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Theme

Heat transfer and cooling in gas turbine engines are still key factors to achieve high performance, increased life and improved
reliability. Any progress in this field will lead to a reduction of maintenance cost and fuel consumption.

The purpose of this Symposium was to bring together experts from industry, research establishments and universities to discuss
fundamental and applied heat transfer problems relevant to gas turbines, to exchange practical experience gained and to review
the state of the art.

The Symposium focused on turbine blade cooling (both external and internal heat transfer); heat transfer in combustors, to
disks. in labyrinth seals, and in shafts; measurement techniques and prediction methods; as well as interactions.

Theme

Le transfert thermique et le refroidissement continuent a jouer un role clé dans l'obtention de meilleures performances.
I'augmentation de la durée de vie et 'amélioration de la fiabilité des turbines a gaz. Tout progres réalisé dans ce domaine
permettra de réduire les colts de maintenance et de diminuer la consommation de carburant.

L'objet du Symposium était de rassembler des spécialistes de I'industrie. des établissements de recherche et des universités pour
discuter des problemes fondamentaux et d’application en transfert thermique dans les turbines a gaz. La réunion a fourni
l'occasion pour un échange d’expérience pratique et I'examen de I'état de I'art dans ce domaine.

Le Symposium a traité du refroidissement des aubes de turbine (le transfert thermique interne et externe), du transfert
thermique dans les chambres de combustion, les disques, les presse-garnitures a labyrinthe et les arbres, ainsi que des méthodes
de prevision et des techniques de mesure et les interactions qui en résultent.
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COOLING PREDICTIONS IN TURBOFAN ENGINE COMPONENTS

- »
A. MATESANZ, R. REBOLO, A. VIEDMA & M. RODRIGUEZ
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School of Aeronautical Engineering,
Pl. Cardenal Cisneros 3, 28040 Madrid, Spain

BUMMARY

The aim of this work is to show how the
metal temperature measured in a convergent-
divergent nozzle and in a turbine exhaust
diffuser of a turbofan engine, can be
predicted with reasonable approximation
using the data available in the open
literature. It is shown how the simplified
fluid dynamic equations with the
appropriate experimental correlation allow
the prediction of these results in other
flight conditions than those tested.

LIST OF SYMBOLS

cpm= specific heat at main streanm

temperature.
= specific heat at cooling flow

temperature.
= Hydraulic diameter

'UQ
N

[=]
:rl

local curvature diameter
convective heat flux coefficient
thermal conductivity coefficient
inner blade passage length

PaV,
PV

oxRDQ
[ T |

=blowing factor

= Nusselt number
= Prandtl number
= heat flux
e~ Reynolds number for the cooling

pyV, .S
iy

Qv Zz2 =

parameters

Re = Reynolds number based on x,s,d.
x,s,d

s = cooling slot height.

Tg= absolute gas temperature.

y = recovery temperature = Tw+0,9[Tmo-Tw]
v actual wall temperature
Taw = adiabatic wall temperature

T
T
T, T, = Static and stagnation temperature
of the main stream.

Ty= T+ o,72[‘rw— T_]

cooling injection temperature.

T
2
% = distance from the point of injection.
Ae= correcting factor due to spectral
overlapping.
£~ inner face wall emissivity.
cg= gas emissivity = CCOZPCOZ+ CHZOpHZO-Ac
n = film cooling effectiveness
4 = gas dynamic viscosity
@ = angle from stagnation point in profile

leading edge.
p = density
Pyriy= density and viscosity at a

temperature T,

o = Stefan-Boltzman constant.
g* = non dimensional distance
-0,25
x Rez M2 P
M. S [T Py,
Subscripts
g = gas
w = wall
1,2 = cold gas injection

1 INTRODUCTION

The modern engine solid surfaces exposed to
internal flow need improved thermal
protection because high temperature cycles
are used to increase performance. During
the past decades, different cooling methods
have been used to reduce the metal
temperature, therefore minimizing the
required amount of cooling air.

The simplest way to cool surfaces is by
convective cooling. In this process, heat
flows by conduction from exposed metal
surfaces to un-exposed ones, whic: are
cooled by air flowing usually parallel to
it. Convective cooling is used whenever low
levels of cooling effectiveness are
required. This limitation exists due to the
fact that the air supply is somehow
limited. On the other hand, high
effectiveness levels tend to increase
thermal stress problems [1-3].

A special type of convective cooling is by
means of impingement. It is used whenever
large heat transfer coefficients are needed
on the un-exposed surfaces (4-8)}. Another
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method to obtain high heat transfer
coefficients is to place fins or ribs
normal to the coolant flow path (9].

When higher levels of cooling effectiveness
are required it is necessary to use more
sophisticated alternatives. The most common
method is to insert a secondary fluid into
the boundary layer on the surface which is
to be protected. There are different means
of injecting this fluid such as ablation,
transpiration and film cooling. In ablation
cooling, a heat shield ablates and
secondary fluids enter the boundary layer
[10] In transpiration cooling the coolant
enters the boundary layer through a porous
material [11~-13). Both methods are used to
protect the region where coolants are
added. Unfortunately the application of
these systems is difficult because ablation
has a limited time span and porous
materials are not strong enough to be used
in engines. The basic mechanism of film
cooling is the introduction of a secondary
fluid at several locations along a surface
to protect that surface not only in the
injection area but also in the downstream
region (12-14].

Thermal studies on aircraft engines,
particularly modern ones with large flight
envelopes, reguire a great amount of
testing and instrumentation. Designers have
different tools for obtaining engine
component temperature predictions. These
tools can be classified as: 1) theoretical,
2) experimental and 3) numerical methods.
Theoretical analysis is usually aimed at
finding parameters to describe the
temperature of an adiabatic wall downstream
of the coolant injection [15]. Real and
three-dimensional effects are studied on
test rigs with controlled conditions
[{16-18]. Predictive numerical calculations
are being widely used nowadays for
different cooling applications and
configurations, because they help to speed
up the design and to reduce the number of
experiments [19-20].

In this paper a method to predict full
scale engine temperatures is described.
This method combines the fluid dynamic
equations with semi-empirical data obtained
from the open literature.

The result is an easy to use procedure.
2. NOZZLE COOLING PREDICTION

The prediction of the petal temperature of
a convergent-divergent nozzle has been
performed through a computer code that uses
correlation models available in the open
literature with actual data obtained from a
test program that includes a reduced scale
hot test, a full scale rig test and a DVE
(Design Verification Engine) program.

The film cooling produced when the relative
cold layer is injected at the beginning of
the convergent petal of the nozzle,
produces a reduction in the metal
temperature along the petal.

The heat transfer rate is modelled by:

q = A.h [Tav - Tv]

X
}-—————0
s] o= .7 Tow
o ——-

.

Fig.1l. Single slot film cooling
configuration.

The convective coefficient h is calculated
independently from the adiabatic wall
temperature Taw‘

This magnitude is related to the concept of
effectiveness of the film cooling, figure
1:

The correlation found more suitable for the
flow conditions and geometry is the model
of Kutatelache & Leanter, in reference [14]
because the flow can be considered
twodimensional and compressible and the
difference of temperature between the wall
and the main stream is important.

The effectiveness is given from this
reference by the expression:

1

- C
1+ P2 0,33 (4,04 €H)%F - 1]
p2

when the cooling injection is made by two
consecutive slots, the total effectiveness
can be treated as the combination of two
cooling layers where the extern§1
temperature for the inner flow is the
wadiabatic wall temperature" for the
external one [21], figure 2.

n _ Tw - Ta wl
1 Tm - T1
e = Taw: ~ Tawa
2 aw1 ~ T2

and the total effectiveness is:

Tno - TavZ

n= =
Tm T2

=my + Ny, (1 -my)

Fig.2. Double slot film cooling
configuration.




The convective coefficient h is obtained
from semiempirical correlation for film
cooling with a high velocity compressible
boundary layer.

As the blowing factor M < 2 the correlation
used is the one proposed by Lefebre [22].

K

2
X s0,01lm hx = "ux - X
_ 0,7
Nux = 0,057 Rex
R _ Py Vz X
ex L,
N K
_ ux 2
X >0.01m hx = X
x 0,8
Nux = 0.0256 [Res T?']
R _ Py Vz .S
es [T

The wall temperature of the petal is
obtained for an equilibrium model where the
convective and radiative heat transfer
with the cavity between the nozzle petals
and the fairing flap, and the conduction
along the petal are modeled in the
classical way.

It may be of interest to note that the
radiative heat transfer with the hot gas of
the main flow is modeled as [15 & 23).

1,5

9 . _1_ 2,5 _ .. 2,5
A 3 o |1 +cv cg Tg Tv

T
(*s
3. NOZZLE THERMAL TESTS

The model resulting from this information
gave good results for wall temperature
estimation always with a conservative
margin that the test in the scale model
helped to reduce (figure 3). The full scale
results with fixed convergent-divergent
nozzle tested in a hot rig showed very good
agreement between the predictions and the
actual values from the thermocouples and
thermal paints. (see figures 4 and 5).

2.00 -

B

1.80 1

by

@

(-}
L

T adw./ Tref.
>
(-]

04 08
Refative X position

Fig.3. Initial prediction and scaled hot
test results along nozzle petal.
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0 0.4 0.8 1.2
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Fig.4. Comparison of predicted temperatures
and fixed condi nozzle test results.
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Fig.5. Thermal points, predicted
temperature and thermocouples values in
fixed condi nozzle.

When the true variable convergent-divergent
nozzle was tested in the Design
Verification Engine (DVE) the differences
between the prediction and the measurement
in the beginning of the divergent petal
were important. But if a cooling ingestion
through the gap in the throat is
considered, this disagreement disappears
and the model appears to be consistent and
to give accurate temperature predictions.
(Figure 6).

4. EXHAUST DIFFUSER COOLING CIRCUIT
The cooling circuit of the exhaust diffuser

has been designed with a method that
modelise the more relevant fluid factors
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Tw/Tref

2.4

W/0 Throgt injection

With Throct Injection

1.6~

- Precicted
» Thermocsucies

0 0.4 0.8 1.2
Relative X position

F;g.s. Predicted and measured temperatures
with and without throat cold air injection.

around the circuit and use the available
data in the open literature. This
prediction method includes theoretical
analysis and semienpirical correlations
coupled to numerical simulation wherever
further refinement is required. A more
detailed description of this design method
has been given elsewhere [24]). Therefore
here we will only comment at the aspects
related to the general objectives of this
paper.

The geometry of the cooling circuit can be
seen in figure 7, the fixed blade diffuser
cascade has an inner passage with cooling
capillaries in the trailing edge. The
thermal analysis of the blades requires a
detailed numerical process with NASTRAN
code for the solid pieces and CFD code for
the convective heat transfer in the blade
boundary layer. But for the purpose of the
circuit flow prediction a simpler model is
used estimating the internal friction
coefficient using [25] and the inner heat
flux with the expression from {2].
by,

0,035
N, = /#— .003 rO®p 1/3[ 2

u Tv r L

The mean blade temperature is fixed by a
heat equilibrium analysis where the
external heat transfer is modelled in the
leading edge with the correlation

u d r

- 1/2 ;0,4 |, _
N =1,14 Re P [1 T

4

and in the rest of the blade surface with
the standard Nusselt value for turbulent
boundary layer.

The remaining heated flow which reaches the
plenum is forced to cross the perforated
wall to impinge onto the rear wall. This is
needed to enhance the cooling of this wall

which receives strong radiative heat flux
from the afterburner. The dominant feature
in this part of the cooling circuit is the
combination of cross-flow and impingement
cooling. The radial geometry simplifies the
mathematical model which follows the scheme
of (26].

The calculation of the flow through the
holes in each station is also modified to
allow for the cross flow. Correlation from
(27] is used to take this effect into
account. The convective heat coefficient
produced by the impingement is modelled
following (4 & 28]).

To reproduce this correlation here is
bevond our limits, so our advice is to
consult the original papers.

Wall temperature is obtained by a thermal
balance between external and internal
radiative heat flux and the impingement as
already commented. Upon the reheat luminous
flame emissivity and radiative terms of
this equilibrium are modelled after
references [3 & 15].

The flow behavior inside the lateral double
wall is calculated in a similar way with
the simplification that no impingement
effect 1s present.

The mass flow and thermal predictions are
performed jointly in an iterative mode. It
starts with a hypothetical mass flow at the
beginning of the circuit. Its”~ purpose
being to match the pressure, at the exit
located downstream of the cascade, obtained
by the program with the actual value.

{ A

n
1

Fig.7. Exhaust diffuser cooling circuit.

5. EXHAUST DIFFUSER TEMPERATURE ASSESSMENT

Calibration tests were carried out to check
the mass flow predicted through the cooling
circuit. It was performed in a rig that
repraoduces the geometry and flow
conditions, and is divided into two phases
to obtain separately the mass flow through
out both capillary trailing edge tubes and
discharge exit downstream blade trailing
edge.
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Fig.8. Results of calibration test mass
flow through capillary cooling tubes in the
blade trailing edge.

4.8 ——
- T
4.4 -
-
4 yd
4.0 . /
2 ya
2 - /
} Ve
g 3.6 4 /
A |
* 324 / -
i // - Ewenments/ |
' - Calculsted
2.8 i//
2.4 - T ,
1.1 1.3 1.5 1.7
PRESSURE RATIO
Fig.9. Results of calibration test. Total

cooling mass flow in exhaust diffuser
cooling circuit.
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Fig.10. Comparison between predicted and
experimental values of temperature at the
center of the diffuser rear wall.
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Figures {8 and 9] show the comparison
between experiments and theoretical
predictions for the capillary tubes and the
total cooling mass flow.

The engine validation tests were performed
to assess the pressure and temperature
predictions. We will focus on the cone,
lateral and rear walls where no further
calculation was performed. The figures
{10,11 and 12) show the comparison of
predicted and measured temperature in the
range of compressor speed, while figure
[13]) shows the relative error for both
temperature and pressure in several circuit
locations.
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Fig.11. Comparison between predicted and
experimental values of temperature at the
periphery of the diffuser rear wall.
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Fig.12. Comparison between predicted and
experimental values of temperature at an
intermediate section of the lateral wall.

6. CONCLUSIONS

The comparison between predicted and actual
test results of calibration rigs and engine
test beds shows that for design purposes
the accuracy obtained is enough and no
other complicated method is needed.
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DEPARTURES FROM MEASURED VALUES (%)
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Fig.13. Differences between prediction and
measured values. P, T and M are pressure,
air temperature and metal temperature
respectively.

Relevant engineering design parameters,
such as metal temperatures, pressures and
mass flow were predicted within 3% of
accuracy. It is possible to explore a broad
range of flight envelope points using this
simple design tool. Further improvements on
the modeling of reheat radiative properties
would be needed if greater accuracy were
required.
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Discussion
QUESTION 1:

DISCUSSOR: J. Salva Monfort, Escuela Tecnica Superior de Ingenieros Aeronauticos
Can you explain in more detail how you have calculated the cooling flux through the
capillary tubes in the trailing edges of the blades?

AUTHOR'S REPLY:
The flow through the cooling capillary tubes in the trailing edge of the blades is calculated
using the same turbulent one-dimensional equations as for the main passages of the
blade. Some problems of choking due to the high heat transfer can arise. In this case, it is
necessary to detect the Mach number increase and to reduce the mass flow for that
capillary tube accordingly.

QUESTION 2:

DISCUSSOR: D.T. Vogel, DLR
You used many of empirical constants in your calculations. Are these constants related
to your special problem, or is it possible to calculate other cooling configurations?

AUTHOR'S REPLY:
The correlations used are all chosen from open literature taking into account the
geometry and dimensionless parameters of the problem. Please refer to the original
paper to find out if it can be applied to other configurations.
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