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Abstract— In this paper we propose to use the Surface Integral
Equation technique for the analysis of arbitrarily shaped H-
plane obstacles in rectangular waveguides, which can contain
both metallic and/or dielectric objects. The Green functions
are formulated using both spectral and spatial images series,
whose convergence behavior has been improved through several
acceleration techniques. Proceeding in this way, the convergence
of the series is not attached to the employment of any particular
basis or test function, thus consequently increasing the flexibility
of the implemented technique. In order to test the accuracy and
numerical efficiency of the proposed method, results for practical
microwave circuits have been successfully compared with other
numerical approaches.

Index Terms— Waveguide components, Waveguide discontinu-
ities, Dielectric resonators, Integral equations, Green functions,
Moment methods.

I. INTRODUCTION

THE analysis and design of rectangular waveguide devices
based on inductive obstacles is a subject extensively

treated in the technical literature, due to their wide use in space
and ground telecommunications applications [1]-[4]. For the
analysis of these problems, equivalent circuit techniques were
successfully derived in the past [5]. More recently, full-wave
mode-matching methods [6]-[8] have been successfully ap-
plied to cope with this kind of problems. However, for design
purposes, more efforts should be devoted in order to improve
the numerical efficiency of such analysis techniques, while
preserving accuracy issues at the same time. To reach this
aim, the Integral Equation (IE) technique can be considered
as a good alternative analysis method.

For instance, in [9], an IE method was used to derive
equivalent circuits for a single metallic inductive square post.
The analysis of an arbitrary number of metallic posts inside
rectangular waveguides has also been the subject of other
classical works [10]-[12], where different IE approaches were
successfully proposed. In these methods, the Parallel Plate
Waveguide (PPW) Green functions were used to reduce the
numerical solution of the inductive problem. However, the
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PPW Green functions consists of slowly convergent infinite
series, either in the spatial or in the spectral domain. To
accelerate the convergence rate of such series, the Kummer’s
transformation was applied in [10] and [12], whereas particular
choices of basis functions were successfully proposed in [11].
Nevertheless, the flexibility on the kind of geometries that
could be treated in all such works was widely reduced.

Later on, several extensions of previous IE methods for
dealing with multiple dielectric obstacles were reported. For
instance, in [13], a volume IE method solved by the Method of
Moments (MoM) was successfully applied to the analysis of
multiple dielectric posts. Band-pass and band-rejection filters
based on two dielectric posts were fully designed in [14].
More recently, the IE technique is also being proposed for
dealing with cavity filters loaded with dielectric and metallic
posts [15], [16]. However, further research on improving the
flexibility and numerical efficiency of IE-based methods is
needed for Computer-Aided Design (CAD) purposes.

In this paper, the authors propose a very efficient surface
IE technique for the accurate analysis of arbitrarily shaped
inductive waveguide structures, which can be composed of any
number of conducting and/or dielectric obstacles. A detailed
study of the convergence behavior of both spatial and spectral
domain series is presented, and new improvements regarding
the fast evaluation of the PPW Green functions and their
spatial derivatives are proposed. This new approach allows
the use of triangular functions in the MoM solution of the
corresponding IEs, thus increasing the accuracy of the final
results, as well as the complexity of the geometries that can
be considered. Several waveguide devices of great practical
interest, such as rod microwave filters and lossy dielectric
loaded filters including mechanization effects (i.e. the typical
rounded corners effects), have been successfully considered
for verification purposes.

II. THEORY

Conducting and dielectric inductive obstacles placed within
a rectangular waveguide, as shown in Fig. 1, can be studied
using the surface equivalence principle [17]. For the sake of
simplicity, the basic formulation is written for the structure
shown in Fig. 1, where only one homogeneous dielectric body
with permittivity ε1, and one perfect conductor are placed
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Fig. 1. Typical inductive geometry considered in this paper, which contains
metallic and dielectric obstacles.

together within the waveguide. As shown in the figure, both the
dielectric and the metallic obstacles are of arbitrary geometry.
This formulation, presented next, can be easily extended in a
very straightforward way in order to account for any arbitrary
number of conductors and/or dielectric obstacles.

The surface equivalence principle allows to replace the
original problem shown in Fig. 1 by two different coupled
equivalent problems [17]. The first one, shown in Fig. 2, is
the equivalent problem formulated in the region outside the
inductive obstacles (also called external problem). In this case,
the inductive posts are replaced by their equivalent electric
( �Jd, �Jc) and magnetic ( �Md) surface current densities, which
radiate in a rectangular waveguide filled with air (ε0, µ0). In
the second equivalent problem (also called internal problem),
the surface electric and magnetic equivalent current densities
(− �Jd, − �Md) radiate (in the absence of the original sources)
inside the dielectric homogenous body of permittivity constant
ε1 (see Fig. 3). It is worth mentioning that the internal problem
does not have to be considered for the perfect conducting
bodies, since the fields are zero inside a perfect conductor.

For the external problem, the total electric and magnetic
fields ( �E(ext), �H(ext)) inside the waveguide are due to the
fields impressed by the excitation ( �Ei, �Hi), together with
the fields scattered by the inductive posts ( �Es, �Hs). For the
inductive problems under consideration, we will assume that
the fundamental rectangular waveguide TE10 mode excites the
structure. Then, the total field for the external problem is:

�E(ext) = �Es
ext( �Jd, �Md, �Jc) + �Ei (1a)

�H(ext) = �Hs
ext( �Jd, �Md, �Jc) + �Hi (1b)

For the internal problem, the total fields ( �E(int), �H(int)) are
only due to the radiation of the equivalent surface currents on
the homogeneous medium:

�E(int) = �Es
int(− �Jd,− �Md) (2a)

�H(int) = �Hs
int(− �Jd,− �Md) (2b)

In both cases, the electric and magnetic fields will be expressed
for numerical convenience in terms of the mixed potentials, as
it is suggested in [18].

The proposed IE technique is based on the imposition of
the boundary conditions for the electromagnetic fields. For the
conducting bodies, a zero tangent component for the electric
field is enforced. For the dielectric materials we impose the
continuity of the tangential components of the total electric
and magnetic fields across the surfaces. This leads to the so
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Fig. 2. External problem after applying the surface equivalence principle.
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Fig. 3. Internal problem once the surface equivalence principle is applied.

called Poggio-Miller-Chang-Harrington-Wu-Tsu (PMCHWT)
formulation [19]. After imposing such boundary conditions, a
system of three coupled integral equations is obtained:
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where the symbol ”⊗” denotes a superposition (convolution)
integral [17], the ”(ext)” superscript denotes the PPW Green
functions of the external problem, and ”(int)” means the Green
functions of an unbounded homogeneous medium with cons-
titutive parameters ε1 and µ0. For this interior problem, the
Green functions are formulated as simple Hankel functions
of second kind [20], while for the exterior problem the PPW
Green functions will be used. In (3), vector n̂ is the outgoing
unitary normal vector to each obstacle contour.

The previous system of IEs has been numerically solved
following the well-known Galerkin-MoM technique. In this
work, the unknown current surface densities ( J̄d(ρ ′), M̄d(ρ ′)
and J̄c(ρ ′)) are expanded in terms of subsectional triangular
basis functions [17]. The use of triangular functions can be
easily accomplished with this formulation, since the Green’s
functions are directly obtained in the spatial domain. This
strategy is useful for the analysis of complex shaped structures,
and it is not possible in other spectral domain approaches [11].

Due to the invariance along the y-axis of the inductive
problems under study, there is no contribution from the electric
scalar potential. On the other hand, the gradient of the mag-
netic scalar potential is transferred to the testing functions, thus
avoiding the calculation of such Green function derivatives.
However, the curl of the magnetic and electric vector potentials
can not be transferred to the divergence conforming testing
functions used in this work. As a consequence, the evaluation
of the spatial derivatives of the Green functions can not
be avoided for the curl operator. In order to speed up the
numerical evaluation of all Green functions and derivatives,
we will study next their convergence properties, and then we
will derive a novel strategy for the efficient evaluation of the
required series.

A. PPW Green Functions Convergence

The PPW Green functions in the structure shown in Fig. 4
can be formulated using the classical theory of images with
respect to two infinite parallel metallic plates [20]. In this case,
the scalar Green’s function is expressed with the following
spatial image series:

G
(ext)
Spat (x, x′, z − z′) =

+∞∑
n=−∞

[
G(x, +x′ + 2na, z − z′)+

sg G(x,−x′ + 2na, z − z′)
]

(6)
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Fig. 4. Source and observer points locations in a PPW used in the
convergence study (a/λ = 0.75).

where

G(x, x′, z − z′) =
ξ

j 4
H

(2)
0 (k0 ρ), (7a)

ρ =
√

(x − x′)2 + (z − z′)2 (7b)

sg is the sign function (see Table I), and ξ is a constitutive
parameter taking the values shown in Table I for the different
Green function components.

TABLE I

VALUES OF THE PARAMETERS IN EQUATIONS (6), (7) AND (9) FOR ALL

RELEVANT GREEN FUNCTIONS COMPONENTS.

- sg ξ fn gn

G
(ext)
A −1 µ0 sin(kx x) sin(kx x′)

G
(ext)
W +1 1/ε0 cos(kx x) cos(kx x′)

The spectral formulation of the PPW Green functions is
related to the spatial image series through the Poisson’s
summation formula [21]:

+∞∑
n=−∞

f(2na) =
√

2π

2a

+∞∑
n=−∞

f̃(nπ/a) (8)

where (f̃ ) denotes the Fourier transformation of (f ). Applying
the above transformation, the spectral series takes the follow-
ing general expression:

G
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a π
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(9)
where fn and gn are harmonic functions taking the form
shown in Table I for the different Green functions components,
and the Fourier transformation of the Hankel function is:
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e−j kz |z−z′|

j kz
, (10a)
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n π

a
. (10b)

Due to the exponential behavior of this last expression, the
convergence of the modal series is fast for large |z − z ′|
distances. On the contrary, the spatial images series in (6)
exhibits much slower convergence behavior.

As it was introduced before, the curl operator of (3)-(5)
results in the spatial derivatives of the Green functions. When
the spatial images formulation is used, the corresponding



derivatives only affect the Hankel term of the Green function
shown in (7a), which after simple calculations give place to
the following expressions:
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(11b)

where now, the Hankel function of order one must be used
inside the series representation of equation (6).

From the above expressions, we can readily notice the
additional convergence factor due to the distance from the
source point to the observation point (ρ), which appears in the
denominator. However, for the derivative along the x-axis, this
additional (ρ) term is compensated with the (x− x ′) factor in
the numerator. In fact, when the images distance increases, the
global term [(x−x′)/ρ] tends to one. Therefore, convergence
is only due to the first order Hankel function. A different
situation appears for the derivative along the z-axis. In this
case, the factor (z−z ′) remains constant when the distance of
the images is increased. Consequently, the additional (ρ) term
results in a very important convergence rate improvement.

When similar derivatives are applied to the spectral rep-
resentation of the series shown in (9), the following final
expressions are obtained:
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where the spectral Green function (G̃) is the same as in (10a),
and the new harmonic functions change into the form shown
in Table II for each corresponding component.

TABLE II

VALUES OF THE PARAMETERS IN EQUATIONS (10) AND (12), FOR THE

SPATIAL DERIVATIVES OF THE GREEN’S FUNCTIONS.

- ξ fn gn

∂G
(ext)
A

∂x
µ0 cos(kx x) sin(kx x′)

∂G
(ext)
W

∂x
1/ε0 − sin(kx x) cos(kx x′)

∂G
(ext)
A

∂z
µ0 sin(kx x) sin(kx x′)

In this case, we can notice that convergence is degraded
by the new spectral factors introduced by the derivatives.
Therefore, a slower convergence rate is expected for the Green
functions derivatives using the spectral formulation.

In order to increase the convergence rate of the spectral
series, the use of the Kummer transformation is proposed
(see [10] and [22]). In Appendix I we extend the Kummer

formulation to all Green functions and their spatial derivative
components that appear following the surface integral equation
derived in this paper. Now we perform a convergence behavior
study after application of the Kummer’s transformation to
the spectral domain formulation. In Fig. 5 and Fig. 6, we
present the relative errors obtained for the basic Green function
components when the observer point is located at positions
A and B (see Fig. 4). If we compare the behavior with the
image series, we observe that convergence rate is strongly
improved for observer point A. Now, even for the B observer
point (placed at the critical plane z = z ′), the spectral domain
series surpass largely the spatial images counterpart. By means
of the employment of the Kummer’s transformation, a good
convergence behavior can be obtained at all points of the
geometry (relative errors below 10−5 are always obtained with
less than 100 modes).
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Fig. 5. Convergence of the spectral domain series after application of the
Kummer’s transformation. Convergence of spatial domain series are presented
for comparison. Observer point at position A.
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Fig. 6. Convergence of the spectral domain series after application of the
Kummer’s transformation. Convergence of spatial domain series are presented
for comparison. Observer point at position B.

To complete the study, we present in Fig. 7 and Fig. 8
similar convergence results, but now for the relevant spatial
derivatives. With respect to the z-spatial derivative, we
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Fig. 7. Convergence of the spectral domain spatial derivatives series after
application of the Kummer transformation. Convergence of spatial domain
series for the derivatives are presented for comparison. Observer point at
position A; spatial derivatives with respect to the z-axis.
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Fig. 8. Convergence of the spectral domain spatial derivatives series after
application of the Kummer’s transformation. Convergence of spatial domain
series for the derivatives are presented for comparison. Observer point at
position B; spatial derivatives with respect to the x-axis.

observe in Fig. 7 that the images series exhibits an impressive
convergence behavior (only 15 images are needed to obtain
a relative error of 10−5). Therefore, the spatial images series
is preferred for the z-axis spatial derivative over the spectral
representation. On the other hand, Fig. 8 shows that the
Kummer technique is slightly better that the images series for
the x-axis spatial derivative evaluated at the critical point B
(|z − z′| = 0). In this case, a relative error of 10−3 can be
obtained with 100 modes, using the Kummer transformation.
If lower errors are needed for a particular application, other
acceleration techniques can still be used, such as the Ewald
method [23].

From this convergence study, we can conclude that the PPW
Green functions and their spatial derivatives will be evaluated
using the spectral representation of the series, in combination
with the Kummer transformation. This is the general rule,
except for the z-derivatives of the Green functions at points
satisfying the condition: |z − z ′|/λ < 0.02. We have seen
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Fig. 9. Fourth order dielectric loaded inductive filter. The dimensions are:
a = 19.05 mm, w = 2 mm, d = 4.0 mm, εr = 2, h1 = 4.725 mm,
h2 = 6.405 mm, h3 = 6.595 mm, l1 = 12.03 mm, l2 = 13.62 mm,
m0 = 6.015 mm, m1 = 14.815 mm and m2 = 15.600 mm, R = 2.5 mm.
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Fig. 10. Scattering parameters of the filter shown in Fig. 9 (Load curves).
Results for the filter without the dielectric posts are also included to show the
loading effect of the posts.

in Fig. 7 that in this region the images series converges very
fast, and it is therefore preferred over the Kummer technique.
Using this novel strategy, a very efficient formulation of the
surface IE has been implemented.

III. RESULTS

To show the validity and flexibility of the IE technique
just presented, we have investigated two inductive microwave
waveguide filters of practical interest. For comparative pur-
poses, all CPU times included in this section have been
obtained in a PC computer with a 3 GHz CPU processor.

The first structure investigated is an inductively coupled
rectangular waveguide filter with reduced dimensions, due to
the use of dielectric posts inside the cavities (see Fig. 9).
The typical rounded corners mechanization effects, attributed
to low-cost milling manufacturing techniques, have also been
considered (radius of curvature R = 2.5 mm). The results are
presented in Fig. 10, together with HFSS c© data, showing very
good agreement with our new IE technique. For the simulation
of this structure, we have used 178 basis functions, involving a



computational effort of 0.98 seconds per frequency point. The
results obtained with HFSS c© required a CPU time of 19.08
seconds per frequency point.

Finally, we have designed an evanescent rectangular
waveguide filter composed of rectangular lossy dielectric posts
(see Fig. 11). Inside the below cut-off waveguide of this
structure, eight square dielectric resonators are coupled by
proximity. Rounded corners are also considered during the
mechanization of the below cut-off waveguide section as
shown in Fig. 11 (radius of curvature R = 2mm). In Fig. 12
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Fig. 11. Eighth order evanescent rectangular waveguide filter composed of
square dielectric posts. The dimensions are: a = 28.5 mm, w = 1.935 mm,
h = 8.825 mm, εr = 44, l1 = 1.986 mm, l2 = 0.899 mm, l3 = 11.69 mm,
l4 = 0.951 mm, l5 = 13.106 mm, l6 = 0.95 mm, l7 = 13.475 mm,
l8 = 0.95 mm and l9 = 13.56 mm, R = 2 mm.

we can observe the scattering parameters in the pass-band
of the filter for several values of the dielectric loss tangent.
As expected, the losses in the dielectric resonators essentially
affect the insertion loss of the filter. In Table III we show
the minimum insertion loss achieved inside the passband, for
different values of the dielectric loss tangent.

It can be seen that the insertion loss can be kept below
0.5 dB if high quality dielectric resonators are used, with loss
tangent values less than 0.0005.

For validation purposes, we compare these results with
the ones provided by the commercial software HFSS c©, for
the case of tan(δ) = 0.002. A very good agreement is
again obtained with the technique proposed in this paper.
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Fig. 12. In-band response of the filter shown in Fig. 11. Results provided
by HFSS are included for comparison.

TABLE III

MINIMUM INSERTION LOSS WITHIN THE PASSBAND FOR DIFFERENT

VALUES OF THE DIELECTRIC LOSS TANGENT.

tan(δ) Insertion Loss (dB)

0.0001 0.10
0.0005 0.52
0.001 1.05
0.002 2.10

In particular, both numerical techniques predict exactly the
same minimum insertion loss within the passband (2.1 dB
for the case of tan(δ) = 0.002). For the analysis of this
evanescent waveguide filter, we have used 340 basis functions
for segmenting the whole geometry. Our software tool has
only taken 2.6 seconds per frequency point to complete the
analysis, whereas the commercial software HFSS c© did require
39.6 seconds per frequency point to obtain the results with a
similar degree of accuracy.
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IV. CONCLUSIONS

In this paper, a surface IE technique, based on the PPW
Green functions, has been employed for the accurate and
efficient analysis of arbitrarily shaped inductive obstacles
placed within rectangular waveguides. To speed up the analysis
tool, a deep study on the convergence properties of the Green
functions and their derivatives has been performed. Such study
has led to a novel strategy which combines the spatial series
with the Kummer transformation applied to the spectral series.
In the paper, several inductive filtering topologies of practical
interest have been demonstrated using the new proposed
technique.

APPENDIX I
KUMMER TRANSFORMATION FOR GREEN FUNCTIONS

The Kummer transformation is based on the extraction
of the asymptotic term of the series to be evaluated. Once
extracted, the asymptotic term must be computed analytically.
The extraction of the asymptotic term of the spectral series
for the magnetic vector potential Green function can be found
in [22]. For the formulation presented in this work, we also
need to accelerate the magnetic scalar potential Green function
shown in Table I. After some manipulations, the asymptotic



term can be obtained in closed form as follows:

∞∑
n=1

j a

n π
cos

(nπ

a
x
)

cos
(nπ

a
x′

)
e−j(nπ/a) |z−z′| =

− j a

2π
Re

{
ln

[
(1 − D) (1 − C)

]}
(13a)

C = exp

{
j
π

a

[
(x − x′) + j|z − z′|

]}
,

D = exp

{
j
π

a

[
(x + x′) + j|z − z′|

]}
. (13b)

In [22], the Kummer transformation is also applied to
calculate some of the derivatives needed in the present formu-
lation, as shown in Table II. In particular, in [22], we find the
asymptotic terms for the x and z derivatives of the magnetic
vector potential (G(ext)

A ). Using the present formulation, we
also need to evaluate in closed form the asymptotic term for
the x-derivative of the magnetic scalar potential (G (ext)

W ). With
the results presented in [22] this is a simple task, leading to:

∞∑
n=1

sin
(nπ

a
x
)

cos
(nπ

a
x′

)
e−j(nπ/a) |z−z′| =

1
2

Im
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(1 − C′) (1 − D′)

}
(14a)

C′ = exp

{
j
π

a

[
(x′ − x) + j|z − z′|

]}
,

D′ = exp

{
j
π

a

[
(x + x′) + j|z − z′|

]}
. (14b)

The asymptotic terms required in our formulation are now
analytically evaluated using the expressions shown in (13) and
(14), together with those given in [22].
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