars, respectively, and harvesting from 27 March to 24 April 2017 for 

Palenca and from 3 to 28 April 2017 for Muchamiel. Broccoli was planted on 5 December 

2016. With regard to fava bean harvest, all the pods in each plot were continuously 

harvesting and weighting when the seeds were fresh at the end of the crop cycle. Main 

weather conditions were a minimum air temperature of 8.3°C, mean temperature of 

13.2ºC, maximum temperature of 19.3ºC and rainfall of 9.3 mm for the 2015/16 season, 

and a minimum air temperature of 6.5°C, mean temperature of 12.7ºC, maximum 

temperature of 17.1ºC and rainfall of 63.9 mm for the 2016/17 season.  

 Fava bean seeds were inoculated by adding 2 g of the different nitrogen-fixing 

bacteria and 4 g of AMF at sowing time. In the control treatment, autoclaved inoculants 

(121°C for 20 min) were applied at the same rate. The strains of the three nitrogen-fixing 

bacteria were isolated from the active root nodules of fava bean plants from Portugal and 

selected by their growth-promoting effect in fava bean plants in previous greenhouse 

studies. The bacterium was isolated by standard methods (Vincent, 1970) and cultivated 

and maintained on yeast extract-mannitol (YEM) agar medium consisting of 0.4 g yeast 

extract, 10 g mannitol, 0.5 g K2HPO4, 0.2 g MgSO4.7H2O, 0.1 g NaCl, 8 g agar and 

0.25% Congo Red, dissolved in 1000 mL deionized water and autoclaved at 121°C for 

20 min. Bacterial culture was grown in 250 mL Erlenmeyer flasks containing 100 mL of 

YEM broth medium, for 3 days at 28°C. The contents of each flask were diluted to 300 

mL with sterilized deionized water in order to obtain 109 cells per mL, estimated from the 

absorbance at 600 nm, and mixed with 1 kg of the sterilized carrier (compost 
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soil:vermiculite 1:1 v/v), to give approximately 40% moisture in the inoculant (3×109 

cells per gram of inoculum). AMF was provided by Symbiom (Czech Republic), and 1g 

contained approximately 160 spores, i.e. 40 spores of each fungal strain per gram. 

 The inoculated and non-inoculated seeds were sown with a spacing of 100 cm 

between rows and 40 cm between plants (2.5 plants m-2). No herbicide treatment was 

carried out, and the crop was kept free of weeds by hand-hoeing when necessary. 

Fertilizer application in the fava bean plots started three weeks after sowing, adding 20 

kg ha-1 of N and 20 kg ha-1 of P2O5 in the form of ammonium nitrate (33.5% N) and 

monoammonium phosphate (61% P2O5, 12% N), as well as 40 kg ha-1 of K2O in the form 

of potassium sulphate (50% K2O, 18% S) as fertigation throughout the crops cycles. 

Broccoli plants were transplanted two weeks after fava bean sowing, with a planting 

pattern of 20 cm between each plant × 100 cm of space (5 plants m-2), and fertilized 

similarly to the fava bean crop by fertigation. The application rate of fertilizers was 

reduced by 20 % in inoculated crops compared to non-inoculated control to check whether 

external inputs fertilizers can be saved by introducing inoculation techniques. 

 

6.2.2. Plant sampling  
Plant sampling was carried out during fava bean flowering. Three plants per plot 

were carefully uprooted to obtain unharmed roots, and separated into root, shoot, nodules 

and seeds in the case of the legumes, and into root and shoot for broccoli to assess 

biological N fixation. Fava bean yield (kg ha-1) was determined by continuously 

harvesting and weighting all the pods in each plot when the seeds were fresh. In addition, 

the following parameters were recorded: protein content in grain (%), number of pods per 

plant, weight of 100 seeds, pod length and dry weight of nodules.  

The plant samples were oven dried and ground (A11 Basic, IKA) before 

incinerating at 500ºC; the ashes were dissolved in 0.6N HNO3 and analysed for P, B, Ca, 

Mg, Na and K by ICP-MS (7500 CE, Agilent). Nitrogen (N) was determined by the 

Kjeldahl method (Hoeger, 1998). The protein content in grain was derived from the 

estimated N content by the following formula (AOAC, 1990):  

Protein content (%) = N content (%) × 6.25     (1) 

NO3- was extracted with deionized water in a 1:50 plant:extractant ratio (Keeny 

and Nelson, 1982) and measured by ion chromatography (Metrohm 861).  
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6.2.3. Efficiency of biological nitrogen fixation 
In order to determine the efficiency of BNF, the 15N natural abundance method 

was used. The 15N content of the plant samples was determined in the Stable Isotope 

Facility of UC-Davis, Davis, CA, USA, by CF-IRMS (Europa Scientific, Crewe, UK). 

This method is useful when the abundance of 15N in the soil is higher than in atmospheric 

N2 (0.3663%). The differences (𝛿𝛿15N) between the 15N abundance in each sample and in 

the atmospheric N were calculated using the equation 2 (Bedard-Haughn et al., 2003): 

𝛿𝛿15N=((Sample atom %N - 0.3663) / 0.3663)×1000    (2) 

To calculate the proportion of N derived from air (%Ndfa), it is necessary to know 

the δ15N of the N2-fixing legume and the δ15N of the non-fixing reference plant (broccoli) 

grown in the same soil as the N2-fixing legume (equation 3) (Unkovich et al., 2008): 

%Ndfa= ((δ15N of reference plant - δ15N of legume) / (δ15N of reference plant – B)) ×100 

(3) 

 As ´B´ value we used -0.50, based on ´B´ values for fava bean shoot taken from 

the literature (Unkovich et al., 2008). 

 

6.2.4. Statistical analyses 
Data were checked to ensure normal distribution using the Kolmogorov–Smirnov 

test and ln-transformed when necessary to ensure normal distribution. Data were 

submitted to three-way ANOVA to assess the differences among season, legume cultivar 

and inoculation treatment. Data of those properties without normal distribution were 

submitted to a one-way non-parametric ANOVA (Kruskal-Wallis test) for the factors 

season, legume cultivar and inoculation treatment. Relationships among properties were 

studied using Pearson's correlations. Statistical analyses were performed with the 

software IBM SPSS for Windows, Version 22. 

 

6.3. Results 

6.3.1. Plant nutritional characteristics 
As a general pattern, most nutrients measured in the different plant parts (seeds, 

shoot and root) were higher in the second than in the first season (Tables 6.1; 6.2 and 6.3). 

Legume cultivar did not have a clear influence on the plant parameters analysed, while 

inoculation treatment significantly affected N in seeds, shoot and root. The inoculation of 
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both fava bean cultivars with Rhizobium leguminosarum (RL) led to a significant increase 

of N in seeds for both growing seasons compared to the inoculated control (Table 6.1). In 

turn, dual inoculation with RL and AMF significantly increased N concentration in shoot 

for both fava bean cultivars and seasons compared with the RL individual inoculation 

(Table 6.2). N content in root was significantly higher after inoculation with Burkholderia 

cenocepacia (BC) than with RL for both fava bean cultivars and seasons (Table 6.3). Seed 

Mg, Na, K and P concentrations were positively correlated between each other (R > 0.75; 

P < 0.01). In shoot, Ca, Mg, Na and P concentrations were positively correlated between 

each other (R > 0.73; P < 0.01), while in root, Mg, K and P concentrations were positively 

correlated between each other (R > 0.69; P < 0.01). 
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Table 6.1: Nutrient content in seeds of both fava bean cultivars for two seasons (nitrogen content, nitrate, 

boron, calcium, sodium, magnesium, potassium and phosphorus). Values are mean ± standard deviation 

(n=4). 

 
Cultivar 

(C) 

 
Treatment 

(T)a 

N 
(g kg-1) 

 
NO3

-  
(mg kg-

1) 
 

B 
(mg kg-1) 

 

Ca 
(mg kg-1) 

 

 
 Na 

(mg kg-1) 
 

 
Mg 

(mg kg-1) 
 

 
K 

(mg kg-1) 
 

P 
(mg kg-1) 

2015/2016 

‘Muchamiel’  RL 48.2±0.6 443±6 68.9±4.1 457±320 91.7±52.6 295±146 2919±1283 1090±474 

 RL+AMF 47.7±0.9 437±11 64.2±8.9 172±46 81.6±27.2 195±75 2333±838 762±249 

 BC 42.4±1.1 438±7 54.9±12.0 166±75 52.2±6.4 184±65 1992±687 760±263 

 BC+AMF 42.9±1.6 430±14 68.5±11.1 217±58 84.5±5.7 236±59 2899±598 988±232 

 BV 41.6±1.4 440±14 45.3±16.3 186±151 53.6±28.6 208±167 2120±1726 825±658 

 BV+AMF 41.6±1.8 451±5 39.8±9.3 117±45 49.8±9.6 114±45 1441±544 501±148 

 AMF 44.4±5.1 431±22 59.2±5.4 237±56 79.0±23.4 316±96 2910±727 454±283 

  CONTROL 45.7±2.8 442±20 45.8±8.3 176±55 72.5±9.0 217±44 2482±530 883±181 

‘Palenca’ RL 45.8±1.8 448±16 42.7±14.5 224±112 71.3±16.5 266±136 2736±492 1035±511 

 RL+AMF 49.8±1.3 440±13 49.3±14.3 242±71 96.1±41.2 290±97 3304±1257 1162±324 

 BC 44.6±1.9 436±8 35.5±6.1 175±53 52.1±4.3 199±74 2028±719 792±246 

 BC+AMF 45.3±0.7 426±17 37.2±9.8 121±56 64.3±26.7 130±55 1673±528 575±201 

 BV 46.0±0.8 432±19 42.9±12.5 263±65 87.3±19.8 315±99 3073±848 1261±314 

 BV+AMF 46.4±3.4 441±12 62.9±46.9 289±159 113±78 353±201 3979±2330 1398±738 

 AMF 47.1±1.0 430±5 29.7±11.7 211±138 65.5±130.9 271±191 2648±1852 1036±732 

 CONTROL 44.1±3.9 454±16 58.3±29.8 467±324 162±113 497±330 6243±4142 1785±1101 

2016/2017 

‘Muchamiel’  RL 44.3±1.5 786±5 0±0 443±88 194±100 780±296 13820±3735 3836±1060 

 RL+AMF 40.3±1.4 605±12 0±0 543±124 193±15 873±251 14764±2411 3976±668 

 BC 41.5±2.9 733±13 0±0 343±60 105±43 511±96 10954±1090 2906±391 

 BC+AMF 39.7±5.1 529±75 0±0 275±26 117±11 396±62 10101±931 2369±344 

 BV 40.8±2.5 611±17 0±0 372±97 134±27 567±153 11609±1961 3206±672 

 BV+AMF 41.3±2.9 580±28
2 0±0 518±101 147±54 757±130 14656±2942 3834±55 

 AMF 44.0±5.7 496±16 0±0 347±73 155±13 516±118 10777±1249 2916±329 

  CONTROL 42.3±1.7 771±18 0±0 415±241 213±87 660±340 12510±3505 3247±1299 

‘Palenca’  RL 46.1±7.8 763±23 0±0 401±71 149±26 654±150 12330±1424 3432±491 

 RL+AMF 38.7±1.3 569±16 0±0 378±114 166±44 603±101 12413±1360 3090±378 

 BC 44.6±5.4 615±95 0±0 320±81 136±65 448±108 10284±898 2514±480 

 BC+AMF 42.0±1.3 516±70 0±0 413±119 151±53 623±203 12691±2199 3225±741 

 BV 43.2±3.3 386±32
1 0±0 316±29 134±20 435±40 10548±796 2656±224 

 BV+AMF 39.7±1.5 672±29
4 0±0 372±101 147±26 531±125 11563±1092 2868±464 

 AMF 36.5±2.9 502±53 0±0 444±151 152±50 784±263 13654±3271 3800±964 
 CONTROL 38.4±2.9 808±85 0±0 448±140 186±29 744±195 13984±1628 3602±486 

                                                   χ2 valueb F valueb 

Season (S) 24901*** 43.78**
* 81.43*** 36.10*** 46.94*** 97.12*** 525.27*** 295.87*** 

Legume cultivar (LC) 1.40ns 0.03ns 0.09ns 0.003ns 2.62ns 0.23ns 0.55ns 0.06ns 
Inoculation treatment (IT) 4.81* 1.92ns 0.09ns 3.00ns 3.20ns 1.34ns 0.33ns 0.55ns 

aTreatment: RL (Rhizobium leguminosarum), BC (Burkholderia cenocepacia), BV (Burkholderia 
vietnamiensis) and AMF (arbuscular mycorrhizal fungi). 
bSignificant at *P<0.05; ***P<0.001; ns: not significant (P>0.05). Different letters indicate significant 
differences (P<0.05) among means. 
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Table 6.2: Nutrient content in shoot of both fava bean cultivars for two seasons (nitrogen content, nitrate, 

boron, calcium, sodium, magnesium, potassium and phosphorus). Values are mean ± standard deviation 

(n=4). 

 

 
Cultivar 

(C) 

 
Treatment 

(T)a 

N 
(g kg-1) 

 
NO3

- 
(mg kg-1) 
 

B 
(mg kg-1) 

 

 
Ca 

(mg kg-1) 
 

 
Na 

(mg kg-1) 
 

 
 Mg 

(mg kg-1) 
 

 
 K 

(mg kg-1) 
 

P 
(mg kg-1) 

2015/2016 
‘Muchamiel’  RL 30.5±6.4 511±40 46.9±11.5 2158±1242 1032±487 584±290 9055±3097 726±192 

 RL+AMF 36.7±4.3 454±253 31.6±2.1 3270±779 986±139 939±164 10229±1548 851±145 

 BC 27.5±2.3 468±30 21.1±4.0 2457±1144 935±195 732±242 9197±2141 961±233 

 BC+AMF 29.7±5.8 460±33 22.3±10.4 2308±1159 1250±176 670±267 8254±2192 599±303 

 BV 33.3±3.3 527±50 44.4±7.8 2308±720 1094±561 688±256 9028±4288 842±251 

 BV+AMF 20.7±7.4 510±61 50.3±5.4 3143±429 1372±147 961±146 6536±1176 1057±136 

 AMF 30.1±2.3 596±130 26.4±5.0 1347±239 795±33 403±83 4375±1085 556±130 

  CONTROL 27.4±1.8 646±237 65.1±20.6 4283±743 2182±287 1407±91 16445±2527 1442±166 

‘Palenca’ RL 29.9±0.9 610±230 31.5±10.9 2453±1025 929±181 654±234 9406±835 881±257 

 RL+AMF 35.5±2.6 476±2 35.8±7.3 4733±1178 1635±249 1186±196 17060±2333 1208±81 

 BC 26.4±3.1 640±217 17.3±6.4 2283±1573 897±213 570±233 7223±1159 525±502 

 BC+AMF 22.0±9.4 456±12 37.1±23.7 3107±1602 1256±733 826±426 11491±5643 1023±273 

 BV 29.9±7.4 446±18 10.4±6.4 1500±546 677±322 443±151 6559±3670 579±867 

 BV+AMF 34.5±7.2 468±47 49.3±26.9 4174±2000 1402±712 1085±543 13742±6724 1261±301 

 AMF 35.4±2.3 506±7 15.9±7.4 2059±726 976±418 656±232 9059±1900 8634±489 

 CONTROL 25.3±9.4 472±4 37.9±16.1 3518±1877 1258±359 940±493 11789±14517 944±277 

2016/2017 
‘Muchamiel’  RL 25.3±3.2 597±3 0.0±0.0 6633±1373 1550±159 1250±291 20623±3343 1538±369 

 RL+AMF 35.1±4.2 519±23 0.0±0.0 4552±1389 1680±180 931±219 19849±177 1479±631 

 BC 9.8±0.7 491±5 136.0±90.2 23068±6704 2670±674 3576±288 34786±7097 3877±730 

 BC+AMF 34.0±1.7 469±160 126.0±24.9 42355±3941 2410±780 3588±852 20314±4004 4046±377 

 BV 26.7±2.0 553±46 0.0±0.0 7630±822 1422±293 1520±130 23080±5230 2247±1065 

 BV+AMF 37.1±7.2 513±42 0.8±1.4 8728±4136 2018±756 1810±899 29378±12020 2348±143 

 AMF 28.4±1.7 525±24 84.8±9.5 46638±7428 2436±319 4413±860 26915±4053 4327±133 

  CONTROL 25.9±1.7 628±66 66.9±3.2 47820±2898 2326±340 3810±484 21441±3150 3666±122 

‘Palenca’  RL 27.2±3.7 657±113 0.0±0.0 5726±918 1412±91 1035±73 20200±1971 1358±286 

 RL+AMF 31.9±2.1 501±26 0.0±0.0 4161±789 1517±415 913±130 19176±1825 1377±883 

 BC 11.5±1.3 508±3 57.3±4.4 447001±5374 2551±602 3660±376 22519±2083 4476±758 

 BC+AMF 30.0±2.3 494±33 46.0±2.9 47117±5764 2767±177 3713±708 18103±2124 4074±1353 

 BV 27.0±2.1 356±44 110.0±23.9 9394±4684 1521±418 2027±1076 26041±9582 2769±959 

 BV+AMF 31.4±5.9 490±12 66.6±17.7 11995±6997 1823±631 2876±1612 31782±10733 2519±959 

 AMF 25.4±1.1 492±7 0.0±0.0 6993±2508 1430±11 1200±384 20957±3415 1559±299 
 CONTROL 26.9±2.8 491±103 0.0±0.0 6545±4187 1589±218 1332±706 26890±4497 2336±851 

 χ2 valueb F valueb χ2 valueb 
Season (S) 3356ns 6.33* 0.33ns 59.87*** 48.18*** 43.10*** 66.03*** 66.78*** 

Legume cultivar (LC) 0.08ns 10.89*** 0.72ns 1.42ns 5.77* 3.24ns 0.62ns 1.30ns 
Inoculation treatment (IT) 11.60*** 3.31ns 5.15* 0.96ns 2.08ns 1.33ns 0.03ns 0.85ns 

aTreatment: RL (Rhizobium leguminosarum), BC (Burkholderia cenocepacia), BV (Burkholderia 
vietnamiensis) and AMF (arbuscular mycorrhizal fungi). 
bSignificant at *P<0.05; **P<0.01; ***P<0.001; ns: not significant (P>0.05). Different letters indicate 
significant differences (P<0.05) among means. 
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Table 6.3: Nutrient content in root of both fava bean cultivars for two seasons (nitrogen content, nitrate, 

boron, calcium, sodium, magnesium, potassium and phosphorus). Values are mean ± standard deviation 

(n=4). 

 
 

Cultivar 
(C) 

 
Treatment 

(T)a 

 
N 

(g kg-1) 

 
NO3

-  
(mg kg-1) 

 

B 
(mg kg-1) 

 

 
Ca 

(mg kg-1) 
 

 
Na 

(mg kg-1) 
 

 
Mg 

(mg kg-1) 
 

 
 K 

(mg kg-1) 
 

 P 
(mg kg-1) 

2015/2016 

‘Muchamiel’  RL 12.8±0.9 456±55 24.5±2.1 12338±4247 1035±366 803±103 3967±1838 421±112 

 RL+AMF 14.5±1.6 729±66 21.3±11.9 3079±1151 1278±773 614±314 5138±2249 410±197 

 BC 15.5±0.3 1094±716 35.7±8.9 13544±6189 1932±557 1141±272 7419±3562 740±193 

 BC+AMF 14.6±3.7 662±109 14.3±5.1 2570±532 967±536 433±134 3622±1503 280±62 

 BV 11.8±0.9 841±141 18.8±4.3 8198±790 903±118 610±57 4096±1218 380±67 

 BV+AMF 14.3±2.7 773±153 19.4±8.1 2585±448 1054±391 517±139 4411±2084 374±130 

 AMF 12.6±2.5 788±39 28.6±18.4 14207±9458 1364±972 1012±618 4678±2389 557±343 

  CONTROL 14.0±0.5 683±227 30.5±0.7 2665±1409 814±636 396±250 3755±2614 283±186 

‘Palenca’ RL 8.0±1.7 815±172 22.1±3.2 16048±2743 850±96 897±55 3430±364 397±40 

 RL+AMF 11.6±1.5 787±181 22.8±15.4 3102±1552 1662±1542 630±385 7237±5421 471±276 

 BC 11.4±2.4 725±111 17.7±12 7282±5415 1309±1072 667±340 5561±4863 444±263 

 BC+AMF 13.1±1.7 922±152 16.1±9.6 2340±1238 1271±705 529±238 5337±1454 401±160 

 BV 7.5±1.6 844±190 33.3±9.2 15437±4759 752±75 957±257 3661±809 375±12 

 BV+AMF 10.1±0.6 781±64 29.4±8.6 4104±1943 1753±398 741±212 7069±1665 497±94 

 AMF 7.5±1.7 846±331 43.5±3.0 19044±1815 1004±228 1169±240 3946±1288 436±42 

 CONTROL 9.9±0.5 684±184 30.6±19.2 5485±3011 1492±632 1795±310 5847±2348 471±137 

2016/2017 

‘Muchamiel’  RL 11.0±0.7 680±57 23.8±5.0 11223±3896 2427±780 1166±310 16856±4059 1112±326 

 RL+AMF 10.1±1.2 695±73 31.0±7.5 23672±15915 2506±600 1795±518 13787±1829 999±259 

 BC 13.2±0.8 534±33 14.4±0.8 9566±2019 3047±1296 1077±753 15491±1806 1101±77 

 BC+AMF 13.4±0.3 646±141 14.3±4.3 17601±8106 2192±319 1357±194 12722±897 834±119 

 BV 9.8±0.7 902±74 26.4±5.2 13769±3957 2649±784 1294±404 18360±8763 1209±509 

 BV+AMF 11.5±1.3 655±96 27.4±9.4 19758±12867 3244±1136 1832±248 18628±5196 1266±494 

 AMF 13.0±1.3 524±3 10.6±3.8 10705±3476 2050±449 969±1044 14013±1607 918±142 

  CONTROL 11.8±1.3 573±90 13.0±1.1 13251±4610 2153±522 1227±317 11744±1361 708±99 

‘Palenca’  RL 11.4±1.7 624±80 24.2±11.2 12047±2554 2561±283 1111±451 6245±3428 1084±298 

 RL+AMF 10.4±1.0 614±75 19.0±1.1 18361±3711 2246±75 1460±327 10775±1733 776±51 

 BC 13.3±0.6 566±75 14.0±8.1 13648±6204 2585±854 1446±177 16663±7245 1151±565 

 BC+AMF 11.5±2.4 565±163 22.6±0.9 19409±8739 2134±276 1624±937 13609±3630 975±113 

 BV 12.1±2.4 579±100 26.6±6.0 15807±2758 3301±194 1839±303 21552±7974 1615±324 

 BV+AMF 9.4±1.7 621±115 25.7±8.1 31537±10771 2643±780 2200±338 13351±4240 1095±383 

 AMF 12.4±1.0 761±57 40.1±9.6 18207±6951 3207±1164 1731±383 23070±6984 1622±750 

 CONTROL 11.5±2.8 791±298 31.7±13.8 21453±12389 1914±1089 1573±786 14954±8481 1216±848 

F valueb χ2 valueb F valueb χ2 valueb 

Season (S) 0.15ns 10.63*** 1720ns 25.86*** 84.28*** 56.77*** 66.75*** 62.97*** 
Legume cultivar (LC) 1.32ns 0.05ns 0.93ns 4.51* 0.26ns 0.013ns 0.36ns 2.43ns 

Inoculation treatment (IT) 6.23*** 0.03ns 2.80ns 0.08ns 0.30ns 0.97ns 0.003ns 0.003ns 
aTreatment: RL (Rhizobium leguminosarum), BC (Burkholderia cenocepacia), BV (Burkholderia 
vietnamiensis) and AMF (arbuscular mycorrhizal fungi). 
bSignificant at *P<0.05; ***P<0.001; ns: not significant (P>0.05). Different letters indicate significant 
differences (P<0.05) among means. 
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6.3.2. Estimates of biologically-fixed N (% Ndfa) 
Season significantly affected BNF in roots, with lower values in the second season 

for both fava bean cultivars. Fava bean cultivar significantly influenced BNF in shoot and 

root, with higher biologically-fixed N in shoot of Muchamiel than in Palenca cultivar. 

However, Palenca´s root showed the highest biologically-fixed N in the most of 

inoculation treatments during the first season, and with dual inoculation during the second 

season. The inoculation treatment did not significantly affect the BNF in any plant part. 

So, individual or dual inoculation of N-fixing bacteria and AMF did not improve the 

biological nitrogen fixation compared with non-inoculated plants (Table 6.4). In addition, 

BNF was not significantly correlated to plant nutrients, weight of nodules, crop yield and 

crop quality parameters such as weight of 100 seeds, pod length, number of pods per 

plant, number of seeds per pod, protein content in grain (data not shown). 
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Table 6.4: Estimates of N derived from biological nitrogen fixation (% Ndfa) in shoot and root of two fava 

bean cultivars, using broccoli like non-N₂-fixing reference plant. Values are mean ± standard deviation 

(n=4). 
Cultivar 

(C) 
Treatment 

(T)a 
Shoot 

 Root 

2015/2016 

‘Muchamiel
’  RL 74.1±10.7 62.8±6.2 

 RL+AMF 59.5±23.9 61.2±6.5 
 BC 72.4±4.2 63.0±2.5 
 BC+AMF 78.2±7.1 61.3±7.8 
 BV 76.8±4.2 57.8±6.2 
 BV+AMF 64.2±15.2 59.6±2.7 
 AMF 74.2±14.0 59.1±0.8 
  CONTROL 66.3±9.7 61.8±10.3 

‘Palenca’  RL 61.5±3.9 64.3±7.5 
 RL+AMF 43.2±8.5 48.6±8.8 
 BC 54.3±2.6 66.3±13.1 
 BC+AMF 54.5±1.7 82.2±7.6 
 BV 43.0±7.6 66.1±1.2 
 BV+AMF 68.8±4.7 66.8±13.7 
 AMF 60.8±8.7 63.3±5.6 
 CONTROL 42.7±16.4 62.4±5.7 

2016/2017 

‘Muchamiel
’  RL 85.9±5.5 53.3±5.9 

 RL+AMF 76.2±3.1 63.8±6.7 

 BC 75.3±4.1 56.7±10.7 

 BC+AMF 78.0±6.9 37.9±18.1 

 BV 85.5±2.7 55.0±12.4 

 BV+AMF 77.3±2.6 55.1±10.1 

 AMF 84.0±1.1 58.3±1.2 

  CONTROL 84.3±2.5 56.6±8.2 

‘Palenca’  RL 67.7±20.2 61.7±6.9 

 RL+AMF 75.1±7.8 44.1±8.5 

 BC 88.6±0.6 47.5±9.6 

 BC+AMF 66.2±14.7 51.9±6.5 

 BV 76.1±9.6 54.0±4.4 

 BV+AMF 80.0±6.3 58.3±7.1 

 AMF 86.7±0.2 54.4±6.8 

 CONTROL 38.9±7.5 56.7±15.7 

F-valueb 

Season (S) 1.62ns 16.09*** 
Legume cultivar (LC) 97.30*** 34.66*** 

Inoculation treatment (IT) 0.52ns 1.18ns 
aTreatment: RL (Rhizobium leguminosarum), BC (Burkholderia cenocepacia), BV (Burkholderia 
vietnamiensis) and AMF (arbuscular mycorrhizal fungi). 
bSignificant at ***P<0.001; ns: not significant (P>0.05). Different letters indicate significant differences 
(P<0.05) among means. 
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6.3.3. Crop yield and quality  
Season influenced protein content in grain, crop yield, weight of nodules and the 

number of pods per plant (Table 6.5). Protein content in grain showed the highest values 

in Palenca cultivar during the first season. Crop yield and the number of pods per plant 

were the lowest during the second season. However, the weight of nodules in Palenca 

cultivar was higher in the second season. Fava bean cultivar significantly affected the 

weight of nodules, the weight of 100 seeds and pod length, which were higher in 

Muchamiel than in Palenca cultivar during the first season. Inoculation treatment did not 

significantly influence the weight of nodules, crop yield and crop quality parameters. 

However, it affected protein content in grain in Muchamiel cultivar, with the highest 

values after inoculation in NFB and AMF treatments than in control during the second 

season. There was no correlation between the plant nutrients, BNF, crop yield and crop 

quality parameters. 
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Table 6.5: Crop yield, nodules weight, weight of 100 seeds, pod length, number of pods per plant, number 

of seeds per pod and protein content in grain of the fava bean crop. Values shown are mean ± standard 

deviation (n=4).  

Cultivar 
(C) 

Treatment 
(T)a 

Crop yield 
(kg ha-1) 

Nodules 
weight (g) 

Weight of 100 
seeds (g) 

Pod length 
(cm) 

Number 
of pods 

per plant 

Number 
of seeds 
per pod 

Protein 
content 
in grain 

(%) 

2015/2016 

‘Muchamiel’  RL 32541±3295 3.4±0.5 152.4±13.9 37.0±4.5 33±2 7±1 30±0 

 RL+AMF 30133±6311 4.9±2.4 178.3±14.9 38.0±0.0 33±5 7±1 26±1 

 BC 33333±2480 4.0±1.4 178.7±17.5 36.3±1.1 34±2 6±0 26±1 

 BC+AMF 28583±4026 2.6±1.1 165.0±28.8 36.0±3.0 31±1 7±0 28±3 

 BV 28166±7381 3.8±0.9 179.9±8.4 36.0±2.0 30±4 7±0 29±1 

 BV+AMF 30250±4073 3.5±0.8 158.5±21.7 35.7±0.5 32±7 6±0 28±1 

 AMF 27100±7258 4.9±2.1 176.6±28.8 36.7±1.5 29±10 7±0 29±0 

  CONTROL 27016±2759 4.8±0.5 137.0±7.3 35.7±3.2 29±6 7±1 29±1 

‘Palenca’  RL 28866±5957 0.8±0.4 145.6±13.3 27.7±1.5 30±5 6±0 30±1 

 RL+AMF 28700±2250 1.7±0.3 168.2±26.4 29.7±2.0 30±1 7±0 27±1 

 BC 28633±2321 1.7±0.6 156.8±26.6 28.7±0.5 33±2 7±0 26±1 

 BC+AMF 26766±1643 1.7±0.9 114.5±13.5 28.3±2.0 29±3 6±0 28±2 

 BV 25616±5247 1.1±0.4 130.0±7.3 28.0±1.7 28±4 7±0 31±1 

 BV+AMF 31866±1421 0.7±0.2 144.5±13.1 28.7±1.5 36±2 7±0 28±0 

 AMF 23000±4399 0.5±0.5 133.3±7.3 30.0±2.6 22±9 6±0 29±2 

 CONTROL 28366±3806 0.9±0.5 100.9±82.2 28.7±0.5 31±7 6±1 27±2 

2016/2017 

‘Muchamiel’  RL 23672±2797 3.1±0.5 170.7±15.2 37.5±0.5 30±1 7±0 28±1 

 RL+AMF 18805±6022 4.8±1.6 183.5±13.1 35.2±3.6 20±7 6±1 26±2 

 BC 19857±4828 5.3±2.7 199.6±46.3 35.8±0.7 22±6 7±1 25±2 

 BC+AMF 14753±2033 5.8±3.4 169.8±24.4 34.2±2.4 16±2 7±1 27±4 

 BV 20379±7372 4.7±1.7 158.8±27.7 34.7±1.2 24±10 7±1 29±5 

 BV+AMF 19056±2855 3.7±0.7 154.0±21.2 34.5±2.2 23±2 7±1 28±3 

 AMF 24137±2599 6.2±5.3 162.7±15.8 34.3±1.1 26±4 7±1 27±2 

  CONTROL 19506±3791 4.3±2.3 176.1±8.0 33.2±1.2 22±5 7±1 23±2 

‘Palenca’  RL 23117±8825 5.3±0.4 165.5±9.5 29.3±0.7 28±10 7±0 25±1 

 RL+AMF 18942±3823 5.0±1.4 178.0±17.7 30.0±1.0 23±5 7±1 25±3 

 BC 15732±2727 3.6±0.9 143.3±14.0 30.5±0.8 21±3 6±0 26±2 

 BC+AMF 17998±4116 3.0±0.7 166.9±10.6 29.2±2.2 26±3 7±0 26±1 

 BV 20770±9163 3.0±1.1 163.5±8.6 28.5±1.3 26±11 7±1 24±1 

 BV+AMF 19347±2769 5.2±1.1 143.3±19.6 29.7±2.0 26±8 6±1 26±1 

 AMF 20422±5628 5.7±0.5 173.5±34.3 30.8±1.6 23±5 6±1 25±1 

 CONTROL 18964±1033 4.8±1.4 185.8±25.2 30.5±0.5 21±3 6±1 24±2 

                                                                   F-valueb χ2 valueb 

Season (S) 89.92*** 33.88*** 8.95** 0.06ns 36.66*** 0.23ns 24.90*** 

Legume cultivar (LC) 0.92ns 20.33*** 9.94** 262.16*** 0.001ns 3.10ns 1.41ns 

Inoculation treatment (IT) 0.59ns 0.43ns 1.27ns 0.25ns 0.88ns 0.52ns 4.81* 
aTreatment: RL (Rhizobium leguminosarum), BC (Burkholderia cenocepacia), BV (Burkholderia 
vietnamiensis) and AMF (arbuscular mycorrhizal fungi). 
bSignificant at *P<0.05; **P<0.01; ***P<0.001; ns: not significant (P>0.05). Different letters indicate 
significant differences (P<0.05) among means
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6.4. Discussion 
Legume crops, such as fava bean, form tripartite associations with NFB and AMF 

where the NFB are involved in the fixation of atmospheric nitrogen and AMF improve 

the ability of the plant to take soil nutrients and phosphorus (Lodwig et al., 2003). The 

reduction of fertilizers application in inoculated treatments compared to control led to 

maintenance of crop yield, quality and nutritional characteristics, which can be attributed 

to minerals solubilization and organic matter mineralization by release of phytohormones, 

organic compounds or enzymes, making nutrients more available for the plant (Zahir et 

al., 2004). However, the inoculation with NFB, alone or combined with AMF, did not 

lead to a higher amount of biologically-fixed N, which could be due to the competition 

with native microbes or a high N content in soil by applied fertilizers (Puppi et al., 1994; 

Pennanen et al., 1999). Contrary to the N content in soil and BNF, protein content in grain 

increased after the inoculation with NFB and AMF. This fact evidences that N 

assimilation by the plant is enhanced with this inoculation, and the efficiency in protein 

anabolism is improved. In this context, Zimmer et al. (2016) also observed an increase of 

protein content in soybean grains after inoculation with Bradyrhizobium strains. 

Symbiotic-nitrogen-fixing rhizobacteria are usually present in soil, and no inoculation is 

needed if the reservoir in soil is sufficient. NFB are an integral part of the soil microbial 

community and can remain viable in soil for seasons, even when their legume host is not 

present (Bottomley, 1992). Hence, the inoculation of NFB would be necessary in soils 

lacking in a sufficiently high reservoir of NFB or the soil does not contain specific NFB 

able to nodulate due to the absence of previous legume crops (Catroux et al., 2001). 
 The specific fava bean cultivar influenced BNF process and parameters linked to 

crop quality, likely due to rhizodeposition processes since the release of root exudates is 

controlled by plant genotype (Merbach et al., 2000; Nguyen, 2003), confirming our initial 

hypothesis about the influence of cultivar on BNF. Plant root exudates modify soil 

microbial communities, foster beneficial symbioses, and change soil chemical and 

physical properties (Nardi et al., 2000; Walker et al., 2003). In turn, root exudates interact 

positively with beneficial microorganisms such as rhizobia and mycorrhiza (Philippot et 

al., 2013), and thus they would improve their role in improving the mechanisms of plant 

growth and development (Nadeem et al., 2014). The use of soil inoculation techniques 

was not followed by an increase of nutrient content in the plant tissues except for N 

content, despite decreasing fertilizer application by 20%.  In addition, the fact that after 
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the inclusion of NFB into the soil, the nutrient content in plant is maintained and N content 

is increased, it demonstrates an efficient N fixation, uptake and assimilation by plant. 

 Thus, higher decreases in the amount of mineral fertilizers applied to the soil could 

be assayed, since N fixation was highly effective in this experiment, which would be an 

environment-friendly alternative (Carter and Ambus, 2006). On the other hand, there was 

no clear evidence of the improvement of BNF or crop yield, quality and nutritional 

characteristics as a result of the dual inoculation compared to individual, and this may be 

caused by the presence of a reservoir of AMF in soil, which mycorrhized the fava bean 

roots. In terms of bacterial genus, it was only observed the increase of N content in root 

for both fava bean cultivars inoculated with bacteria belonging to Burkholderia genus 

(specifically Burkholderia cenocepacia) in comparison with Rhizobium. Thus, these 

results evidence the effectiveness β- proteobacteria to make symbiosis with the legume 

crops, not only α-proteobacteria, which has been the most studied group (Moulin et al., 

2001). Contrary to BNF, the inclusion of NFB into the soil resulted in the increase of 

protein content in grains of Muchamiel cultivar, confirming an increase in the efficiency 

of assimilation of nitrogen by plant after inoculation. Thus, although BFN (biologically-

fixed N) was not significantly affected by inoculation, the efficiency in the N uptake and 

assimilation into proteins was enhanced, which is very promising to increase the quality 

of the harvested crops. Nitrogen accumulated in seeds may come from the exogenous N 

fixed by the plant-bacteria symbiosis or from soil mineral N absorption (Crozat et al., 

1994; Sparrow et al., 1995). Thus, these results support higher harvest protein yield with 

inoculation and confirm our initial hypothesis about the positive effect of the tripartite 

symbiosis between NFB, AMF and the plants on the protein content of the edible grain. 

 

6.4. Conclusions 
In conclusion, our results showed that after two seasons of the introduction of 

NFB and AMF to the soil along with the decrease in fertilizer rate by 20%, nutritional 

composition of the plant was not affected. Muchamiel cultivar showed the highest BNF 

in shoot and crop quality. Individual inoculation with Rhizobium leguminosarum 

increased seed N content. Dual inoculation with Rhizobium leguminosarum and AMF 

compared to individual inoculation increased shoot N content. Inoculation treatment did 

not influence BNF or crop yield and quality. Furthermore, the inclusion of NFB and AMF 

increased protein content in the grain of Muchamiel cultivar, confirming increases in the 
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efficiency of plant N uptake and assimilation with inoculation. The inoculation with 

bacteria belonging to Burkholderia compared to Rhizobium genera led to an increase of 

N content in root, suggesting the great potential of β- proteobacteria as plant growth 

promoting rhizobacteria. The inoculation did not lead to an increase of nutrient content 

in the plant tissues except for N content, but since fertilizer application was reduced by 

20%, these results are highly positive indicating effective N fixation and uptake by plant. 

This strategy can foster the decrease in the use of external fertilizers, reducing the current 

environmental impact maintaining high yields and crop quality.  
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Conclusions 
 Unusual cowpea crop improved soil fertility and quality in a subsequent 

broccoli crop compared with the broccoli monocrop, probably due to active 

rhizodeposition. Traditional fava bean crop did not improve soil fertility and quality 

in a subsequent melon crop with regard to the monocrop likely because a higher 

amount of fixed N was removed in the seed at harvest.  

 Previous cowpea crop maintained broccoli crop yield and quality likely 

through activation of microbial populations that solubilize soil nutrients despite the 

reduction in external inputs.  

 Legume cultivar influenced soil N content and soil enzyme activities, 

confirming that plant´s genotype regulates root exudation and so soil microbial 

activity. Conventional management practice was positively related to C and N pools 

in the broccoli crop, and to C sequestration in the melon crop.  

 Conventional management practice was related to higher soil C 

sequestration in melon crop, while organic management practice improved soil 

structure through the activation of soil microbial populations, soil C sequestration and 

crop yield in the broccoli crop.  

 Fava bean crop was related to higher N2O, CO2 and CH4 emissions 

compared to the broccoli crop, likely due to rhizodeposition and the activation of soil 

microbial populations for N2O and CO2 emissions, and anaerobic conditions resulting 

from higher soil moisture for CH4 emissions. Organic management practice led to 

higher N2O and CO2 emissions, related to higher soil enzyme activities.  

 The introduction of N-fixing bacteria and arbuscular mycorrhizal fungi to 

the soil along with the decrease in fertilizer rate by 20% did not affect nutritional 

composition of the plant. Muchamiel cultivar showed highest biological N fixation in 

shoot and crop quality. Individual inoculation with Rhizobium leguminosarum 

increased seed N content. Dual inoculation with Rhizobium leguminosarum and 

arbuscular mycorrhizal fungi compared to individual inoculation increased shoot N 

content.  

 Inoculation treatment did not influence biological N fixation or crop yield 

and quality. However, the dual inoculation increased protein content in the grain of 

one cultivar, confirming increases in the efficiency of plant N assimilation with 

inoculation. 
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 The inoculation with bacteria belonging to Burkholderia compared to 

Rhizobium genera led to an increase of N content in root, suggesting the great potential 

of β- proteobacteria as plant growth promoting rhizobacteria.  

 The use of legumes with 20% decrease in fertilizer application, inoculated 

or not inoculated, led to high quality crops with no difference with the 100% fertilized 

monocultures. Thus, these results are highly positive indicating effective N fixation, 

soil nutrients solubilization and uptake by plant. This strategy can foster the decrease 

in the use of external fertilizers, reducing the current environmental impact 

maintaining high yields and crop quality.
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