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Abstract—n this paper we present new contributions to the Performances of various circuits and established the conditions
computation of the Green'’s functions arising in the analysis of mul- under which shielding must be taken into account because it
tilayered shielded printed circuits and antennas. First the quasi- strongly modifies the electrical behavior of the structures.
static term of the spectral domain Green’s functions is extracted  Fqr the analysis of shielded circuits and antennas the finite

so that the convergence of the reminder dynamic modal series is .
enhanced. Moreover, it is shown that by extracting a second-order elements method has been successiully used in the past [1]-{4],

quasi-static term the convergence is further improved. Inregard to Ut it_ usually Ieads to computer codes which are very h?aVy
the quasi-static terms they are computed in the spatial domain by and time-consuming. Perhaps the most popular technique in the

numerically evaluating the associated spatial images series. Then aanalysis of printed circuits is the integral equation (IE) formula-
new and efficient technique is developed for the summation of the tign combined with the method of moments (MoM) algorithm.

slowly convergent modal series. The technique can be viewed as,.._ - . . .
the application of the integration by parts technique to discrete se- “This integral equation technique has been successfully used in

quences and greatly accelerates the convergence rate of the serie§1€ analysis of multilayered printed circuits, and it has demon-
involved. It is shown that the new algorithm is numerically very ~Strated its accuracy and efficiency in the prediction of the elec-
robust and leads to a drastic reduction in the computational ef- trical responses of devices without lateral walls [17], [18], as
for_t and time us,ually re_quired for the numerical evaluation of the  \ye|| as with shielded MMIC components [8]-[15].
shielded Green'’s functions. The main difficulty in the integral equation formulation, how-
Index Terms—Boxed circuits, convergence acceleration, Green's ever, is related to the slow convergence behavior of the modal se-
functions, infinite series, integral equation, multilayer media, ries used to formulate the relevant spatial domain boxed Green’s
shielded circuits. functions. To avoid this problem, the authors in [5] simply for-
mulated the integral equation in the spectral domain, while in
|. INTRODUCTION [7] spatial images are used to sum up the slowly convergent

HE analvsis of shielded microwave circuits and cavit uasi-static part of the integral equation kernel. A similar ap-
backed ;ntennas is a subiect that has alwayvs attrajéaaCh can be found in [19], but now a second-order asymptotic
: ©l Y teraw was extracted to further accelerate the convergence rate of
attention, and numerous numerical models have been develo&e ; :
. . . e dynamic modal series.
in the past [1]-[15]. Moreover, the interest in the full wave elec- The most popular technique for the series acceleration is
tromagnetic analysis of such components has recently grown '

; . S . Wwever, the use of the fast Fourier transform [9]-[11], but this
especially since the advent of monolithic microwave mtegratef

U . . . ; chnique restricts the MoM formulation to uniform meshes.
circuits (MMIC). The high degree of integration level achieve . o . -
N L , onsequently, the discretization of arbitrary circuits of complex
implies that all the subelements of the circuit are disposed iy ) )
shapes becomes a difficult or even impossible task. Recently,

be very tightly closed together, a}nd electromagnetic couplin}% more contributions on series acceleration without the use
C?‘””Ot be neglectgd. The anaIyS|s of these elements se_parag e fast Fourier transform have been reported [13], [14]. In
with subsequent interconnection, or th_e use of quasi-st i%] the modal series are accelerated by direct application of
approaches are, therefore, not appropriate for such com ﬁx ; . . . .
e residue theorem and contour integration techniques, while

circuits. In addition, the use of suitable packaging in MMI ! . : .
o S L ; in [14] an asymptotic extraction procedure is used, combined
circuits to provide isolation is now general, and this results in. : ] : .
. - .~ " with Poisson’s summation formula and the Sommerfeld iden-
that the corresponding circuits need to be modeled taking i

L . .
- : ”tlfé{ for the acceleration of the static part of the sums. As for the
account the surrounding enclosure. Also a metallic enclosu

. . Jl){(r];amic modal series they are evaluated directly without em-
gives the mechanical support to many antenna systems a

it improves heat dissipation [16]. Related to the analysis g%oymg any further numerical transformation.

boxed circuits, of particular interest are the works [12] and Another interesting work can be found in [20], which formu-
' b nIatedtheshieldedGreen’sfunctionsinthespatialdomainandused

15] which ied the eff f the shielding enclosure & t X L .

[15] ch studied the effects of the shielding enclosure & I}he Ewalt transformation to represent the spatial images series

with the complementary error function, but no dielectric layers

are included in the analysis. Finally, we can mention the work in

) ) ) [L21], which used the Shanks’ transformation for the acceleration
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land. usingthe Shanks’technique, however, isthatitcanonlyaccelerate



certaintypesofseries, sothatthere are combinations of source-c
server pointlocations where the algorithm fails.

In this paper we develop two techniques that can be used fi
the efficient evaluation of the shielded Green’s functions. Thi
algorithms described are valid for any multilayered geometr
with an arbitrary number of dielectrics, and they are applied ¢
the Green’s functions level so that any discretization scheme c:i
be used with an integral equation technique for the analysis «
complex-shaped shielded circuits and antennas. In addition, tl
numerically efficient evaluation of the shielded Green’s func-
tions allows us to get insight on the behavior of these Green'
functions and on how the lateral walls and other geometrical pi
rameters influence their behavior. I; ——

In Section Il we review the hybrid technique based on the ex
traction of the quasi-static term to the spectral domain Green | €y
functions, and we show that by extracting a second-order ter
the convergence of the resulting dynamic modal series can |
greatly enhanced. In regard to the quasi-static terms, they a
computed in the spatial domain by transforming the modal se
ries into a fast convergent spatial images series. In this pap
the resulting spatial images series are summed directly, althou ér
more elaborated techniques as in [20] can be used. A similar a A
proach to the one presented here was used in [19], where als: [T
second-order term was extracted to accelerate the convergel
behavior of the Green’s functions, in the context of the analysis
of zero thickness metallic obstacles inside rectangular WaV(%:'ql' 1. Elementary dipole radiating in a multilayered shielded structure and its
uides_ nsverse equwalent network representation.

In Section Il we introduce and develop a new and efficient al-

gorithm for the computation of the shielded Green’s function%pmpu“ng the voltages and currents in equivalent transmission

The method is directly applied to the entire Green’s functions'c networks describing the geometry along the stratification
Xis (for a comprehensive review on this subject see for instance

dthus, therei df litting the shielded G 's f
andthus, tnere1s no need for spitting the shieldedsreen s u 1. [18], [23], and [24]). Moreovet;,,  , k,,, are the transverse

tions into quasi-static and dynamic parts. The new algorithm ¢ :
N Y P d ve-numbers along th&, andé, axis, and therefore, for a

be viewed as the application of the integration by parts techniq‘fYt‘:’:l | ide thev take the f
to the case of discrete sequences (“sum by parts” technique), 5%%tangu ar waveguide m?ry ake the 7?7rrm

it is shown that the computational time is reduced in several or- by, = — ky, = T (2

ders of magnitude with respect the first method. Finally, the functionsf andh are combinations of sinusoidal
In this paper, we present an exhaustive study on the convginctions whose actual form depends on the actual type of
gence behavior of the techniques devised, and we include sg¥een’s functions considered. While the generic expression
eral validation examples. The paper concludes with the comg) also holds for any field component, we are here more
tation of the shielded Green’s functions in several interestifgterested in a mixed potential formulation of the problem
situations and with the study of the influence of the lateral wal[g3], [17], [18]. Thus, Table | gives the values gfandh for
in the global Green’s functions behavior. The developed alggoth the magnetic vector potential and electric scalar potential
rithms are expected to find application in the analysis of corpoxed Green’s functions, when the Sommerfeld choice is used
plex shielded circuits and antennas using the integral equatjeg]. The main practical difficulty in the evaluation of the
technique. shielded Green’s functions following the formulation in (1) is
related to the very slow convergence behavior of the associated
II. THE HYBRID APPROACH EXTRACTION OF QUASI-STATIC infinite series. In principle, convergence properties should be
TERMS investigated with respect to the two indexesandn. However,
With reference to Fig. 1, spatial domain shielded or boxetg simplify this cumbersome problem, we have combined both

. e . indexes into a singlé:-index, called the “influence layer”
Green'’s functions for stratified media are usually formulateg 9 y

using the well-known modal expansions s in [22] index. This principle is shown in Fig. 2 for a general series
9 P taking values ofm andn between—co to +co. In this case

A the total number ofm,m) terms added as a function of the
Gp = Z Z G Koy by, ) [ (Rays @, @) R (Ry, s 9, 9) number of influenC((a cells)considered can be easily obtained as
m=0n=0 1y Tot(m,n) = dk(k — 1) + 1. For the series (1), the indexes
(1) andn take only positive integer values, and therefore only the
where@ is the corresponding spectral domain Green'’s functiofirst quadrant in Fig. 2 should be considered. The total number
which for a general layered structure can be easily obtained dfterms in this case then becomBs:(m,n) = k2.
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TABLE | Equation (4) clearly indicates that a series involving sinusoidal
ACTUAL FORM OF THESINUSOIDAL f AND /i FUNCTIONS FORALL DIFFERENT  fnctions can be transformed into a series involving shifted ver-
MIXED POTENTIAL GREEN S FUNCTIONS COMPONENTS . .. . . . .
sions of the original function in the spatial domain. For the case
of our Green’s functions, the position of each elementary dipole
- k ! ! . : : - ;
I flken,2,2) | hkynr¥,Y) is spatially shifted a quantit{2m.a) along thez, axis and2nb)
alonge, axis. Direct application of (4) into the Green’s function
in (1) leads to the following spatial images series (Fig. 5) [23]:

GBOX($7 Yy | xlv y/)

= g Z Z [G(z,y | +2" + 2ma, +y' + 2nb)
+ 5, G(x,y | —2' + 2ma, +y’ + 2nb)
+ s,G(z,y | +2' + 2ma, —y' + 2nb)
+ 5:8,G(z,y | =2’ + 2ma, —y' + 2nb)] (5)
whered is the corresponding spatial domain Green’s function
in alayered medium of infinite transverse dimensions [26], [27],
[17], [18], ands.., s, are sign functions taking different values
according to the actual type of Green’s function considered. For
the mixed potential Sommerfeld choice formulation, the sign
m functionss, ands, required to satisfy the boundary conditions
for the fields at the lateral walls are collected in Table Il [23].
The great advantage of using Poisson’s summation formula is
that the resulting spatial images series usually converge very
fast. This is especially true at relatively low frequencies or when
no layers are presentin the structure. When frequency increases,
however, surface waves might be excited and convergence is
rapidly degraded.
To overcome the problem of the slow convergence rate of the
series, a hybrid technique between the two described before can
Fig. 2. Representation of a two-dimensioriat, ) space by means of a be attempted. FoII_owing this appr_oac.h the quasi-static term of
one-dimensionalk) space of influence layers. the spectral domain Green'’s function is first computed and then
substructed to the whole spectral domain function. As it will be

As an example, we have computed the electric scalar potenﬁgpwn Iatir, the mo(jcizﬂ sleDrl(_as W't,h the remqmdfer thuls c_ompult_eg
in the structure of Fig. 3 with the source point placed at positicﬁ?nverge aster, an t. eroisson s_summatlon ormufaisappie
A and the observer point placed at position D. The convergen%ly to the.quaS|—stat|c term. In th's. way the quasi-static r_nodal
behavior is shown in Fig. 4 where we have plotted the absoljilgr'es’ which converges slowly (F'.g' 4, is transformed nto a
value of the electric scalar potential as a function of the infl ast qonve_rgent spatial IMages Series. The re_mamd_e r, once the
ence cells included in the evaluation of the series. As seen, g 5|-stat_|c part substracted, is summed up directly in the spec-
convergence is not achieved even with- 300 influence cells, tra domam_. . . .
thus indicating a very slow convergence rate. We now illustrate the procedure specifically with the electric

An alternative approach for the evaluation of the Shield?%alar potential, being formally equivalent for any other type of

G:a || cos(kz,, x) cos(ks,, z') | sin(ky, y) sin(k,, ¢')
G¥ || sin(ks,, =) sin(kz,, =) | cos(ky, y) cos(ky, )
Gev || sin(k.,, =) sin(k,, z') | sin(k,, y) sin(ky, y')

Green’s functions is to apply to (1) the Poisson’s summati reen’s function. From (1) and Table | we find the explicit form
formula [22] of the boxed electric scalar potential Green’s function as

> Vor S~/ 2nrw Gpy = E E Gy (ks » Ky, ) sin(k,,, x)
E G(an) = — E G <—> 3) = e ”
a a m=uUn=
e R X Sin(kyny) Sin(kwmaj/) Sin(kyn y/) - (6)

with G representing the Fourier transform 6f The use of Adding and substracting the quasi-static part of the spectral do-

the Poisson’s summation formula for a two-dimensional (2-Ihain Green'’s functiori?y; , we obtain the following two series
function together with the shifting property of the Fourier transyhich must be treated separately:

form yields the following identity:

o oo Gov = 3> 3 (Gv = Gy, ) sin(ka,, o) sin(hy, v)
Z Z G(z + 2ma,y + 2nb) m=0n=0
50 Mo x sin(k,,, 2')sin(ky, y') + Gav, (7a)
9 o) o 0o 0o .

X exp(jke,, ©) exp(jky, v) . (4) x sin(ky, v) sin(k,,, =) sin(ky,, y'). (7b)
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Fig. 3. Shielded microstrip structure to be studied in this paper.
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Fig. 4. Convergence behavior of the modal series associated to the electric scalar potential in the structure of Fig. 3 at a frequency of 5 GHacSeuate¢ is
position A while observer is located at position D.

The quasi-static part of the spectral domain Green’s functiovith A™ andATF being real constants obtained under TM and
can now be computed by simply taking the limiting cg5€_>. TE wave excitations, respectively, and the transverse or radial
For instance, for the case of the electric scalar potential we allavenumber has been defined in the usual way

tain the following quasi-static spectral domain terms: b = \/m )
G — ATM I ATE ®) From (8) it can be easily observed that the quasi-static series in
Yok k3 (7b) depends o(1/k,,, ) for the TM part and or{1/k} )

Pm,n Prm,n



boxed electric scalar potential Green’s function in (7a) is finally
written as
. e i R L
[ . ° [ H =, .
ces ® ° b . ® vee Gpy = Z Z (GV — GVg) sin(k,, x)
@ @ @ @ m=0n=0
.................... R . . . ab
it ol D | x sin(ly, ) sin(ks,, @) sin(ky, y') + £
(Y X Xy} : oo oo
- X Z Z [Gv, (z,y | +x' + 2ma, +y + 2nb)
: i : — Gy, (z,y| -2’ + 2ma, +y + 2nb)
soe L see — Gy, (z,y|+2' + 2ma, —y' + 2nb)
Do : : + Gy, (z,y| —2" + 2ma, —y' + 2nb)]. (11)
[ A N J [ X N} . . H
4 . . . To illustrate the convergence properties of all these series we
. o . . have computed the electric scalar potential for the structure in

Fig. 3 when the source is placed at position A and the observer
Fig.5. Spatial images for a single unit point charge needed to satisfy bound88|r1t 1S IO(_:ated at ppsmon C.InFig. 6 we show the relat_lve error
conditions at lateral metallic walls. as afunction of the influence cells added for the dynaihié:?)
and(1/k;) terms of the modal series in (11). As it can be ob-
served, by extracting a second-order quasi-static term the con-
vergence of the dynamic modal series can be greatly enhanced.
TABLE I Moreover, in Fig. 7 we show the convergence behavior of the
VALUE OF THE SIGN FUNCTIONS FORALL DIFFERENT MIXED POTENTIAL - quassi-static part after transformation into the form of a spatial
images series. The results clearly indicate that the slowly con-

= 5z | sy vergent modal series has been transformed into a fast conver-
= gent spatial images series(df/p) behavior. Also as expected,
Ge5 il +1§ -1 . . e ;
5 the second order quasi-static term, which is transformed into a
GBA ’ '—1 +1 . . . -
e T -1 series with(p) behavior, exhibits a lower convergence rate, but
BV — —

relative errors of 0.1% can still be easily obtained.

At this point it is interesting to note that a similar procedure
can be applied to the TM part of the Green'’s function. Following
for the TE part. In addition, the dynamic series in (7a) (0nGfis approach, a terifi/k2) can also be extracted from the TM
the quasi-static term is substracted) depend$lgh; ) for part, thus resulting into a new series behaving B4:%) and
the T™M part and(1/k, ) for the TE part. Due to the slow whose convergence behavior is shown in Fig. 6. If the remaining
convergence rate of the quasi-static TM series, itis conveniengries with dependen(:e/kﬁ) is transformed back to the spatial
apply the Poisson’s summation formula and compute (7b) wigdmain as shown in (10), then an additional series is obtained
the spatial images series in (5). To do so we first need to compushaving agp), whose convergence properties were presented
the inverse Fourier transformation of (8). For this purpose the Fig. 7.
well-known Sommerfeld integral is used, thus resulting in To complete the convergence behavior study of the series de-

veloped in this section we present in Fig. 8 the number of in-
- - JTE fluencg cells needed in ghe spatial 'images serieg _to achieve a
Gy, (p) = / To(k,p) A™ dk, +/ To(kpp) =g d, numerical accuracy of 10 as a function of the position of the
0 0 k; observer point. The computation is given for the frequency of 26
GHz and for the structure in Fig. 3, when the source is placed
at two different positions (A and B). It can be seen from the fig-
ures that the smaller the distance is between source and observer
points, the faster a given numerical precision is attained.
which constitutes the basic spatial domain Green’s functionSimilar results are presented in Fig. 9 but this time for a di-
needed to construct the spatial images series is (5). As seect sum performed on the dynamic modal series. In this case the
through out this process, the TM part of the quasi-static poscillating nature of the series yields to plots which are rather
tential exhibiting a slow convergence behavior(dfk,) type randomly distributed as a function of the observer point posi-
in the spectral domain is transformed into a fast convergetiun.
spatial images series witfi/p) behavior. In addition, the TE  Finally, the convergence behavior of the two types of series
quasi-static part of the potential in the spectral domain behaves/e been studied as a function of the frequency. In Table Ill
as (1/k§), and it is transformed into a spatial images seriase show the number of influence cells needed in the spatial im-
with behavior of(p) type. Combining (10) with (5), the total ages series to obtain different degrees of accuracy for two dif-

T™
= Ap — A" (10)
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Fig. 6. Convergence of the dynamic terfig%?) and(1/%2) for the dynamic modal series in (11). Source point is placed at position A while observer point is
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Fig. 7. Convergence of the spatial images series corresponding to a first order statid tepnand to a second-order static te(m) for the electric scalar
potential. Source point is placed at position A while observer point is located at position C. Frequency is 20 GHz.

ferent positions of the source point, when the observer pointdgtracting the quasi-static part of the spectral domain Green’s
located at position D in Fig. 3. It is interesting to mention thdtinctions. The modal series associated to the dynamic part, once
the data shown in Table IIl remains practically unchanged withe quasi-static part is extracted, converge fast, and direct nu-
frequency. A different situation is found with the convergenceerical evaluation is possible. In regard to the slowly conver-
of the dynamic modal series. In this case the oscillating natugent quasi-static series, it is converted to the spatial domain, thus
of the series changes with frequency, thus resulting in severaulting in a fast convergent spatial images series. In the con-
critical frequencies where convergence is particularly more difergence study presented for the series developed, however, we
ficult as shown in Fig. 10. have found several situations where convergence is difficult, and
a rather large amount of influence cells need to be included to
achieve an acceptable accuracy. For instance, Fig. 8 clearly in-
lIl. THE “SUMMATION BY PARTS’ T ECHNIQUE dicates that the spatial images series developed might converge

slowly, especially when the observer point is far from the source
In the previous section we illustrated a procedure that allowsint. In a similar way, Figs. 9 and 10 show that there might be

the numerical evaluation of the shielded Green’s functions lsgrtain observer locations or frequencies where the convergence
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is performed for the magnetic vector potential and frequency 26 GHz. part of the electric scalar potential to achieve given accuracy, as a function of
the position of the observer point. Frequency is 26 GHz.

is slower, and therefore, more influence cells need to be added
to achieve the same degree of accuracy.

In thi$ sectionwe describg an e_fﬁCie_nt proce_dure forthe dire%UMBER OF INFLUENCE CELLS -ll\-ﬁEEI[;IIEED :rI\: THE SPATIAL IMAGES SERIES TO
evaluation of the modal series given in (1). It is shown that the AcHiEve DIFFERENT DEGREES OFACCURACY. OBSERVER POINT IS
technique developed greatly accelerates the convergence rate of LOCATED AT POSITION D
this series so that its numerical evaluation can be effectively car-
ried out with only few operations. The method to be described
now is based on a technique for the summation of oscillating se- _ _
ries recently developed in [28]. The algorithm described in [28] Position A | Position B

Source Coordinate

is aimed at the evaluation of the series of the following type: g | 10-3 11 14
2
e e] (2]
~ ool _4
Soo= 3 Guln (12) g 10 30 4
et A | 10-8 90 126

whereG,, can be any general slowly variant function, afads
a sinusoidal (sine or cosine) function. In [28] it was shown that

an espeIC|aIIy efﬂuept algorithm for the numerical evaluation % to use the following transformation:
the reminder associated to (12)

By =3 Gufa (13) Ry =3 GOV =3 GO a9
=1

n=N n=N
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Fig.10. Number of influence cells in the direct sum of the dynamic part of t accuracy, as a function of the position of the observer point. Frequency is 26

electric scalar potential needed to achieve given accuracy, as a function of the™

frequency.
TABLE IV
(+4) ) =(—1) pa: . ORDER OF THESQUARED REMINDER NEEDED IN THE NEW ALGORITHM TO
where f;" are higher order sums af@ﬁb higher order dif- ACHIEVE DIFFERENT DEGREES OFACCURACY. OBSERVERPOINT IS
ferences defined as LOCATED AT POSITION D
GUD — @ GCD = GEID Gy
n ) n n+1 n ? .
foralli — 2.3.4 (15a) Source Coordinate
s 4 Position A | Position B
S =he = 30 KTV, -
R—) g (1073 32 11
foralli=2,3,4.... (15b) @ )
g | 107 34 16
From above equations we can easily see that the algorithm can =
i i icat : i B | 1078 46 18
be interpreted as the successive application of an integration by

parts procedure to the original discrete sequence (“summation
by parts” technique) [28]. R

This technique, developed for one-dimensional (1-D) oscivhereG,, ,, represents the spectral domain Green’s function in
lating series, can be easily extended to the case of a 2-D se#igeal problem, and’,, &, are simple products of sinusoidal
as the one shown in (1). First we define the related 2-D remindenctions as shown in Table I. To proceed, first we introduce the
as following notation:

3 3 g ng_#_l) = Grn, n 7(,}) = Jm
R]\l,N = Z Z Grn,nfrnhn (16) . ? f g f

m=M n=N hgll) =h, (17)



so that (16) is written as andhﬁf“) . While the successive difference functions can be easily
o0 o0 evaluated numerically, explicit analytical expressions must be
Ryn= > f3 G vnd. (18) obtained for the successive sum functions. For the computation
m=M — of the Green'’s functions given in (1) and in Table I, it is most
rr(fhonvenient to reduce all sine and cosine products into the sum of

In this last equation we can define the following partial 1-D suny.”" "= X i X X
basic single cosine functions. Following this approach, the ele-

D mentary sinusoidal functiong,, and/,, of (16) take the form
U(m, N) = Z Gg’lﬂf )hﬁl) (19) of simple cosine functions, and therefore, the successive sum
n=N functions given in (22) and (26) can be easily obtained analyt-
so that the reminder in (18) becomes ically by applying simple geometrical progression summation
00 formula. The recurrent relation yields to the following general
Ry n = Z (m, N)fi0. (20)  expression for botlf? andh® successive sum functions:
m=M
The problem is then reduced to the evaluation of several 1-D FiY = P = cos(nz) (272)

cos{(i—1)5 + [n+(i—1)%] x}
20-1 [sin(3)]“ ™
foralli =2,3,4.... (27b)

sequences as shown in (19) and (20). In fact, we need to eval-
uate¥(m, N) for several values of the index, so that (19) re-
quires the evaluation of several 1-D sequences. @G{ee, V)

is computed, we just use it to evaluate the additional 1-D se-

quence given in (20). Using now on (19) the 1-D summation Rygi the analytical definition in (27b), (25) can be applied to
parts algorithm shown in (14), we obtain all basic cosine series in which the whole Green'’s functions are

S =) =

?

O A1) (D) decomposed. The final Green’s functions are obtained later by
¥(m,N) = Z G N hyly (21) combining all basic cosine series appropriately.
k=1 To show the effectiveness of the approach developed, we have
where in a similar way as in (15), the difference and sum funcomputed the relative error obtained during the numerical com-
tions with respect the inner indexhave been defined as putation of the reminder according to (25), as a function of the
. ‘ 11 . ‘ number of iterations used in the inner (indéxand outer (index
Ggrlrlfk) = ng,i#fﬂ) - Gg;,i{fkﬂ) 1) sum by parts indexes. The computation was performed in the
*) i (k—1) structure of Fig. 3 when the source is placed at position B, the
hy’ = Z hi =, forallk =2,3,4,....  (22) gpserver point is located at position C, and the frequency is 20
t=ntl GHz. In this computation the order of the reminder was taken
We can now introduce (21) into (20) to write M = 40, N = 40, and we found that only four iterations do
oo oo suffice in both indexes to achieve impressive numerical preci-
Ruyy = Z Z @S}\-th\ki)ﬁg) (23) sion of the order of 10°. _ _
=M k=1 The convergence properties of the new algorithm have also

been studied as a function of the source and observer positions
and as a function of the frequency. In Fig. 11 we show the order
o (k+1) “(—1,—k) p(1) of thg _squared rgmlndéM = N) needed t(_)_achleve numerical
R,y = Z hiv21 Z Gonn S (24) precision of 10° as a function of the position of the observer
k=t m=M ~ point, and for two different locations of the source (position A
Now we apply again the 1-D summation by parts algorithm tend B). For this computation the number of summation by parts

and if the order of summations are interchanged

the resulting inner sum in (24), therefore obtaining iterations have been fixed o= k = 6, and as we observe close
o oo ‘ to the singularity the order of the reminder needs to be slightly
Ryn = Z Z G%}yzj’\?k)fj(\}ﬂ) plEtD (25) increased to keep the required numerical precision.
i=1 k=1 Furthermore, in Table IV we show the same quantity needed
where the new difference and sum functions with respect tfgachieve different degrees of accuracy when the observer point
outerm index have been defined as is placed at position D and for tV\_/o different Iocatlons. of the
o et o source point (A and B). As seen, in any case the required pre-
G = GE;’F’J{’,;_ ) _ GG k) cision is attained fast; moreover, these results turn out to be es-
o . sentially independent on frequency.
10 = Z f,iz_l) y p q Y
k=n+1 IV. RESULTS
1=1,2,3,... . . . .
for all { 2 — 1’ 2’ 3’ Toi=k#1. (26) Based on the theory described in this paper a computer code

has been developed for the evaluation of the mixed potential
Equation (25) represents the basic transformation allowing ussteielded Green’s functions in a multilayered environment. For
efficiently compute a 2-D reminder using the sum by parts algealidation purposes we have computed the mixed potential
rithm, and as it can be seen it involves only the successive diff@reen’s functions for the structure in Fig. 3 with the two

ence functions?ﬁ,;i,’,_k) and the successive sum functioﬁ%) techniques, and for different combinations of source-observer
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Fig. 12. Electric scalar potential versus frequency. Source point located at position A. Observer point located at position D.
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Fig. 13. Open and shielded electric scalar potential Green’s functions for the structure shown in Fig. 3 at a frequency of 4 GHz. Source is lotatesi &t pos
and B. Observer is located along lines E and F.

points and frequencies, always finding an agreement bettecations (A and B) and at a frequency of 4 GHz, corresponding
than 1076, to a frequency far below the first resonance of the box. We can
Once the technique has been validated and its convergeree that at this frequency the potential rapidly decreases when
properties extensively studied, we have investigated the effettte observer point is far from the source point and that close to
and influence of the lateral walls in the electric scalar potentitie singularity the effect of the lateral walls is negligible since
Green'’s function of the structure in Fig. 3. First we have conthe potentials with and without the lateral walls are essentially
puted the electric scalar potential as a function of the frequentye same.
when the source is located at position A and the observer poinSimilar results are presented in Fig. 14, but this time at a fre-
at position D. The results are shown in Fig. 12, and as we alpdency of 15 GHz, corresponding to a frequency between the
serve there are frequencies where the electric scalar potentiafirst and second resonance of the box. It can be observed that the
creases abruptly corresponding clearly to the natural resonangetential with lateral walls starts exhibiting oscillations, thus in-
of the box. dicating the existence of a standing wave due to the presence of
In Fig. 13 we show the electric scalar potential with anthe walls. The same comparison is finally presented in Fig. 15
without lateral walls when the source is placed at two differebut for the frequency of 24 GHz, corresponding to a frequency
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Fig. 14. Open and shielded electric scalar potential Green'’s functions for the structure shown in Fig. 3 at a frequency of 15 GHz. Source is lsitaiesl at po
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Fig. 15. Open and shielded electric scalar potential Green’s functions for the structure shown in Fig. 3 at a frequency of 24 GHz. Source is lsitaiesl at po
A and B. Observer is located along lines E and F.

between the second and third resonance. In this case the poteeases, taking essentially the form of the dominant mode prop-
tial computed without lateral walls also exhibits oscillations, bi#gating in the waveguide. Also, it is interesting to point out that
the boundary conditions at the lateral walls are only satisfied Bye potential without lateral walls does not experience any res-
the shielded potential Green'’s function. onance effect, and therefore, at this frequency both potentials
Finally, it would be interesting to study the form of the po{with and without lateral walls) are very different.
tential at the resonance frequencies of the box. For this purpos#t is important to mention that the same results as those
we have computed the electric scalar potential at the frequemrgsented above can also be obtained with the quasi-static
of 10.49 GHz corresponding to the first resonance of the box@sm extraction technique, and no visual difference can be ap-
shown in Fig. 12. The results are shown in Fig. 16, and it cameciated in the graphics. However, the reduction in compu-
be observed that the absolute value of the potential suddenlytational time is dramatic when the new algorithm is used. As
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an example, the quasi-static term extraction technique takes
1 min 56 s for the computation of 60 points in Fig. 15, and
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