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Abstract—In this paper we present new contributions to the
computation of the Green’s functions arising in the analysis of mul-
tilayered shielded printed circuits and antennas. First the quasi-
static term of the spectral domain Green’s functions is extracted
so that the convergence of the reminder dynamic modal series is
enhanced. Moreover, it is shown that by extracting a second-order
quasi-static term the convergence is further improved. In regard to
the quasi-static terms they are computed in the spatial domain by
numerically evaluating the associated spatial images series. Then a
new and efficient technique is developed for the summation of the
slowly convergent modal series. The technique can be viewed as
the application of the integration by parts technique to discrete se-
quences and greatly accelerates the convergence rate of the series
involved. It is shown that the new algorithm is numerically very
robust and leads to a drastic reduction in the computational ef-
fort and time usually required for the numerical evaluation of the
shielded Green’s functions.

Index Terms—Boxed circuits, convergence acceleration, Green’s
functions, infinite series, integral equation, multilayer media,
shielded circuits.

I. INTRODUCTION

T HE analysis of shielded microwave circuits and cavity
backed antennas is a subject that has always attracted

attention, and numerous numerical models have been developed
in the past [1]–[15]. Moreover, the interest in the full wave elec-
tromagnetic analysis of such components has recently grown,
especially since the advent of monolithic microwave integrated
circuits (MMIC). The high degree of integration level achieved
implies that all the subelements of the circuit are disposed to
be very tightly closed together, and electromagnetic coupling
cannot be neglected. The analysis of these elements separately
with subsequent interconnection, or the use of quasi-static
approaches are, therefore, not appropriate for such complex
circuits. In addition, the use of suitable packaging in MMIC
circuits to provide isolation is now general, and this results in
that the corresponding circuits need to be modeled taking into
account the surrounding enclosure. Also a metallic enclosure
gives the mechanical support to many antenna systems and
it improves heat dissipation [16]. Related to the analysis of
boxed circuits, of particular interest are the works [12] and
[15] which studied the effects of the shielding enclosure in the
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performances of various circuits and established the conditions
under which shielding must be taken into account because it
strongly modifies the electrical behavior of the structures.

For the analysis of shielded circuits and antennas the finite
elements method has been successfully used in the past [1]–[4],
but it usually leads to computer codes which are very heavy
and time-consuming. Perhaps the most popular technique in the
analysis of printed circuits is the integral equation (IE) formula-
tion combined with the method of moments (MoM) algorithm.
This integral equation technique has been successfully used in
the analysis of multilayered printed circuits, and it has demon-
strated its accuracy and efficiency in the prediction of the elec-
trical responses of devices without lateral walls [17], [18], as
well as with shielded MMIC components [8]–[15].

The main difficulty in the integral equation formulation, how-
ever, is related to the slow convergence behavior of the modal se-
ries used to formulate the relevant spatial domain boxed Green’s
functions. To avoid this problem, the authors in [5] simply for-
mulated the integral equation in the spectral domain, while in
[7] spatial images are used to sum up the slowly convergent
quasi-static part of the integral equation kernel. A similar ap-
proach can be found in [19], but now a second-order asymptotic
term was extracted to further accelerate the convergence rate of
the dynamic modal series.

The most popular technique for the series acceleration is,
however, the use of the fast Fourier transform [9]–[11], but this
technique restricts the MoM formulation to uniform meshes.
Consequently, the discretization of arbitrary circuits of complex
shapes becomes a difficult or even impossible task. Recently,
two more contributions on series acceleration without the use
of the fast Fourier transform have been reported [13], [14]. In
[13] the modal series are accelerated by direct application of
the residue theorem and contour integration techniques, while
in [14] an asymptotic extraction procedure is used, combined
with Poisson’s summation formula and the Sommerfeld iden-
tity for the acceleration of the static part of the sums. As for the
dynamic modal series they are evaluated directly without em-
ploying any further numerical transformation.

Another interesting work can be found in [20], which formu-
latedtheshieldedGreen’sfunctionsinthespatialdomainandused
the Ewalt transformation to represent the spatial images series
with the complementary error function, but no dielectric layers
are included in the analysis. Finally, we can mention the work in
[21], which used the Shanks’ transformation for the acceleration
of the free-space periodic Green’s function. The main problem of
usingtheShanks’technique,however, isthat itcanonlyaccelerate



certaintypesofseries,sothattherearecombinationsofsource-ob-
serverpoint locationswherethealgorithmfails.

In this paper we develop two techniques that can be used for
the efficient evaluation of the shielded Green’s functions. The
algorithms described are valid for any multilayered geometry
with an arbitrary number of dielectrics, and they are applied at
the Green’s functions level so that any discretization scheme can
be used with an integral equation technique for the analysis of
complex-shaped shielded circuits and antennas. In addition, the
numerically efficient evaluation of the shielded Green’s func-
tions allows us to get insight on the behavior of these Green’s
functions and on how the lateral walls and other geometrical pa-
rameters influence their behavior.

In Section II we review the hybrid technique based on the ex-
traction of the quasi-static term to the spectral domain Green’s
functions, and we show that by extracting a second-order term
the convergence of the resulting dynamic modal series can be
greatly enhanced. In regard to the quasi-static terms, they are
computed in the spatial domain by transforming the modal se-
ries into a fast convergent spatial images series. In this paper
the resulting spatial images series are summed directly, although
more elaborated techniques as in [20] can be used. A similar ap-
proach to the one presented here was used in [19], where also a
second-order term was extracted to accelerate the convergence
behavior of the Green’s functions, in the context of the analysis
of zero thickness metallic obstacles inside rectangular waveg-
uides.

In Section III we introduce and develop a new and efficient al-
gorithm for the computation of the shielded Green’s functions.
The method is directly applied to the entire Green’s functions,
and thus, there is no need for splitting the shielded Green’s func-
tions into quasi-static and dynamic parts. The new algorithm can
be viewed as the application of the integration by parts technique
to the case of discrete sequences (“sum by parts” technique), and
it is shown that the computational time is reduced in several or-
ders of magnitude with respect the first method.

In this paper, we present an exhaustive study on the conver-
gence behavior of the techniques devised, and we include sev-
eral validation examples. The paper concludes with the compu-
tation of the shielded Green’s functions in several interesting
situations and with the study of the influence of the lateral walls
in the global Green’s functions behavior. The developed algo-
rithms are expected to find application in the analysis of com-
plex shielded circuits and antennas using the integral equation
technique.

II. THE HYBRID APPROACH: EXTRACTION OF QUASI-STATIC

TERMS

With reference to Fig. 1, spatial domain shielded or boxed
Green’s functions for stratified media are usually formulated
using the well-known modal expansions as in [22]

(1)

where is the corresponding spectral domain Green’s function,
which for a general layered structure can be easily obtained by

Fig. 1. Elementary dipole radiating in a multilayered shielded structure and its
transverse equivalent network representation.

computing the voltages and currents in equivalent transmission
line networks describing the geometry along the stratification
axis (for a comprehensive review on this subject see for instance
[17], [18], [23], and [24]). Moreover, are the transverse
wave-numbers along the and axis, and therefore, for a
rectangular waveguide they take the form

(2)

Finally, the functions and are combinations of sinusoidal
functions whose actual form depends on the actual type of
Green’s functions considered. While the generic expression
(1) also holds for any field component, we are here more
interested in a mixed potential formulation of the problem
[23], [17], [18]. Thus, Table I gives the values ofand for
both the magnetic vector potential and electric scalar potential
boxed Green’s functions, when the Sommerfeld choice is used
[25]. The main practical difficulty in the evaluation of the
shielded Green’s functions following the formulation in (1) is
related to the very slow convergence behavior of the associated
infinite series. In principle, convergence properties should be
investigated with respect to the two indexesand . However,
to simplify this cumbersome problem, we have combined both
indexes into a single -index, called the “influence layer”
index. This principle is shown in Fig. 2 for a general series
taking values of and between to . In this case
the total number of terms added as a function of the
number of influence cells considered can be easily obtained as

. For the series (1), the indexes
and take only positive integer values, and therefore only the
first quadrant in Fig. 2 should be considered. The total number
of terms in this case then becomes .



TABLE I
ACTUAL FORM OF THESINUSOIDAL f AND h FUNCTIONS FORALL DIFFERENT

MIXED POTENTIAL GREEN’S FUNCTIONS COMPONENTS

Fig. 2. Representation of a two-dimensional(m;n) space by means of a
one-dimensional(k) space of influence layers.

As an example, we have computed the electric scalar potential
in the structure of Fig. 3 with the source point placed at position
A and the observer point placed at position D. The convergence
behavior is shown in Fig. 4 where we have plotted the absolute
value of the electric scalar potential as a function of the influ-
ence cells included in the evaluation of the series. As seen, good
convergence is not achieved even with influence cells,
thus indicating a very slow convergence rate.

An alternative approach for the evaluation of the shielded
Green’s functions is to apply to (1) the Poisson’s summation
formula [22]

(3)

with representing the Fourier transform of. The use of
the Poisson’s summation formula for a two-dimensional (2-D)
function together with the shifting property of the Fourier trans-
form yields the following identity:

(4)

Equation (4) clearly indicates that a series involving sinusoidal
functions can be transformed into a series involving shifted ver-
sions of the original function in the spatial domain. For the case
of our Green’s functions, the position of each elementary dipole
is spatially shifted a quantity along the axis and
along axis. Direct application of (4) into the Green’s function
in (1) leads to the following spatial images series (Fig. 5) [23]:

(5)

where is the corresponding spatial domain Green’s function
in a layered medium of infinite transverse dimensions [26], [27],
[17], [18], and are sign functions taking different values
according to the actual type of Green’s function considered. For
the mixed potential Sommerfeld choice formulation, the sign
functions and required to satisfy the boundary conditions
for the fields at the lateral walls are collected in Table II [23].
The great advantage of using Poisson’s summation formula is
that the resulting spatial images series usually converge very
fast. This is especially true at relatively low frequencies or when
no layers are present in the structure. When frequency increases,
however, surface waves might be excited and convergence is
rapidly degraded.

To overcome the problem of the slow convergence rate of the
series, a hybrid technique between the two described before can
be attempted. Following this approach the quasi-static term of
the spectral domain Green’s function is first computed and then
substructed to the whole spectral domain function. As it will be
shown later, the modal series with the remainder thus computed
converge faster, and the Poisson’s summation formula is applied
only to the quasi-static term. In this way the quasi-static modal
series, which converges slowly (Fig. 4), is transformed into a
fast convergent spatial images series. The remainder, once the
quasi-static part substracted, is summed up directly in the spec-
tral domain.

We now illustrate the procedure specifically with the electric
scalar potential, being formally equivalent for any other type of
Green’s function. From (1) and Table I we find the explicit form
of the boxed electric scalar potential Green’s function as

(6)

Adding and substracting the quasi-static part of the spectral do-
main Green’s function , we obtain the following two series
which must be treated separately:

(7a)

(7b)



Fig. 3. Shielded microstrip structure to be studied in this paper.

Fig. 4. Convergence behavior of the modal series associated to the electric scalar potential in the structure of Fig. 3 at a frequency of 5 GHz. Source islocated at
position A while observer is located at position D.

The quasi-static part of the spectral domain Green’s function
can now be computed by simply taking the limiting case .
For instance, for the case of the electric scalar potential we ob-
tain the following quasi-static spectral domain terms:

(8)

with and being real constants obtained under TM and
TE wave excitations, respectively, and the transverse or radial
wavenumber has been defined in the usual way

(9)

From (8) it can be easily observed that the quasi-static series in
(7b) depends on for the TM part and on



Fig. 5. Spatial images for a single unit point charge needed to satisfy boundary
conditions at lateral metallic walls.

TABLE II
VALUE OF THE SIGN FUNCTIONS FORALL DIFFERENTMIXED POTENTIAL

GREEN’S FUNCTIONS COMPONENTS

for the TE part. In addition, the dynamic series in (7a) (once
the quasi-static term is substracted) depends on for
the TM part and for the TE part. Due to the slow
convergence rate of the quasi-static TM series, it is convenient to
apply the Poisson’s summation formula and compute (7b) with
the spatial images series in (5). To do so we first need to compute
the inverse Fourier transformation of (8). For this purpose the
well-known Sommerfeld integral is used, thus resulting in

(10)

which constitutes the basic spatial domain Green’s function
needed to construct the spatial images series is (5). As seen
through out this process, the TM part of the quasi-static po-
tential exhibiting a slow convergence behavior of type
in the spectral domain is transformed into a fast convergent
spatial images series with behavior. In addition, the TE
quasi-static part of the potential in the spectral domain behaves
as , and it is transformed into a spatial images series
with behavior of type. Combining (10) with (5), the total

boxed electric scalar potential Green’s function in (7a) is finally
written as

(11)

To illustrate the convergence properties of all these series we
have computed the electric scalar potential for the structure in
Fig. 3 when the source is placed at position A and the observer
point is located at position C. In Fig. 6 we show the relative error
as a function of the influence cells added for the dynamic
and terms of the modal series in (11). As it can be ob-
served, by extracting a second-order quasi-static term the con-
vergence of the dynamic modal series can be greatly enhanced.

Moreover, in Fig. 7 we show the convergence behavior of the
quasi-static part after transformation into the form of a spatial
images series. The results clearly indicate that the slowly con-
vergent modal series has been transformed into a fast conver-
gent spatial images series of behavior. Also as expected,
the second order quasi-static term, which is transformed into a
series with behavior, exhibits a lower convergence rate, but
relative errors of 0.1% can still be easily obtained.

At this point it is interesting to note that a similar procedure
can be applied to the TM part of the Green’s function. Following
this approach, a term can also be extracted from the TM
part, thus resulting into a new series behaving as and
whose convergence behavior is shown in Fig. 6. If the remaining
series with dependence is transformed back to the spatial
domain as shown in (10), then an additional series is obtained
behaving as , whose convergence properties were presented
in Fig. 7.

To complete the convergence behavior study of the series de-
veloped in this section we present in Fig. 8 the number of in-
fluence cells needed in the spatial images series to achieve a
numerical accuracy of 10 as a function of the position of the
observer point. The computation is given for the frequency of 26
GHz and for the structure in Fig. 3, when the source is placed
at two different positions (A and B). It can be seen from the fig-
ures that the smaller the distance is between source and observer
points, the faster a given numerical precision is attained.

Similar results are presented in Fig. 9 but this time for a di-
rect sum performed on the dynamic modal series. In this case the
oscillating nature of the series yields to plots which are rather
randomly distributed as a function of the observer point posi-
tion.

Finally, the convergence behavior of the two types of series
have been studied as a function of the frequency. In Table III
we show the number of influence cells needed in the spatial im-
ages series to obtain different degrees of accuracy for two dif-



Fig. 6. Convergence of the dynamic terms(1=k ) and(1=k ) for the dynamic modal series in (11). Source point is placed at position A while observer point is
located at position C. Frequency is 20 GHz.

Fig. 7. Convergence of the spatial images series corresponding to a first order static term(1=�) and to a second-order static term(�) for the electric scalar
potential. Source point is placed at position A while observer point is located at position C. Frequency is 20 GHz.

ferent positions of the source point, when the observer point is
located at position D in Fig. 3. It is interesting to mention that
the data shown in Table III remains practically unchanged with
frequency. A different situation is found with the convergence
of the dynamic modal series. In this case the oscillating nature
of the series changes with frequency, thus resulting in several
critical frequencies where convergence is particularly more dif-
ficult as shown in Fig. 10.

III. T HE “SUMMATION BY PARTS” TECHNIQUE

In the previous section we illustrated a procedure that allows
the numerical evaluation of the shielded Green’s functions by

extracting the quasi-static part of the spectral domain Green’s
functions. The modal series associated to the dynamic part, once
the quasi-static part is extracted, converge fast, and direct nu-
merical evaluation is possible. In regard to the slowly conver-
gent quasi-static series, it is converted to the spatial domain, thus
resulting in a fast convergent spatial images series. In the con-
vergence study presented for the series developed, however, we
have found several situations where convergence is difficult, and
a rather large amount of influence cells need to be included to
achieve an acceptable accuracy. For instance, Fig. 8 clearly in-
dicates that the spatial images series developed might converge
slowly, especially when the observer point is far from the source
point. In a similar way, Figs. 9 and 10 show that there might be
certain observer locations or frequencies where the convergence



Fig. 8. Number of influence cells needed in the spatial images series to achieve
given accuracy, as a function of the position of the observer point. Computation
is performed for the magnetic vector potential and frequency 26 GHz.

is slower, and therefore, more influence cells need to be added
to achieve the same degree of accuracy.

In this section we describe an efficient procedure for the direct
evaluation of the modal series given in (1). It is shown that the
technique developed greatly accelerates the convergence rate of
this series so that its numerical evaluation can be effectively car-
ried out with only few operations. The method to be described
now is based on a technique for the summation of oscillating se-
ries recently developed in [28]. The algorithm described in [28]
is aimed at the evaluation of the series of the following type:

(12)

where can be any general slowly variant function, andis
a sinusoidal (sine or cosine) function. In [28] it was shown that
an especially efficient algorithm for the numerical evaluation of
the reminder associated to (12)

(13)

Fig. 9. Number of influence cells needed in the direct sum of the dynamic
part of the electric scalar potential to achieve given accuracy, as a function of
the position of the observer point. Frequency is 26 GHz.

TABLE III
NUMBER OF INFLUENCE CELLS NEEDED IN THE SPATIAL IMAGES SERIES TO

ACHIEVE DIFFERENT DEGREES OFACCURACY. OBSERVERPOINT IS
LOCATED AT POSITION D

is to use the following transformation:

(14)



Fig. 10. Number of influence cells in the direct sum of the dynamic part of the
electric scalar potential needed to achieve given accuracy, as a function of the
frequency.

where are higher order sums and higher order dif-
ferences defined as

for all (15a)

for all (15b)

From above equations we can easily see that the algorithm can
be interpreted as the successive application of an integration by
parts procedure to the original discrete sequence (“summation
by parts” technique) [28].

This technique, developed for one-dimensional (1-D) oscil-
lating series, can be easily extended to the case of a 2-D series
as the one shown in (1). First we define the related 2-D reminder
as

(16)

Fig. 11. Number of iterations needed in the new algorithm to achieve given
accuracy, as a function of the position of the observer point. Frequency is 26
GHz.

TABLE IV
ORDER OF THESQUARED REMINDER NEEDED IN THE NEW ALGORITHM TO

ACHIEVE DIFFERENT DEGREES OFACCURACY. OBSERVERPOINT IS
LOCATED AT POSITION D

where represents the spectral domain Green’s function in
a real problem, and are simple products of sinusoidal
functions as shown in Table I. To proceed, first we introduce the
following notation:

(17)



so that (16) is written as

(18)

In this last equation we can define the following partial 1-D sum:

(19)

so that the reminder in (18) becomes

(20)

The problem is then reduced to the evaluation of several 1-D
sequences as shown in (19) and (20). In fact, we need to eval-
uate for several values of the index, so that (19) re-
quires the evaluation of several 1-D sequences. Once
is computed, we just use it to evaluate the additional 1-D se-
quence given in (20). Using now on (19) the 1-D summation by
parts algorithm shown in (14), we obtain

(21)

where in a similar way as in (15), the difference and sum func-
tions with respect the inner indexhave been defined as

for all (22)

We can now introduce (21) into (20) to write

(23)

and if the order of summations are interchanged

(24)

Now we apply again the 1-D summation by parts algorithm to
the resulting inner sum in (24), therefore obtaining

(25)

where the new difference and sum functions with respect the
outer index have been defined as

for all (26)

Equation (25) represents the basic transformation allowing us to
efficiently compute a 2-D reminder using the sum by parts algo-
rithm, and as it can be seen it involves only the successive differ-
ence functions and the successive sum functions

and . While the successive difference functions can be easily
evaluated numerically, explicit analytical expressions must be
obtained for the successive sum functions. For the computation
of the Green’s functions given in (1) and in Table I, it is most
convenient to reduce all sine and cosine products into the sum of
basic single cosine functions. Following this approach, the ele-
mentary sinusoidal functions and of (16) take the form
of simple cosine functions, and therefore, the successive sum
functions given in (22) and (26) can be easily obtained analyt-
ically by applying simple geometrical progression summation
formula. The recurrent relation yields to the following general
expression for both and successive sum functions:

(27a)

for all (27b)

Using the analytical definition in (27b), (25) can be applied to
all basic cosine series in which the whole Green’s functions are
decomposed. The final Green’s functions are obtained later by
combining all basic cosine series appropriately.

To show the effectiveness of the approach developed, we have
computed the relative error obtained during the numerical com-
putation of the reminder according to (25), as a function of the
number of iterations used in the inner (index) and outer (index
) sum by parts indexes. The computation was performed in the

structure of Fig. 3 when the source is placed at position B, the
observer point is located at position C, and the frequency is 20
GHz. In this computation the order of the reminder was taken

, and we found that only four iterations do
suffice in both indexes to achieve impressive numerical preci-
sion of the order of 10 .

The convergence properties of the new algorithm have also
been studied as a function of the source and observer positions
and as a function of the frequency. In Fig. 11 we show the order
of the squared reminder needed to achieve numerical
precision of 10 as a function of the position of the observer
point, and for two different locations of the source (position A
and B). For this computation the number of summation by parts
iterations have been fixed to , and as we observe close
to the singularity the order of the reminder needs to be slightly
increased to keep the required numerical precision.

Furthermore, in Table IV we show the same quantity needed
to achieve different degrees of accuracy when the observer point
is placed at position D and for two different locations of the
source point (A and B). As seen, in any case the required pre-
cision is attained fast; moreover, these results turn out to be es-
sentially independent on frequency.

IV. RESULTS

Based on the theory described in this paper a computer code
has been developed for the evaluation of the mixed potential
shielded Green’s functions in a multilayered environment. For
validation purposes we have computed the mixed potential
Green’s functions for the structure in Fig. 3 with the two
techniques, and for different combinations of source-observer



Fig. 12. Electric scalar potential versus frequency. Source point located at position A. Observer point located at position D.

Fig. 13. Open and shielded electric scalar potential Green’s functions for the structure shown in Fig. 3 at a frequency of 4 GHz. Source is located at positions A
and B. Observer is located along lines E and F.

points and frequencies, always finding an agreement better
than 10 .

Once the technique has been validated and its convergence
properties extensively studied, we have investigated the effects
and influence of the lateral walls in the electric scalar potential
Green’s function of the structure in Fig. 3. First we have com-
puted the electric scalar potential as a function of the frequency
when the source is located at position A and the observer point
at position D. The results are shown in Fig. 12, and as we ob-
serve there are frequencies where the electric scalar potential in-
creases abruptly corresponding clearly to the natural resonances
of the box.

In Fig. 13 we show the electric scalar potential with and
without lateral walls when the source is placed at two different

locations (A and B) and at a frequency of 4 GHz, corresponding
to a frequency far below the first resonance of the box. We can
see that at this frequency the potential rapidly decreases when
the observer point is far from the source point and that close to
the singularity the effect of the lateral walls is negligible since
the potentials with and without the lateral walls are essentially
the same.

Similar results are presented in Fig. 14, but this time at a fre-
quency of 15 GHz, corresponding to a frequency between the
first and second resonance of the box. It can be observed that the
potential with lateral walls starts exhibiting oscillations, thus in-
dicating the existence of a standing wave due to the presence of
the walls. The same comparison is finally presented in Fig. 15
but for the frequency of 24 GHz, corresponding to a frequency



Fig. 14. Open and shielded electric scalar potential Green’s functions for the structure shown in Fig. 3 at a frequency of 15 GHz. Source is located at positions
A and B. Observer is located along lines E and F.

Fig. 15. Open and shielded electric scalar potential Green’s functions for the structure shown in Fig. 3 at a frequency of 24 GHz. Source is located at positions
A and B. Observer is located along lines E and F.

between the second and third resonance. In this case the poten-
tial computed without lateral walls also exhibits oscillations, but
the boundary conditions at the lateral walls are only satisfied by
the shielded potential Green’s function.

Finally, it would be interesting to study the form of the po-
tential at the resonance frequencies of the box. For this purpose
we have computed the electric scalar potential at the frequency
of 10.49 GHz corresponding to the first resonance of the box as
shown in Fig. 12. The results are shown in Fig. 16, and it can
be observed that the absolute value of the potential suddenly in-

creases, taking essentially the form of the dominant mode prop-
agating in the waveguide. Also, it is interesting to point out that
the potential without lateral walls does not experience any res-
onance effect, and therefore, at this frequency both potentials
(with and without lateral walls) are very different.

It is important to mention that the same results as those
presented above can also be obtained with the quasi-static
term extraction technique, and no visual difference can be ap-
preciated in the graphics. However, the reduction in compu-
tational time is dramatic when the new algorithm is used. As



Fig. 16. Electric scalar potential at Frequency 10.49 GHz corresponding to first resonance in Fig. 12. Source point placed at position B. Observer point located
at line F.

an example, the quasi-static term extraction technique takes
1 min 56 s for the computation of 60 points in Fig. 15, and
only 16 s when the newly developed algorithm is used, on
an HP platform.

V. CONCLUSION

In this paper we have presented two techniques allowing the
computation of the mixed potential Green’s functions when
source and observer points are enclosed in a metallic cavity.
The first technique is based on the extraction of the quasi-static
term to the global spectral domain Green’s function. The
resulting dynamic part, once the quasi-static term is extracted,
converges faster and direct evaluation is possible. In regard to
the quasi-static part, it is transformed into the spatial domain,
thus resulting into fast convergent spatial images series with

dependence. Numerical results have effectively shown
that convergence of the dynamic modal series can be greatly
improved if a second-order quasi-static term is extracted
from the spectral domain Green’s functions. Following this
approach, however, care must be exercised in the summation
of the additional spatial images series which now have only a

dependence.
To accelerate the computation of the shielded Green’s func-

tions a new and efficient procedure has been presented, which
can be viewed as the application of the integration by parts al-
gorithm to discrete sequences. The algorithm is directly applied
to the computation of the shielded Green’s functions, greatly
enhancing the convergence properties of the modal series in-
volved. The result is that the whole shielded Green’s functions
are obtained in a single block of calculations (no need to extract
quasi-static terms) and with only few numerical operations. It
has been observed that the gain in computational time with re-
spect traditional techniques is considerable.
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