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Theme

Heat transfer and cooling in gas turbine engines are still key factors to achieve high performance, increased life and improved
reliability. Any progress in this field will lead to a reduction of maintenance cost and fuel consumption.

The purpose of this Symposium was to bring together experts from industry, research establishments and universities to discuss
fundamental and applied heat transfer problems relevant to gas turbines, to exchange practical experience gained and to review
the state of the art.

The Symposium focused on turbine blade cooling (both external and internal heat transfer); heat transfer in combustors, to
disks, in labyrinth seals, and in shafts; measurement techniques and prediction methods; as well as interactions.

Theme

Le transfert thermique et le refroidissement continuent a jouer un r6le cli dans l'obtention de meilleures performances.
I'augmentation de la duree de vie et l'amdlioration de la fiabilite des turbines i gaz. Tout progres realise dans ce domaine
permettra de reduire les cofits de maintenance et de diminuer la consommation de carburant.

L'objet du Symposium ýtait de rassembler des sp~cialistes de l'industrie. des etablissements de recherche et des universitis pour
discuter des problimes fondamentaux et d'application en transfert thermique dans les turbines a gaz. La reunion a fourni
l'occasion pour un 6change d'exp~rience pratique et l'examen de l'itat de l'art dans ce domaine.

Le Symposium a traiti du refroidissement des aubes de turbine (le transfert thermique interne et externe), du transfert
thermique dans les chambres de combustion, les disques, les presse-garnitures A labyrinthe et les arbres. ainsi que des mithodes
de prevision et des techniques de mesure et les interactions qui en resultent.
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COOLING PREDICTIONS IN TURBOFAN ENGINE COMPONENTS

A. MATESANZ, H. REBOLO, A. VIEDMA & M. RODRIGUEZ

SENER Ingenierfa y Sistemas. S.A.
Parque Tecnoldgico de Madrid

28760 Tres Cantos, Madrid, Spain

(1) Also in Universidad Polit4cnica de Madrid
School of Aeronautical Engineering,

Pl. Cardenal Cisneros 3, 28040 Madrid, Spain

SUMMARY T2 = cooling injection temperature.

x = distance from the point of injection.
The aim of this work is to show how the Ac= correcting factor due to spectral
metal temperature measured in a convergent- overlapping.
divergent nozzle and in a turbine exhaust c = inner face wall emissivity.
diffuser of a turbofan engine, can be g
predicted with reasonable approximation Cg= gas emissivity = Cc02Pc02+ cH2 OPH2 o-c
using the data available in the open
literature. It is shown how the simplified n = film cooling effectiveness
fluid dynamic equations with the gas dynamic viscosity
appropriate experimental correlation allow e = angle from stagnation point in profile
the prediction of these results in other leading edge.
flight conditions than those tested. p = density

p"),.= density and viscosity at a
LIST OF SYMBOLS temperature T*

S= Stefan-Boltzman constant.
C = specific heat at main stream a

temperature. = non dimensional distance
Cp2= specific heat at cooling flow -0,25

temperature. , [ R,2 2-
Dh= Hydraulic diameter M.S [ p.

d = local curvature diameter Subscripts
h = convective heat flux coefficient
K = thermal conductivity coefficient g = gas
L = inner blade passage length w = wall

M =blowing factor P2 V2 1,2 = cold gas injection

PW VW i INTRODUCTION
Nu= Nusselt number The modern engine solid surfaces exposed to
Pr= Prandtl number internal flow need improved thermal
q = heat flux protection because high temperature cycles
Re 2 = Reynolds number for the cooling are used to increase performance. During

the past decades, different cooling methods
P2 V2 . S have been used to reduce the metal

parameters 2temperature, therefore minimizing the
U2  required amount of cooling air.

R xS,d= Reynolds number based on xsd. The simplest way to cool surfaces is by
convective cooling. In this process, heat

s = cooling slot height. flows by conduction from exposed metal
surfaces to un-exposed ones, whic'z are

T,= absolute gas temperature. cooled by air flowing usually parallel to
it. Convective cooling is used whenever low

T = recovery temperature = T++O,9rT-T levels of cooling effectiveness are
r ele.Owj] required. This limitation exists due to the

TW= actual wall temperature fact that the air supply is somehow
Taw = adiabatic wall temperature limited. On the other hand, high

effectiveness levels tend to increase
TOT = static and stagnation temperature thermal stress problems [1-3].

A special type of convective cooling is by
of the main stream, means of impingement. It is used whenever

TM OT. FT 0,]2 large heat transfer coefficients are needed
T 0 av %] on the un-exposed surfaces (4-8]. Another
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method to obtain high heat transfer X
coefficients is to place fins or ribs
normal to the coolant flow path [9].

When higher levels of cooling effectiveness
are required it is necessary to use more "
sophisticated alternatives. The most common T.
method is to insert a secondary fluid into T0
the boundary layer on the surface which is
to be protected. There are different means
of injecting this fluid such as ablation, Fig.l. Single slot film cooling
transpiration and film cooling. In ablation configuration.
cooling, a heat shield ablates and
secondary fluids enter the boundary layer
[10] In transpiration cooling the coolant The convective coefficient h is calculated
enters the boundary layer through a porous independently from the adiabatic wall
material [11-13). Both methods are used to temperature Taw.
protect the region where coolants are
added. Unfortunately the application of
these systems is difficult because ablation This magnitude is related to the concept of
has a limited time span and porous effectiveness of the film cooling, figure
materials are not strong enough to be used 1:
in engines. The basic mechanism of film Tr T aw
cooling is the introduction of a secondary Tr T
fluid at several locations along a surface 2

to protect that surface not only in the
injection area but also in the downstream The correlation found more suitable for the
region a12-14]. flow conditions and geometry is the modelof Kutatelache & Leanter, in reference (14]

Thermal studies on aircraft engines, because the flow can be considered
particularly modern ones with large flight twodimensional and compressible and the
envelopes, require a great amount of difference of temperature between the wall
testing and instrumentation. Designers have and the main stream is important.
different tools for obtaining engine
component temperature predictions. These The effectiveness is given from this
tools can be classified as: 1) theoretical, reference by the expression:
2) experimental and 3) numerical methods.
Theoretical analysis is usually aimed at
finding parameters to describe the =temperature of an adiabatic wall downstream + [ (40 + *)
of the coolant injection (15]. Real and + p2
three-dimensional effects are studied on p2
test rigs with controlled conditions When the cooling injection is made by two
[16-18). Predictive numerical calculations consecutive slots, the total effectiveness
are being widely used nowadays for can be treated as the combination of two
different cooling applications and cooling layers where the external
configurations, because they help to speed temperature for the inner flow is the
up the design and to reduce the number of "adiabatic wall temperature" for the
experiments (19-20]. external one [21], figure 2.
In this paper a method to predict full T -
scale engine temperatures is described. Tawl
This method combines the fluid dynamic =T - TI
equations with semi-empirical data obtained
from the open literature. TawI- Taw2
The result is an easy to use procedure. 72 =Tawl - T2

2. NOZZLE COOLING PREDICTION

The prediction of the petal temperature of and the total effectiveness is:

a convergent-divergent nozzle has been Tw - T a 2
performed through a computer code that uses = T - T + n2 (1 -
correlation models available in the open 2
literature with actual data obtained from a
test program that includes a reduced scale
hot test, a full scale rig test and a DVE
(Design Verification Engine) program. T, ...

2

The film cooling produced when the relative T,
cold layer is injected at the beginning of _Ta
the convergent petal of the nozzle, Tw
produces a reduction in the metal To

temperature along the petal.

The heat transfer rate is modelled by: TO

q - A.h [Taw - Tw] Fig.2. Double slot film cooling
configuration.
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The convective coefficient h is obtained Tw/Tref
from semiempirical correlation for film
cooling with a high velocity compressible 2.20
boundary layer. s

As the blowing factor M < 2 the correlation
used is the one proposed by Lefebre (22].

K2

x S 0,01 m hr = 2uK 1.80

0,7
Nux = 0,057 R ex

R P2 V 2 .X

ex= 2 1.40

x > 0.01 m hy = Ux 2

N =0,0256 es H.S 1.0e

0 0.4 0.8 1.2

R = V RelatiVe X Dositiones U2  Fig.4. Comparison of predicted temperatures
and fixed condi nozzle test results.

The wall temperature of the petal is

obtained for an equilibrium model where the
convective and radiative heat transfer Tw/Tref
with the cavity between the nozzle petals
and the fairing flap, and the conduction
along the petal are modeled in the
classical way. 2.6

It may be of interest to note that the
radiative heat transfer with the hot gas of
the main flow is modeled as (15 & 23).

q 1 ' 1,5(2,5 2,5) 2.2-

A 2 a +C )J Cg Tg (Tg' T

3. NOESLE THERNRL TESTS

The model resulting from this information 1.8
gave good results for wall temperature Prcted
estimation always with a conservative + Teouple
margin that the test in the scale model
helped to reduce (figure 3). The full scale
results with fixed convergent-divergent 1.4.
nozzle tested in a hot rig showed very good
agreement between the predictions and the 0 0.4 0.8 1.2
actual values from the thermocouples and Relative X position
thermal paints. (see figures 4 and 5). Fig.5. Thermal points, predicted

2.00 - temperature and thermocouples values in
fixed condi nozzle.

1.80
When the true variable convergent-divergent
nozzle was tested in the Design

1.60 " + Verification Engine (DVE) the differences
between the prediction and the measurement
in the beginning of the divergent petal

1.40 were important. But if a cooling ingestion
+ through the gap in the throat is

Cat~ considered, this disagreement disappears
1.20 -and the model appears to be consistent and

to give accurate temperature predictions.
(Figure 6).

1.000 0.2 0.4 0.6 0.0:8 4. * ZAUST DIfFUSER COOLING CIRCUIT

Rab XPOS~n The cooling circuit of the exhaust diffuser

Fig.3. Initial prediction and scaled hot has been designed with a method that
test results along nozzle petal. modelise the more relevant fluid factors
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Tw/Tref which receives strong radiative heat flux
from the afterburner. The dominant feature

2.4 in this part of the cooling circuit is the
2.4! combination of cross-flow and impingement

cooling. The radial geometry simplifies the
W/o -Inct iecta mathematical model which follows the scheme

of (26].

* The calculation of the flow through the

0 holes in each station is also modified to
I0 allow for the cross flow. Correlation from

(27] is used to take this effect into
wits• ?i~ct l o account. The convective heat coefficient

I Ieproduced by the impingement is modelled
I following (4 & 28].

To reproduce this correlation here is
beyond our limits, so our advice is to
consult the original papers.

e- r.P'rde s Wall temperature is obtained by a thermal
* Therii•ecouoIes balance between external and internal

radiative heat flux and the impingement as
already commented. Upon the reheat luminous1.2• flame emissivity and radiative terms of

0 0.4 0.8 1.2 this equilibrium are modelled after

Relative X position references [3 & 15).

Fig.6. Predicted and measured temperatures The flow behavior inside the lateral double
with and without throat cold air injection, wall is calculated in a similar way with

the simplification that no impingement
effect is present.

around the circuit and use the available
data in the open literature. This The mass flow and thermal predictions are
prediction method includes theoretical performed jointly in an iterative mode. It
analysis and semienpirical correlations starts with a hypothetical mass flow at the
coupled to numerical simulation wherever beginning of the circuit. Its' purpose
further refinement is required. A more being to match the pressure, at the exit
detailed description of this design method located downstream of the cascade, obtained
has been given elsewhere [24]. Therefore by the program with the actual value.
here we will only comment at the asoects
related to the general objectives of this
paper.

The geometry of the cooling circuit can be V
seen in figure 7, the fixed blade diffuser 1
cascade has an inner passage with cooling
capillaries in the trailing edge. The
thermal analysis of the blades requires a
detailed numerical process with NASTRAN
code for the solid pieces and CFD code for
the convective heat transfer in the blade
boundary layer. But for the purpose of the
circuit flow prediction a simpler model is
used estimating the internal friction
coefficient using (25] and the inner heat
flux with the expression from (2].

Nu = " - -36 Re ' P

V

The mean blade temperature is fixed by a
heat equilibrium analysis where the
external heat transfer is modelled in the Fig.7. Exhaust diffuser cooling circuit.
leading edge with the correlation

Nu=1.14 Re 11 [ ,41 -!I-J 5. EXHAUST DIFFUSER TEMPERATURE ASSESSMENT

Calibration tests were carried out to check
and in the rest of the blade surface with the mass flow predicted through the cooling
the standard Nusselt value for turbulent circuit. It was performed in a rig that
boundary layer. reproduces the geometry and flow

conditions, and is divided into two phases
The remaining heated flow which reaches the to obtain separately the mass flow through
plenum is forced to cross the perforated out both capillary trailing edge tubes and
wall to impinge onto the rear wall. This is discharge exit downstream blade trailing
needed to enhance the cooling of this wall edge.
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Figures (8 and 9) show the comparison
4.4- between experiments and theoretical

predictions for the capillary tubes and the
7 1 total cooling mass flow.

4.0 
z W

The engine validation tests were performed
- to assess the pressure and temperature

3.6-1 predictions. We will focus on the cone,

U9 lateral and rear walls where no further
calculation was performed. The figures

0 3.2-, (10,11 and 12) show the comparison of
a!_______ predicted and measured temperature in the

¶ range of compressor speed, while figure

2.8 [13] shows the relative error for both.8~ temperature and pressure in several circuit
locations.

2.4

I .1 1.3 1.5 1.7 0.901
PRESSUIRE RA 770 0nez

Fig.8. Results of calibration test mass 0.80____
f low through capillary cooling tubes in the 0.0-
blade trailing edge.

4.8 __________________ _ 0. 702

4.4 0.60-.

4.0
S ~0.0 so -

3.6240 60 8010

3. Fig.ll. Comparison between predicted and
experimental values of temperature at the

2.8 --. ICat periphery of the diffuser rear wall.

2.4
1.1 1.3 1.5 1.7 0.901,

PRESSURERA4 770

Fig.9. Results of calibration test. Total Caclae
cooling mass flow in exhaust diffuser 0.80-1
cooling circuit.

0.70,

1.00 1 .

-L~nmwikI0. 60¶

0.00)-oj ~ M

/~u~ 0.50

I,40 60 80 1 0
070~1 RW LP cai-ipwsa Spee (V

Fig.12. Comparison between predicted and

I I experimental values of temperature at an
0.60 intermediate section of the lateral wall.

0.50 f 6. CONCLUSIONS
40 60 80100

fta"LP a"Pl" S (WThe comparison between predicted and actual
test results of calibration rigs and engine

Fig.10. Comparison between predicted and test beds shows that for design purposes
experimental values of temperature at the the accuracy obtained is enough and no
center of the diffuser rear wall. other complicated method is needed.
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Discussion

QUESTION 1:
DISCUSSOR: J. Salva Monfort, Escuela Tecnica Superior de Ingenieros Aeronauticos

Can you explain in more detail how you have calculated the cooling flux through the
capillary tubes in the trailing edges of the blades?

AUTHOR'S REPLY:
The flow through the cooling capillary tubes in the trailing edge of the blades is calculated
using the same turbulent one-dimensional equations as for the main passages of the
blade. Some problems of choking due to the high heat transfer can arise. In this case, it is
necessary to detect the Mach number increase and to reduce the mass flow for that
capillary tube accordingly.

QUESTION 2:
DISCUSSOR: D.T. Vogel, DLR

You used many of empirical constants in your calculations. Are these constants related
to your special problem, or is it possible to calculate other cooling configurations'?

AUTHOR'S REPLY:
The correlations used are all chosen from open literature taking into account the
geometry and dimensionless parameters of the problem. Please refer to the original
paper to find out if it can be applied to other configurations.
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