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Abstract—In many real-life applications it is important
to know how to deal with missing data (incomplete feature
vectors). The ability of handling missing data has become a
fundamental requirement for pattern classification because in-
appropriate treatment of missing data may cause large errors or
false results on classification. A novel effective neural network
is proposed to handle missing values in incomplete patterns
with Multitask Learning (MTL). In our approach, a MTL
neural network learns in parallel the classification task and
the different tasks associated to incomplete features. During the
MTL process, missing values are estimated or imputed. Missing
data imputation is guided and oriented by the classification task,
i.e., imputed values are those that contribute to improve the
learning. We prove the robustness of this MTL neural network
for handling missing values in classification problems from UCI
database.

I. INTRODUCTION
Pattern classification methods based on Artificial

Neural Networks (ANNs) have been successfully applied
in many domains requiring intelligence, from medical
diagnosis to fault detection in industrial machinery and
speech recognition. ANNs can recognize patterns working
simultaneosly with continuous, binary, ordinal and nominal
data. A common problem in pattern recognition is the
presence of missing data. Traditional classification methods
usually cannot deal with real-world data, because of most
of them ignore the presence of missing values in input
patterns, i.e., it is assumed that input patterns are complete.
The problem of missing data arises in several fields of
real-life applications. The different reasons for missing
data can be ranging from sensor failures in engineering
applications to non response in a survey [1], [2]. A clear
example of the importance of handling missing data is that
45% of UCI data sets have missing values. Therefore, the
ability of handling missing or uncertain inputs is essential
in real application tasks of pattern classification because
of inappropriate treatment of missing data may cause large
errors or false results on classification.

This paper proposes a novel approach for handling and
estimating missing values in classification problems using
Multitask Learning (MTL). MTL was developed in 1993

Pedro J. Garcı́a-Laencina and José-Luis Sancho-Gómez are with the
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by Rich Caruana [3]. The basic idea is that a task will be
learned better if can leverage the information contained in
the training signals of other related tasks during learning
[4]. The task which is desired to be learnt better is called
the primary or main task and the tasks whose training
signals are used as hints by the main task are referred to
as the secondary or extra tasks. Our method utilizes the
incomplete features as extra tasks that are learned in parallel
with the main classification task. Weights connections are
dynamically adapted in function of the missing attributes
for every input vector, independently of how missing data
are distributed, and moreover, we use the outputs that
learns incomplete features to estimate missing values during
learning process. This missing data imputation is oriented
by the learning of the classification task, in other words,
it is oriented to solve the classification problem and these
imputed values are those that contribute to improve the
classification.

The remainder of this article is structured as follows:
Section 2 presents the notation used in this work. In Section
3, an overview of missing data problem and basic approaches
for handling missing values are described. In Section 4,
it is shown both how MTL works and different neural
architectures based on MTL. Proposed method is presented
in Section 5 to solve a general classification problem with
missing values. Next, in Section 6, our method is tested on
real and artificial classification problems. Conclusions and
future related works conclude the paper.

II. PATTERN CLASSIFICATION WITH INCOMPLETE DATA
In general, classification problems normally involve the

labeling of unclassified data with a specific output class, in
other words, classification problems are seen as a learning a
functional mapping from the input to output space [5].

f : X !→ C (1)

Each input pattern of X is associated to a specific class
output belonging to one of c possible classes. In conventional
classification tasks, all attribute values of each pattern are
completely known and represented by a real vector x, i.e.,
input set X are completely observable. Let us consider
that each input pattern x(n) has d attribute real values,
x(n) = (x(n)

1 , x
(n)
2 , ..., x

(n)
d ), and an output classification

target t(n). Alternately, it is possible to code t(n) in a
target vector t(n) using a 1 − of − c codification, e.g., if
there are five possible classes and the n-th pattern belongs
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to the third one, its target vector will be t(n) = (0, 0, 1, 0, 0).

In classification tasks discussed in this paper, input pat-
terns can have some unknown attribute values (i.e., missing
values). Figure 1(a) shows a classical classification prob-
lem with complete dataset. On the other hand, Figure 1(b)
shows a classification problem where some input vectors are
incomplete. In this paper, we consider that missing values
are not always in the same attribute among given samples
(e.g., it is possible that the i-th attribute value of one sample
is missing while the same attribute of another example is
known). We will refer to a missing value with ? symbol;
thus, pattern x(4) = (0.1, ?,−0.2, ?, 0.3) presents missing
values at second and fourth attributes. In addition, we can
define the missing-data indicator matrix M = (mij), such
that mij = 1 if x

(i)
j is missing and mij = 0 if x

(i)
j is present

[1]. In the previous example, m(4) = (0, 1, 0, 1, 0).

x1 x2 x3 xd ...... t1 tc

(a) A typical classification problem
with a complete dataset.

x1 x2 x3 xd ...... t1 tc

(b) A classification problem with
incomplete patterns, denoted by ?
symbol.

Fig. 1. Two hypothetical classification problem of c classes. First, in (a), all
patterns are completely known. In the other way, in (b), some input vectors
present incomplete data.

III. HANDLING MISSING DATA

We will focus on methods for handling missing data by
means of ANN in classification problems. In the literature, all
proposed imputation procedures do not focus the estimation
of missing values oriented to solve the classification task;
their first aim is obtaining a complete data set and then
an ANN learns the classification task using this complete
data [6]–[8]. On the other hand, there are some methods that
change the learning and the operation of an ANN to be able
deal with missing inputs in classification problems [9]–[11].
In [6], Nordbotten uses models based on ANN for imput-

ing survey variable values. In this work, a different ANN is
trained to learn each incomplete feature being these networks
used to realize the imputation task. Yoon et al. [7] suggests
an algorithm that was composed of 3 steps, first of all, an
ANN is trained with only the complete portion of dataset to
learn the classification task; secondly, estimation of missing
attributes in the incomplete cases with the trained network
by error backpropagation is realized; finally, the ANN is
re-trained with the whole dataset to learn the classification
task. Markey et al. [8] analyzes the effect of missing data
on trained ANN in three cases: without incomplete data,
replacing the missing values using mean imputation and
multiple imputation procedure.

Other methods change its learning process to be able to
deal with missing inputs. Ishibuchi et al. uses an interval rep-
resentation of incomplete data with missing inputs [9], [10].
As input space is a d-dimensional inside an unit cube, each
missing input was represented by an interval that includes its
possible values, i.e., [0, 1]. Learning of the proposed neural
network is adapted to consider the interval representation in
missing inputs. In [11], Viharos et al. develops a method for
handling missing data based on the use of a validation flag
for each input pattern. Validation flag indicates whether a
value in the input vector is missing or not, and the inputs
weights changes according this validation flag.

IV. MULTITASK LEARNING
Most approaches to machine learning focus on the learning

of a single isolated task, Single Task Learning (STL). STL is
used to refer to an ANN learning system that learns a single
task. In order to explain a STL approach, consider a dataset
M, associated to a single (main) task, with its respective
input set X(m) and target set T(m). Figure 2(a) shows STL
scheme for solving this problem. This net can be trained
to minimizing an error function between network outputs
o(m) and target values t(m). Therefore, the network learns
only a single task, in other words, the network learns only
targets T(m) from X(m). Although, STL has been achieved
great success, it overlooks basic details and advantages of
human learning. Human learning frequently involves learning
several tasks simultaneously; in particular, humans compare
and contrast similar tasks for solving a problem. For example,
if you want to learn periodic table, it is easier learning groups
of related elements than learning the complete table.

x1 x2 xd

o(m)

(a) STL scheme.

x1 x2 xd

o(m) o(s)

(b) MTL scheme.

Fig. 2. Standard net schemes. First, in (a), it is showed a STL network
that learns only a main task from an input vector with d attributes. In (b),
a MTL network learns a main task and a secondary task. This extra task
helps to get a better performance in the learning of the main task.

In last years, many works have applied these advantages
to machine learning [12]–[17]. These works add extra related
tasks to a main task and learn them at same time. This
approach to learning is called Multitask Learning (MTL).
MTL is a method that is designed to improve hypothesis
generalization by transfering knowledge between tasks that
are learned simultaneously, in parallel, in the same shared
representational structure [3], [4]. Figure 2(b) shows this
structure. The task which is desired to be learnt better is
called the main task and the task whose training signals are
used as hints by the main task are referred to as the secondary
tasks. In order to explain a MTL approach, consider a dataset
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M, associated to a main task, with its respective input set
X(m) and target set T(m) and a dataset S, associated to a
secondary task, with its respective input set X(s) and target
set T(s). In most of the cases, input data sets of all tasks
are the same, X(m) = X(s) = X. A first approach is to use
only one network with a hidden layer of neurons for learning
all tasks [15]. This sharing promotes inductive transfer: the
hidden layer representations learned for the extra outputs
are available to the main task output and often improve
performance on the main task. With respect to weights,
weights of the first layer are updated depending on the error
of all tasks; while the weights, that connect each output
unit to hidden neurons, are only influenced by errors due
to the output corresponding task. The obvious disadvantages
with MTL networks are the increased requirement for hidden
nodes within the ANN and the longer training times that
are required. Another disadvantage is that MTL systems, by
default, assume that all tasks are related. This default assump-
tion allows unrelated tasks to decrease the generalization
performance accross all tasks causing a loss of knowledge for
some tasks. In other way, often, it is not paid attention how
well extra tasks are learned because of their only purpose is
to help the main task be learned better.

x1x1 xd xd

o(m) o(s)

(a) A MTL scheme with a private subnetwork used
by the main task.

x1x1 xdxd

o(m) o(s)

t(s)

(b) A MTL scheme with a private subnetwork used
by main task and a extra input.

Fig. 3. MTL schemes with a common subnetwork, that learns all tasks,
and a private subnetwork, that only learns the main one.

It is possible to improve MTL performance using net
schemes more complicated than standard MTL scheme (Fig-
ure 2(b)) [15]. One solution is adding a private or specific
subnetwork to learn only the main task. Figure 3(a) shows
this scheme. Therefore, there are now two disjoint hidden
layers or two disjoint subnetworks. One of them is a private
subnetwork used only by the main task, while other is the
common subnetwork shared by the main task and the extra
task. This common subnetwork supports MTL transfer. This
net architecture is asymmetric because the main task can
see and affect the private subnetwork used by the extra

task, but the extra task can not see or affect the subnetwork
reserved for the main task. Up to now, we have supposed
that the inputs x are equal to all hidden neurons, using our
notation, X(s) are the same that X(m). But we can improve
performance of MTL if the desired values t

(s) are introduced
together with inputs x as new input-features to learn the main
task [17]. Figure 3(b) shows this architecture. Working in this
way, we are adding a priori information about domain in
private subnetwork and the generalization of main task will
be better. An important issue about extra inputs is that, during
learning, the targets are known, but not during the operation
phase In [17], the concept of consistency is used to solve
this drawback. It will be also used, and briefly explained, in
this work because it is simple and efficient.

V. PROPOSED METHOD

In this work, we propose a novel neural network where
estimation of missing values is oriented by the learning
of the classification task which follows a MTL scheme.
Next, we explain how this MTL network learns and works
in a general classification problem. After that, training and
operation phase with missing data is explained.

A. A MTL Neural Network to Classify Incomplete Input Data
Suppose a c-class classification problem described by N

input vectors composed of d real attributes. Consider that m
of the d (m ≤ d) features are incomplete (they have some
missing values), where any input vector of these incomplete
features can be a missing value, as it is showed in Figure 1(b).
Moreover, we define the vector a = [a1, a2, ..., ak, ..., am]
whose components are the m incomplete attributes in the
data set. Therefore, this problem is composed of two kind of
different tasks:

• Main task: one c-class classification task.
• Secondary tasks: m imputation tasks associated to each
incomplete feature.

Figure 4 shows a MTL network, based on our proposed
method, to solve a general classification problem. In
general, each input vector is composed by d units associated
with each attribute and, in some cases, c extra inputs
associated with the classification target t(C). There are
m + 1 subnetworks, one private subnetwork that only
learns the classification task, and m common subnetworks
where each one of them learns two tasks: the main one and
the secondary imputation task associated to each feature
with missing data. Each subnetwork can be composed of a
different number of hidden neurons. In the output layer, there
are m + c outputs distributed in the similar way than inputs:
c outputs, o

(C)
1 , ..., o

(C)
c , corresponding to classification

task and m outputs, o
(M)
1 , ..., o

(M)
m , corresponding to the

secondary tasks. We use hyperbolic tangent as activation
function g() of all hidden neurons and linear outputs in the
MTL network showed in Figure 4.

In our notation, w
(1)
i,j denotes a weight in the first layer,

going from input unit i to hidden unit j, and w
(1)
0,j denotes
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the bias for hidden unit j. Notation is similar for weights
in the second layer. In all network topologies showed in this
work, biases are implicit in order to simplify the figures. With
respect to neuron notation, the private subnetwork, that learns
the classification task, is labeled with subindex C, and the
rest of common subnetworks are labeled with the incomplete
feature that they have to learn. For example, the first neuron
of the private subnetwork is labeled as 1C and 3a2 denotes
the third neuron of the common subnetwork that learns the
a2 attribute.

x1x1 x1 xdxdxd t1 t1tc tc
xa1−1 xa1+1 xam−1 xam+1

o
(C)
1

o(C)
c o

(M)
1 o(M)

m

1C nC 1a1
na1

1am nam

Fig. 4. Proposed MTL neural network that combines classification and
imputation. In this network, learning of imputation tasks is oriented by the
learning of the classification task. It is composed of m+1 subnetworks: one
private subnetwork to learn the main classification task (labeled with C),
and m common subnetworks for learning the main one and a secondary
imputation task (labeled with M ) the at same time. Neurons of private
subnetworks work as a classical neuron, but neurons of common subnetwork
are MTL neurons. Moreover, extra inputs (classification targets) are used in
these common subnetworks.

Now, it is explained how neurons process the information
depending on the learned tasks and their weight connections.
Two kinds of hidden neurons can be considered: classical
neuron, that learns only one task, and MTL neuron, that
learns at same time several tasks. Neurons of the private
subnetwork only learn one task. These neurons work as a
classical neuron because they compute the sum product of
its weigths and its input signals. Figure 5(a) shows a classical
neuron of the private subnetwork whose output can be written
as

zjC = g

(
d∑

i=1

w
(1)
i,jC

xi + w
(1)
0,jC

)
(2)

On the other hand, common subnetworks is composed of
neurons that learns at same time all tasks, i.e., they are MTL
neurons. We implement them in a different way to a classical
neuron. Figure 5(b) shows a MTL neuron in the common
subnetwork ak (which learns the ak attribute of data, i.e.,
xak

). They are connected to all inputs units less that one
is associated with, xak

. To explain it, suppose that, in the
common subnetwork ak, the input xak

is connected. In that
case, there would be a direct connection to map the input as
output, and so, imputation output o

(M)
k would be dependent

of xak
and the rest of inputs would be omitted (associated

weigths would tend to be zero) [15]. For this reason, input-
output direct connections are avoided establishing to zero
the weights w

(1)
ak,jak

, with k = 1, 2, ..., m. In Figure 4 and
5(b) are not drawn these weigths. Moreover, classification
targets are used as extra inputs only for the secondary tasks
Following this, outputs of the MTL neurons compute the
following expressions,

z
(s)
jak

=




g
(∑d

i=1 w
(1)
i,jak

xi + w
(1)
0,jak

)
s = 1, ..., c

g
(∑d+c

i=1 w
(1)
i,jak

xi + w
(1)
0,jak

)
s = c + 1, ..., c + m

(3)
In Figure 5(b) a representation of a MTL neuron is

shown. The two different outputs z
(s)
jak
, corresponding to the

two equations in (3), are marked with a common arrow
and an arrow beginning with a circle, respectively. This
representation is also used in the Figure 4.
Finally, the outputs of the proposed network are obtained

by a linear combination of the outputs of the hidden neurons
using a second layer of processing units.

x1

xi

xd

jC

w
(1)
1,jC

w
(1)
i,jC

w
(1)
d,jC

zjC

(a) Classical neuron.

x1

xak−1

xak+1

xd

t1

tc

jak

w (1
)1
,j

a
kw (1)a

k −1,ja
1

w
(1)
ak+1,ja1

w
(1

)

d,ja k

w
(1

)
d
+
1
,j

a k
w

(1
)

d
+

c
,j

a
k

z
(1)
jak

z
(c)
jak

z
(c+1)
jak

z
(c+m)
jak

(b) MTL neuron.

Fig. 5. Types of implemented neurons

Another important issue is the number of neurons in each
subnetwork because it determines the complexity of the
MTL network. In this paper, we choose a fixed number of
neurons in each subnetwork for each tested problem.

Now, total target vector t(n) is composed by the classifica-
tion task target vector and the components corresponding to
each imputation task, i.e., the attributes with some missing
value. Thus, the total target vector for a two dimensional
problem with missing values at both attributes can be written
as t(n) = (t(n,C), x

(n)
a1 , x

(n)
a2 ). Note how the input features

with missing values represent the targets of secondary tasks.
For example, suppose an input vector x(3) = (0.1, 0.25)
whose desired output t(C)3 is equal to −1, therefore, in the
proposed MTL scheme, its total target vector is t(3) =
(−1, 0.1, 0.25).

B. Learning a Classification Task with Missing Inputs
In order to explain how our MTL network works, we

divide the proposed scheme in three phases:
1) Initialization phase. The weights are initialized and
input data set is normalized in this stage.
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2) Learning phase. The weights are updated and missing
data imputation is done.

3) Operation phase. It is described the operation of the
MTL network once it has been trained.

1) Initialization phase: Before learning, all weights
are initialized randomly with values from the interval[
− 1

2

√
3

ninputs
, + 1

2

√
3

ninputs

]
, where ninputs is the total

number of inputs d + c, [18]. Moreover, training set is
normalize to zero mean and unit variance, and after that,
incomplete values are setting up to zero. This previous zero
initialization causes a dynamical adaptation of connections
depending on the missing data location in the input vector,
because an input equal to zero does not contribute to the
learning.

2) Learning phase: Learning is based on the definition of
an error function, which is then minimized with respect to
the weights (and biases) in the network. In this work, we use
the sum-of-squares error function defined as

E =
1

2

N∑
n=1

(
‖o(n,C) − t

(n,C)‖2 +
m∑

k=1

(
o
(n,M)
k − x(n)

ak

)2
)
(4)

where o(n,C) and o
(n,M)
k are, respectively, the classification

output and the k imputation output obtained for the input
vector x(n). We can rewrite (4),

E = E(C) + E(M) = E(C) +
m∑

k=1

E(M)
k (5)

where E(C) is the classification error and E(M)
k is the

imputation error of the incomplete attribute ak. These
error functions depend on the differences between obtained
outputs and targets. If missing values are presented in
x(n), its total target t(n) will be incomplete. In these
cases, it is not possible to compute the differences for
incomplete imputation targets because they are unknown.
For this reason, differences associated to every incomplete
imputation target is established to zero.

After obtaining the differences, the derivatives of the error
E with respect to the weights can be evaluated, and these
derivatives are used to find weight values which minimize the
error function by a gradient optimization method. In order
to explain the learning, first, it is necessary to distinguish
between weights of output layer, w

(2)
j,s only are influenced

by the learning of the task that they are connected, and
weights of input layer, w

(1)
i,j . These weights of the first

layer can be divided in two groups: weights associated to a
private subnetwork and weights associated to the common
subnetwork. The weights of the private subnetwork only
are influenced by the error E(C), whereas, the weights of
each common subnetwork are influenced both by E(C) and
E(M)

k errors. In particular, we use gradient descent method in
sequential mode with adaptive learning rate and momentum
term.

Another important issue is that incomplete values are
estimated using the imputation ouputs during training stage.
Learning of the classification task affects to these imputed
values, and so, this imputation is oriented to solve the
classification task. Imputation is done when the learning of
imputation tasks is stopping.

3) Operation phase: The operation of the proposed
method depends on the presence of missing values in x(n).
If x(n) is completely known, imputation is not necessary and
the MTL network directly classifies the input pattern using
the classification output o(n,C). But if x(n) have incomplete
data, imputation outputs o

(n,M)
k are used to estimate the

missing data. These imputation outputs are function of t(n,C)

as part of the input. Nevertheless, this information is not
available in the operation mode. In order to solve this
problem, we check all possible t(C) values and the most
consistent is selected. The consistency of t(C) is a measure
of the difference between t(C) and the output o(C) produces
by the network after the imputation values of missing data
is realized using the corresponding o(M)k .

VI. EXPERIMENTS AND SIMULATIONS
In order to test the proposed MTL network introduced in

the previous section, three datasets from UCI database are
used, [19]. Table I shows these sets. Initially, each dataset
is randomly divided into three subsets: 1/3 instances of the
dataset are used as training set, 1/6 instances are used as
validation set and the rest 1/2 are used as testing set. Such
process is repeated ten times and ten groups of training,
validation and testing subset are generated. Then, a given
percentage of missing data is artificially inserted into all
subsets and selected attributes in a completely at random
manner. Finally, our method is applied over the training
subsets to build up classifiers that are capable to estimate
the missing values, and then, these classifiers are used to
classify instances in testing subset to obtain the classification
accuracy.

TABLE I
DATASETS SUMMARY

Dataset Instances Attributes Classes
Iris Plant 150 4 3
Glass 214 9 6

Pima Indians 768 8 2

A. The Iris Plant Problem
In Iris Plant problem, the goal is to classify irises based

on four attributes: sepal length (A1), sepal width (A2), petal
length (A3) and petal width (A4). This problem has been
used widely in many works, and the classification error
without deleting data is around 3% ∼ 4%, [19].
In particular, we insert missing values randomly in all

possible combinations of the four attributes for different
percentage of missing data. We have done this both to
evaluate the influence of the missing data in each one of
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TABLE II
MUTUAL INFORMATION BETWEEN EACH ATTRIBUTE AND THE

CLASSIFICATION TASK OF THE IRIS PROBLEM.
Attributes

A1 A2 A3 A4
MI 0.877 0.511 1.446 1.436

the features, and to check how the different combinations of
incomplete attributes affects to the learning and the classifica-
tion accuracy. It is clear that not all the attributes are equally
important to classification task. We measure this importance
with the Mutual Information (MI) between each attribute and
the classification task [13]. Table II shows the MI for each
attribute of the Iris problem, and Table III summarizes the
obtained results for each possible combination of incomplete
features with percentages of missing data equal to 30% and
40%. The first column of this table indicates which attributes
are incomplete, labeled with a 1, or complete, labeled with
a 0.

TABLE III
OBTAINED MISCLASSIFICATION RATES FOR IRIS PROBLEM.

Attributes Missing
Rate

Training
(%)

Test
(%)

A1 A2 A3 A4 Mean ± SD Mean ± SD
1 0 0 0 30% 2.00 ± 0.10 4.00 ± 0.60
1 0 0 0 40% 2.20 ± 1.00 4.53 ± 0.88
0 1 0 0 30% 2.40 ± 0.80 3.20 ± 0.88
0 1 0 0 40% 2.60 ± 1.00 3.33 ± 0.67

0 0 1 0 30% 2.60 ± 1.20 5.07 ± 0.53
0 0 1 0 40% 1.80 ± 1.08 4.80 ± 0.88

0 0 0 1 30% 1.80 ± 1.08 4.13 ± 1.11
0 0 0 1 40% 3.00 ± 1.34 4.40 ± 1.04

1 1 0 0 30% 2.40 ± 1.49 3.33 ± 0.67
1 1 0 0 40% 2.80 ± 1.33 3.73 ± 1.53
1 0 1 0 30% 2.40 ± 1.50 5.07 ± 0.53
1 0 1 0 40% 2.00 ± 1.26 5.60 ± 0.80

1 0 0 1 30% 2.00 ± 0.89 4.40 ± 1.20
1 0 0 1 40% 3.00 ± 1.84 5.60 ± 1.16

0 1 1 0 30% 3.20 ± 1.33 4.40 ± 0.85
0 1 1 0 40% 3.40 ± 2.01 4.27 ± 0.53

0 1 0 1 30% 2.80 ± 1.33 3.07 ± 0.61
0 1 0 1 40% 2.60 ± 1.28 3.73 ± 0.10

0 0 1 1 30% 3.60 ± 3.32 9.07 ± 1.55
0 0 1 1 40% 4.20 ± 3.28 11.07 ± 1.89
1 1 1 0 30% 3.20 ± 2.04 4.67 ± 0.89
1 1 1 0 40% 4.00 ± 1.26 4.93 ± 0.85

1 1 0 1 30% 2.20 ± 1.44 3.33 ± 0.67
1 1 0 1 40% 2.60 ± 1.35 4.33 ± 0.67

1 0 1 1 30% 6.00 ± 2.57 10.40 ± 2.05
1 0 1 1 40% 4.00 ± 3.22 16.93 ± 2.92

0 1 1 1 30% 6.60 ± 5.87 10.40 ± 1.55
0 1 1 1 40% 6.80 ± 4.75 12.40 ± 2.54
1 1 1 1 30% 3.60 ± 1.96 10.13 ± 2.00
1 1 1 1 40% 3.00 ± 2.41 16.67 ± 1.81

When attributes with higher values of MI are incomplete
(attributes A3 and A4), obtained results are worse than those
obtained when missing values are in attributes with lower
MI (attributes A1 and A2). Another important issue is that
unrelated attributes are less influenced by the learning of the

classification task than more related (cases A3 and A4). To
show it, Figure 6 illustrates the evolution of sum-of-squares
error for each task when there is a 10% of missing data
in the all attributes. We can see how the secondary tasks
associated to the attributes A3 and A4 are learned easier
and better than the rest of the extra tasks. In this problem,
imputation is done when the learning of the secondary tasks
is stopping. In the epoch 27, where the first imputation is
done, the training error associated to the main task decreases
in a sudden way. Each one of the following imputations
affects less gradually in the learning of the classification task
because of the learning of the secondary tasks is stooped
gradually.
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Fig. 6. Evolution of the sum-of-squares error during learning for each task
in the Iris problem with 10% of missing data in all attributes.

B. Forensic Glass Problem
This data set contains the description of 214 fragments

of glass originally collected for a study in the context of
criminal investigation. Each instance is composed of nine
attributes, labeled as A1, A2, ..., A9. Classification error
without deleting data is around 35% using MLP, [19]. We
measure the attribute’s importance and its relation with
the classification task using the MI. In order to test our
method, we insert incomplete values randomly for different
percentage of missing data in the two most related features
(A1 and A2) and in two least related attributes (A8 and A9).
As we can see in Figure 7, the task associated with the

least relevant attributes are learnt not as well as the task
associated with A1 and A2 attributes. Table IV summarizes
the obtained results in this problem for different missing data
rate. In this problem, proposed method obtains a similar
accuracy than in the classification using the complete data
set.

C. Pima Indians Diabetes Problem
Pima Indians Diabetes data set was originally collected on

a population of women in order to diagnose diabetes using
eight attributes (A1, A2, ..., A8). It can be found in the web
page of B. D. Ripley’s book [20]. In this case, there are 3
different sets. One of them is for test and consists of 332
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Fig. 7. Evolution of the sum-of-squares error during learning for each task
in the Glass problem with 10% of missing data.

TABLE IV
OBTAINED MISCLASSIFICATION RATES FOR GLASS PROBLEM.

Missing
Rate

Training
(%)

Test
(%)

Mean ± SD Mean ± SD
10% 18.10 ± 4.35 31.50 ± 3.91
20% 16.70 ± 3.44 33.33 ± 1.67
30% 19.00 ± 4.84 30.67 ± 2.49
40% 18.20 ± 2.04 35.67 ± 3.35

complete cases. Two remaining sets are for training: one has
only 200 complete cases, and the other one has 200 complete
cases and 100 incomplete cases. In particular, three different
attributes presents missing data: the attributes A3, A4 and
A5. Table 3 shows the MI between them and the classification
task, and also, it shows the percentages of missing data in
each attribute. As we can see in this table, the attribute A5
is the most related to the classification task.

TABLE V
PERCENTAGES OF MISSING DATA, MUTUAL INFORMATION BETWEEN
EACH INCOMPLETE ATTRIBUTE AND THE CLASSIFICATION TASK FOR

THE PIMA INDIANS PROBLEM.
Attributes

A3 A4 A5
Missing Rate 4.33% 32.67% 1.00%

MI 0.111 0.232 0.534

Figure 8 show the evolution of the training cost for each
task during the learning. As we can see in this figure, the
task associated to A3 presents a worse learning than the rest
ones. It is due to that its MI value is the smallest one and
therefore it is the least related attribute with the main task.
On the other hand, tasks associated to attributes A4 and A5
use the advantages of the common learning with the main
task because they are more related than the attribute A3.
Another issue is that the estimated values for missing data do
not contribute as clearly to the learning of the classification
task as in the Iris problem. Nevertheless, obtained results

are better than when only complete cases are used, as we
can see next. Misclassification rates in test for the Pima
Indians database are the following: 23.34±1.63% with only
complete cases, and 19.92±0.59% using the proposed MTL
network. The obtained training set, composed by complete
cases and incomplete cases with imputed values, produces
a better generalization, i.e., imputed values are those that
contribute to improve the main task learning.
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Fig. 8. Evolution of the sum-of-squares error for each task during learning
in the Pima Indians problem.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we have established a neural network to
classify incomplete input vectors with numerical attributes
and estimate the missing values using the advantages of
MTL. Unlike other proposed methods, classification and
missing data estimation are combined in only one neural
network using subnetworks. To implement it, we have used
the classification as main task and each incomplete feature
as a secondary task. Each one of them has associated
a common subnetwork that learns at the same time the
secondary task and the main one. There is also a private
subnetwork that learns specifically the main task. Weights
connections are dynamically adapted in function of the
missing attributes for every input vector, independently of
how missing data are distributed, and moreover, we use the
outputs that learn incomplete features to estimate missing
values during learning process. Doing this, classification
task helps to learn these secondary tasks, i.e., classification
task guides the imputation process during the learning of all
tasks in parallel, and the secondary tasks help to improve
the generalization capabilities of the main task. Moreover,
imputed values are those that contribute to get a better
generalization because the learning of imputation tasks is
oriented by the learning of the main task; but classification
accuracy is the fundamental aim and not how good the
imputed values are. Another important improvement is
obtained when classification targets are used as extra
inputs in the subnetworks associated to extra tasks. During
the operation phase, the most consistent class is chosen.
Experimental results for artificial and real incomplete
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databases proved these arguments.

This work will stimulate future works in many directions.
Some of them are using different error functions (cross-
entropy error in discrete tasks, and sum-of-squares error
in continuous tasks), adding an EM-model to probability
density estimation into the proposed MTL scheme, setting
the number of neurons in each subnetwork dynamically
using constructive learning, an extensive comparison
with other imputation methods, to use this procedure in
regression problems, and extending the proposed method
to different machines, e.g., Support Vector Machines (SVM).
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