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ABSTRACT 

 

Phenolic compounds are phytochemicals with high health-promoting properties which 

are present in several fruit and vegetables such as carrots and broccoli. Carrot is a 

worldwide highly consumed vegetable although its phenolic content is relatively low 

regarding other horticultural products. Accordingly, the enhancement of phenolic levels 

in carrots, using i.e. abiotic stresses, will add value to this popular vegetable for the food 

and pharmaceutical industries. Chlorogenic acid represented 70 % of the sum of phenolic 

compounds in carrots. Total phenolic contents (TPC) of carrots during storage periods 

were highly correlated (R2=0.82) to total antioxidant capacity (TAC) of these samples. It 

was found that shredding (wounding stress) and hyperoxia storage (80 kPa O2) induced 

the highest phenylalanine ammonia-lyase (PAL), TPC and TAC enhancements in carrots 

during storage at 15 ºC for 72 h. Although pretreatment of shreds with an intermediate 

UV-C dose (9 kJ m-2) reduced phenolic accumulation, 600 % increments were still 

registered in those samples stored under hyperoxia conditions for 72 h. These first 

findings of the PhD Thesis supply to the food and pharmaceutical industries useful and 

sustainable tools to obtain a great source of health-promoting compounds from this 

vegetable, and probable to others. 

 

Subsequently, the effect of UV-B pretreatment (1.5 kJ m-2) was studied on the 

PAL/TPC/TAC of shredded carrots and its combination with a low-intermediate (4 kJ m-

2) UV-C dose. UV-B treatment induced the highest PAL/TPC of 760/498 % after 72 h at 

15 ºC, regarding their initial levels, while single and combined UV-C treatments induced 

a TPC accumulation of 440 %. Accordingly, the use of UV-C treatment, with high 

sanitizing interest for the fresh-cut industry, combined with UV-B radiation did not 

negatively affect the accumulation of bioactive compounds, achieving similar 

enhancements to untreated samples. 

 

Broccoli cultivation leads to high volumes of plant by-products with high environmental 

impact which may be instead used as sources of health-promoting compounds for the 

food and pharmaceutical industries. Furthermore, such broccoli by-products may be 

revalorized through the increase of their health-promoting compounds with postharvest 

UV radiation as an abiotic stress. Accordingly, the effects of different postharvest UV-B 

radiation doses (5, 10 and 15 kJ m-2), single or combined with UV-C treatment (9 kJ m-
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2), were studied on the main bioactive compounds of Bimi® broccoli by-products (leaves 

and stalks) being compared to Bimi® edible florets. Leaves showed similar TPC and TAC, 

with 1716 and 552 mg kg-1 respectively, compared to florets. Furthermore, leaves showed 

2.5/14.5 higher glucoraphanin/glucobrassicin contents than florets. UV postharvest 

treatments initially increased TPC and TAC levels of samples by 30-97 and 20-424 %, 

respectively. Particularly, UVB10+C treatment induced the highest TPC increase (110 

%) in Bimi® leaves in the last 48 h of storage while UVB10 and UV10+C led to the 

highest TPC (709 and 680 mg kg-1) of stalks at 48 h. Furthermore, UV10+C treatment 

increased glucobrassicin levels of leaves by 34 % while UVB15 and UVB15+C induced 

the highest glucoraphanin levels (131 and 117 mg kg-1) in florets after 72 h. Accordingly, 

Bimi® leaves are hereby presented as a by-product that may be used as an excellent source 

of glucosinolates and phenolics, with high total antioxidant capacity, for the food and 

pharmaceutical industries. In addition, postharvest intermediate-high UV-B/C combined 

radiation treatments can highly revalorize such agricultural by-products and also add 

value to the edible fresh-cut Bimi® florets. 

 

A functional smoothie containing the previously stressed (UV-C and/or high O2) carrot 

shreds with high TPC/TAC contents was thermally treated (90 ºC for 30 s) and the 

beverage quality was studied during 14 days at 5 ºC being compared to CTRL samples. 

Heat-treated smoothies showed a good physicochemical and microbiological quality (< 6 

log CFU g-1) after 14 days at 5 ºC, although smoothies containing non-irradiated shreds 

registered lower psychrophilic and yeasts and moulds levels. Heat-treated smoothie 

containing non-irradiated O2-shreds showed the highest TPC of 13.8 mg kg-1 after 14 days 

at 5 ºC. In this sense, a pre-enrichment incubation of carrot shreds under hyperoxia 

conditions allowed to obtain a functional smoothie with high phenolic levels and good 

microbiological and physicochemical quality up to 14 days at 5 ºC. 

 

A non-thermal treatment, such as high pressure processing (HPP), of beverages may 

allow to obtain a product with better bioactive/nutritional and sensory quality, and 

extended shelf life regarding thermally treated samples. Accordingly, the 

physicochemical and microbial quality, and PAL/TPC of an orange smoothie (carrot and 

pumpkin) after different HPP treatments (CTRL, 300-600 MPa for 5 min at 23 ºC) and 

during storage for 7 days at 5ºC were studied. In general, quality parameters did not highly 

change after HPP treatments compared to CTRL samples on the processing day and after 
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7 days at 5 ºC. HPP reduced initial mesophilic counts (3.4 log CFU mL-1) by 2.0-2.7 log 

units being these microbial counts well maintained after 7 days at 5 ºC contrary to CTRL 

samples. The physicochemical quality of the HPP-treated smoothies was highly 

maintained during storage. Generally, the 300 and 600 MPa HPP treatments induced the 

highest PAL activities after 7 days at 5 ºC. The initial TPC (712.1 mg ChAE kg-1) was 

increased in the smoothies reaching the 300 and 400 MPa-treated samples the highest 

increments (1.6-fold) after storage. 

 

The activity of some quality-degradative enzymes may be increased in determined 

beverages under low-moderate HPP treatments. For that reason, in the next study we tried 

to palliate such undesirable HPP effects by encapsulation with maltosyl-β-cyclodextrin 

(90 mM) using apple juice as beverage model due to the rapid enzymatic browning during 

processing of this fruit juice. Colour degradation of apple juice during 60 min at 22 ºC 

was well fitted to a fractional conversion model with root-mean-square error (RMSE) < 

1.3. HPP treatments (300-600 MPa for 5 min at 22 ºC) did not affect the antibrowning 

effect of maltosyl-β-cyclodextrin. In that sense, maltosyl-β-cyclodextrin addition to apple 

juice prior to a low-moderate HPP treatment (300 MPa for 5 min at 22 ºC) highly 

controlled enzymatic browning. 

 

A new food concept ‘ready-to-blend’ was firstly developed and studied in this PhD 

Thesis. Accordingly, the quality of a fresh-cut fruit/vegetables ‘ready-to-blend’ product 

was studied during storage at 5 ºC. The shelf life of the ready-to-blend product was highly 

extended to 9 days by a chitosan coating (10 g L-1) being microbial levels and 

polyphenoloxidase activity well controlled. Added value of the product was enhanced by 

fortification with vitamin B12 (8.6 μg kg-1) being of high interest for specific population 

sectors, such as vegetarians/vegans, elderly, etc., which have special needs for this 

vitamin. The prepared smoothies from the ready-to-blend portion showed a good quality 

during subsequent storage for 48 h at 5 ºC. 
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RESUMEN 

 

Los compuestos fenólicos son fitoquímicos con propiedades beneficiosas para la salud, 

presentes en gran medida en las frutas y verduras, como la zanahoria o el brócoli. La 

zanahoria es una verdura ampliamente consumida en todo el mundo. Sin embargo, su 

contenido fenólico es relativamente bajo en comparación a otras verduras. 

Consecuentemente, el aumento de los niveles de compuestos fenólicos en zanahorias, 

usando estreses abióticos, por ejemplo, podría agregar un valor añadido a esta verdura 

para las industrias alimentaria y farmacéutica. El ácido clorogénico representó el 70 % de 

la suma de los compuestos fenólicos en las zanahorias estudiadas. Los compuestos 

fenólicos totales (TPC en inglés) estuvieron altamente correlacionados con la capacidad 

antioxidante total (TAC en inglés) con un R2=0,82. Se comprobó que los estreses 

abióticos, como el cortado y la conservación en atmósfera de alto oxígeno (80 kPa O2), 

indujeron un elevado aumento de la enzima fenilalanina amonio liasa (PAL en inglés), 

TPC y TAC en zanahorias durante una conservación a 15 ºC durante 72 h.  Aunque el 

pretratamiento de la zanahoria rallada con una dosis intermedia (9 kJ m-2) de radiación 

UV-C redujo la acumulación de compuestos fenólicos, se registró un incremento del 600 

% en estas muestras almacenadas en alto oxígeno durante 72 h. Las primeras conclusiones 

de esta tesis doctoral, resultan útiles para las industrias farmacéutica y alimentaria, por 

obtener una gran fuente de compuestos bioactivos de esta verdura, y probablemente, 

aplicable en otros productos vegetales. 

 

A continuación, se estudió el efecto de pretratamientos con radiación UV-B (1,5 kJ m-2) 

sobre los contenidos de PAL/TPC/TAC en zanahoria rallada y su combinación con una 

dosis bajo-intermedia (4 kJ m-2) de radiación UV-C. El pretratamiento con UV-B provocó 

el máximo aumento de PAL y TPC de 760 y 498 %, respectivamente, tras 72 h a 15 ºC, 

mientras que el tratamiento simple y combinado de UV-C indujo incrementos de un 440 

%. Por consiguiente, el uso de UV-C, de alto interés como tratamiento sanitizante 

alternativo al cloro, combinado con la radiación UV-B no afectó negativamente la 

acumulación de compuestos bioactivos, consiguiendo aumentos similares a las muestras 

control (no tratadas). 
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El cultivo del brócoli conlleva la producción de altas cantidades de subproductos, con el 

consiguiente impacto medioambiental, los cuales podrían ser usados como fuentes de 

compuestos beneficiosos para la salud por las industrias de alimentación y farmacéuticas. 

Además, estos subproductos de brócoli podrían ser revalorizados mediante el incremento 

de sus compuestos beneficiosos para la salud mediante radiación UV como estrés 

abiótico. En esta línea, se estudiaron los efectos de diferentes tratamientos de radiación 

UV-B (5, 10 and 15 kJ m-2), individual o combinados con una dosis de UV-C (9 kJ m-2), 

sobre los principales compuestos bioactivos de los subproductos del brócoli Bimi® (hojas 

y tallos) siendo comparados con las partes comestibles de este vegetal, los floretes. Las 

hojas mostraron TPC y TAC similares a los de los floretes con niveles de 1716 y 552 mg 

kg-1, respectivamente. Además, las hojas mostraron contenidos de 

glucorafanina/glucobrasicina 2,5/14,5 mayores que los floretes. Los tratamientos de UV 

incrementaron inicialmente los niveles de TPC y TAC de las muestras en un 30-97 y 20-

424 %, respectivamente. Particularmente, el tratamiento UVB10+C indujo los mayores 

incrementos (110 %) de TPC en las hojas de Bimi® en las últimas 48 h de conservación 

mientras que UVB10 y UV10+C conllevaron a los niveles más altos de TPC (709 y 680 

mg kg-1) en los tallos a las 48 h. Además, el tratamiento UV10+C indujo los mayores 

incrementos de glucobrasicina del 34 % mientras que UVB15 y UVB15+C produjeron 

los contenidos más altos de glucorafanina (131 y 117 mg kg-1) en los floretes después de 

72 h. De esta forma, las hojas del brócoli Bimi® se muestran como un subproducto que 

puede ser utilizado como una fuente excelente de glucosinolatos y compuestos fenólicos 

(con alto poder antioxidante) para las industrias alimentarias y farmacéuticas. Además, el 

uso de tratamientos UV-B/C postcosecha combinados pueden revalorizar en gran medida 

estos subproductos agrícolas y también añadir valor a los floretes comestibles 

mínimamente procesados en fresco del brócoli Bimi®. 

 

Se estudió la calidad de un batido (smoothie) funcional obtenido de zanahoria rallada, 

previamente estresada (UV-C y/o alto oxígeno), tratado térmicamente (90 ºC durante 30 

s), durante 14 días a 5 ºC. El smoothie tratado térmicamente mostró una buena calidad 

fisicoquímica y microbiológica (< 6 log unidades formadoras de colonias (CFU en inglés) 

g-1), tras los 14 días a 5 ºC. Sin embargo, en los smoothies que contenían zanahoria no 

irradiada se registraron recuentos más bajos de psicrófilos, mohos y levaduras. Los 

smoothies tratados térmicamente con zanahoria rallada no irradiada y almacenada en alto 

oxígeno mostraron los contenidos más altos de TPC con 13.8 mg de ácido clorogénico 
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kg-1 tras 14 días at 5 ºC. En ese aspecto, la incubación previa de la zanahoria rallada en 

condiciones de hiperoxia permitió obtener un smoothie funcional con alto contenido de 

compuestos fenólicos, así como una buena calidad microbiológica y fisicoquímica tras 

14 días a 5 ºC. 

 

La pasteurización fría de alimentos, como el procesado con alta presión (HPP en inglés), 

permite conseguir un producto con una mejor calidad nutricional, sin perder sus 

propiedades sensoriales, logrando también una vida útil más larga comparado con los 

tratamientos térmicos convencionales. De esta forma, se estudió la calidad fisicoquímica 

y microbiológica, y PAL/TPC de un smoothie naranja (con zanahoria y calabaza) tras 

diferentes tratamientos de HPP (control, 300-600 MPa durante 5 min a 23 ºC) y durante 

su conservación de 7 días a 5 ºC. En general, los parámetros de calidad no se vieron 

afectados por los tratamientos de HPP en comparación al control en el día de procesado 

ni tras 7 días a 5 ºC. HPP redujo los recuentos iniciales de mesófilos (3,4 log CFU mL-1) 

a 2,0-2,7 unidades logarítmicas, manteniéndolas durante los 7 días a 5 ºC, a diferencia de 

las muestras control. Los parámetros de calidad fisicoquímica de las muestras tratadas 

con HPP se mantuvieron durante la conservación. En general, los tratamientos de 300 y 

600 MPa provocaron una mayor actividad de PAL tras 7 días a 5 ºC. Los TPC de los 

smoothies tratados con 300 y 400 MPa mostraron los mayores incrementos (1,6 veces) 

tras la conservación. 

 

La actividad de muchas enzimas alterantes de la calidad del producto puede aumentar 

debido a tratamientos de HPP de intensidad baja-intermedia en muchas bebidas. Por esta 

razón, en el siguiente experimento se contrarrestaron estos efectos debidos al HPP 

mediante la encapsulación con maltosil-β-ciclodextrina (90 mM) usando como modelo 

zumos de manzana debido a su rápido pardeamiento enzimático durante el procesado. La 

degradación del color del zumo de manzana durante 60 min a 22 ºC fue ajustada muy 

bien mediante un modelo de conversión fraccional con la raíz del error cuadrático medio 

(RMSE en inglés) inferior a 1,3. Los tratamientos de HPP (300-600 MPa durante 5 min 

a 22 ºC) no afectaron el efecto antipardeante de la maltosil-β-ciclodextrina. Por esta razón, 

la adición de maltosil-β-ciclodextrina en zumo de manzana, antes del tratamiento bajo-

moderado de HPP (300 MPa durante 5 min a 22 ºC) puede controlar en gran medida el 

pardeamiento enzimático. 
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En esta Tesis doctoral también se desarrolló por primera vez el concepto “listo para 

licuar” (ready-to-blend en inglés). De esta forma, se estudió la evolución de los 

parámetros de calidad de una mezcla de ensalada de cuarta gama de frutas y verduras 

ready-to-blend durante su conservación a 5 ºC. La vida útil del producto se extendió hasta 

9 días mediante una película comestible de quitosano (10 g L-1) donde la actividad de la 

polifenoloxidasa y los niveles microbiológicos fueron muy bien controlados. 

Paralelamente se aumentó el valor añadido del producto mediante la fortificación con 

vitamina B12 (8.6 μg kg-1). Esta vitamina es de gran interés para diversos sectores de la 

población, tales como vegetarianos/veganos, personas mayores etc., debido a las 

necesidades especiales de la misma. El smoothie preparado posteriormente de la mezcla 

ready-to-blend mostró en general una buena calidad durante su conservación a 5 ºC 

durante 48 h. 
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1. BOTANICAL AND AGRONOMICAL CHARACTERISTICS OF CARROTS 

AND BIMI® BROCCOLI 

 

1.1. Carrots 

 

Carrots (Daucus carota L.) is a specie originary from Southeast Asian and Mediterranean 

countries. They have been cultivated and consumed from the ancient times by Greeks and 

Romans. The first cultivated carrots had purple colour being the actual orange carrots 

derived from plant breeding selections developed in 1700 in The Netherlands. 

 

Carrot is a biannual plant. During the first year a rosette of few leaves and the root is 

formed. After a rest period, a short stem emerges in which the flowers are formed during 

the second growing station. The different carrot development stages can be observed in 

Figure 1. 

 

 

Figure 1. Development stages of carrots 

(http://www.carrotmuseum.co.uk/cultivation.html) 

 

Different zones can be observed in carrots when cut: an exterior zone, mainly formed by 

the phloem and another interior area constituted by the xylem, medulla and cambium 

(Figure 2). The most accepted carrots are those with a high proportion of phloem since 

the xylem is generally woody with low flavour. There are several visual and sensory 

properties of carrots which difference the diverse varieties of carrots for fresh and/or 

fresh-cut. In general, carrots must meet the following criteria: 
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• Firm (not flaccid or limp) 

• Straight with a uniform taper from ‘shoulder' to ‘tip’ 

• Bright orange 

• There should be little residual ‘hairiness’ from lateral roots 

• No ‘green shoulders’ or ‘green core’ from exposure to sunlight during the growth 

phase 

• Low bitterness from terpenoid compounds 

• High moisture content and high reducing sugars are most desirable for fresh 

consumption 

 

Quality defects include lack of firmness, non-uniform shape, roughness, poor colour, 

splitting or cracking, green core, sunburn, and poor quality of tops or trimming. Carrots 

can be harvested by three different ways: manual harvest (only in small fields), semi-

mechanical harvest (using specified tools coupled to the tractor) and the mechanical 

harvest (the most used due to low personal needs which lead to lower harvesting costs). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Parts of carrot root 

(https://mibayra.wordpress.com/unidad-iv-organografia-de-la-raiz/) 

 

There are several group of cultivars of carrots as it can be observed in Figure 3. Among 

them, Nantes is the most consumed carrot in Spain. The cultivated surface of carrots in 

Spain was 6.7 million of ha in 2015 with a production of 403.4 million tons 

(MAGRAMA, 2016a). The highest carrot producer is China with 17.3 million tons in 

2014 (FAO, 2016). 
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Figure 3. Groups of carrots cvs  

(http://es.slideshare.net/reymundcosmocerno/cultivo-de-zanahoria). 

 

1.2. Bimi® broccoli 

 

Bimi® (Sakata Vegetables Europe) is a natural hybrid between conventional broccoli 

(Brassica oleracea, Italica group) and kailan (B. oleracea, Alboglabra group). This 

hybrid was firstly developed by the Sakata Seed Company of Yokohama (Japan). Other 

companies have developed different commercial kailan-hybrid broccoli varieties with 

registered trademarks: Asparation (Sakata Seed America), Bellaverde (Seminis 

Vegetable Seeds), Broccolini (Mann Packaging Company), Tenderstem (Marks and 

Spencer Plc.), etc. This vegetable was firstly commercialized by Sabon Incorporated, 

which made a commercial program to sell Asparation in México in 1994. Mann Packing 

Company introduced the new vegetable to the USA market in 1998. Lately, its cultivation 

has been extended to other countries such as the northern European countries, Brazil or 

Australia, among others. 

 

This vegetable is characterized by a floret at the end of each stem (Figure 4). Similar to 

conventional broccoli, Bimi® broccoli has yellow flowers. The Bimi® broccoli has a 

flavour softer and more delicate than the conventional broccoli. Figure 5 shows the large 

differences in visual appearance between this new vegetable and broccoli. 
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Figure 4. Bimi® broccoli: A hybrid between conventional broccoli and kailan 

(http://www.bellaverde.co.uk/). 

 

 

 

Figure 5. Conventional broccoli (cv. Parthenon) (left) and Bimi® 
broccoli (right)  

(Martínez-Hernández et al., 2013). 

 

Bimi® broccoli, due to its delicate physical properties, is manually collected every day 

(in the first hours of the morning). In order to extend the postharvest shelf life of the 

Bimi® broccoli by minimizing the handling, its primary packaging is made on the fields. 

Due to the mild sensory characteristics of Bimi® broccoli, compared to the conventional 
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broccoli cv., it can be, apart from cooking, eaten either raw (i.e., in salads, crudité, etc.) 

or used as an excellent source of nutritional/bioactive compounds for smoothie 

preparation. 

 

In Europe, the production of Bimi® broccoli is concentrated from October to June in warm 

areas of Spain, while in the summer months it is produced in northern locations as UK, 

The Netherlands, etc. However, the most important commercial production is located in 

Africa, where the production of this vegetable is assured all year around with intensive 

farming systems. Spain is among the main European producers of Bimi® broccoli with a 

cultivated surface (principally concentrated in the southeast area) of 150 ha (130 ha for 

exportation) for the campaign 2016/17 (data supplied by Sakata Seed Ibérica). 

Consumption of Bimi® broccoli has already begun in many European countries such as 

Belgium, UK, France, Germany, The Netherlands and the Scandinavian countries, but so 

far it does not practically present in the Spanish market. 

 

 

2. NUTRITIONAL AND BIOACTIVE CONTENTS OF CARROTS AND BIMI® 

BROCCOLI 

 

2.1. Relevant food and health terminology 

 

Different terms are related to the health effects of phytochemicals on food products. 

Accordingly, they are defined: 

 

• Phytochemicals: chemical compounds that naturally occur in plants. 

• Nutrient or nutritional compound: are compounds that the organism needs to 

develop, in a normal form, the physiological and metabolic processes. They are 

divided in macronutrients (carbohydrates, fats, dietary fibre, proteins and water) 

and micronutrients (minerals and vitamins). Macronutrients provide the bulk 

energy that the organism's metabolic system needs to function while 

micronutrients provide the necessary cofactors for metabolism to be carried out. 

Micronutrients are used to build and repair tissues and to regulate body processes 

while macronutrients are converted to, and used for, energy (Regulation, 2006). 
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• Bioactive compounds: compounds which have the capability and the ability to 

interact with one or more component(s) of the living tissue by presenting a wide 

range of probable effects (Guaadaoui et al., 2014).  

• Nutraceuticals: are diet supplements that deliver a concentrated form of a 

presumed bioactive compound from a food, presented in a non-food matrix (pills, 

extracts, tablets, etc.), and used with the purpose of enhancing health in dosages 

that exceed those that could be obtained from normal foods (Zeisel, 1999). There 

is not, as such, a regulatory framework for nutraceuticals in the EU Food Law 

contrary to USA where it is regulated by the FDA. 

• Functional foods: the concept of functional food was developed in Japan in the 

mid-1980s. While a globally accepted definition has yet, functional foods can be 

defined as those foods that when consumed regularly exert a specific health-

beneficial effect beyond their nutritional properties (i.e., a healthier status or a 

lower risk of disease) and this effect must be scientifically proven (Espin et al., 

2007). A functional food can be a natural whole food, a food to which a 

component has been added, or a food from which a component has been removed 

by technological or biotechnological means. It can also be a food in which the 

nature of one or more components has been modified, or a food in which the 

bioavailability of one or more components has been modified, or any combination 

of these possibilities. A functional food may be targeted at the whole population 

or for particular groups, which may be defined, for example, by age or by genetic 

constitution (Regulation, 2006). 

• Fortified foods: ‘Fortification’ or ‘enrichment’, is the ‘addition of one or more 

essential nutrients to a food whether or not it is normally contained in it, for the 

purpose of preventing or correcting a demonstrated deficiency of one or more 

nutrients in the population or specific population groups’ (Commission, 2015). 

For example, fortification of plant-derived products with vitamin B12 is a good 

alternative for vegetarians to uptake this essential vitamin without the need of 

dietary supplements or vitamin B12 pills. Accordingly, several studies, mainly 

from industrialized nations, have demonstrated the benefits of vitamin B12 

supplementation in such susceptible population groups through fortified products 

(Allen et al., 2006; Molina et al., 2012). 
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2.2. Nutritional compounds of carrots and broccoli 

 

Carrots and Bimi® broccoli are good sources of nutritional compounds as observed in 

Table 1. Both vegetables are excellent sources of dietary fibre and minerals while 

accounting low fat content. Particularly, Bimi® broccoli is higher than carrots in proteins, 

and vitamins C and B group; while carrots have higher levels of carotenoids (β-carotene 

46 % of total carotenoids) and vitamin A. 

 

Table 1. Main constituents of carrots and Bimi® broccoli (Martínez-Hernández, 2012; Miglio et al., 2008; 

Souci et al., 2000). 

Constituents 
Content (per 100 g-1 fresh weight) 

Carrots Bimi® broccoli 

Water 88 g 90 g 

Protein (N×6.25) 1.0 g 3.5 g 

Fat 0.2 g 0.3 g 

Carbohydrates 4.8 g 5.1 g 

Total dietary fibre 3.6 g 3.2 g 

Total carotenoids 14.1 mg 2.8 mg 

β-carotene 6.5 mg 0.6 mg 

Lutein 1.3 mg 1.5 mg 

Vitamins   

Vitamin C 7.0 mg 174 mg 

Vitamin A 1500 µg 177 µg 

Vitamin B1 69 µg 99 µg 

Vitamin B2 53 µg 178 µg 

Folic acid (vit. B9) 26 µg 120 µg 

Total minerals   

Major minerals (mg)   

P 35 112 

Na 61 29 

K 321 437 

Ca 37 97 

Mg 13 38 

Cl 59 28 

Trace minerals (μg)   

Fe 386 521 

Mn 175 563 

Zn 273 595 

Al 169 98 

Cu 50 70 

Ni 5.7 18 
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2.3. Main bioactive compounds of carrots and broccoli 

 

The dietary habits and disease risk relationship has been analysed in several 

epidemiological studies showing that plant-derived foods, fruit and vegetables in a great 

extent, have a direct impact on health (Slavin and Lloyd, 2012). Such health-promoting 

properties of fruit and vegetables have been mainly associated to the existence of 

bioactive compounds such as phenolic compounds, glucosinolates, carotenoids, 

chlorophylls, among others. Carrots and Bimi® broccoli are vegetables which may 

provide a large list of bioactive compounds, being phenolic compounds and 

glucosinolates of special interest due to their broad health-promoting properties. 

 

 2.3.1. Phenolic compounds: biosynthesis, classification and health-promoting 

properties 

 

‘Phenolic compounds’ is a generic term that include a large number of compounds (more 

than 8,000) widely dispersed throughout the plant kingdom and characterized by having 

at least one aromatic ring with one or more hydroxyl groups attached (Figure 6). In nature, 

phenolics are usually found conjugated to sugars and organic acids (Cartea et al., 2011). 

 

 

Figure 6. Phenolic compounds examples 
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The major biosynthetic routes to the various classes of phenolic compounds are 

summarized in Figure 7, which include the primary (shikimic acid) and secondary 

(phenylpropanoid) metabolic pathways. As it can be observed, the enzyme PAL plays a 

key role in the first stages of the pathway model. Particularly, PAL catalyses the non-

oxidative deamination of L-phenylalanine resulting in trans-cinnamic acid and a free 

ammonium ion which is first step in the phenolic biosynthesis. 

 

 

Figure 7. Biosynthetic pathways leading to phenolic compounds in plants (Dixon et al., 2002). The core 

reactions are shown in larger type. Abbreviations: BA, benzoic acid; BA2H, benzoic acid 2-hydroxylase; 
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t-CA, trans -cinnamic acid; 4-CA, 4-coumaric acid; CA2H, cinnamate 2-hydroxylase; Calc, coniferyl 

alcohol; Cald, coniferaldehyde; CafCoA, caffeoyl CoA; 4-CCoA, 4-coumaroyl CoA; CGA, chlorogenic 

acid; C3H, coumarate (coumaroyl quinate/shikimate) 3-hydroxylase; C4H, cinnamate 4-hydroxylase; ChA, 

chorismic acid; i-ChA, isochorismic acid; 4-CL, 4-coumarate:CoA ligase; CHR, chalcone reductase; CHS, 

chalcone synthase; COMT, caffeic acid O-methyltransferase; Csh, 4-coumaroyl shikimate; Daid, daidzein; 

FerA, ferulic acid; FerCoA, feruloyl CoA; Gen, genistein; 5-HCald, 5-hydroxyconiferaldehyde; HQT, 

hydroxycinnamoyl-oA:quinate hydroxycinnamoyl transferase; ICS, isochorismate synthase; IFR, 

isoflavone reductase; IFS, isoflavone synthase; Il, isoliquiritigenin; IOMT, isoflavone O-methyltransferase; 

Liq, liquiritigenin; MCoA, malonyl CoA; Med, medicarpin; Nar, naringenin; Nc, naringenin chalcone, 

PAL, L-phenylalanine ammonia-lyase; L-phe, L-phenylalanine; PL, pyruvate-lyase; SA, salicylic acid; 

Salc, sinapyl alcohol; Sald, sinapaldehyde; ShA, shikimic acid; Van, vanillin; VR, vestitone reductase. 

 

Phenolic compounds can be classified based on the number and arrangement of their 

carbon atoms in flavonoids (flavonols, flavones, flavan-3-ols, anthocyanidins, 

flavanones, isoflavones and others) and non-flavonoids (phenolic acids, 

hydroxycinnamates, stilbenes and others) as it is described below (Cartea et al., 2011; 

Crozier et al., 2006) and shown in Figure 8. 

 

• Phenolic acids have one carboxylic acid group and may be present in plants in 

free and bound forms. Phenolic acids are divided into two subgroups, the 

hydroxybenzoic and hydroxycinnamic acids and derivatives thereof. 

Hydroxybenzoic acids have in common the C6-C1 structure, and the 

hydroxycinnamic acids have aromatic compounds with a three-carbon side chain 

(C6-C3). The different phenolic acids differ in the number and position of the 

hydroxyl and methoxyl groups attached to the aromatic ring. 

• Coumarins, or chromones, are derived from cinnamic acid by cyclization of the 

side chain of the o-coumaric acid. Commonly, they are present as glycosides. 

• Flavonoids are the largest group of plant phenolic compounds. They have a 

structure of 15 carbon atoms (C6-C3-C6). The aromatic ring A is derived from 

the acetate/malonate pathway, and ring B is derived from phenylalanine through 

the shikimate pathway. Variations in substitution patterns to ring C (oxygenation, 

alkylation, glycosylation, acylation or sulfation) result in 13 flavonoid classes, 

being the most important flavonols, flavones, isoflavones, flavanones, flavanols 

(also called flavan-3-ols) and anthocyanidins or anthocyanins. The chalcones are 

intermediate in the biosynthesis of flavonoids. 
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• Stilbenes are a small group of phenolics characterized by a 1,2-diphenylethylene 

backbone. Most plant stilbenes are derivatives of the basic unit trans-resveratrol 

(3,5,4′-trihydroxy-trans-stilbene). In plants that naturally produce stilbenes, these 

metabolites are generally accumulated in both free and glycosylated forms. 

• Lignans are formed of two phenylpropane units, which are commonly present in 

fruits, seeds, grains, trees and vegetables. Secoisolariciresinol and matairesinol 

were the first plant lignans identified, and later pinoresinol, lariciresinol and 

others. 

• Tannins are phenolic compounds of molecular weight between 500 and 3000 D 

and may be subdivided into: hydrolysable, esters of gallic acid (gallo- and 

ellagitannins), condensed tannins (also known as proanthocyanidins), polymers of 

polyhydroxyflavan-3-ol monomers, and phlorotannins, found in brown seaweeds. 

 

 

Figure 8. Classification of phenolic compounds (Soto et al., 2015) 

 

The phenolic compounds contribute to flavour and colour of the plants. Nevertheless, the 

major of the intense research on them is focused on their many bioactive properties such 

as antimicrobial, antiviral, anti-inflammatory, antitumor, anticancer, antimutagenicity 

and reduction in coronary heart disease risk (Lule and Xia, 2005). Phenolic compounds 
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are strong antioxidants that potentiate the activity of antioxidant vitamins and enzymes 

serving as a defence system against oxidative stress, namely by the accumulation of 

reactive oxygen species (ROS). Phenolic compounds have what is considered the ideal 

chemical structure for free radical-scavenging activity since they gather the necessary 

properties to define an antioxidant, such as reactivity as a hydrogen/electron-donating 

agent and the transition metal-chelating potential (Tsao, 2010). 

 

In carrots, the higher content of phenolic compounds is found in the peel followed by 

phloem and then xylem (Figure 9). The main phenolic compounds found in carrots are 

hydroxycinnamic acids and their derivatives, being chlorogenic acid (an ester of caffeic 

acid and quinic acid) the major compound as observed in Table 2 (Zhang and Hamauzu, 

2004). 

 

 

Figure 9. Tissue proportion and distribution of total phenolic content activity within the Nantes carrot 

tissue (elaborated from Alegria et al. (2016)). 

 

Table 2. Main phenolic compounds of carrots (elaborated from Zhang and Hamauzu (2004)) 

Phenolic compound 
Phenolic content (mg kg-1 fresh weight) 

Peel Phloem Xylem 

3’O-caffeoylquinic acid (chlorogenic acid) 150.4 18.3 1.9 

Cis-5’caffeoylquinic acid 35.1 5.4 1.3 

3’5’-dicaffeoylquinic acid 18.4 0.6 ND 

4’p-coumaroylquinic acid 11.2 0.6 0.2 

3’4’-dicaffeoylquinic acid 2.8 0.1 ND 

Caffeic acid 1.1 0.7 0.1 

3’O-caffeoylquinic acid 0.9 1.1 1.0 

 

Tissue proportion 
 

Peel – 11 % 

 

Phloem – 76 % 

 

Xylem – 13 % 

 

Total phenolic content 
(mg kg-1 fresh weight) 

 

2,954±79 
 

 

762±37 

 
510±50 
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Bimi® broccoli has shown a total phenolic content (TPC) of 1148 mg kg-1 (Martínez-

Hernández et al., 2013a). The higher phenolic contents in Bimi® broccoli is located in the 

floret with 3.1-fold higher content than the stem (Figure 10). The major phenolic 

compounds in broccoli are flavonoids (mainly flavonols but also anthocyanins) and the 

hydroxycinnamic acids (Table 3). TPC, and sinapic and caffeic acid derivates contents of 

15.5-26.9, 4.2-7.9 and 0.4-3.2 mg g-1 dry weight, respectively, have been reported in 13 

different broccoli cvs. (Redovniković et al., 2012). The phenolic compounds found in 

broccoli are summarized in Table 3. Furthermore, broccoli has been reported as one of 

the main dietary sources of lignans, comprising coumestans, the main group in this 

Brassica (de Kleijn et al., 2001). 

 

Figure 10. Tissue proportion and distribution of total phenolic content within Bimi® broccoli. 

 

Table 3. Major phenolic compounds in broccoli (Vallejo et al., 2003). 

Phenolic compound Phenolic content 
(mg kg-1 fresh weight) 

Caffeoylquinic derivatives 

Neochlorogenic acid 71.8 

Chlorogenic acid 22.0 

Sinapic acid derivatives 

1,2-Disinapoylgentiobiose 25.5 

1-Sinapoyl-2-feruloylgentiobiose 32.7 

1,2,2_-Trisinapoylgentiobiose 40.8 

1,2_-Disinapoyl-2-feruloylgentiobiose 9.5 

1-Sinapoyl-2,2_-diferuloylgentiobiose 2.4 

Tissue proportion  

   
Floret – 38 % 

 

 

 

 

Stem – 62 % 

 

Total phenolic content 
(mg kg-1 fresh weight) 

 

2,046±105 

 

 

 

 

656±47 
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1,2,2_-Trisinapoylgentiobiose 5.8 

Feruloyl acid derivatives 

1,2-Diferuloylgentiobiose 51.1 

Total flavonoids 659.3 

 

 

2.3.2. Glucosinolates: biosynthesis, classification and health-promoting properties 

 

The glucosinolates, previously known as mustard oils (from where they were discovered 

in the 17th century), are sulphur-containing compounds mainly found in the Brassicaceae 

family. Glucosinolates are derived from amino acids and can thus be divided into three 

groups according to their amino acid precursor: aromatic (derived from Leu, Ile, Val, and 

Met), aliphatic (Met), alkenyl (Met) and indoles glucosinolates (Trp). The glucosinolates 

biosynthesis in Brassicas proceeds through three independent stages: (a) chain elongation 

of selected precursor amino acids (only Met and Phe), (b) formation of the core 

glucosinolate structure, and (c) secondary modifications of the amino acid side chain 

(Figure 11). Together with side-chain elongation, secondary modifications are 

responsible for the >120 known glucosinolates structures (Fahey et al., 2001). 

 

Myrosinase (thioglucoside glucohydrolase) is largely stored in separate cell 

compartments from the glucosinolates. When plant cells are damaged (i.e., during food 

preparation, mastication or injuries caused by predators, such as insects), glucosinolates 

come into contact with the myrosinase. Then, this enzyme catalyses the glucosinolates 

conversion to isothiocyanates (ITC) after several reactions described in Figure 12 (Cartea 

and Velasco, 2008). Contrary to previous studies, myrosinase-like activity in animal and 

human gut microflora has been recently reported to be inefficient and highly variable in 

humans (Bricker et al., 2014). Other products of the glucosinolate hydrolysis can be 

thiocyanates and nitriles, both without bioactive properties, depending on the pH or the 

presence of metal ions. Glucosinolates are water soluble, anionic, non-volatile and heat-

stable compounds. It is believed that these molecules have no significant biological 

activity. Contrary to them, ITC are biologically active, typically lipophilic, highly 

reactive, volatile, malodorous and bitter (Fahey et al., 2001). A range of ITC, such as 

sulforaphane (derived from the glucosinolate glucoraphanin), have been considered 

strong chemopreventive compounds together with other antimicrobial properties and 

prevention of cardiovascular disease (reviewed by Traka and Mithen (2009)).  
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Figure 11. Aliphatic and indolic glucosinolate biosynthetic pathways in the Brassica Arabidopsis 

thaliana (Sonderby et al., 2010): (a) Chain elongation machinery; (b) Biosynthesis of core glucosinolate 

structure; (c) Secondary modifications. Abbreviations: APR, APS reductase; APS, adenosine-50-

phosphosulfate; Bz, benzoyl; BzH, benzaldehyde; BzOH, benzoic acid; BzCoA, benzoyl-coenzyme A; In, 

30-indolyl; OAS-TL, O-acetylserine(thiol)lyase; PAP, adenosine-30,50-bisphosphate; and PAPS, 30-

phosphoadenosine-50-phosphosulfate. 
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Figure 12. Enzymatic conversion of glucosinolates to ITC by plant myrosinase (Shikita et al., 1999). 

 

Broccoli cvs. have high contents of glucosinolates (Kushad et al., 1999). The main 

glucosinolates found in Bimi® broccoli are glucoraphanin, glucobrassicin, gluconapin and 

proigoitrin as observed in Table 4 (Martínez-Hernández et al., 2013c). 

 

Table 4. Glucosinolates distribution in parts of Bimi® broccoli (Martínez-Hernández et al., 2013c). 

 Floret Stem Whole 

Aliphatic    

Glucoraphanin (4-Methylsulphinylbutyl) 1.53 1.14 3.47 

Glucobrassicanapin (4-Pentenyl) 0.71 0.24 1.45 

Alkenyl    

Gluconapin (3-Butenyl) 0.02 0.02 0.05 

Indolyl    

4-Hydroxyglucobrassicin (4-Hydroxy-3-indolylmethyl) 0.09 0.12 0.25 

Glucobrassicin (3-Indolylmethyl) 3.41 0.46 4.76 

4-Metoxyglucobrassicin (4-Methoxy-3-indolylmethyl) 1.40 0.52 1.74 

Neoglucobrassicin (N-Methoxy-3-indolylmethyl) 0.26 0.20 0.60 

Aromatic    

Gluconasturtiin (2-Phenylethyl) 0.23 0.13 0.41 

TOTAL 7.66 2.82 12.73 

 

2.3.3. Antioxidant compounds and their classification 

 

ROS are chemically reactive molecules containing oxygen. ROS include oxygen ions 

(i.e., 1O2), free-radicals (O2
-, ·OH, NO·, etc.) and peroxides (H2O, ONOO-, etc.). ROS are 

highly reactive due to the presence of unpaired valence shell electrons. ROS form as a 

natural by-product of the normal metabolism of oxygen and have important roles in cell 

signalling and homeostasis. However, under exogenous (heat exposure, ultraviolet light, 

O3, contaminants, additives, tobacco, drugs, etc.) or endogenous (monoelectronic O2 

reduction, auto-oxidation of carbon compounds, catalytic activation of several enzymes, 

etc.) stresses, ROS levels can increase dramatically. This may result in damage to cell 

structures. Cumulatively, this is known as oxidative stress. In this way, the antioxidants 

are compounds that at low concentrations, compared to the substrate, delay or prevent the 
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oxidation of that substrate during an oxidative stress. According to its nature, these 

compounds may be classified as enzymatic or non-enzymatic antioxidant compounds 

(Figures 13 and 14). The total antioxidant capacity (TAC) of a sample is determined by 

the synergistic interactions between different antioxidant compounds and for the specific 

reaction mechanism of each of them. The TAC can be influenced by physiological (i.e., 

ripening, senescence) and technological factors such as storage and processing conditions 

(Devasagayam et al., 2004). 

 

Several epidemiological studies have shown that fruit and vegetables-rich diets reduce 

the incidence of cardiovascular and other chronic and degenerative diseases related to the 

oxidative damage (Balasundram et al., 2006; Dragsted, 2003). Thus, the protective effects 

of the fruit and vegetables consumption have been associated to the presence of 

antioxidant compounds, mainly polyphenols and vitamin C (Scalbert et al., 2005). 

 

 
 

Figure 13. Antioxidant compounds classification (Artés-Hernández et al., 2009b). 
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Figure 14. Antioxidant enzymes pathways (Gärtner and Wese, 1986). AsA: Ascorbate; APX: Ascorbate 

peroxidase (EC 1.11.1.11); CAT: Catalase (EC 1.11.1.6); GPX: Guaiacol peroxidase (EC 1.11.1.9); GR: 

Gluaiacol reductase (EC 1.6.4.2); GSH: Glutathione; GSSG: Glutathione disulfide; MDA: 

Monodehydroascorbate; NADH: Monodehydroascorbate reductase (EC 1.6.5.4); NAD: Nicotinamide 

adenine dinucleotide; NADPH: Nicotinamide adenine dinucleotide phosphate (EC 1.1.1.184); SOD: 

Superoxide dismutase (EC 1.15.1.1). 

 

 

3. MINIMAL PROCESSING OF FRUIT AND VEGETABLES 

 

3.1. Overview 

 

The actual consumer profile is characterized with a high interest in a healthy diet but with 

little time to prepare the meals playing convenience a key factor in the consumer food 

choice. Furthermore, sensory aspect is also crucial, together with healthiness and 

convenience, in the final consumer decision. Traditionally, the use of intense thermal 

treatments (pasteurization, sterilization, etc.) to ensure the food safety has prevailed over 

the nutritional/bioactive and sensory properties of food. However, the interest of the food 

industry in mild thermal treatments, generally combined with low temperature storage, 

and non-thermal treatments (high pressure processing, irradiation, ultrasound, pulsed 

light and pulsed electric fields, etc.) is highly increasing with special focus in this research 

area. Furthermore, the consumer interest in food free from additives has led to an intense 

research on new preservatives of natural origin and specialized technology (essential oils, 

modified atmosphere packaging, nanotechnology, etc.). According to such scenario, new 
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food products, such as fresh-cut and fifth range products, are being developed with 

excellent nutritional/bioactive and sensory quality while meeting always the food safety 

aspects. 

 

3.2. Fresh-cut products 

 

The fresh-cut products are ready-to-eat products, elaborated free from additives by using 

light combined methods such as washing, cutting, sanitation, packaging (under modified 

atmosphere packaging, MAP) and chilling (Allende and Artés, 2005). These products 

usually do not need further processing prior to consumption. Depending of the country 

and preparation form, these products have received several denominations such as Fourth 

Range (‘4ème Game’) in the French-speaking countries, and minimally fresh processed, 

slightly processed, partially processed, ready-to-eat, ready-to-use or fresh-cut in the 

Anglo-Saxon countries. In Spain there is not a consolidated denomination, but ‘minimally 

fresh processed’ has been suggested (Artés, 2000).  

 

New technologies and techniques are continuously being applied by the fresh-cut industry 

with the purpose of extending the shelf life of these products with the best sensory and 

nutritional/bioactive quality while meeting the regulations related to food safety. Thus, 

the high convenience of fresh-cut products together with their good sensory properties 

and high contents of health-promoting compounds present many advantages for 

consumers and food services (Artés, 2000; Wiley, 1994): 

 

• Reduced preparation time (ready-to-eat) 

• Similar characteristics to the original plant material (fresh-like) 

• Provide a uniform and consistent high quality 

• Easy supply of healthy products 

• Reasonable price 

• Easy to store with little storage space 

• Low waste wage 
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3.3. Fifth range products 

 

The application of heat treatments is one of the most ancient food preservation methods. 

The sterilization treatment has allowed the appearance of canned ready-to-eat meals from 

traditional recipes and with a long commercial life without refrigeration. Nevertheless, 

sterilization treatments are very aggressive with the nutritional and sensory properties of 

food, and especially with vegetables, leading to the potential rejection by the consumer. 

Consequently, the application of mild heat treatments with a subsequent refrigerated 

storage firstly defined the fifth range industry of vegetables.  

 

Accordingly, the term of fifth range vegetable products was firstly attributed to vacuum-

packaged boiled vegetables ready-to-heat and eat. Lately, when the offer of fifth range 

vegetable products increased they were defined as plant-based products which had been 

heat-treated to guarantee a conservation period of minimum 6 weeks (Tirilly and 

Bourgeois, 2002).  

 

Nowadays, the fifth range products could be defined as those products which have 

received a mild thermal treatment after previous unit operations, in order to achieve the 

desirable organoleptic characteristics, which are kept in the refrigerator with/without 

adding preservative or dressings. In the Anglo-Saxon term the fifth range products are 

sometimes referred as ‘Refrigerated pasteurized foods of extended durability’ 

(REPFEDs) (Mossel and Struijk, 1991). The usual processing temperatures for such 

products is usually between 70 and 95 ºC. After heat treatment these food products are 

rapidly cooled (‘blast chilling’) and stored under refrigeration until consumption. 

 

The fifth range vegetables can be described by the following characteristics: 

• Heat-treated products, ready-to-eat and marketed under refrigeration. 

• Preheated prior to consumption, usually in microwave or conventional oven. 

• Usually packaged in plastic material. 

• It is required to maintain the cold chain until consumption (processing, 

packaging, storage and distribution). 

• The technology used to preserve consists of packaging, heat treatment and 

cooling. 
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3.4. Overview of fresh-cut and fifth range products market 

 

The fresh-cut industry emerged in the early 1970s with the intention of suppling ready-

to-eat salads to the fast food establishments. Lately, the fresh-cut market was expanded 

to other countries like Switzerland and Germany in the 1980s. In the middle of the 1980s, 

this market was extended to UK, France, The Netherlands and Italy. The introduction of 

the fresh-cut products appeared in Spain at the beginning of the 1990s (Artés and Artés–

Hernández, 2003; Sánchez–Pineda, 2003).  

 

The European fresh-cut industry has shown exponential growth since its appearance in 

the early 1980s. UK is the major fresh-cut produce consumer because the ready-to-eat 

product culture is deeply established in that country. In countries like Germany and Spain, 

in which fresh-cut fruit and vegetables market is still emerging, the market growth in the 

last years was higher than other countries in which this market is already established, for 

instance Italy and the Netherlands. In the 2015-2016 campaign the fresh-cut market in 

Spain increased in a 15 %. Concerning the features of the fresh-cut market, packaged 

salads appear to be the leader of fresh-cut products, in fact they hold about 50 % of total 

fresh-cut market volume. The other 50 % is shared by the fresh-cut fruit (10 %) and the 

other categories as ready-to-cook, crudités and other with 40 % (MAGRAMA, 2016b). 

 

The market of fifth range products has highly increased in the recent years. Europe is one 

of the most active markets related to this sector, with a 50 % of worldwide market share, 

followed by USA with a 23 % (period January-June 2010). UK leads the top-five list of 

countries with the highest turnover of fifth range products. Although Spain is in the last 

position of the latter list, the consumption of these products in our country showed one of 

the highest growth rates. The delayed development of fifth range products in Spain, 

compared to France and UK, has been due to the sociodemographic differences with the 

latter countries. In this way, this food sector opens a market opportunity (Mintel, 2010).  

 

In Spain, the consumption of the fifth range products increased in a 4.1 % from 2014 to 

2015 %. The fifth range products consumption was 12.9 kg year-1person-1 in 2015, a 4.6 

% higher than in 2014. The average spend was 53.1 € year-1 person-1 in 2015, a 4.2 % 

higher than in 2014 (MAGRAMA, 2016b). The new technologies have allowed to 

increase the offer of such products with better sensory and nutritional/bioactive quality, 
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which has also favoured the increase of their consumption. The fifth range products 

perfectly meet the following consumer expectations: 

 

• High sensory and nutritional quality 

• Adequate to their new habits 

• Fresh and natural products 

• Healthy properties 

• Microbiologically safe 

 

 

4. VEGETABLE-BASED SMOOTHIES: A CONVENIENT AND HEALTHY 

SOLUTION FOR THE ACTUAL CONSUMER 

 

4.1. Definition of smoothie 

 

A high consumption of fruit and vegetables has been related with a prevention of a wide 

array of diseases, such as degenerative disorders, cancer and cardiovascular among others 

(Slavin and Lloyd, 2012). Nevertheless, the present lifestyle makes difficult the 

preparation of these plant products. Thus, the consumption of fruit and vegetables should 

be promoted through the development of attractive ready-to-eat products that should be 

processed with minimal and non-aggressive treatments to preserve as much as possible 

the quality parameters of the raw materials (Artés et al., 2009). In this way, smoothies are 

an exceptional and convenient alternative to increase the daily consumption of fruit and 

vegetables (Rodríguez-Verástegui et al., 2015).  

 

Smoothies are non-alcoholic beverages prepared from fresh or frozen fruit and/or 

vegetables, which are blended without filtering and usually mixed with crushed ice to be 

immediately consumed. Often, some smoothies may include other components like 

yogurt, milk, ice-cream, lemonade or tea. They have a milk shake-like consistency that is 

thicker than slush drinks (Castillejo et al., 2015). 
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4.2. Units operations during smoothie processing: carrots-based smoothies, a 

particular case 

 

The unit operations during smoothie production depend of the fruit or vegetable used. 

Accordingly, different equipment is used for fruits like pear, watermelon, peach, pear, 

etc., or others like mandarins or oranges. However, the common unit operations for the 

production of fruit and vegetables smoothies are described in Figure 15. 

 

 

 

Figure 15. Common unit operations during smoothie processing 
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4.2.1. Raw material 

 

The plant material must have a high quality at harvest which will contribute to obtain a 

smoothie with excellent quality. Generally, the quality of fruit and vegetables at harvest 

may be influenced by the following preharvest factors: 

 

• Genetic factors: varieties, etc. 

• Climate conditions: light, temperature, relative humidity (RH), pluviometry, etc. 

• Soil conditions: soil type, pH, humidity, microbiota, mineral composition, etc. 

• Agricultural practices: fertilization, pesticides, irrigation type, etc. 

 

4.2.2. Reception, sorting and destoner 

 

The first operation upon reception of the raw material at the processing plant is a quality 

inspection. If the plant material presents inadequate characteristics it must to be rejected 

to the producer. The weight of the classified raw material is necessary in order to control 

the processing steps, formulation of the product and quality control. In order to regularize 

the supply to the processing line, the raw material may be stored at 0-4 ºC and high RH 

(90-95 %). 

 

Product sorting may be accomplished based on visual quality and uniformity of plant 

material. These parameters will facilitate all the subsequent processing steps, increasing 

the productivity and final quality of the smoothie. A de-stoner equipment is used to 

remove stones from the roots based on the centrifugal force that separate carrots to the 

peripheral area of the device while the stones remain in the centre. 

 

4.2.3. Prewashing, washing and rinsing 

 

The raw material is prewashed in the dirty area of the processing line with cold slightly-

chlorinated water (5-10 ºC; 50 mg L-1 free chlorine). This step will eliminate the unwanted 

dirt, pesticide residues, plant debris, insects and foreign matter. 

 

Washing of carrots can be done manually or with washer devices (rotary cylinders, 

bubbling washers or washers by aspersion). The washing and disinfection of carrots is 
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made with cold chlorinated water (1-2 ºC; 100-150 mg L-1 free chlorine), which is 

acidified (pH 6.5-7.5) with citric acid to augment the bacteriostatic effect of chlorine. The 

ideal contact time is around 2 min. However, NaClO may partially oxidize food 

constituents originating some carcinogenic compounds (Suslow, 1997). Accordingly, 

alternative sanitising treatments have been studied such as UV-C radiation, innocuous 

chemical substances (hydrogen peroxide, acetic acid, etc.) electrolyzed water, etc. 

 

After washing, removal of residual leaves is conducted on conveyer belts. A preventive 

peeling of carrots may be conducted prior to blending. 

 

4.2.4. Weighting, mixing and blending 

 

The quantities of conditioned carrots and water, and other fruit and vegetables (depending 

of the smoothie composition), are measured and dumped into the blender machines. 

Blending intensity is regulated based on the desirable particle size which will depend of 

the fruit/vegetables used and consumer preferences. 

 

4.2.5. De-aeration 

 

Excessive air may be dissolved into the produced smoothie during blending. The oxygen 

from the air may lead to undesirable oxidation processes of the smoothie, vitamin C losses 

and enzymatic browning. Accordingly, de-aeration process will highly reduce the oxygen 

content from the smoothie. The de- aeration is conducted by passing the smoothie through 

a vacuum deposit leading to a mild boiling which eliminate the dissolved air. Bubbling 

nitrogen may be used also as a de- aeration system. 

 

4.2.6. Thermal and non-thermal treatments 

 

Beverages comprise the main direction of industrialization of fruit and vegetables. Such 

plant products must be properly treated and aseptically bottled since their composition 

represent a high risk of spoilage also compromising the food safety. Preservation 

treatments (thermal or non-thermal) may be conducted prior to filling or after filling. 

Filling of the product followed by treatment is preferred in order to avoid cross 

contamination during filling, which may be made under strict aseptic conditions. 
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The industry of fruit and vegetables beverages has been used intense thermal treatments 

(high temperatures and long treatment times) to ensure the inactivation of several 

enzymes and reduction of microbial loads in order to ensure the microbial quality and 

food safety of the product during a long shelf life even at room temperature.  

 

However, the current industrial practices are turning into milder heat treatments (Tª < 90 

ºC for a short time < 1 min) combined with a subsequent refrigerated storage. The higher 

cost of the refrigerated distribution and domestic conservation may be justified with the 

high sensory and nutritional/bioactive quality of the product. For example, a thermal 

treatment of 90 ºC for 45 s of a green vegetables smoothie ensured a shelf life of 45 days 

at 5 ºC being their nutritional/bioactive compounds highly preserved (Castillejo et al., 

2016a). Furthermore, a 250-g portion of latter smoothie may highly cover the minimum 

daily recommended intakes of fibre, minerals and vitamin C (FAO/WHO, 2004) for 

different segments of the population with difficulties to consume fresh fruit and 

vegetables. On the other side, a treatment of 80 ºC for 3 min extended the shelf life of red 

vegetables smoothies from 20 to 40 days during storage at 5 ºC (Castillejo et al., 2015). 

Last treatment almost completely inactivated quality-degradative enzymes (polyphenol 

oxidase, PPO; peroxidase, POD; Pectinmethylesterase, PME; and pectingalacturonase, 

PG) being their activities under minimum levels during storage at 5 and 20 ºC (Rodríguez-

Verástegui et al., 2015). Furthermore, last heat treatment enhanced the antioxidant 

compounds (up to 160 %) due to their higher extractability which a potential higher 

bioavailability (Bugianesi et al., 2004).  

 

On the other side, non-thermal treatments of beverages have been developed in the last 

decades to obtain fruit and vegetables beverages with excellent microbial, sensory and 

nutritional/bioactive quality meeting always the legal regulations related to food safety. 

The most interesting non-thermal treatments used for fruit and vegetables smoothies are 

high pressures processing (HPP) and pulsed electric field processing (PEF). 

 

HPP uses elevated pressures (100–1000 MPa), with or without the addition of heat. It is 

also known as high-hydrostatic-pressure processing since water is the most used pressure-

transmitting fluid (Jung et al., 2011). It is claimed that this process is clean and energy-

efficient compared with many conventional processes. HPP is used to achieve 

inactivation of microorganisms by damaging their membranes, induce some consumer-
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desired food attributes (i.e. increased viscosity in some tomato products by inactivation 

of pectin-degradation enzymes), and/or avoid detrimental effects on other quality 

attributes (texture, flavour, and colour) specially appreciated by consumers (Martínez-

Hernández et al., 2016b). HPP treatments may achieve high inactivation of pathogenic 

bacteria as recently reviewed (Rendueles et al., 2011). In Figure 16 can be observed the 

two possibilities of HPP: HPP+filling (A) and filling+HPP (B). 

 

 

 

 

Figure 16. HPP of fruit and vegetables smoothies under two different processing alternatives: A) 

HPP+filling and B) filing+HPP. 

(http://www.foodengineeringmag.com/articles/82608-fda-regs-spur-non-thermal-r 

http://www.ipl-plastics.com/en/retail-packaging/products/file/sealpack-square/33) 

 

Although there are still few HPP studies in smoothies, the reported data present this 

technology as an excellent alternative to conventional heat treatments. Accordingly, HPP 

treatments of fruit smoothies at 450-600 MPa at a moderate temperature (20 ºC) was 

proposed as good alternatives to conventional thermal processing (Keenan et al., 2010). 

In addition, the content of phenolic compounds, anthocyanins and vitamin C of a 
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strawberry purée were retained to a greater extent with HPP treatments of 400-600 MPa 

compared to conventional heat treatment (Keenan et al., 2012). 

 

The PEF processing technology consists in the application of high-voltage pulses (20–80 

kV cm-1) for short periods of time (ms or μs) to a product placed in a treatment chamber 

confined between electrodes (Morales-de la Peña et al., 2011). Most studies using high-

intensity PEF have been devoted to the design of pasteurization applications for liquid 

products to inactivate microorganisms and enzymes by maintaining the nutritional 

quality, antioxidant content, and freshness of liquid foods (Martínez-Hernández et al., 

2016b). However, studies of PEF treatments in smoothies are very scarce. For example, 

the application of PEF (34 kV cm-1, 60 μs) combined with a mild pre-heat treatment (55 

ºC/60 s) extended the shelf life of a tropical fruit smoothie during storage at 4 ºC 

compared to a heat treatment at 72 ºC for 15 s (Walkling-Ribeiro et al., 2010). In addition, 

when this smoothie was inoculated with Escherichia coli, the combination of PEF (34 kV 

cm-1, 60 μs) with the pre-heat treatment (55 ºC / 60 s) showed an additional effect reaching 

up to ≈7 CFU reductions of E. coli, an effect comparable to that of a treatment at 72 ºC 

for 15 s (Walkling-Ribeiro et al., 2008). 

 

4.2.7. Filling of recipients and storage 

 

The recipients are filled with the treated smoothie under aseptic conditions. The recipients 

are usually made of glass or plastic. Although transparent recipients are desired by 

consumers to visualize the smoothie colour, opaque recipients are preferred by producers 

in order to avoid oxidations by light. 

 

After filling, the smoothies are cooled and stored. Storage and distribution of smoothies 

may be under refrigeration in the cases of mild heat treatments (in benefit of sensory and 

nutritional/bioactive quality) or room temperature when intense heat treatments are used. 

 

4.2.8. Quality control and cold storage  

 

Before the expedition of the product from the factory, it has to pass an effective quality 

control system to guarantee the safety, suitability and compliance of specifications. In 
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addition, it has to have a procedure of product recall when the specifications are not meet. 

The equipment has to be frequently revised, adjusted and calibrated. 

 

4.3. History and overview of smoothies market 

 

The Mediterranean, Eastern and Latin-American cultures have prepared beverages of 

fruit and vegetables from ancient times which were very similar to the current smoothies. 

The introduction of the fruit/vegetables shakes in the USA could be dated in the 1940-

60s from Latin America. The reached popularity of fruit/vegetables shakes in the USA 

could be explained due to their good organoleptic properties as well as an excellent 

alternative to diet drinks. The elimination of milk from the fruit/vegetables shakes due to 

intolerances led to its substitution by ice, even improving the organoleptic properties with 

the ice-refreshing sense. The term ‘smoothie’ probably appeared in that time. Several 

companies emerged then in the USA which are currently sales leaders with smoothies 

franchises very popular and important providing to the consumers an infinite list of a 

variety of fruit/vegetables smoothies. The expansion of the healthy trend of smoothies to 

Europe arrived lately when several drink companies offered these innovative products 

like gourmet drinks, for a progressive inclusion in the even most conventional market. 

 

The highest production of packaged smoothies sold under refrigeration is located in the 

northern countries of Europe. UK is the European leader with 84 million of litters per 

year (Figure 17), distantly followed by France, Germany and Poland with 8-15 million of 

litters per year in 2013 (AIJN, 2014b). The production of smoothies in those countries 

comprises between 9 and 16 % of total production of refrigerated beverages. 



Introduction 
 

32 
 

 

Figure 17. European production of smoothies in 2013. The values on each bar represent the percentage of 

smoothie production over the total production of refrigerated beverages (elaborated from AIJN (2014b)). 

 

The Spanish production of smoothies is low and there is little information about it. A 

Spanish market study of 2012 revealed that smoothies represented a 9 % over a total of 

240 selected (pasteurized or sterilized which does not include still water or carbonated 

drinks) commercialized beverages, being juices and nectars the major beverage group 

with a 77 % (Figure 18). However, the smoothies sales in the Spanish market has been 

highly incremented in the last years as it can be observed in the supermarkets, where the 

companies are highly introducing these products. 

 

 

Figure 18. Market distribution over 240 selected (pasteurized or sterilized which does not include still 

water or carbonated drinks) commercialized beverages in Spain in 2012 (elaborated from Bardón-Iglesias 

et al. (2012)). 
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5. QUALITY DECAY OF PLANT PRODUCTS DURING PROCESSING AND 

STORAGE 

 

The expected characteristics of plant-derived food products by consumers are freshness, 

optimum overall quality (general appearance, sensory quality, aroma and taste– and 

nutritional quality) and safety. However, during processing and retail period some 

physiological/biochemical, microbiological and nutritional/bioactive changes may occur, 

reducing the expected quality attributes of the product. 

 

5.1. Physiological and biochemical changes  

 

The fresh-cut processing steps may increase the metabolism of the plant material, 

reflected in higher respiration rates (RR) and C2H4 emission, which usually leads to a 

faster deterioration rate (Cantwell and Suslow, 2002a). Temperature is the most important 

factor that affects fresh-cut produce metabolism. When temperatures increase from 0 to 

10 ºC, the respiration rate increases substantially (Watada et al., 1996). Produce types and 

cvs. differ in chilling sensitivity and, consequently, the optimum storage temperature will 

depend on the product itself and the exposure time. Fresh-cut vegetables are highly 

susceptible to weight loss because internal tissues are exposed if there is a lack of skin 

and cuticle. However, RH is generally very high within the package and dehydration is 

not a big problem. MAP can be beneficial for keeping RH and maintaining the product 

quality (Artés et al., 2009).  

 

The action of the enzyme lipoxygenase, which catalyses peroxidation reactions, may 

result in the formation of aldehyde and ketone derivatives that are characteristic of many 

off–odours during the shelf–life of the fresh-cut product. 

 

5.2. Nutritional and bioactive changes  

 

The fresh-cut processing keys that highly influence the nutritional and bioactive contents 

are cutting, washing, dewatering, packaging, and processing and storage temperatures. 

The most important tool to extend the shelf–life and maintain the quality of the fresh-cut 

fruit and vegetables is the temperature management. Conditioning, washing and 

disinfection steps can favour the reduction of nutritional and bioactive contents by 
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lixiviation or elimination of some parts of the plant material. Glucosinolates levels do not 

necessarily decline rapidly after cutting and even induction can take place, but fresh-cut 

Brassica vegetables show optimal conditions for myrosinase activity with the conversion 

of glucosinolates to the biological active ITC. 

 

Gas partial pressures during MAP or controlled atmospheres storage can highly influence 

the nutritional and bioactive profile of fresh-cut products. Conventional broccoli (cv. 

Marathon) stored during 7 days at 1 ºC in air–storage conditions (17 kPa O2 + 2 kPa  CO2) 

showed a 71 % reduction of total glucosinolates (aliphatic and indoles). In the same 

conditions, significant flavonoids and hydroxycinnamic acid derivates decreases of 62 

and 50–70 %, respectively, were found, contrary to the low stability of anthocyanins in 

fresh-cut vegetables (Vallejo et al., 2003). CO2–enriched atmospheres with low O2 

content (0.5 kPa O2 + 20 kPa  CO2) produced lower total glucosinolates increases (21 %) 

than air–stored samples (42 %) after 7 days at 10 ºC (Hansen et al., 1995). 

 

5.3. Microbial quality and food safety 

 

The application of sanitising treatments on fresh-cut products or thermal/non-thermal 

treatments on fruit and vegetables beverages is crucial to obtain a good microbial quality 

of products while meeting the food safety aspects. Furthermore, a high much more effort 

must be paid from a well–designed integrated production, handling, and processing to 

proper distribution chains, keeping appropriate chilling storage temperatures and optimal 

packaging conditions throughout the entire shelf life.  

 

In addition, Good Agricultural Practices (GAPs) for suppliers of raw materials, Good 

Manufacturing Practices (GMPs), Standards Operating Procedures (SOPs) and an 

effective Hazard Analysis Critical Control Point (HACCP) program should be 

implemented and accomplished to minimize the risk of contamination by pathogens, 

assuring the safety of consumers. When the mentioned programs are not properly applied, 

outbreaks may occur with disastrous consequences. The microbiological risks of plant-

derived products can be classified in two categories (Hurst, 2002): 

 

• The contamination happened during cultivation or harvest of the plant material by 

indigenous pathogens. 
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• The microbiological risk is present during the fresh-cut processing, mainly in the 

cutting and washing steps, since the natural barriers of plant material (waxy outer 

skins) against microbiological invasion are damaged. Furthermore, cutting 

operation releases nutrients which can accelerate microbiological growth. 

 

 The previous Spanish regulation RD 3484/2000 (2000) which established the 

‘Regulation for the hygiene, elaboration, distribution and commercialization of ready-to-

eat foods’, which microbiological criteria was the spoilage and pathogenic microflora, 

was repealed by the Spanish Regulation RD 135/2010 (2011) in benefit of EU Regulation 

1441/2007 (EC_1441/2007, 2007). The latter EU regulation establishes some pathogenic 

microorganisms as the unique microbiological criteria. Then, fresh-cut and fruit and 

vegetables beverages with mild heat treatments or non-thermal treatments are regulated 

by the EU 1441/2007 Regulation. Table 5 include the applicable microbial criteria of the 

latter Regulation for fresh-cut and fruit and vegetables beverages. 

 

Table 5. Food safety criteria applied to the fresh-cut products food (Regulation EC 1441/2007, 2007). 

 

 

Food category Microorganism 

Sampling 

plan 1 
Limits 2 Stage where the 

criterion applies 
n c m M 

Pre-cut fruit and vegetables 

(ready–to–eat). 
E. coli 5 2 100 CFU g–1 1,000 CFU g–1 Manufacturing process. 

Pre-cut fruit and vegetables 

(ready–to–eat). 
Salmonella 5 0 Absence in 25 g 

Products placed on the 

market during their shelf–

life. 

Ready–to–eat foods able to 

support the growth of 

Listeria monocytogenes, 

other than those intended 

for infants and for special 

medical purposes. 

L. monocytogenes 5 0 

100 CFU g–1 3 

Products placed on the 

market during their shelf–

life. 

Absence in 25 g 4 

 

Before the food has left 

the immediate control of 

the food business 

operator. 

(1) n = number of units comprising the sample; c = number of sample units giving values between m and M // (2) For points 1.1–1.25 
m = M. // (3) This criterion shall apply if the manufacturer is able to demonstrate, to the satisfaction of the competent authority, that 

the product will not exceed the limit 100 CFU/g throughout the shelf–life. The operator may fix intermediate limits during the process 

that must be low enough to guarantee that the limit of 100 CFU/g is not exceeded at the end of shelf–life. // (4) This criterion shall 
apply to products before they have left the immediate control of the producing food business operator, when he is not able to 

demonstrate, to the satisfaction of the competent authority, that the product will not exceed the limit of 100 CFU/g throughout the 

shelf–life. 
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6. DETRIMENTAL EFFECTS OF HIGH PRESSURE PROCESSING ON APPLE 

BLEND COLOUR, A PARTICULAR CASE 

 

Apple juice is the most worldwide consumed fruit juice, together with orange juice, due 

to its excellent sensory attributes and health-promoting related properties derived from 

the phytochemicals present in this fruit (AIJN, 2014a; Hyson, 2011; USDA, 2013). Food 

safety and the inactivation of oxidizing enzymes, have been conventionally controlled by 

heat treatments but in detriment of the sensory quality of the product. Accordingly, novel 

sustainable preservation technologies like HPP have emerged to maintain quality and 

bioactive/nutritional content of processed food guarantying the food safety (Artés et al., 

2009). However, such mild-moderate HPP treatments at room temperature enhance the 

activity of quality degradative enzymes such as PPO, the main responsible of apple juice 

browning, as it is recently reviewed (Eisenmenger and Reyes-De-Corcuera, 2009).  

 

Therefore, HPP treatment at 400 MPa for 5 min at 20 ºC induced a 65 % increase of the 

PPO activity in apple juice (Buckow et al., 2009). Reactivation of PPO and other enzymes 

has been also observed during shelf life of other HPP-treated products (Jacobo-Velazquez 

and Hernandez-Brenes, 2010). Furthermore, besides the evident sensory quality loss, 

application of high temperatures during HPP treatment has even shown an antagonistic 

effect between pressure and temperature on PPO inactivation in apple juice and other 

food products (Buckow et al., 2009; Ludikhuyze et al., 2002). Consequently, there is a 

need to find combined treatments of mild HPP treatment (low 

pressures/temperature/time), which are economically affordable by the food industry, and 

antibrowning agents. 

 

Several antibrowning agents such as sulfiting agents, reducing agents (ascorbic acid and 

analogue substances, glutathione, L-cysteine), enzyme inhibitors (aromatic carboxylic 

acids, substituted resorcinols, anions, peptides), chelating agents (phosphates, EDTA, 

organic acids), acidulants (citric acid, phosphoric acid) and enzymes have been used to 

inhibit PPO activity in food products (compiled by Özoğlu and Bayındırlı (2002)). 

However, the actual consumer demands healthy food with natural ingredients free from 

additives. Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides from the 

bacterial digestion of starch, which have been studied as natural antibrowning agents in 

fruit and vegetable juices (Hicks et al., 1996; Iyengar and McEvily, 1992). They are 
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cylindrically shaped molecules with a cavity of hydrophilic outer surface, and 

hydrophobic internal surface which is able to form inclusion complexes with PPO 

substrates (Kalogeropoulos et al., 2010). Among CDs, maltosyl-β-CD (mβCD) has shown 

excellent antibrowning effect and solubility, while being safe even when administered 

parenterally contrary to parent β-CD (Del Valle, 2004; López-Nicolás et al., 2007a). To 

the best of our knowledge, there are no studies on application of CDs with HPP on fruit 

and/or vegetable beverages. 

 

 

7. READY-TO-BLEND: A NEW FOOD CONCEPT BETWEEN FRESH-CUT 

AND SMOOTHIE PRODUCTS 

 

The new product concept ‘ready-to-blend’ fruit and vegetables, firstly reported here, may 

combine the ‘long’ shelf life of a fresh-cut product with the convenient consumption of a 

beverage. A ready-to-blend product may be defined as a fresh-cut (which implies 

correspondent plant material preparation, sanitizing treatments and MAP combined with 

low storage temperature) fruit, vegetable, or a mix of them, which is packaged under 

specific proportions ready for domestic blending. Therefore, the microbial growth and 

enzymatic/non-enzymatic degradative reactions of fruit and vegetables blended 

beverages may be highly reduced during storage in ready-to-blend products. Furthermore, 

the needed processing treatments and/or food preservatives of blended beverages are 

avoided in ready-to-blend products since blending is made at home being the beverage 

immediately consumed. On the other side, fresh-cut fruit and vegetables have higher shelf 

life, compared to untreated related beverages, due to techniques such as MAP and edible 

coatings (i.e. with chitosan, among others) (Artés et al., 2009). 

 

Chitosan, a deacetylated form of chitin, is a natural product with excellent antimicrobial 

properties and high potential to be used within the edible coatings of fresh-cut products 

to increase their shelf life (Lin and Chou, 2004). The most feasible hypothesis about the 

antimicrobial activity of chitosan is a change in cell permeability due to interactions 

between the polycationic chitosan and the electronegative charges on the cell surfaces. 

This interaction leads to the leakage of intracellular electrolytes and proteinaceous 

constituents leading to microbial cell death (Devlieghere et al., 2004). 
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8. METHODS TO INCREASE THE HEALTH-PROMOTING COMPOUNDS OF 

PLANT MATERIAL  

 

Plant cells are able to respond to its own defence against imposed stresses which may be 

biotic or abiotic. This response is reached owed to the vegetable cell plasticity in 

respective metabolomics, proteomics and genomics which finally drives to the 

modulation of some defence metabolic pathways (Aghdam et al., 2013). The adaptive 

mechanisms of plants to respond to biotic and abiotic stresses are similar, viz. by 

activating a primary protection mechanism and by inducing the overexpression of specific 

proteins as a result of each stress (Timperio et al., 2008), as is observed in Figure 19. 

 

Figure 19. Specific and common stress induced responses in plants (Alegria, 2015). 

 

Different protein families have been reported to be able to response to stresses by being 

again synthesized, stored or reduced, taking an important role in the antioxidant defence 

systems of plants as well. Abiotic stresses are able to induce protein dysfunctions by 

altering proteins structure, solubility or levels, where cell adaptation to conserve cellular 

homeostasis in stressful circumstances is indispensable to the own survival. To attain this 
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goal, one protein family involved in the stress response stands out, heat shock proteins 

(HSP) (Aghdam et al., 2013; Timperio et al., 2008). 

 

The health-promoting compounds of several fruit and vegetables may be increased with 

biotic and abiotic stresses (Avena-Bustillos et al., 2012; Cisneros-Zevallos, 2003; Reyes 

et al., 2007). The use of such stresses have several advantages over genetic engineering 

being the latter method usually considered as potential biological hazards that generate 

an ecological imbalance (Colwell et al., 1985). Accordingly, the usage of stresses on plant 

products for the synthesis of secondary metabolites with health-promoting properties has 

a high interest (Jacobo-Velázquez and Cisneros-Zevallos, 2012). The use of several 

postharvest abiotic stresses (i.e. wounding, UV-light, hyperoxia, ethylene, methyl 

jasmonate, etc.) for the synthesis of phenolic compounds in fruits and vegetables has been 

approached in some studies. Carrots occupy the sixth place among the list of most 

consumed vegetables, although the TPC of this vegetable is almost the lowest one (Chun 

et al., 2005). Accordingly, new strategies such as stresses may be applied to increase the 

phenolic levels of this vegetable leading to higher ingestion of these antioxidant 

compounds from this popular and highly consumed root. Furthermore, the content of the 

anticancer glucosinolates compounds may be increase with the use of stresses as recently 

proposed (Villarreal-García et al., 2016). 

 

8.1 Wounding 

 

Lignin and suberin are synthesized and stored in wounded locations during wound healing 

to defend plants from water loss and pathogen attack (Dixon and Paiva, 1995). The great 

synthesis of hydroxycinnamic acids in wounded tissues has been observed in several plant 

products like carrots, lettuce and potato (Reyes et al., 2007). The phenolic synthesis can 

be linked with a greater rate of production than their polymerization since these phenolic 

compounds are the substrate used for the lignin and suberin production during wound 

healing (Figure 20).  

 

The synthesis of soluble phenolics in stressed tissues has been proposed that is not 

restricted to the cell wall production but also it may function to protect cells under stress 

environments. The lignin and suberin biosynthesis starts with the production of 

hydroxycinnamic acids that are transformed to monolignols. These monolignols are then 
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transported to the cell wall where they are oxidized and polymerized. Several enzymes 

like laccases and peroxidases catalyse the dehydrogenative polymerization of 

monolignols. Hydrogen peroxide is used by peroxidases to oxidize monolignols while 

laccases use oxygen (Jacobo-Velázquez and Cisneros-Zevallos, 2012). 

 

 

Figure 20. Synthesis of phenolic compounds during the wound healing process (Jacobo-Velázquez and 

Cisneros-Zevallos, 2012). 

 

The wound-induced biosynthesis of hydroxycinnamic acids, suberin and lignin in plants 

is linked with the activation of metabolic processes related on the supplementation of 

carbons skeletons to the phenylpropanoid metabolism. Carbohydrates (starch and 

sucrose) are the substrates required for the phenolic biosynthesis. The synthesis of 

phenolics compounds, like respiration, initiates in the cytosol of plant cells where sucrose 

is cleaved to induce the production of fructose 6-P and glucose 6-P. A portion of the 

hexose-P pool is transported to the plastid and transformed to erythrose 4-P by the 

oxidative pentose-phosphate pathway. The other portion of the hexose-P pool is 

transformed to glycerone-P by glycolysis in the cytosol. Glycerone-P is transported to the 

plastid and transformed to phosphoenolpyruvate (PEP). PEP and erythrose 4-P are the 

substrates for the shikimate pathway which take places in the plastid. The shikimate 

pathway induces the chorismate synthesis, which is used by the chorismate mutase to 

produce prephanate. Then, prephanate is transformed to arogenate, which is successively 

converted to L-phenylalanine. PAL uses L-phenylalanine to start the phenolic 

biosynthesis as part of the phenylpropanoid metabolism that takes place in the 

endoplasmic reticulum of plant cells (Jacobo-Velázquez and Cisneros-Zevallos, 2012). 
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8.2. UV radiation 

 

UV radiation (10-400 nm) may be considered as an abiotic stress since it is able to induce 

synthesis and/or accumulation of phytochemicals in the plant, which leads to enhanced 

antioxidant activity. UV radiation might act on the pathways involved in the biosynthesis 

of the three principal groups of secondary metabolites: phenolics, terpenes and nitrogen-

containing compounds (Cisneros-Zevallos, 2003). Low UV doses may cause repairable 

DNA damage which would activate repair mechanisms for radiation-induced DNA 

damage. Accordingly, UV radiation may stimulate vital processes inside the cells and 

create a positive change in the homeostasis of plant tissues (Luckey, 1980). The metabolic 

responses of plant cells are dependent on the applied dose, irradiation time, the sensitivity 

of the antioxidant/phytochemicals to irradiation, and the raw material used (Alothman et 

al., 2009). 

 

UV-B radiation (280-315 nm) has been reported to induce significant enhancements of 

bioactive compounds such as phenolics (such as hydroxycinnamic acids), and respective 

antioxidant capacity, and glucosinolates in carrots and broccoli, respectively (Avena-

Bustillos et al., 2012; Ruhland et al., 2005). The signal transduction pathways by which 

UV-B controls the gene expression are poorly known. Nevertheless, the available studies 

have shown a pivotal role for reactive oxygen species as key second messengers acting 

up-stream of a number of pathways involving the plant hormones salicylic acid, jasmonic 

acid and ethylene (Mackerness, 2000). The application of UV-B treatments to grapes has 

led to an increase of resveratrol levels through the activation of PAL (Cantos et al., 2000). 

Furthermore, UV-B treatments (1.3 to 12 kJ m-2) have been able to induce phenolic 

accumulation (mainly 5-caffeoylquinic acid) in carrots (Avena-Bustillos et al., 2012). 

 

UV-C (100-280 nm) radiation has been proposed as an alternative sanitizing treatment to 

NaOCl in fresh-cut products (Artés et al., 2009). The germicidal effect of UV-C doses on 

fresh-cut products (0.5-20 kJ m-2) is explained by the UV-C-induced formation of 

pyrimidine dimers in the microbial genetic material that alter the DNA helix and block 

microbial cell replication (Nakajima et al., 2004). However, plant cells have likewise 

presented metabolic responses to some UV-C doses through the synthesis of bioactive 

compounds. Accordingly, low UV-C doses (0.5 kJ m-2) have induced an increase in PAL 

activity, while high doses (2.5 kJ m-2) lowered such enzyme activity (Nigro et al., 2000). 
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Some cell cultures synthetize UV-protective flavonoids and phytoalexins when are 

irradiated with UV-C (Mercier et al., 1994). Low UV-C radiation induce a number of 

changes in plant products including the production of antifungal compounds and ripening 

delay (El Ghaouth et al., 2003). A fungal resistance appeared after UV-C radiation 

apparently related with PAL activity in the peel of fruit and vegetables exposed to UV-C 

(Chalutz et al., 1992; Shama and Alderson, 2005). Moreover, UV-C has prompted the 

synthesis of phytoalexins, being these compounds elicitors of other protection 

mechanisms leading to modifications in the cell wall, increasing the biosynthesis and 

activity of several enzymes and by enhancing the antioxidant capacity. 

 

Conclusively, UV radiation is a technology with high interest to increase the health-

promoting compounds while it does not leave any residue, does not have legal restrictions, 

is easy to use and lethal to most types of microorganisms (Bintsis et al., 2000). However, 

combination UV-B and UV-C treatments for different hurdle technologies has not been 

studied yet. Accordingly, the combination of UV-B and UV-C is an excellent challenge 

of achieve excellent germicidal effects (UV-C) and enhancement of health-promoting 

compounds of fresh-cut products. 

 

8.3. Hyperoxia atmospheres 

 

Hyperoxia atmosphere packaging (over 60 kPa) of fresh-cut products has been described 

as an effective technique to inhibit enzymatic browning, prevent anaerobic fermentation 

and moisture and odour losses and reduce aerobic and anaerobic microbial growth (Artés 

et al., 2009). A number of factors may explain the toxicity of hyperbaric O2, like the 

adverse effects on the redox potential of the system, the oxidation of enzymes having 

sulfhydryl groups or disulfide bridges, and the accumulation of injurious ROS (Kader and 

Ben-Yehoshua, 2000). 

 

Hyperoxia atmospheres have been considered as an abiotic stress inducing accumulation 

of phenolic compounds in carrots (Jacobo-Velázquez et al., 2011). Nevertheless, such 

effect was not detected on the phenolic levels of Bimi® broccoli (Martínez-Hernández et 

al., 2013d). The enhancement of those antioxidant compounds under hyperoxia 

conditions may be explained by an increment of ROS (due to hyperoxia levels) by both 

incrementing the respiration rate and partially inhibiting the activation of the antioxidant 
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enzymes ascorbate peroxidase and catalase (Figure 21). These increased ROS levels in 

the tissue treated with hyperoxia induced a higher activation of PAL and thus higher 

accumulation of phenolic compounds. 

 

  

Figure 21. Hypothetical model explaining the role of ROS on the stress-induced production of phenolic 

compounds in carrots (Jacobo-Velázquez et al., 2011). 

 

 

9. BY-PRODUCTS REVALORIZATION: BROCCOLI, AS A PARTICULAR 

CASE. 

 

9.1. Overview of world food wastes and revalorization of crops by-products 

 

FAO has recently published that about 1.3 billion tons of food is worldwide wasted or 

lost per year. Food losses during preharvest varies from 10-20 % Figure 22. Particularly, 

losses in agricultural production of developing countries dominate over total food losses 

throughout the food supply chains.  
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Figure 22. Part of the initial production lost or wasted at different stages of the food supply chains for 

fruit and vegetables in different regions (FAO, 2015). 

 

The world population is expected to reach 8.5 billion by 2030 and 9.7 billion in 2050 

(FAO, 2015). It means that food supplies would need to increase by 60 % either with any 

of the following options: 

 

• Increasing production 

• Improving distribution 

• Reduction of losses 

 

Focusing on the last option, revalorization of plant by-products wasted during preharvest 

stage appear as an interesting challenge. Development of by-products supports the low 

carbon economy using renewable resources, offering environmental and economic 

benefits and improve efficiency in food industry. Furthermore, the use of by-products 

increases the added value from a given unit of agricultural raw material, stimulating 

economic growth. Crop by-products could be used in animal feed, production of essential 

oils, extraction of bioactive compounds for the pharmaceutical and cosmetic industries, 

and innovative ingredients with high contents of bioactive contents for functional foods. 

 

9.2. By-products production during Bimi® broccoli culture 

 

The marketable part from Bimi® broccoli plant is the floret (inflorescence) being stalks 

and leaves discarded (Figure 23). The stalks and leaves of Bimi® broccoli represent 80 % 

(in dry weight) of total above-ground plant biomass. This constitutes a great amount of 

waste, with a negative effect on the agricultural environment. Moreover, the sometimes 
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abnormally high temperatures in the winter and spring seasons of warmer cultivation 

areas may induce premature flowering, resulting in the total loss of the marketable yield 

(florets), and converting all the biomass into an unprofitable by-product. The increase in 

broccoli cultivation in the last few years has made it difficult to find uses for the total 

amount of by-products generated (≈0.13 × 106 tons in 2008 in the Murcia Region) 

(Dominguez-Perles et al., 2010; Vargas-García et al., 2014). 

 

 

Figure 23. Details of Bimi® broccoli at harvest (Courtesy of Sakata Seed Ibérica). 

 

The traditional management of such residues implies their incorporation into the field 

without any previous treatment. Another usual practice is the composting of such residues 

to obtain manure, or its application for cattle feeding. The silage residues of broccoli 

present high contents of protein (34.7 %) and fibre (neutral and acid detergent fibre levels 

of 18.8 and 12.9 %, respectively) with a high digestibility by cattle. 

 

Currently, the use of broccoli by-products is restricted to flour and fibre (Campas-Baypoli 

et al., 2009) and glucosinolate standard extraction or characterization (Campas-Baypoli 

et al., 2010; West et al., 2004). The potential use of broccoli by-products as a source of 

bioactive compounds is getting the attention of the scientific community (Dominguez-

Perles et al., 2010; Dominguez-Perles et al., 2011; Mahro and Timm, 2007). Furthermore, 

the previously commented high percentage of broccoli by-products points this vegetable 

as an economically interesting source of bioactive compounds from their by-products. 

 



Introduction 
 

46 
 

9.3. Use of abiotic stresses to increase health-promoting compounds of broccoli: UV-

C and UV-B 

 

Broccoli stalks and leaves have important contents of glucosinolates and phenolic 

compounds with high myrosinase activities (Dominguez-Perles et al., 2010; Dosz and 

Jeffery, 2013). Furthermore, the application of postharvest abiotic stresses may even 

enhance those levels of bioactive compounds. However, latter research area in broccoli 

by-products is still unexplored. Application of abiotic stresses during preharvest stage of 

broccoli plant for revalorization of by-products is also very scarce. Interestingly, 

preharvest saline stress (80 mM NaCl) applied in broccoli plants led to increased 

glucosinolates and phenolic contents in leaves and stalks of some broccoli cvs. 

(Dominguez-Perles et al., 2010). 

 

Application of postharvest abiotic stresses (wounding, exogenous ethylene and methyl 

jasmonate) to increase glucosinolate contents of marketable broccoli florets has been 

recently reported (Villarreal-García et al., 2016). Contrary, latter authors reported that 

such stresses impeded phenolic compounds enhancement in broccoli florets. 

Accordingly, research on application of abiotic stresses to broccoli by-products is of high 

interest being proposed UV radiation (B and C) as an excellent stress-inducing technology 

due to the absence of residues, no legal restrictions, easy to use, and low and cheap 

maintenance. 
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OBJECTIVES 

 

The general objective of this PhD Thesis was to develop functional carrot-based 

smoothies with high bioactive compounds content and long shelf life by using novel non-

thermal pasteurization to retain overall food quality, and with revalorization of by-

products of agricultural crops to reduce waste. 

 

This is due to the fact that there is an increasingly growing market for nutraceuticals and 

functional foods, and enhancing the health benefit properties of fruit and vegetables will 

add value and create new opportunities for growers and processors by reaching health-

oriented markets. To achieve this goal, there is a need to provide innovative techniques 

or combination or selected techniques to assure food safety and quality.  

 

For this reason, post-harvest abiotic stresses, single and combined, are a novel way to 

enhance bioactive compounds in fruit and vegetables, and consequently, improving 

human well-being. 

 

Such general objective was achieved by the following specific objectives: 

 

• Enhancement of bioactive compounds of carrots and Bimi® using different 

abiotic stresses (mainly phenolics and other antioxidant compounds). 

• Selection and optimization of the best abiotic stress combination/s to obtain 

maximum enhancements of bioactive properties of the vegetables, as well as its 

by-products. 

• Optimization of the smoothie formula from stressed vegetables according to 

sensory tests. 

• Study and optimization of high hydrostatic pressure as non-thermal treatment to 

extend the shelf life of functional smoothies, at refrigerated and room 

temperatures, with minimal degradation of nutritional and bioactive compounds, 

meeting always the applicable food safety regulations. 

• Develop a novel concept of fresh-cut ready-to-blend horticultural product and 

monitoring its shelf life quality and food safety changes. 
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• Study and optimization of high hydrostatic pressure and maltosyl-β-cyclodextrin 

as a combination technology to control browning in apple juices as a beverage 

model. 

• Use of antimicrobial food coatings to control microbial growth and increase the 

nutritional/bioactive properties. 
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I.1. INTRODUCTION 

 

The actual interest of better eating habits might be explained by the increasing of life 

expectancy or the high costs of health care, and need to satisfy population groups with 

special needs such as elderly and children (Siró et al., 2008). High intakes of fruit and 

vegetables have been proven to prevent a grand array of diseases such as degenerative 

disorders, cancer, cardiovascular among others (Slavin and Lloyd, 2012). Nowadays, 

foods are not only intended to feed, but also to prevent chronic and nutritional-related 

diseases as well as to improve overall human well-being, mainly linked to the crescent 

consumer’s knowledge on functional foods. Enhancement of the health-promoting 

properties of fruit and vegetables will add value and create new opportunities, even with 

recent economical drawbacks. Therefore, there is a need to provide technologies to handle 

fresh products with enhanced health-promoting properties (Jongen, 2002). 

 

Carrot is a popular vegetable among broad strata of the population. The popularity of this 

vegetable is mainly due to its sensory characteristics and nutritional compounds. 

Furthermore, carrots do not contribute with high calories intake, however they play a 

significant source of nutrients, such as carotenoids, vitamins (A, E) and antioxidants on 

human diet (Sharma et al., 2011). Phenolic compounds are great antioxidants related to 

several health-promoting properties such as anti-inflammatory, antitumoral, as well as 

preventing neurodegenerative and chronic disorders. Moreover, those compounds 

contribute to sensory features to food products. Nowadays, health recommendations rely 

on a diet rich in multiple antioxidant compounds than one used based on a single 

antioxidant (Shahidi and Ambigaipalan, 2015). Plant products such as carrots have been 

proposed as biofactories of phenolic compounds through different mechanisms induced 

by abiotic stresses (Cisneros-Zevallos, 2003). Concisely, PAL is the key enzyme of 

primary (shikimate) and secondary (phenylpropanoid) pathways and is, therefore, 

involved in the biosynthesis of polyphenolic compounds (Dixon and Paiva, 1995). It is 

well reported that this enzyme is induced by an array of biotic and abiotic stress-induced 

mechanisms, such as wounding, radiation exposure, hyperoxia storage, water stress, 

chilling injury, low minerals, hormones and pathogen attack, among others (Alegria et 

al., 2012; Avena-Bustillos et al., 2012; Becerra-Moreno et al., 2012; Jacobo-Velázquez 

et al., 2011). Consequently, such postharvest abiotic stresses enhance the levels of 

phenolic compounds like caffeoylquinic (CQA) acid, ferulic acid and their derivates as a 
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defence mechanism of the plant (Jacobo-Velázquez et al., 2011). Previous studies have 

shown that single application of wounding, low UV-C doses and hyperoxia storage 

enhanced phenolic content on carrots and other plant products (Artés‐Hernández et al., 

2009; Cisneros-Zevallos, 2003; Martínez-Hernández et al., 2013d; Martínez-Hernández 

et al., 2011; Sánchez-Rangel et al., 2013). Nonetheless, to the best of our knowledge, the 

combined effect of wounding, moderate UV-C radiation and hyperoxia atmospheres on 

the phenolic compounds levels and related TAC has not been studied yet. Accordingly, 

this work studied the singular and combined effects of UV-C pretreatment and hyperoxia 

storage on PAL activity, phenolic compounds and related TAC during storage of whole 

and shredded carrots at 15 ºC. 

 

I.2. MATERIALS AND METHODS 

 

I.2.1. Plant material preparation 

 

Fresh carrots (cvs. group Nantes, cv. Soprano) were bought in a local market (Cartagena, 

Spain) on April 6th. According to producer specifications, carrots were harvested on the 

first week of April in Villena area (northwest area of Alicante region, Spain) without any 

postharvest treatment, but washing, previous expedition to the market. Carrots were 

transported to the Pilot Plant of the Technical University of Cartagena where they were 

stored in a cold room at 5 ºC until the next day when the experiment was conducted. Plant 

material was carefully inspected, selecting those with similar visual appearance and size 

(14-15 cm long and 2-3 cm diameter). Then, carrots (unpeeled) were sanitized in a cold 

room (8 ºC) with chlorine (100 mg L-1 NaClO; 5 ºC; pH 6.5±0.1) for 2 min, rinsed with 

tap water at 5 ºC for 1 min and drained in a perforated basket for 1 min. A ratio of 300 g 

plant material: 5 L chlorine was used. Carrots were wounded to shreds (2 mm × 3 mm × 

40-60 mm) with a food processor (FreshExpress+, Moulinex, Lyon, France). Unwounded 

carrots were used as control (hereinafter ‘whole’). Approximately 9 kg of shreds and 9 

kg of whole carrots were prepared for the experiment. Immediately after wounding all 

samples were submitted to wounding, UV-C radiation and hyperoxia storage treatments 

as described below. 
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I.2.2. Abiotic stress treatments 

 

I.2.2.1. UV-C pretreatment 

 

The UV-C treatment chamber consisted of a reflective stainless steel chamber with two 

banks (one bank suspended horizontally over the radiation vessel and the other placed 

below it) being fitted to each bank 15 unfiltered germicidal emitting lamps (>80 % 

emitted spectrum at λ=254.7 nm; TUV 36W/G36 T8, Philips, Eindhoven, The 

Netherlands) which has been previously described (Artés-Hernández et al., 2009a). 

Whole or shredded carrots were placed between the two lines of UV-C lamps at 17.5 cm 

above and below over a 35 mm thick bi-oriented polypropylene (PP) film mounted on a 

polystyrene (PS) net (130 × 68 cm) that minimized blockage of the UV-C radiation. The 

applied UV-C intensity of 67.6 W m-2 was calculated as the mean of 18 UV-C readings 

on each side of the net using a VLX 254 radiometer at λ=254 nm (Vilber Lourmat, Marne 

la Vallee, France). Thus, both sides received the same UV-C intensity. The UV-C light 

intensity was kept constant and the applied dose was varied by altering the exposure time 

at the fixed distance. A UV-C radiation treatment of 9 kJ m-2 (exposure time of 139 s) 

was applied. Non-irradiated samples were used as ‘control’. 

 

I.2.2.2. Hyperoxia storage 

 

Samples to be stored under hyperoxia conditions were placed in plastic containers (30 cm 

diameter, 60 cm height) connected to a humidified air-flow-through system of either air 

or a gas mixture containing 80 kPa O2 (balanced with N2). The gas entering the containers 

was previously passed through a water trap giving a humidity close to saturation in order 

to greatly minimize water losses (Jacobo-Velázquez et al., 2011; McLaughlin and 

O'Beirne, 1999) and avoid additional phenolic biosynthesis owed to water stress (Becerra-

Moreno et al., 2015). In order to ensure a good air flow through carrot shreds, these 

samples were distributed in opened plastic petri dishes (8.5 cm diameter, 1 cm height). 

The CO2 partial pressures were kept < 0.15 kPa to avoid any physiological effect exerted 

by CO2 such as anaerobic metabolism (Surjadinata and Cisneros-Zevallos, 2003). Gas 

treatments were applied at 15 ºC for up to 72 h in darkness. Sampling was conducted 

every 12 h with 3 replicates per treatment. Every replicate per treatment and sampling 

time consisted of approximately 100 g of carrots (in the case of whole carrots each 100 
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g-replicate was composed from three different carrot units). Samples were stored in 

reclosable PP bags zipper-locking at -80 ºC until further analysis. 

 

I.2.3. Analyses 

 

I.2.3.1. UV-C transmittance through carrot tissue 

 

Carrot sections (1.5 cm × 1.5 cm) with different thickness (0.10 to 3.00 mm) from internal 

and external tissue were prepared with a scalpel. Thickness of carrot sections was 

measured with a digital calliper (500-302 Series, Mitutoyo, Aurora IL, USA). 

Subsequently, carrot sections were carefully attached over the radiometer, placed on the 

net of the UV-C treatment chamber, and UV-C intensity was measured with (I) and 

without (I0) the carrot section. For every thickness, five identical (±0.02 mm) sections 

were prepared representing five replicates. UV-C transmittance (T) for every carrot 

thickness was calculated using equation (I.1). 

 

                                                          𝑇(%) = (
𝐼

𝐼0
) ×100                                            (I.1) 

 

I.2.3.2. Relative electrolyte leakage 

 

Relative electrolyte leakage (REL) was measured according to the method described by 

Martínez-Hernández et al. (2016a) but with modifications. A 10-g carrot shreds portion 

was placed in a glass bottle (100 mL capacity) and 70 mL of 0.2 M mannitol (Sigma 

Aldrich, Steinheim, Germany) were added. For whole samples, a carrot was placed in a 

glass bottle (1 L capacity) and 800 mL of 0.2 M mannitol were added. The electrical 

conductivity of the bathing mannitol solution was measured with an electrical 

conductivity meter (GLP32, Crison, Alella, Spain) after 60 min (C0) of incubation with 

orbital shaking (Stuart SSL1, Osa, UK) at a speed of 60 cycles min−1. Then, the samples 

were heated at 121 ºC for 20 min in an autoclave and the conductivity (C) of the bathing 

mannitol solution was measured after cooling at room temperature. The REL was 

calculated using equation (I.2). Three replicates per treatment were analysed. 

 

𝑅𝐸𝐿 (%) = (
𝐶0

𝐶
) ×100                                             (I.2) 
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I.2.3.3. Colour 

 

Colour was determined using a colorimeter (Minolta CR-300 Series, Japan) calibrated 

with a white reference plate (light source C), 2º observer and 8-mm viewing aperture. 

Measurements were recorded using the standard tristimulus parameters (L*, a*, b*) of 

the CIE Lab system on three equidistant points of each replicate. Three colour readings 

were taken on three parts of the same sample and all three measurements were 

automatically averaged by the device and recorded. 

 

Whitening and browning and are the main colour degradation processes occurred in 

wound (fresh-cut) carrots. Accordingly, whitening index (WI) and browning index (BI) 

were calculated from CIE Lab parameters according to equations (I.3) and (I.4) as 

previously described (Castillejo et al., 2015; Martínez-Hernández et al., 2016a; Palou et 

al., 1999).  

 

𝑊𝐼 (%) = 100 − √[(100 − 𝐿∗)2 + 𝑎∗ 2 + 𝑏∗2]                            (I.3) 

 

𝐵𝐼 =
100 × [[

[𝑎∗2+(1.75 × 𝐿∗)]

[(5.645 × 𝐿∗)+𝑎∗2−(3.012 × 𝑏∗)]
]−0.31]

0.172
                                 (I.4) 

                                  

Complimentary, total colour differences (∆E) is a colorimetric parameter extensively 

used to characterize the variation of colours during processing and storage of food 

products (Martínez-Hernández et al., 2013a). ∆E was calculated according to equation 

(I.5). 

 

∆𝐸 = √(𝐿∗ − 𝐿∗
0)2 + (𝑎∗ − 𝑎∗

0)2 + (𝑏∗ − 𝑏∗
0)2                          (I.5) 

 

I.2.3.4. Phenylalanine ammonia-lyase 

 

Phenylalanine ammonia-lyase (PAL) activity was analysed according to Ke and Saltveit 

(1986) with modifications. Concisely, 2 g carrot tissue samples were mixed with 

polyvinylpolypyrrolidone (Sigma, St Louis, MO, USA) (0.2 g) and homogenized (Ultra 

Turrax® model 18T, IKA-Werke GmbH & Co. KG, Germany) in cold 50 mM borate 
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buffer (pH 8.5) containing 400 μL L-1 β-mercaptoethanol (Sigma, St Louis, MO, USA). 

Homogenates were filtered through four layers of cheesecloth and then centrifuged at 

10,000 × g for 20 min at 4 ºC. Supernatants were used as enzyme extract. Two sets of 

UV-Star 96-well plates (Greiner Bio-One, Frickenhausen, Germany) containing 69 μL of 

PAL extract plus 200 µL ultrapure water were prepared for every sample and pre-

incubated at 40 ºC for 5 min. Afterwards, 30 μL of either water (blank) or 100 mM L-

phenylalanine substrate solution (freshly prepared before assay) were added to each of 

the well for every sample set. The absorbances of sample sets were measured at 290 nm, 

using a Multiscan plate reader (Tecan Infininte M200, Männedorf, Switzerland), at time 

0 and after 1 h of incubation at 40 ºC. The PAL activity was calculated as μmol of t-

cinnamic acid synthesized kg-1 fresh weight (fw) h-1 using a t-cinnamic acid (Sigma, St 

Louis, MO, USA) standard curve (0-6.75 mM). Each of the three replicates was analysed 

in duplicate. 

 

I.2.3.5. Phenolic compounds 

 

Extraction to determine phenolic compounds and TAC extract was conducted by 

homogenization (Ultra Turrax®) of 2 g of sample in 8 mL methanol (Sigma, St Louis, 

MO, USA) for 20 s under ice-water bath. Subsequently, extracts were centrifuged at 

13,500 × g for 20 min at 4 ºC and supernatants were collected and analysed. Extracts for 

individual phenolic compounds were further filtered through a 0.22 µm 

polyethersulphone filter and stored at −80 ºC in amber vials until Ultra High-Performance 

liquid chromatography (UHPLC) analysis. 

 

TPC was analysed by Folin–Ciocalteu reagent method as previously described (Martínez-

Hernández et al., 2011).  Briefly, a 19 µL aliquot of TPC extract was placed on a PS flat 

bottom 96-well plate (Greiner Bio-One, Frickenhausen, Germany) and 29 µL of Folin–

Ciocalteu reagent 1 N (Sigma, St Louis, MO, USA) were added. Samples were incubated 

for 3 min in darkness at room temperature. After incubation, 192 µL of a solution 

containing Na2CO3 (4 g L-1) and NaOH (20 g L-1) were added and the reaction was carried 

out for 1 h at room temperature in darkness, measuring the absorbance at 750 nm using 

the Multiscan plate reader. TPC was expressed as chlorogenic acid equivalents (ChAE) 

in mg kg−1 fw. Each of the three replicates was analysed in triplicate. 
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Analyses of individual phenolic compounds were conducted as previously described 

(Alegria, 2015) with some modifications. Briefly, samples of 20 µL were analysed using 

an UHPLC instrument (Shimadzu, Kyoto, Japan) equipped with a DGU-20A degasser, 

LC-30AD quaternary pump, SIL-30AC autosampler, CTO-10AS column heater and 

SPDM-20A photodiode array detector. The UHPLC system was controlled by the 

software LabSolutions (Shimadzu, v. 5.42 SP5). Chromatographic analyses were carried 

out onto a Kinetex C18 column (100 mm × 4.6 mm, 2.6 µm particle size; Phenomenex, 

Macclesfield, UK) with a KrudKatcher Ultra HPLC guard column (Phenomenex, 

Macclesfield, UK). The column temperature was maintained at 25 ºC. The mobile phase 

was acidified water (A; formic acid to final pH 2.3) and acidified methanol (B; formic 

acid to final pH 2.3). The flow rate was 1.5 mL min−1. Gradient program used was 0/88, 

1.2/88, 2.4/85, 8.3/70, 9.4/50, 11.8/50, 20.8/55, 22.0/60 (min/% phase A). Then, column 

equilibration was conducted at 0 % A for 2.2 min. Chromatograms were recorded at 320 

nm.  Phenolic acids were quantified as standards of chlorogenic acid (3-CQA), ferulic 

acid (Sigma, St Louis, MO, USA), isochlorogenic acid A (3,5-CQA) and C (4,5-CQA) 

(ChromaDex, Irvine, CA, USA). The calibration curves were made with at least six data 

points. The results were expressed as mg kg−1 fw. Each of the three replicates was 

analysed in duplicate. 

 

I.2.3.6. Total antioxidant capacity  

 

The extracts were analysed for TAC according to Brand-Williams et al. (1995) with slight 

modifications (Martínez-Hernández et al., 2013d). Briefly, a solution of 0.7 mM 2,2-

diphenyl-1-picrylhydrazil (DPPH) (Sigma, St Louis, MO, USA) in methanol was 

prepared 2 h before the assay and adjusted to 1.1 (nm) immediately before use. A 21 µL 

aliquot of the previously described extract was placed on a PS flat-bottom 96-well plate 

and 194 µL of DPPH was added. The reaction was carried out for 30 min at room 

temperature in darkness and the absorbance at 515 nm was measured using the Multiscan 

plate reader. Results were expressed as mg Trolox (Sigma, St Louis, MO, USA) 

equivalent kg-1 fw. Each of the three replicates was analysed in triplicate. 
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I.2.3.7. Statistical Analyses 

 

A complete randomized design in triplicate, with two-way ANOVA (treatment × storage), 

by Post Hoc Tuckey HSD tests (p=0.05), were used with SPSS software (v. 21, IBM, 

USA). Possible synergistic effects of the stresses combinations were studied with 

Limpel’s formula  (equation I.6) according to (Richer, 1987), where the effectiveness of 

a combination of treatments exceeds the prediction of the effectiveness of their additive 

action. 

                                                        𝐸𝑒 = 𝑋 + 𝑌 − (
𝑋𝑌

100
)                                             (I.6) 

 

I.3. RESULTS 

 

I.3.1. UV-C transmittance through carrot tissue 

 

UV-C radiation showed a low transmittance through carrot tissue. Accordingly, carrot 

sections prepared with the lowest thickness (0.1 mm) showed a transmittance < 20 %. 

Carrot external tissue showed a low UV-C transmittance compared to internal tissue 

(Figure I.1). Accordingly, external tissue sections of 0.1 mm thickness showed a 

transmittance of 1.25 % while the same thickness for internal tissue showed a 

transmittance of 18.7 %. 

 

I.3.2. Relative electrolyte leakage 

 

Initial REL of whole and shredded carrots was 0.9±0.2 and 36.9±0.9 %, respectively, 

without significant (p < 0.05) differences among irradiated and non-irradiated samples 

on processing day (Figure I.2). No significant (p < 0.05) REL differences among whole 

carrots were found at 72 h (data not shown). Attending to shredded samples, REL values 

of air-stored ones showed 13-19 lower units compared to hyperoxia conditions. Among 

air-stored shreds, irradiated ones showed the lowest REL with 14.9±3.5 %. Non-

irradiated shreds stored under air conditions registered intermediate REL of 32.8±1.6 % 

at 72 h. 
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I.3.3. Colour 

 

Whole carrots did not show significant (p < 0.05) colour changes throughout storage (data 

not shown). Attending to shredded samples, the applied UV-C dose only induced mild 

colour changes of ∆E=6.2 with a slight browning of ∆BI=80.4 on processing day (data 

not shown). Initial WI of 22.3 was not significantly (p < 0.05) changed after 72 h with 

final ΔWI ranging from 2-10 (Figure I.3). Irradiated shreds showed higher ∆E (23-25) 

and browning (∆BI=80-101) after 72 h compared to control carrots regardless of gas 

treatments (Figure I.3). 

 

I.3.4. Phenylalanine ammonia-lyase activity 

 

Carrots showed an initial PAL activity of 39.5±9.6 µmol cinnamic acid formed kg-1 h-1 

fw without significant (p < 0.05) differences among treatments (Figure I.4). PAL activity 

of hyperoxia-stored shreds early increased after 12 h registering an activity 71 % higher 

compared to their respective initial levels. However, the remaining shredded samples did 

not achieve significant changes of PAL activity after 12 h. In general, PAL activity of 

shreds registered a continuous increase throughout storage reaching maximum levels at 

60 h. Accordingly, air-stored shreds registered PAL activities 820 % higher after 60 h 

while hyperoxia-stored shreds showed 1050 % enhanced PAL activities after 60 h 

regarding their initial levels. 

 

UV-C pretreatment resulted in 4 and 3-fold reduced enhancements of PAL activities after 

60 h under air and hyperoxia conditions, respectively, compared to non-irradiated carrots. 

PAL activity of non-irradiated shreds was approximately 30 % reduced from 60 to 72 h 

regardless of the storage atmosphere. PAL activities of UV-C-pretreated shreds followed 

a continuous increment throughout storage, although in a lower rate compared to non-

irradiated shreds. In the same way, UV-C-pretreated shreds stored under air conditions 

registered a 94 % increment of PAL activity from 60 to 72 h, while the PAL activity of 

the same samples remained unchanged under hyperoxia conditions during that period. 
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I.3.5. Phenolic compounds 

 

The initial TPC of whole carrots was 166.4±11.7 mg ChAE kg fw-1 (Figure I.5). The 

major individual phenolic compounds identified were 3-CQA, 3,5-CQA, 4,5-CQA and 

ferulic acid (Table I.1). These phenolic compounds accounted 67.5, 15.5, 14.8 and 2.2 % 

of the sum of individual phenolics, respectively. The phenolic contents of carrots were 

unchanged (p < 0.05) immediately after wounding and UV-C radiation on processing 

day, although these levels increased throughout storage of stressed samples.  

 

Regarding whole carrots, a UV-C pretreatment induced maximum TPC enhancements of 

220 and 315 % after 36 and 48 h in air and hyperoxia storage conditions, respectively, 

and then followed by a general decrease. This behaviour was also observed in non-

irradiated shreds, which registered ≈ 400-410 % higher TPC contents after 48 h compared 

to initial levels regardless of the atmosphere conditions. Whole irradiated samples showed 

120 and 340 % higher TPC contents after 72 h under air and hyperoxia storage conditions, 

respectively, compared to their respective initial levels. TPC of non-irradiated whole 

carrots remained unchanged (p < 0.05) throughout storage. Correspondingly, the highest 

3-CQA enhancements were registered by irradiated whole samples with 585 (air) and 636 

% (hyperoxia) after 72 h. 

 

Wounding of non-irradiated carrots enhanced TPC by ≈1,490 % after 72 h under air 

conditions. Hyperoxia benefit on TPC was only significantly observed after 60 h reaching 

non-irradiated samples the maximum TPC enhancements, ≈2,000 %, after 72 h. Similarly, 

non-irradiated shreds stored under hyperoxia conditions registered approximately 5-fold 

higher 3,5-CQA enhancements after 72 h compared to air-stored non-irradiated shreds. 

Furthermore, the rest of phenolic compounds of non-irradiated shreds registered 2-3-fold 

higher accumulation under hyperoxia conditions compared to air conditions after 72 h. 

The combination of wounding and hyperoxia stresses showed a synergistic effect after 72 

h since the observed TPC enhancement (2,000 %) was higher than that calculated 

according to Limpel’s formula (1,620 %). 

 

The UV-C pretreatment, in shreds, induced lower TPC accumulation throughout storage, 

contrary to non-irradiated shreds. Accordingly, UV-C-pretreated shreds registered 1.5 

and 3.2-fold lower TPC enhancements after 72 h under air and hyperoxia conditions, 
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respectively, compared to non-irradiated shreds. Similarly, 3,5-CQA/4,5-CQA registered 

2 and 6-fold lower accumulation in irradiated shreds under air and hyperoxia conditions, 

respectively, compared to non-irradiated shreds. However, irradiated shreds under 

hyperoxia conditions showed 1.4-fold higher 3-CQA content compared to non-irradiated 

samples stored under air conditions for 72 h. Meanwhile, no great differences between 

air and hyperoxia conditions were observed in the UV-C-induced lower levels of the rest 

of individual phenolic compounds. 

 

 

I.3.6. Total antioxidant capacity 

 

The initial TAC of whole carrots was 135.7±45.4 mg Trolox kg-1 fw (Table I.2). 

Wounding of carrots increased initial TAC by ≈610 % just after processing on day 0. 

Similarly, UV-C treatment of whole and shredded samples induced 269 and 16 % higher 

TAC on processing day. The combination of wounding and UV-C did not show a 

synergistic effect since the observed TAC enhancement of carrots treated with both 

stresses combined (720 %), compared to untreated whole ones, was lower than TAC 

enhancement calculated according to Limpel’s formula (870 %) being then considered as 

an additive effect. 

 

TAC of all carrots showed a constant increase throughout storage, registering maximum 

increases in the last 24 h of storage. Whole samples registered maximum TAC increases 

of 7.0 and 2.4-2.8-fold regarding their respective initial levels in non-irradiated air-stored 

and hyperoxia and/or UV-C stressed ones, respectively. However, final TAC of shreds 

was higher than that of whole shreds. Accordingly, shreds stored under air and hyperoxia 

registered TAC of 2,050 and 2,668 mg Trolox kg-1 fw at 72 h, respectively. However, 

UV-C pretreatment of shreds induced 30 and 40 % lower TAC levels at 72 h under air 

and hyperoxia conditions, respectively, compared to the respective non-irradiated 

samples at 72 h. TAC changes throughout storage were highly correlated (R2= 0.70) to 

TPC. 
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I.4. DISCUSSION 

 

Carrot has been widely used as a model system to understand the effect of different 

postharvest abiotic stresses on the phenylpropanoid metabolism due to the great 

enhancement of phenolic compounds observed, with high antioxidant capacity, compared 

to other vegetables (Cisneros-Zevallos, 2003). UV-C is a sanitizing method used in fresh-

cut products as a sustainable alternative to conventional NaOCl (Martínez-Hernández et 

al., 2015b). Food safety legislation of fresh-cut products is regulated for E. coli, 

Salmonella spp. and Listeria monocytogenes (EC_1441/2007, 2007). Inactivation 

kinetics of these three pathogens by UV-C has been recently modelled in fresh-cut 

products (Martínez-Hernández et al., 2015a). Therefore, intermediate doses of 9-10 kJ m-

2 are needed to ensure the legislated food safety criteria of a fresh-cut product (Martínez-

Hernández et al., 2011; Martínez-Hernández et al., 2015a). In that sense, a UV-C dose of 

9 kJ m-2 was selected in this experiment achieving a sanitizing effect of approximately 

1.5 log units for mesophiles and yeasts and moulds (data not shown). The effect of this 

moderate UV-C dose, single or combined with other abiotic stresses like hyperoxia 

storage and wounding, on the phenolic content and related antioxidant capacity and PAL 

activity are firstly reported in this study, to the best of our knowledge. 

 

The initial TPC of non-wounded carrot (166.4 mg ChAE kg fw-1) was similar to previous 

data being hydroxycinnamic acids and their derivatives the major phenolic compounds 

found (Alegria et al., 2012). According to phenolic profile, chlorogenic acid was the 

major compound found accounting approximately 70 % of the sum of individual phenolic 

compounds. As expected, application of the studied abiotic stresses did not immediately 

affect PAL activity of samples on processing day, and consequently the phenolic contents. 

However, TAC was apparently increased immediately after UV-C radiation and, in a 

greater extend, after wounding (showing the combination of both stresses an additive 

effect according to Limpel’s formula). TAC was highly correlated (R2=0.70) to TPC 

throughout storage of samples as previously found (Cisneros-Zevallos, 2003). 

Accordingly, the observed higher TAC immediately after wounding and UV-C 

pretreatment may be an experimental artifact resulted from higher extraction of other 

antioxidant compounds of carrots such as carotenoids due to increased cell wall 

depolymerization (Alegria et al., 2012; Bhat et al., 2007). 

 



Chapter I 
 

65 
 

Wounding and hyperoxia storage of carrots at 15 ºC induced phenolic compounds 

enhancements which were well correlated to TAC and explained by the observed changes 

of PAL activity. The phenolic compounds accumulation after wounding and hyperoxia 

stresses has been related to PAL activation being proposed ATP and reactive oxygen 

species as signalling molecules (Jacobo-Velázquez et al., 2011). Furthermore, phenolic 

compounds in wounded plants are produced in part as a mechanism to support the 

biosynthesis of lignin (Becerra-Moreno et al., 2015). Accordingly, a REL decrease was 

observed in air-stored shreds after 72 h possibly due to such lignification process being 

such lignification probably inhibited in hyperoxia-stored samples. This study shows a 

detailed register of phenolic contents and related antioxidant capacity in stressed carrots 

in 12-h intervals. Accordingly, phenolic accumulation in shredded carrots during storage 

at 15 ºC could be divided into three different phases: 1st phase, < 24 h: unchanged phenolic 

compounds levels with minimum PAL activity; 2nd phase, 24-48 h: moderate phenolic 

increments (≈600-700 mg ChAE kg-1 accumulated in 24 h) concurring with the greatest 

increase of PAL activity; 3nd phase, 48-72 h: high phenolic increments (≈1,600-2,700 mg 

ChAE kg-1 accumulated in 24 h) while a moderate increment of PAL activity was 

registered. The observed lower increase of PAL activity from 48 to 60 h and subsequent 

intense decrease in non-irradiated shreds may be a result of a feedback modulation or due 

to the diversion of the synthetic capacity of the cell to the production of other proteins 

(Alegria, 2015; Boerjan et al., 2003; Saltveit, 2000). Maximum phenolic content of non-

irradiated shreds at 72 h may be the delayed consequence of maximum PAL activity 

which is the first key enzyme in the phenylpropanoid pathway. The combination of 

wounding and hyperoxia stresses showed a synergistic effect with phenolic accumulation 

of 2,000 % after 72 h previously described in carrot shreds (Jacobo-Velázquez et al., 

2011). 

 

Combination of moderate UV-C dose and subsequent hyperoxia storage reduced TPC 

increments throughout storage compared to non-irradiated samples. However, the content 

of chlorogenic acid in irradiated samples under hyperoxia was slightly higher (1.4-fold) 

compared to non-irradiated samples after 72 h under high hyperoxia. Similarly, UV-C-

irradiated carrot bagasse showed higher 3-CQA content compared to non-irradiated 

bagasse after 48 h at 25 ºC being not correlated to TPC data which were statistically 

similar between non-irradiated and irradiated samples (Sánchez-Rangel et al., 2013). Low 

UV-C doses (≤2.5 kJ m-2) applied as single treatment in carrot shreds induced phenolic 
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accumulations of approximately 20-35 % after 5-8 days at 5 ºC (Alegria et al., 2012). On 

the other side, UV-C radiation treatments (4.5-6 kJ m-2) and hyperoxia storage (90-100 

kPa O2 balanced with nitrogen) of fresh-cut broccoli Bimi® and tatsoi baby leaves did not 

induce significant TPC and TAC which were even reduced during storage at 5 ºC up to 

19 days (Martínez-Hernández et al., 2013d; Tomás-Callejas et al., 2012). Latter finding 

may be explain by the high ascorbic acid content of broccoli Bimi® and tatsoi 

(Samuolienė et al., 2012) contrary to carrot, showing vegetables with low ascorbic acid 

content higher phenolic accumulation after abiotic stresses (Reyes et al., 2007). A 

possible explanation for the hereby found lower phenolic accumulation in irradiated 

samples with moderate UV-C dose, compared to non-irradiated samples, may be a partial 

PAL denaturation by such UV-C dose delaying the stress-enhanced activity of this 

enzyme. A subsequent PAL reactivation may occur as observed in air-stored irradiated 

shreds from 60 to 72 h which agrees with enhanced phenolic levels of these samples in 

that period. However, this great PAL reactivation from 60 to 72 h was not observed in 

irradiated shreds stored under hyperoxia conditions. That absence or delayed PAL 

reactivation beyond 72 h may be a consequence of oxidative detrimental effects of 

hyperoxia storage on this enzyme. In contrast to shredded samples, whole UV-C-

pretreated carrots experimented a mild phenolic accumulation peak early during storage, 

contrary to unchanged phenolic contents of non-irradiated samples. Carrot peel has a very 

high UV-C protective effect since peel with 0.1 mm-thickness only allowed penetration 

of 1.25 % of total UV-C applied. However, a layer of internal tissue with 0.1 mm-

thickness allowed UV-C penetration of 18.7 %. Accordingly, carrot peel in whole 

samples reduced hypothetical damage to PAL but somehow allowed transmission of 

stress-induced signal with consequent observed phenolic accumulation. The hereby found 

phenolic peak of irradiated whole samples was observed later in hyperoxia-stored 

samples compared to air conditions due to previously supposed partial damage of PAL 

after UV-C radiation. 

 

Colour is the main sensory parameter decisive on the visual consumer election of fresh-

cut carrots on retail surfaces. Whitening and browning and are the main colour 

degradation processes occurred in wound (fresh-cut) carrots. Carrot browning was early 

related to enzymatic oxidation of polyphenolic compounds (Chubey and Nylund, 1969) 

being its occurrence in UV-C-treated products owed to the increased peroxidase (POD) 

activity (Tomás-Barberán and Espín, 2001). On the other side, whitening mechanism was 
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deeply studied in carrots being attributed in a first reversible physical stage to dehydration 

and lately to an irreversible physiological response involving activation of phenolic 

metabolism and production of lignin (Cisneros-Zevallos et al., 1995). The hereby 

registered WI ranges were not visually detected as previously reported by a sensory panel 

test (Alegria et al., 2012). The low whitening changes (ΔWI) after 72 h registered in 

carrots were greatly reduced by the supply of humidified gas to the containers containing 

carrot samples during storage avoiding samples dehydration. The slightly higher colour 

changes due to browning in irradiated samples after 72 h of storage may be owed to the 

pre-activated POD during UV-C pretreatment (Tomás-Barberán and Espín, 2001). 

Orange colour of carrots is owed to its high carotenoid content representing β-carotene 

approximately 80 % of the total content of these natural pigments (Rodriguez-Concepcion 

and Stange, 2013). Total carotenoids contents have been reported to be increased by 2-3-

fold after wounding, heat shock or UV-C radiation in shredded carrots (Alegria et al., 

2012). However, last authors did not report noticeable visual colour differences in 

samples during storage comparing to freshly-cut carrots. Conclusively, no colour changes 

were detected in whole carrots while mild colour changes were registered in shredded 

samples after 72 h which would not lead to an organoleptic rejection of these stressed 

samples. 

 

Microbiological analyses of stressed carrots after 72 h revealed total mesophilic and 

yeasts and moulds loads of whole and shredded samples lower than 6.0 and 6.5 log CFU 

g-1, respectively, without significant differences among treatments (data not shown). 

Accordingly, these microbiological levels were below the threshold limit (7 log CFU g-1) 

to define fresh-cut products shelf life (Gilbert et al., 2000). 

 

Chlorogenic acid, the main phenolic compound in carrots, is an ester of caffeic acid with 

quinic acid with great antioxidant capacity compared to other phenolic compounds 

(Castelluccio et al., 1995). To prevent or slow the oxidative damage in humans induced 

by free radicals sufficient amounts of phenols as antioxidants need to be consumed with 

foods. Carrots occupy the sixth place among the list of most consumed vegetables in the 

American diet, although the TPC of this vegetable is almost the lowest one (Chun et al., 

2005). Accordingly, proposed postharvest abiotic stresses can highly increase the 

phenolic levels of carrots leading to greater ingestion of these antioxidant compounds 

from this popular and highly consumed vegetable. 
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 I.5. CONCLUSIONS 

 

Wounding and moderate UV-C pretreatment of carrots greatly increased the activity of 

the PAL, the key enzyme in the biosynthesis pathway of phenolic compounds, with 

subsequent increments of 1,000-1,500 % of total phenolic content after 72 h at 15 ºC. A 

hyperoxia storage even augmented those total phenolic increments up to 2,000 %, being 

also partially benefited by a mild water stress, although the pretreatment with UV-C 

reduced PAL activity favoured by a higher electrolyte leakage. Accordingly, this study 

provides a detailed photograph (12 h intervals) of phenolic accumulation after synergistic 

effects of those postharvest abiotic stresses. The application of such stresses may be used 

as a postharvest tool to greatly increase the health-promoting properties of carrots meeting 

food safety aspects related to the moderate UV-C dose used. 
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Table I.1. Individual phenolic compounds of carrots treated with different postharvest abiotic stresses (wounding, UV-C and hyperoxia storage) 

during storage up to 72 h at 15 ºC (n=3±SD). Different capital letter denotes significant differences (p < 0.05) among different treatments for the 

same sampling time. Different lowercase letter denotes significant differences (p < 0.05) among different sampling times for the same treatment. 

 

Storage (h) 0 12 24 36 48 60 72 

3-CQA (mg kg-1 fw)  

  Whole 

AIR 36.6±13.3 Bc 65.6±15.0 Abc 74.6±0.7 Cb 60.4±6.8 Fbc 59.7±2.4 Fbc 48.1±8.7 Fbc 150.7±49.8 Da 

AIR-UVc 48.2±2.3 Ad 42.7±3.5 Bd 115.1±9.1 Bd 250.0±33.4 Bd 149.8±5.2 Ca 196.4±54.6 BCb 330.3±10.5 BCc 

HO* 36.6±13.3 Be 36.2±1.5 Be 85.2±19.3 Ccd 364.9±25.1 Aa 79.7±5.0 Ed 98.1±16.1 EFc 124.6±0.5 Db 

HO-UVc 48.2±2.3 Ae 80.3±19.7 Ad 158.4±27.8 Ac 161.8±6.9 Cc 304.3±1.6 Ab 319.3±14.0 Ab 354.9±13.8 Ba 

  Shredded 

AIR  27.5±0.3 Cd 34.9±4.0 Bd 69.5±9.5 CDc 71.5±6.1 Fc 160.4±11.8 Ca 133.6±19.6 DEb 146.6±6.6 Dab 

AIR-UVc 43.5±2.2 ABd 38.3±0.5 Bd 51.8±2.0 DEd 58.7±8.2 Fd 200.4±19.5 Ba 164.7±7.1 CDb 117.1±29.4 Dc 

HO 27.5±0.3 Cf 42.9±8.6 Bef 69.2±1.0 CDe 137.7±1.1 Dd 190.4±4.4 Bc 249.5±61.3 Bb 299.3±7.3 Ca 

HO-UVc 43.5±2.2 ABd 46.0±1.8 Bd 42.9±0.9 Ed 115.6±16.0 Ec 125.8±18.6 Dc 197.0±14.0 BCb 421.2±12.2 Aa 

 

Ferulic acid (mg kg-1 fw) 

  Whole 

AIR 1.2±0.9 ABb 1.5±0.9 Ab 1.6±0.2 DEb 0.2±0.2 Cb 2.1±0.7 Cb 2.2±0.1 Eb 12.6±3.0 Aa 

AIR-UVc 2.2±0.4 Ac 1.3±0.6 BCc 3.9±0.5 Bb 7.2±3.0 Aa 3.9±0.6 Bb 5.1±0.6 Bb 7.8±0.4 BCa 

HO 1.2±0.9 ABb 1.3±0.0 BCb 0.0±0.0 Db 2.2±1.6 Bb 4.4±1.1 Ba 0.0±0.3 Ca 3.8±0.0 CDa 

HO-UVc 2.2±0.4 Ad 2.3±0.0 Ad 7.6±0.9 Ab 2.3±0.2 Bd 8.6±0.9 Aa 5.1±0.4 Bc 8.7±0.9 ABa 

  Shredded 

AIR 0.4±0.0 Bd 0.3±0.0 Ed 0.9±0.6 DEcd 1.1±0.2 BCc 2.9±0.7 BCb 3.1±0.8 Db 4.4±0.5 BCDa 

AIR-UVc 1.0±0.2 Bd 0.7±0.1 DEd 0.7±0.5 Ed 1.2±0.0 BCcd 3.6±1.1 BCa 2.9±0.8 DEab 2.1±0.2 Dbc 

HO 0.4±0.0 Be 0.7±0.5 DEe 2.9±0.4 Cc 1.6±0.2 BCd 2.2±0.7 Ccd 6.2±0.5 Ab 9.0±0.0 ABa 

HO-UVc 1.0±0.2 Bd 1.0±0.1 CDd 1.0±0.2 DEcd 2.1±0.3 Bbcd 2.2±1.7 Cbc 3.1±0.3 Db 6.8±0.2 BCa 
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3,5-CQA (mg kg-1 fw) 

  Whole 

AIR  8.4±0.0 Be 8.7±0.3 Acd 9.0±0.2 BCb 9.2±0.3 BCa 8.7±0.1 Acd 8.5±0.1 Cde 8.8±0.1 Dbc 

AIR-UVc 8.7±0.0 Bc 8.6±0.1 ABc 8.7±0.2 BCbc 15.1±0.7 BCa 8.6±0.0 Ac 8.7±0.0 Cc 9.4±0.8 CDb 

HO 8.4±0.0 Bc 8.7±0.0 ABbc 8.7±0.1 Cbc 11.4±1.2 Ca 9.9±2.0 Ab 8.5±0.1 Cbc 8.5±0.0 Dbc 

HO-UVc 8.7±0.0 Bbc 8.7±0.1 Abc 9.5±0.5 Aab 10.3±1.0 Aa 9.3±0.1 Ab 8.3±0.8 Cc 8.1±0.6 Dc 

  Shredded 

AIR 9.0±0.3 Abc 8.6±0.0 ABc 8.7±0.0 BCc 8.7±0.1 BCc 9.1±0.5 Abc 9.5±0.1 Bb 10.3±0.4 Ca 

AIR-UVc 8.6±0.2 Ba 8.6±0.0 Ba 8.7±0.1 Ca 8.6±0.2 Ca 9.4±0.3 Aa 9.6±0.5 Ba 9.4±1.8 CDa 

HO 9.1±0.3 Acd 8.6±0.0 ABd 8.9±0.1 BCcd 8.9±0.1 BCcd 9.4±0.4 Ac 10.6±0.6 Ab 16.4±1.2 Aa 

HO-UVc 8.6±0.2 Bd 8.7±0.0 ABd 9.0±0.0 Bd 10.2±0.8 Bb 9.1±0.4 Acd 9.7±0.1 Bbc 11.9±0.6 Ba 

 

4,5-CQA (mg kg-1 fw) 

  Whole 

AIR  8.0±0.3 Ab 4.9±0.7 Bc 3.7±0.2 CDd 2.7±0.1 Cc 4.9±0.0 Dc 4.0±0.2 EFd 18.0±0.1 Aa 

AIR-UVc 8.7±0.1 Bc 4.0±0.6 Bd 4.7±1.0 Bd 15.5±0.6 Aa 6.0±1.0 Cc 6.6±1.4 Bc 7.7±1.3 Fb 

HO 8.0±0.3 Ac 4.9±0.9 Bd 4.3±0.1 BCd 8.6±1.6 Ba 6.8±0.0 Cbc 7.1±0.1 Abc 7.5±0.1 Db 

HO-UVc 8.7±0.1 Bcd 8.0±3.5 Abc 9.0±0.4 Ab 3.0±0.1 Ee 16.7±1.2 Aa 4.4±0.3 Ede 5.9±0.1 Ecd 

  Shredded 

AIR 3.4±0.2 Cb 3.3±0.1 Bb 3.6±0.2 DEb 3.2±0.1 DEb 4.9±0.9 DEa 3.8±0.0 Fb 5.5±0.5 EFa 

AIR-UVc 3.8±0.4 Cc 3.5±0.1 Bc 3.1±0.1 Ec 3.1±0.1 Ec 8.0±0.5 Ba 5.4±0.2 Cb 4.9±1.0 CDb 

HO 3.4±0.2 Ccd 3.7±0.5 Bcd 3.3±0.1 DEd 3.9±0.2 CDc 4.7±0.2 DEb 4.9±0.3 Db 9.2±0.7 Ba 

HO-UVc 3.8±0.4 Ccd 3.4±0.1 Bd 3.6±0.1 DEcd 3.4±0.3 DEd 4.0±0.5 Ec 4.8±0.3 Db 8.4±0.1 BCa 

*HO: hyperoxia storage; 3-CQA: 3-caffeoylquinic acid; 3,5-CQA: 3,5-dicaffeoylquinic acid; 4,5-CQA: 4,5-dicaffeoylquinic acid 
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Table I.2. Total antioxidant capacity of carrots treated with different postharvest abiotic stresses (wounding, UV-C and hyperoxia storage) during 

storage up to 72 h at 15 ºC (n=3±SD). Different capital letter denotes significant differences (p < 0.05) among different treatments for the same 

sampling time. Different lowercase letter denotes significant differences (p < 0.05) among different sampling times for the same treatment. 

 

Storage (h) 0 12 24 36 48 60 72 

  Whole 

AIR 135.7±45.4 Dd 234.5±35.2 Dcd 351.8±74.1 Ebcd 481.6±24.5 Dabc 619.3±59.1 Cab 368.8±44.1 Gbcd 740.7±92.6 Ea 

AIR-UVc 500.0±44.0 Cc 475.6±41.6  Cc 470.6±42.1 DEc 314.2±31.5 DEcd 241.3±42.1 Dd 844.4±39.8 Eb 1,511.9±43.1 CDa 

HO* 135.7±45.4 Dc 365.2±32.6 Dbc 476.1±54.0 DEab 349.5±43.1 Ebc 197.9±39.6 Dbc 619.5±76.8 Fa 732.6±70.4 Ea 

HO-UVc 500.0±44.0 Cc 515.6±49.5 Cc 548.7±88.2 CDEc 378.2±21.0 DEd 169.7±29.7 Dd 1,071.7±55.4 Db 1,432.8±33.9 Da 

  Shredded 

AIR  959.6±103.1 Bb 847.2±54.5 Bc 742.1±47.2 CDd 841.3±45.6 Cc 983.3±32.4 Bb 1,490.4±42.8 Ca 1,580.2±41.4 CDa 

AIR-UVc 1112.7±152.3 Ab 1,004.2±87.6 Ab 1,046.6±52.9 ABb 1,198.5±87.2 Ab 1229.0±26.4 Ab 1,878.7±24.7 Ba 2,049.6±115.8 Ba 

HO 959.6±103.1 Bd 898.2±87.5  Bd 816.3±49.6 BCd 1,042.2±92.1 BCcd 1158.4±43.1 Ac 2,063.2±64.4 Ab 2,668.1±128.1 Aa 

HO-UVc 1112.7±152.3 

Abc 
1,085.3±95.6 Abc 1,232.1±34.0 Ab 1,106.2±36.8 ABbc 967.3±32.2 Bc 1,336.8±42.7 Cb 1,863.2±55.3 BCa 

*HO: hyperoxia storage 
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Figure I.1. UV-C transmittance of internal and external carrot tissue sections with 

different thickness. Symbols represent experimental data and lines represent fitted data 

with polynomial inverse third order (R2> 0.98). 
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Figure I.2. Relative electrolyte leakage (REL) of shredded carrots treated with different 

postharvest abiotic stresses (UV-C and hyperoxia storage) at time 0 and after 72 h of 

storage at 15 ºC (n=3±SD). Different capital letter denotes significant differences (p <  

0.05) among different treatments for the same sampling time. Different lowercase letters 

denote significant differences (p < 0.05) among different sampling times for the same 

treatment. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I 
 

74 
 

 

 

Figure I.3. Total colour (ΔE), whitening (ΔWI) and browning differences (ΔBI) of 

shredded carrots treated with different postharvest abiotic stresses (UV-C and hyperoxia 

storage) after 72 h of storage at 15 ºC (n=3±SD). Different letters denote significant 

differences (p < 0.05) among different treatments. 
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Figure I.4. Phenylalanine ammonia-lyase (PAL) activity of carrots treated with different 

postharvest abiotic stresses (wounding, UV-C and hyperoxia storage) during storage up 

to 72 h at 15 ºC (n=3±SD). Different capital letters denote significant differences (p <   

0.05) among different treatments for the same sampling time. Different lowercase letters 

denote significant differences (p < 0.05) among different sampling times for the same 

treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I 
 

76 
 

 

 

Figure I.5. Total phenolic content of carrots treated with different postharvest abiotic 

stresses (wounding, UV-C and hyperoxia storage) during storage up to 72 h at 15 ºC 

(n=3±SD). Different capital letters denote significant differences (p < 0.05) among 

different treatments for the same sampling time. Different lowercase letters denote 

significant differences (p < 0.05) among different sampling times for the same treatment. 
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II.1. INTRODUCTION 

 

Nowadays, food is not only intended to feed, but also to prevent chronic and nutritional-

related diseases as well as to improve overall human well-being, mainly linked to the 

crescent consumer’s knowledge on functional foods. The high contents of 

phytochemicals from fruit and vegetables have been proven to prevent a grand array of 

diseases such as degenerative disorders, cancer, cardiovascular among others related to 

the consumption of these plant products (Slavin and Lloyd, 2012). Enhancement of the 

health-promoting properties of fruit and vegetables will add value and create new 

opportunities, even with recent economical drawbacks. Therefore, there is a need to 

provide technologies to handle fresh products with enhanced health-promoting properties 

(Jongen, 2002). 

 

Carrot is a popular vegetable among broad strata of the population. The popularity of this 

vegetable is mainly due to its sensory characteristics and nutritional compounds. 

Furthermore, carrots do not contribute with high calories intake, however they play a 

significant source of nutrients, such as carotenoids, vitamins (A, E) and antioxidants on 

human diet (Sharma et al., 2011). Phenolic compounds are great antioxidants related to 

several health-promoting properties such as anti-inflammatory, antitumoral, as well as 

preventing neurodegenerative and chronic disorders. Moreover, those compounds 

contribute to sensory features of food. Currently, health recommendations rely on a diet 

rich in multiple antioxidant compounds than one used based on a single antioxidant 

(Shahidi and Ambigaipalan, 2015). Plant products have been proposed as biofactories of 

phenolic compounds through different mechanisms induced by abiotic stresses. 

Particularly, carrot has been widely used as a model system to understand the effect of 

different postharvest abiotic stresses on the phenylpropanoid metabolism due to the 

observed high enhancement of phenolic compounds, with high antioxidant capacity, 

compared to other vegetables (Cisneros-Zevallos, 2003). Concisely, PAL is the key 

enzyme of primary (shikimate) and secondary (phenylpropanoid) pathways and is, 

therefore, involved in the biosynthesis of polyphenolic compounds (Dixon and Paiva, 

1995). It is well reported that this enzyme is induced by an array of biotic and abiotic 

stress-induced mechanisms, such as wounding, radiation exposure, hyperoxia storage, 

water stress, chilling injury, low minerals, hormones and pathogen attack, among others 

(Alegria et al., 2016; Avena-Bustillos et al., 2012; Becerra-Moreno et al., 2012; Jacobo-



Chapter II 
 

80 
 

Velázquez et al., 2011). Consequently, such postharvest abiotic stresses enhance the 

levels of phenolic compounds like caffeoylquinic acid, ferulic acid and their derivates as 

a defence mechanism of the plant (Jacobo-Velázquez et al., 2011). 

 

Application of UV-B radiation (280–320 nm) has been proposed as a friendly and cheap 

non-molecular tool to enhance the phenolic compounds in carrots and other horticultural 

crops during postharvest life (Castagna et al., 2014; Du et al., 2012; Scattino et al., 2014).  

On the other side, the high germicidal properties of UV-C radiation (100-280 nm) have 

justified its use as a sustainable alternative to chlorine washing treatment in some fresh-

cut products while also being able to stress plant tissues in certain conditions (Artés et al., 

2009). Then, the application of UV-B radiation just after wounding could highly enhance 

phenolic accumulation, while its combination with UV-C may reduce the initial microbial 

load of fresh-cut products extending their shelf life. Nonetheless, to the best of our 

knowledge, such combined UV treatment has not already been studied in fresh-cut 

products. Accordingly, this work studied the single and combined effect of UV-B and 

UV-C pre-packaging treatments on PAL activity, phenolic compounds and related TAC 

of shredded fresh-cut carrots during storage at 15 ºC. 

 

II.2. MATERIALS AND METHODS 

 

II.2.1. Plant material preparation 

 

Fresh carrots (cvs. group Nantes, cv. Soprano) were bought in a local market (Cartagena, 

Spain) on the third week of April 2016. According to the producer specifications, carrots 

were harvested on the first week of April in Villena area (northwest area of Alicante 

region, Spain) without any postharvest treatment, but washing, previous expedition to the 

market. Carrots were transported to the Pilot Plant of the Universidad Politécnica de 

Cartagena where they were stored in a cold room at 5 ºC until the next day when the 

experiment was conducted. Plant material was carefully inspected, selecting those with 

similar visual appearance and size (14-15 cm long and 2-3 cm diameter). Then, carrots 

(unpeeled) were sanitized in a cold room (8 ºC) with chlorine (150 mg L-1 NaClO; 5 ºC; 

pH 6.5±0.1) for 2 min, rinsed with tap water at 5 ºC for 1 min and drained in a perforated 

basket for 1 min. A ratio of 300 g plant material: 5 L chlorine was used. Carrots were 

wounded to shreds (2 mm × 3 mm × 40-60 mm) with a food processor (FreshExpress+, 
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Moulinex, Lyon, France). Approximately 9 kg of carrot shreds were prepared for the 

experiment. All samples were submitted to radiation treatments immediately after 

wounding. 

 

II.2.2. Radiation treatments and incubation conditions 

 

The radiation chamber consisted of a reflective stainless steel chamber with two lamp 

banks (one bank suspended horizontally over the radiation vessel and the other one placed 

below it) being fitted to each bank 6 UV-B and 7 UV-C (alternatively positioned) 

unfiltered emitting lamps (TL 40W/01 RS and TUV 36W/G36 T8, respectively; Philips, 

Eindhoven, The Netherlands). UV-B and UV-C radiations were separately applied 

controlled by two general keys that switched all UV-C or UV-B at the same time. The 

radiation chamber also had a ventilator continuously switched on during treatments to 

renovate the air from inside of the chamber with the cold air from the cold room (8 ºC). 

Shredded carrots were placed between the two lines of lamps at 17.5 cm above and below 

over a bi-oriented PP film (thickness: 35 mm) mounted on a PS net (130 × 68 cm) that 

minimized blockage of the radiation. The applied UV-B and UV-C intensities of 9.27 and 

25.21 W m-2, respectively, were calculated as the mean of 18 readings on each side of the 

net using LP 471 UVB (Delta OHM, Italy) and VLX 254 radiometers, respectively 

(Vilber Lourmat, Marne la Vallee, France). Thus, both sides received the same radiation 

intensities. The equipment is based on that previously described for UV-C illumination 

(Artés-Hernandez et al., 2009). The light intensities were kept constant and the applied 

doses were varied by altering the exposure time at the fixed distance. Applied treatments 

were: 

 

• CTRL: No radiation treatment used as control. 

• UV-B: 1.5 kJ m-2 UV-B (162 s). The UV-B dose was selected based on our 

previous experiments and the data reported by Avena-Bustillos et al. (2012) in 

order to obtain maximum phenolic accumulation in carrots while minimizing 

heating and evaporation processes during treatment, which may affect the quality 

of the product. 

• UV-C: 4.0 kJ m-2 UV-C (159 s). The UV-C dose was selected based on our 

previous studies in order to achieve a proper microbial reduction while keeping 
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quality and safety of the product (Formica-Oliveira et al., 2016a; Martínez-

Hernández et al., 2015a). 

• UV-B+UV-C: 1.5 kJ m-2 UV-C followed by 4.0 kJ m-2 UV-B. 

• UV-C+UV-B: 4.0 kJ m-2 UV-B followed by 1.5 kJ m-2 UV-C. 

 

Approximately 150 g of treated sample was placed in a rectangular PP basket (170 mm × 

120 mm × 60 mm) and covered with a plastic polyethylene (PE) bag to reduce water loss. 

Three baskets (replicates) per treatment and sampling time were prepared. Samples were 

stored at 15 ºC (90–95 % RH) up to 72 h (sampling times: 0, 24, 48 and 72 h). Samples 

were stored at –80 ºC until further analyses of PAL activity, phenolic compounds and 

TAC were conducted. 

 

II.2.3. Phenylalanine ammonia-lyase 

 

PAL activity was analysed according to Ke and Saltveit (1986) but with modifications 

(Formica-Oliveira et al., 2016a). Concisely, 2 g of carrot tissue was mixed with 0.2 g of 

polyvinylpolypyrrolidone (Sigma, St Louis, MO, USA) and homogenized (Ultra 

Turrax®) in cold 50 mM borate buffer (pH 8.5) containing 400 μL L-1 of β-

mercaptoethanol (Sigma, St Louis, MO, USA). Homogenates were filtered through four 

layers of cheesecloth and then centrifuged at 10,000 × g for 20 min at 4 ºC. Supernatants 

were used as enzyme extracts. Two sets of UV-Star flat-bottom 96-well plates containing 

69 μL of PAL extract plus 200 µL ultrapure water were prepared for every sample and 

pre-incubated at 40 ºC for 5 min. Afterwards, 30 μL of either water (blank) or 100 mM 

L-phenylalanine substrate solution (freshly prepared before assay) was added to each of 

the wells for every sample set. The absorbances of the sample sets were measured at 290 

nm using the Multiscan plate reader at time 0 and after 1 h of incubation at 40 ºC. The 

PAL activity was calculated as μmol kg-1 fw h-1 of t-cinnamic acid synthesized. Each of 

the three replicates was analysed in triplicate. 

 

II.2.4. Phenolic compounds 

 

Extraction to determine phenolic compounds and TAC was conducted by homogenization 

(Ultra Turrax®) of 2 g of sample in 8 mL of methanol (Sigma, St Louis, MO, USA) for 

20 s in an ice-water bath. Subsequently, extracts were centrifuged at 13,500 × g for 20 
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min at 4 ºC and supernatants were collected and analysed. Extracts for individual phenolic 

compounds were further filtered through a 0.22 µm polyethersulphone filter and stored 

in amber vials at −80 ºC until UHPLC analysis was conducted. 

 

TPC was analysed by the Folin–Ciocalteu reagent method (Singleton and Rossi, 1965) 

but with modifications (Martínez-Hernández et al., 2011).  Briefly, 19 µL of TPC extract 

was placed on a PS flat-bottom 96-well plate and 29 µL of 1 N Folin–Ciocalteu reagent 

was added. Samples were incubated for 3 min in darkness at room temperature. Then, 

192 µL of a solution containing Na2CO3 (4 g L-1) and NaOH (20 g L-1) was added and 

the reaction was carried out for 1 h at room temperature in darkness. The absorbance was 

measured at 750 nm after incubation using the Multiscan plate reader. TPC was expressed 

as chlorogenic acid equivalents in mg kg−1 fw. Each of the three replicates was analysed 

in triplicate. 

 

Analysis of individual phenolic compounds was conducted as previously described  

(Formica-Oliveira et al., 2016a). Briefly, samples of 20 µL were analysed using an 

UHPLC instrument (Shimadzu, Kyoto, Japan) equipped with a DGU-20A degasser, LC-

30AD quaternary pump, SIL-30AC autosampler, CTO-10AS column heater and SPDM-

20A photodiode array detector. The UHPLC system was controlled by the software 

LabSolutions (Shimadzu, v. 5.42 SP5). Chromatographic analyses were carried out onto 

a Kinetex C18 column (100 mm × 4.6 mm, 2.6 µm particle size; Phenomenex, 

Macclesfield, UK) with a KrudKatcher Ultra HPLC guard column (Phenomenex, 

Macclesfield, UK). The column temperature was maintained at 25 ºC. The mobile phase 

was acidified water (A; formic acid to final pH 2.3) and acidified methanol (B; formic 

acid to final pH 2.3). The flow rate was 1.5 mL min−1. Gradient program used was 0/88, 

1.2/88, 2.4/85, 8.3/70, 9.4/50, 11.8/50, 20.8/55, 22.0/60 (min/% phase A). Then, column 

equilibration was conducted at 0 % A for 2.2 min. Chromatograms were recorded at 320 

nm.  Phenolic acids were quantified with standards of chlorogenic acid, ferulic acid 

(Sigma, St Louis, MO, USA), 3,5-CQ) and 4,5-CQA (ChromaDex, Irvine, CA, USA). 

The results were expressed as mg kg−1 fw. Each of the three replicates was analysed in 

duplicate. 
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II.2.5. Total antioxidant capacity  

 

The extracts were analysed for TAC based on Brand-Williams et al. (1995) but with 

modifications (Martínez-Hernández et al., 2013d). Briefly, a solution of 0.7 mM DPPH 

(Sigma, St Louis, MO, USA) in methanol was prepared 2 h before the assay and adjusted 

to 1.1±0.02 nm immediately before use. A 21 µL aliquot of the previously described 

extract was placed on a PS flat-bottom 96-well plate and 194 µL of DPPH was added. 

The reaction was carried out for 30 min at room temperature in darkness and the 

absorbance was measured at 515 nm using the Multiscan plate reader. Results were 

expressed as mg Trolox kg−1 fw. Each of the three replicates was analysed in triplicate. 

 

II.2.6. Statistical Analyses 

 

A complete randomized design in triplicate with two-way ANOVA (treatment × storage) 

by Post Hoc Tuckey HSD tests (p=0.05) was conducted using the SPSS software (v. 21, 

IBM, USA). Possible synergistic effects of the combined treatments were discarded 

according to Limpel’s formula (Equation II.1) (Richer, 1987), wherever the effectiveness 

of a combination of treatments exceeds the prediction of the effectiveness of their additive 

action. 

                                                       𝐸𝑒 = 𝑋 + 𝑌 − (
𝑋𝑌

100
)                                             (II.1) 

 

II.3. RESULTS AND DISCUSSION 

 

II.3.1. Phenylalanine ammonia-lyase activity 

 

Carrots showed an initial PAL activity of 19.7±4.9 µmol kg-1 h-1 (Figure II.1). Similar 

PAL activity has been previously reported for the same carrot cultivar (Formica-Oliveira 

et al., 2016a). PAL activity did not significantly (p < 0.05) change after radiation 

treatments on processing day. 

 

In general, PAL activity of shredded carrots increased throughout storage. Latter finding 

may be explained since PAL is induced by an array of biotic and abiotic stress-induced 

mechanisms such as the applied wounding (Cisneros-Zevallos, 2003). PAL activity of 
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CTRL and UV-B samples early increased (214 and 352 %, respectively) after 24 h 

reaching the highest PAL increments (1,013 and 804 %, respectively) among the rest of 

treatments at 48 h. PAL activity of CTRL and UV-B samples decreased after such high 

enhancements with levels of 155-160 µmol kg-1 h-1 at 72 h without significant (p < 0.05) 

differences among them. A similar increment (750 %) of PAL activity after 72 h at 15 ºC 

has been reported in shredded carrots irradiated with a UV-B dose of 1.3 kJ m-2 (Du et 

al., 2012). Such data is in accord to the detailed photograph (12 h intervals) of PAL 

activity and phenolic accumulation in stressed (wounding and UV-C) carrots recently 

reported (Formica-Oliveira et al., 2016a). Latter photograph showed that PAL activity 

and phenolic accumulation in stressed carrots could be divided into three different phases 

during storage at 15 ºC: 1st phase, < 24 h: early PAL activity increments; 2nd phase, 24-

48 h: moderate phenolic increments concurring with the highest increase of PAL activity; 

3nd phase, 48-72 h: high phenolic increments while a moderate increment of PAL activity 

is registered.  

 

Treatments including UV-C clearly reduced the PAL activity. However, the behaviour of 

PAL activity of UV-C samples was similar to UV-B with the maximum increase (267 %) 

at 48 h followed by a decrease to initial levels after 72 h. The lower increase of PAL 

activity observed in UV-C samples compared to UV-B may be a result of a feedback 

modulation or due to the diversion of the synthetic capacity of the cell to the production 

of other proteins not observed with the UV-B radiation (Alegria, 2015; Boerjan et al., 

2003; Saltveit, 2000). Enzymes have long been known to be inactivated on exposure to 

UV radiation (Pattison et al., 2012). Accordingly, another possible explanation may be a 

partial PAL denaturation by UV-C (a UV radiation with higher photon energy than UV-

B) delaying the stress-enhanced activity of this enzyme. The inhibiting effect of UV-C 

on PAL activity of shredded carrots has been also recently observed (Formica-Oliveira et 

al., 2016a). 

 

Combined treatments showed PAL activity increments of 115-144 % after 72 h. However, 

such increases were lower than those observed in CTRL and UV-B-treated samples due 

to UV-C radiation. On the other side, the application order for the combined treatments 

did not affect the PAL activity of samples since no significant (p < 0.05) differences 

between UV-B+UV-C and UV-C+UV-B were found throughout all storage period. 
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II.3.5. Phenolic compounds 

 

Initial TPC of CTRL carrots was 207.4±43.0 mg kg-1 (Table II.1). The major individual 

phenolic compounds identified were 3-CQA, 3,5-CQA, 4,5-CQA and ferulic acid (Table 

II.2). These phenolic compounds accounted 69.6, 11.0, 9.8 and 9.5 % of the sum of 

individual phenolic compounds, respectively. Similar initial TPC of carrot has been 

previously reported being hydroxycinnamic acids and their derivatives the major phenolic 

compounds found (Alegria et al., 2016; Formica-Oliveira et al., 2016a; Jacobo-Velázquez 

et al., 2011). The 3-CQA content of samples was proportionally much lower than TPC, 

although 3-CQA was the main phenolic compound. Similar observation could be also 

deduced from similar studies with shredded carrots (Alegria et al., 2016; Formica-

Oliveira et al., 2016a; Heredia and Cisneros-Zevallos, 2009; Jacobo-Velázquez et al., 

2011). Latter finding can be explained since other antioxidant compounds of carrots may 

react with the Folin-Ciocalteu reagent overestimating the TPC. As expected, radiation 

treatments did not immediately change (p < 0.05) the phenolic compounds levels as 

similarly observed for PAL activity. 

 

Phenolic levels of all samples progressively increased throughout storage. Such increase 

of these phytochemicals is a response to the applied postharvest abiotic stresses like 

wounding and radiation (Avena-Bustillos et al., 2012; Cisneros-Zevallos, 2003; Formica-

Oliveira et al., 2016a). This phenolic biosynthesis has been reported to be a consequence 

of PAL activation after such abiotic stresses, as previously discussed, being proposed 

ATP and reactive oxygen species as signalling molecules (Jacobo-Velázquez et al., 2011). 

UV-B showed the highest TPC increases regarding its initial content with 90, 215 and 

498 % after 24, 48 and 72 h at 15 ºC, respectively, which is 20 % higher than the TPC 

enhancement reached by CTRL samples (Table II.1). The maximum TPC observed at 72 

h may be the delayed consequence of maximum PAL activity observed at 48 h as 

previously reported (Formica-Oliveira et al., 2016a). In general, different responses to 

low or high doses of UV-B have been observed in plants either by stimulating protection 

mechanisms or by activating repair mechanisms (Frohnmeyer and Staiger, 2003). 

Biosynthesis of UV absorbing compounds is the most common protective mechanism 

against potentially damaging radiation (Hahlbrock and Scheel, 1989). These secondary 

metabolites accumulate in the vacuoles of epidermal cells in response to UV-B irradiation 
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and attenuate the penetration of the UV-B into deeper cell layers (Avena-Bustillos et al., 

2012).  

 

The highest PAL activity of CTRL samples was not correlated to TPC of these samples, 

which was similar to the UV-C-including treatments. Latter fact could be explained by a 

higher content of other antioxidant compounds in CTRL samples which could react 

within the TPC method. Similarly, contrary to the observed high reduction of PAL 

activity after single UV-C treatment and UV combinations, TPC accumulations in these 

samples were only slightly reduced (4-12 % after 72 h) regarding the single UV-B 

treatment with similar values to CTRL samples.  

 

The treatments including UV-C radiation (single or combined) showed similar TPC 

enhancements to CTRL samples throughout storage. This finding is in accordance to the 

observed PAL inhibition in treatments including UV-C radiation as previously discussed. 

Likewise, no TPC enhancements were observed in samples treated by a low UV-C dose 

(0.8 kJ m-2) contrary to non-irradiated samples after 10 days at 5 ºC (Alegria et al., 2012). 

Furthermore, shredded carrots treated at higher UV-C dose (9 kJ m-2) showed lower TPC 

accumulation compared to non-irradiated samples after 72 h at 15 ºC (Formica-Oliveira 

et al., 2016a). Accordingly, as UV-C radiation dose increases the TPC accumulation 

(determined by Folin-Ciocalteu method) seems to be reduced. On the other side, single 

UV-C treatment showed 50-170 % higher 3-CQA than CTRL samples after 48-72 h 

(Table II.2). Latter finding was not observed from TPC data probably owed to the 

previously commented interference of other antioxidant compounds with the TPC 

method. However, the enhanced 3-CQA contents observed in the samples treated by 

single treatments were not observed in the combined treatments probably to the longer 

times of these treatments. In general, the contribution of 3,5-CQA, 4,5-CQA and ferulic 

acid to TPC was minimum with no significant (p < 0.05) changes throughout storage of 

all samples. 

 

Chlorogenic acid, the main phenolic compound in carrots, is an ester of caffeic acid with 

quinic acid with high antioxidant capacity regarding other phenolic compounds 

(Castelluccio et al., 1995). Carrots occupy the sixth place among the list of most 

consumed vegetables in the American diet, although the TPC of this vegetable is almost 

the lowest one (Chun et al., 2005). Hence, the enhancement of those antioxidant 
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compounds during storage could be favoured by UV-B treatment as hereby observed and 

according to previous data (Avena-Bustillos et al., 2012; Du et al., 2012). UV-C radiation 

is mainly used in fresh-cut products due to the high germicidal properties of this UV 

radiation being considered as a sustainable alternative to conventional chlorine washings 

(Martínez-Hernández et al., 2015b). Accordingly, moderate UV-C doses initially reduced 

by approximately 1.5 log units mesophiles and yeasts and moulds loads in shredded 

carrots being such microbial loads below the threshold limit (7 log units), which defines 

the shelf life of fresh-cut products, after 72 h at 15 ºC (Formica-Oliveira et al., 2016a). In 

this sense, the combination of UV-B with UV-C may reduce microbial loads of shredded 

fresh-cut carrots while still allowing high phenolic compounds accumulation 

(approximately 440 % after 72 h regarding its initial values) similarly to CTRL samples. 

 

II.3.6. Total antioxidant capacity 

 

The initial TAC of CTRL carrots was 121.1±79.8 mg kg-1 (Table II.1). Radiation 

treatments did not immediately change (p < 0.05) TAC except UV-C+UV-B treatment 

which showed 3-fold higher TAC than CTRL samples. Latter data may be an 

experimental artifact resulted from higher extraction of other antioxidant compounds of 

carrots due to increased cell wall depolymerization. 

 

TAC of all samples increased throughout storage similar to TPC data. Carrots have a high 

antioxidant capacity mainly due to their content of phenolic compounds. In this sense, 

TAC was highly correlated to TPC with R2 of 0.82 as previously found (Cisneros-

Zevallos, 2003). UV-B samples early showed the highest TAC increment with levels 47 

% higher than CTRL samples at 24 h. In the same line, UV-B samples showed the highest 

TAC levels with 3,705 mg kg-1 at 72 h compared to the other radiation treatments. The 

rest of treatments showed final TAC levels of 2,537-2,890 mg kg-1 at 72 h without 

significant (p < 0.05) differences among them. 

 

Sufficient antioxidants compounds need to be consumed with foods to prevent or slow 

the oxidative damage in humans induced by free radicals. UV-B treatment is hereby 

shown as an excellent sustainable and cheap treatment to be applied by the food industry 

to even enhance the accumulation of phenolic compounds, and consequently the 

antioxidant capacity, in wounded carrots. The combination with UV-C is recommended 
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as a sustainable sanitizing treatment alternative to conventional chlorine washings. 

Furthermore, the accumulation of such antioxidant compounds still occurred in the 

treatments including UV-C radiation although in a lower degree compared to single UV-

B. No significant TAC differences were found relating to the application order of 

radiation treatments. However, a combined UV-C+UV-B treatment can be recommended 

to quickly reduce initial microbial loads by UV-C illumination of samples just after 

wounding. 

 

II.4. CONCLUSIONS 

 

The total phenolic compounds accumulation in shredded fresh-cut carrots after 72 h at 15 

ºC could be increased up to 30 % with a UV-B pre-packaging treatment of 1.5 kJ m-2. 

Particularly, UV-B-treated samples achieved an accumulation of phenolic compounds of 

approximately 500 % after 72 h at 15 ºC while non-irradiated samples showed a 380 % 

accumulation regarding their respective initial levels. UV-C has been proposed as a 

sanitizing treatment in fresh-cut products alternative to conventional NaOCl. According 

to the hereby reported data, the use of the sanitizing UV-C treatment in combination with 

a UV-B treatment did not highly affect the phenolic accumulation, still allowing an 

accumulation of 440 % after 72 h. Such combined UV-C+UV-B pre-treatment seems to 

be a good tool for the food industry to diversify its product offer for the actual consumer, 

which is increasingly interested in high antioxidant content products while meeting the 

food safety issues 
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Figure II.1. Phenylalanine ammonia-lyase activity of shredded fresh-cut carrot treated 

with UV-C and UV-B, and their combinations, during storage up to 72 h at 15 ºC 

(n=3±SD). Different capital letters denote significant differences (p < 0.05) among 

different treatments for the same sampling time. Different lowercase letters denote 

significant differences (p < 0.05) among different sampling times for the same treatment. 
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Table II.1. Total phenolic content and total antioxidant capacity of shredded fresh-cut 

carrot treated with UV-C and UV-B, and their combinations, during storage up to 72 h at 

15 ºC (n=3±SD). Different capital letters denote significant differences (p < 0.05) among 

different treatments for the same sampling time. Different lowercase letters denote 

significant differences (p < 0.05) among different sampling times for the same treatment. 

 

Storage (h) 0 24 48 72 

Total phenolic content*    

CTRL 207.4±43.0 Ac 314.0±37.6 Ac 458.5±10.4 Bb 1,001.2±116.3 Ba 

UV-B 205.3±49.5 Ad 389.2±92.4 Ac 647.8±76.2 Ab 1,228.1±71.1 Aa 

UV-C 187.8±8.9 Ac 327.1±11.2 Ab 411.3±65.8 Bb 1,007.5±95.7 Ba 

UV-B+UV-C 173.1±21.8 Ad 314.3±30.1 Ac 472.2±71.5 Bb 975.3±62.6 Ba 

UV-C+UV-B  175.0±39.1 Ac 331.2±27.5 Ac 469.2±5.4 Bb 1,008.3±153.2 Ba 

 

Total antioxidant capacity** 

CTRL 121.1±79.8 Bd 1,263.1±262.3 Bc 1,758.6±326.9 Cb 3,680.1±17.7 Aa 

UV-B 245.0±109.9 ABc 1,862.6±145.6 Ab 2,438.2±144.9 Ab 3,704.8±10.6 Aa 

UV-C 191.9±78.5 ABd 1,487.1±165.6 ABbc 2,233.4±120.1 ABa 2,889.6±281.1 Ba 

UV-B+UV-C 213.5±76.3 ABd 1,169.4±42.8 Bc 2,445.8±38.4 Ab 2,820.6±332.2 Ba 

UV-C+UV-B  363.2±131.4 Ad 1,323.3±297.9 ABc 2,090.8±117.1 Bb 2,537.1±219.4 Ba 

*mg kg-1 chlorogenic acid equivalents; ** mg kg-1 Trolox equivalents 
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Table II.2. Individual phenolic compounds of shredded fresh-cut carrot treated with UV-

C and UV-B, and their combinations, during storage up to 72 h at 15 ºC (n=3±SD). 

Different capital letters denote significant differences (p < 0.05) among different 

treatments for the same sampling time. Different lowercase letters denote significant 

differences (p < 0.05) among different sampling times for the same treatment. 

 

Storage (h) 0 24 48 72 

3-CQA (mg kg-1)     

CTRL 56.7±19.4 Ab 107.6±12.8 Ba 92.5±17.7 Ba 41.0±9.9 Db 

UV-B 56.0±4.6 Ab 152.1±14.2 Aa 175.4±26.7 Aa 146.3±12.4 Aa 

UV-C 58.5±10.1 Ac 110.4±11.2 Bb 139.6±14.4 Aa 110.7±15.0 Bb 

UV-B+UV-C 57.0±13.5 Aa 95.1±36.3 Ba 84.0±28.3 Ba 96.9±14.3 BCa 

UV-C+UV-B  43.4±1.5 Ac 101.5±16.9 Ba 42.6±7.9 Cc 76.6±1.9 Cb 

Ferulic acid (mg kg-1) 

CTRL 7.8±1.8 Aa 10.7±0.6 Aa 9.6±4.4 Aa 7.7±0.9 Aa 

UV-B 5.1±0.4 Ba 8.5±1.0 Ba 8.3±6.6 ABa 6.1±1.6 Aa 

UV-C 7.6±0.2 Aa 6.6±0.6 Cab 7.0±4.3 ABab 3.2±0.9 Bb 

UV-B+UV-C 4.6±1.1 Ba 4.5±1.5 Da 4.3±0.4 ABab 2.3±0.6 Bb 

UV-C+UV-B  2.7±0.3 Cb 4.9±0.1 Da 1.7±0.5 Bc 2.6±0.7 Bb 

3,5-CQA (mg kg-1) 

CTRL 9.0±0.3 Aa 9.2±0.2 Aa 9.0±0.1 ABa 9.0±0.1 Aa 

UV-B 9.0±0.1 Aa 9.4±0.2 Aa 9.3±0.4 Aa 9.3±0.7 Aa 

UV-C 9.0±0.1 Aa 9.1±0.3 Aa 9.1±0.3 ABa 9.3±0.7 Aa 

UV-B+UV-C 9.0±0.3 Aa 9.4±0.5 Aa 9.2±0.3 Aa 9.3±0.5 Aa 

UV-C+UV-B  8.7±0.3 Aa 9.2±0.1 Aa 8.7±0.2 Ba 9.7±1.0 Aa 

4,5-CQA (mg kg-1) 

CTRL 8.0±1.6 Aa 8.0±0.9 Aa 7.8±1.6 Aa 6.8±1.2 Aa 

UV-B 7.6±0.1 ABa 6.7±0.8 Aa 7.9±1.4 Aa 6.8±1.9 Aa 

UV-C 7.3±0.3 ABa 8.1±0.5 Aa 8.3±1.7 Aa 7.6±2.1 Aa 

UV-B+UV-C 8.6±1.5 Aa 8.9±1.4 Aa 8.1±1.0 Aa 6.4±2.0 Aa 

UV-C+UV-B 5.8±0.2 Bb 7.7±0.3 Aab 6.2±0.5 Aab 8.0±2.1 Aa 

3-CQA: 3-caffeoylquinic acid; 3,5-CQA: 3,5-dicaffeoylquinic acid; 4,5-CQA: 4,5-dicaffeoylquinic acid 
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III.1. INTRODUCTION 

 

Bimi® broccoli is a new natural hybrid between Chinese broccoli, also called kailan or 

gailan, and conventional broccoli. Bimi® broccoli is characterized by a small floret with 

a long (15-18 cm) slender stem which has a mild sweeter taste compared to conventional 

broccoli varieties, being completely edible (raw or cooked) (Martínez-Hernández et al., 

2013b). Bimi® broccoli is rich in phenolic compounds, glucosinolates, vitamin C and 

other antioxidant compounds (Martínez-Hernández et al., 2013a; Martínez-Hernández et 

al., 2013c). Glucoraphanin and glucobrassicin are the main glucosinolates present in 

Bimi® broccoli (Martínez-Hernández et al., 2013c) being their cognate isothiocyanates, 

sulforaphane and indol-3-carbinol, extensively studied for their potent induction of 

mammalian detoxication (phase 2) enzyme activity and anti-cancer agent (Traka and 

Mithen, 2008). 

 

FAO has recently published that about 1.3 billion tons of food is worldwide wasted or 

lost per year being 10-20 % attributed to preharvest losses (FAO, 2015). Use of plant by-

products supports the low carbon economy using renewable resources, offering 

environmental and economic benefits and improve efficiency in food industry. The non-

edible parts of Bimi® plant (stalks and leaves) may have high contents of bioactive 

compounds like similarly found in conventional broccoli varieties (Aguiló-Aguayo et al., 

2014; Dosz et al., 2014). Accordingly, the use of Bimi® plant by-products wasted during 

preharvest stage appears as an interesting source of health-promoting compounds for the 

food and pharmaceutical industries. The leaves and stalks of Bimi® broccoli represent 

75.5 % (in dry weight basis) of total above-ground plant biomass. This constitutes a high 

amount of waste, with a negative effect on the agricultural environment, in the Región de 

Murcia (Southeast of Spain) that is the main European Bimi® broccoli producer with 150 

ha cultivated in the last campaign (data supplied by Sakata Seeds Ibérica). Moreover, the 

sometimes abnormally high temperatures in the winter and spring seasons of warmer 

production areas may induce early flowering, resulting in the total loss of the saleable 

yield (florets), and converting all the biomass into an unprofitable by-product. 

 

Plant products have been proposed as biofactories of bioactive compounds through 

different induced abiotic stresses-mechanisms such as UV radiation, wounding, etc. 

(Cisneros-Zevallos, 2003; Formica-Oliveira et al., 2017). Application of UV radiation (B 
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and C) has been proposed as a friendly and cheap non-molecular tool to enhance the 

phenolic compounds of horticultural crops during postharvest life (Castagna et al., 2014; 

Du et al., 2012; Formica-Oliveira et al., 2017; Scattino et al., 2014). Furthermore, UV-C 

radiation has a high germicidal effect which may reduce microbial growth during storage 

of UV-treated samples. In that way, the use of UV+B and UV-C radiation treatments may 

be used to revalorize broccoli plant by-products. 

 

To our knowledge there have been no prior studies regarding the use of single and 

combined UV-B and UV-C postharvest treatments on the phenolic compounds and 

glucosinolates of broccoli by-products and edible parts. Accordingly, this work studied 

the singular and combined effects of UV-B and UV-C pre-treatments on TPC, and related 

TAC, and main glucosinolates (glucoraphanin and glucobrassicin) of Bimi® broccoli 

leaves, stalks and florets during storage at 15 ºC for up to 72 h. 

 

III.2. MATERIALS AND METHODS 

 

III.2.1. Plant material 

 

Bimi® broccoli plants were grown under open air cultivation in fields located in the 

Region of Murcia, in the Southeast Mediterranean Spanish area, in the spring growing 

cycle (planting in March) and were harvested randomly at the end of May (average 

temperature intervals of 4–27 ºC). Plant material was grown according to integrated pest 

management cultural practices. Bimi® plants were hand-harvested at commercial ripening 

stage of Bimi® florets (head diameters of 3–5 cm and stem lengths of 15–18). Immediately 

after harvesting, Bimi® plants were pre-cooled with crushed ice and transported by car 

about 80 km to the Pilot Plant of our Research Group in the Universidad Politécnica de 

Cartagena, where it was stored at 4 ºC and 90–95 % RH until next day. 

 

III.2.2. Sample preparation 

 

Preparation of plant material was conducted in a disinfected cold room at 8 ºC. Leaves 

were removed from the plant main stalk using a sharp knife. Bimi® florets were cut in 

about 15-cm-long spears. The obtained three Bimi® broccoli parts (florets, stalks and 

leaves) were then washed with chlorinated water (150 mg L-1 free chlorine; pH 6.5; 5 ºC) 
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for 2 min and rinsed with tap water at 5 ºC for 1 min. Once drained, plant material was 

carefully dried with towel paper and disposed in plastic trays until UV treatments were 

applied. 

 

III.2.3. Radiation treatments and storage conditions 

 

The radiation chamber consisted of a reflective stainless steel chamber with two lamp 

banks (one bank suspended horizontally over the radiation vessel and the other one placed 

below it) being fitted to each bank 6 UV-B and 7 UV-C (alternatively positioned) 

unfiltered emitting lamps (TL 40W/01 RS and TUV 36W/G36 T8, respectively; Philips, 

Eindhoven, The Netherlands). UV-B and UV-C radiations were separately applied 

controlled by two general keys that switched all UV-C or UV-B at the same time. The 

radiation chamber also had a ventilator continuously switched on during treatments to 

renovate the air from inside of the chamber with the cold air from the cold room (8 ºC). 

Plant material was placed between the two lines of lamps at 17.5 cm above and below 

over a bi-oriented PP film (thickness: 35 μm) mounted on a PS net (130 × 68 cm) that 

minimized blockage of the radiation. The applied UV-B and UV-C intensities of 9.27 and 

25.21 W m-2, respectively, were calculated as the mean of 18 readings on each side of the 

net using LP 471 UVB (Delta OHM, Italy) and VLX 254 (Vilber Lourmat, Marne la 

Vallee, France) radiometers, respectively. Thus, both sides received the same radiation 

intensities. The radiation chamber is based on that previously described (Artés-Hernandez 

et al., 2009). The light intensities were kept constant and the applied doses were varied 

by altering the exposure time at the fixed distance. Applied treatments were: 

 

• CTRL: No radiation treatment used as control. 

• Single UV-B treatments: 5 (540 s), 10 (1,080 s) and 15 kJ m-2 UV-B (1,619 s). 

Such UV-B doses were selected based on previous experiments and according to 

Avena-Bustillos et al. (2012) in order to obtain maximum phenolic accumulation 

while minimizing heating and evaporation processes during UV-B treatment. 

• Combined UV-B+UV-C treatments: the previous UV-B doses were applied 

followed by a UV-C dose of 9 kJ m-2 (357 s). Such UV-C was selected based on 

Martínez-Hernández et al. (2011) and previous tests in order to obtain maximum 

bioactive increases. 
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The treated plant material was then placed in rectangular plastic trays and covered with a 

black PE bag to reduce water loss. Samples were stored at 15 ºC (90–95 % RH) up to 72 

h (sampling times: 0, 24, 48 and 72 h). Three replicates per treatment and sampling time 

were prepared. Samples were frozen in liquid nitrogen at every sampling time and stored 

at –80 ºC until further TPC, TAC and glucosinolates analyses were conducted. Frozen 

samples were ground to fine powder prior to analyses using liquid N2 with a mincer (IKA, 

A 11 basic, Berlin, Germany) at 12,700 × g for 10 s. 

 

III.2.4. Total phenolic content and total antioxidant capacity 

 

Extraction to determine TPC and TAC was conducted by homogenization (Ultra Turrax®) 

of 0.5 (floret), 0.25 (leaves) or 1 g (stalk) ground frozen sample in 3 mL of methanol for 

20 s in an ice-water bath. Subsequently, extracts were centrifuged at 13,500 × g for 20 

min at 4 ºC and supernatants were collected and analysed. TPC was analysed by the 

Folin–Ciocalteu reagent method (Singleton and Rossi, 1965) but with modifications 

(Martínez-Hernández et al., 2011).  Briefly, 19 µL of TPC extract was placed on a PS 

flat-bottom 96-well plate and 29 µL of 1 N Folin–Ciocalteu reagent (Sigma, St Louis, 

MO, USA) was added. Samples were incubated for 3 min in darkness at room 

temperature. Then, 192 µL of a solution containing Na2CO3 (4 g L-1) and NaOH (20 g L-

1) was added and the reaction was carried out for 1 h at room temperature in darkness. 

The absorbance was measured at 750 nm after incubation using the Multiscan plate 

reader. TPC was expressed as chlorogenic acid equivalents in mg kg−1 fw. Each of the 

three replicates was analysed in triplicate. 

 

TAC extracts were analysed based on Brand-Williams et al. (1995) but with 

modifications (Martínez-Hernández et al., 2013d). Briefly, a methanolic solution of 0.7 

mM DPPH (Sigma, St Louis, MO, USA) was prepared 2 h before the assay and adjusted 

to 1.1±0.02 nm immediately before use. A TAC extract aliquot of 35 µL was placed on a 

PS flat-bottom 96-well plate and 180 µL of adjusted DPPH solution was added. The 

reaction was carried out for 30 min at room temperature in darkness and the absorbance 

was measured at 515 nm using the Multiscan plate reader. Results were expressed as mg 

Trolox kg−1 fw. Each of the three replicates was analysed in triplicate. 
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III.2.5. Glucoraphanin and glucobrassicin contents 

 

A frozen ground sample of 2 g was mixed with 5 mL of hot (70 ºC) 70 % methanol and 

extraction was conducted for 15 min in an agitated water bath at 70 ºC to inactivate 

myrosinase enzyme. Then, the extracts were centrifuged (3,000 × g, 5 min, 4 ºC), and the 

supernatants were collected and used as glucosinolates extracts after filtration (0.20 µm 

syringe polytetrafluoroethylene filters). Analysis and identification of glucoraphanin and 

glucobrassicin were conducted according to Francisco et al. (2009). An UHPLC 

instrument (Shimadzu, Kyoto, Japan) equipped with a DGU-20A degasser, LC-30AD 

quaternary pump, SIL-30AC autosampler, CTO-10AS column heater and SPDM-20A 

photodiode array detector was used. Chromatographic analyses were carried with a C18 

column (Gemini NX 250mm × 4.6 mm, 5 μm; Phenomenex, Torrance CA, USA). The 

mobile phase was a mixture of (A) trifluoroacetic acid (TFA) 0.1% and (B) 

acetonitrile/TFA (99.9/0.1). The flow rate was 1 mL min-1 in a linear gradient starting 

with 0 % B at 0–5 min, reaching 17 % B at 15–17 min, 25 % B at 22 min, 35 % B at 30 

min, 50 % B at 35 min, 100 % B at 50 min and 0 % B at 55–65 min. Readings were 

recorded at 229 nm. Glucoraphanin and glucobrassicin were identified on the basis of 

retention time and UV spectra as compared with authentic standards (PhytoLab GmbH & 

Co. KG, Vestenbergsgreuth, Germany). The results were expressed as mg kg−1 fw. Each 

of the three replicates was analysed in duplicate. 

 

III.2.6. Statistical analyses 

A complete randomized design in triplicate with two-way ANOVA (treatment × storage) 

was conducted. Statistical significance was assessed at the level p=0.05, and Tukey’s 

multiple range test was used to separate means with SPSS software (v. 21, IBM, USA). 

 

III.3. RESULTS AND DISCUSSION 

 

III.3.1. Phenolic compounds 

 

Bimi® florets, leaves and stalks showed initial TPC of 1,328, 1,716 and 360 mg kg-1, 

respectively (Table III.1). As observed, Bimi® leaves is a by-product that can be 

considered as an excellent source of phenolics with 1.3-fold higher TPC than florets. 

Furthermore, leaves showed 5-fold higher TPC than stalks. In general, TPC of samples 
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increased after UV treatments on processing day probably owed to a better extraction of 

phenolic compounds after plant cells disruption due to UV radiation as previously 

reported (Escalona et al., 2010; Martínez-Hernández et al., 2011). Therefore, 27 and 50 

% higher TPC levels were initially observed in florets treated with the most intense 

radiation doses of UVB15 and UVB15+C, respectively. The TPC increments of UV-

treated leaves and stalks ranged among 31-97 and 30-75 %, respectively. Contrary to 

florets, no clear trend of the dose intensity/combination on the TPC enhancements was 

observed in UV-treated leaves and stalks. Latter finding may be explained since Bimi® 

florets are the youngest parts of the plant, being their plant cells more sensible to UV 

incidence, leading to the observed dose-dependent higher phenolics extractability 

compared to leaves and stalks. 

 

TPC of CTRL leaves, stalks and florets increased by 30, 44 and 15 %, respectively, after 

24 h. Similar phenolic increments have been reported in broccoli stored for 24 h at 20 ºC 

(Starzyńska et al., 2003). The observed phenolic enhancements in broccoli plant material 

may be owed to a transient increment of the PAL activity, the key enzyme in the 

biosynthesis of phenolic compounds, as previously reported (Baclayon et al., 2007). 

However, the latter transient TPC enhancement in leaves during the first 24 h was delayed 

as the UVB dose increased showing unchanged TPC levels for UVB15-treated samples 

after 24 h. Such initial downregulating effect of UVB on initial TPC enhancement was 

even enhanced when combined with UV-C. Accordingly, TPC reductions of 20-35 % 

were observed in leaves treated with UVB+C treatments after 24 h comparing to their 

respective initial levels. However, a general TPC increment for all samples was observed 

from 24 to 72 h. CTRL and UVB5/10 showed the lowest TPC increments of 30-55 % in 

leaves from 24 to 72 h. On the other side, the highest UVB dose (15 kJ m-2) and all the 

UVB+C combinations induced TPC enhancements in leaves of 80-110 % from 24 to 72 

h, comparing to their respective initial levels, registering UVB10+C the highest phenolic 

increment. Attending to stalks, no high TPC changes were generally observed during 

incubation period. However, UVB10 and UVB10+C induced the highest TPC increments 

in stalk samples at 48 h with 709 and 680 mg kg-1. Nevertheless, the high TPC levels of 

stalks at 48 h were reduced at 72 h. UV radiation has been reported to have low 

penetration (< 1mm) in plant cells (Formica-Oliveira et al., 2016a). Accordingly, the 

observed low TPC in stalks may be owed to the small surface:volume ratio of stalks (3-4 

cm diameter) compared to leaves. Bimi® florets showed a similar behaviour comparing 
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to leaves and stalks through storage period. Thus, all UVB+C treatments induced an 

initial TPC decrease in florets followed by an increment with maximum levels at 72 h. 

Nevertheless, the TPC increments of florets was 2-5-fold lower than those observed in 

leaves showing UVB10+C the highest TPC increment of 55 % from 24 to 72 h. 

 

In conclusion, Bimi® leaves can be used as an excellent source of phenolics for the food 

and pharmaceutical industries with levels 1.3-fold higher than florets. Furthermore, the 

use of postharvest UV treatments may revalorize this Bimi® by-product with TPC 

increments up to 110 % with a combined UV-B (10 kJ m-2) and UV-C (9 kJ m-2) treatment 

during storage at 15 ºC. The latter combined UV dose may be also used to increase the 

TPC of fresh-cut Bimi® florets supplying to the consumer a product with higher health-

promoting properties. Furthermore, postharvest UVB10 and UVB10+C treatments are 

recommended to revalorize Bimi® stalks due to the TPC increments observed after 48 h 

at 15 ºC. 

 

III.3.2. Total antioxidant capacity 

 

Bimi® florets, leaves and stalks showed initial TAC of 577, 552 and 77 mg kg-1, 

respectively (Table III.2). As observed, and contrary to phenolic data, leaves showed 

similar TAC to florets. Phenolic compounds are known to have strong antioxidant 

capacity being the main contributors to TAC of several vegetables (Cisneros-Zevallos, 

2003; Reyes et al., 2007). Furthermore, Bimi® broccoli has high vitamin C content 

(Martínez-Hernández et al., 2013a). Therefore, the similar TAC levels between Bimi® 

leaves and florets may be due to the vitamin C contribution to TAC. UV treatments 

generally increased TAC of samples possibly owed to a higher extraction of antioxidant 

compounds as discussed for TPC. Bimi® broccoli florets and leaves showed TAC 

increments of 20-120 % after UV treatments. However, stalks showed TPC increases of 

170-420 % after UV treatments likely due to a higher extraction of some particular 

antioxidant compounds. 

 

TAC behaviour of samples during storage was similar to TPC. Accordingly, TAC of all 

UV-treated leaves showed a decrease from 0 to 24 h followed by an increment of 100-

130 % at 72 h. UV-treated leaves, stalks and florets showed 1-1.2-fold higher TAC than 

CTRL samples after 72 h of storage without high differences between radiation 
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treatments. The biosynthesis of UV-absorbing compounds is the most common protective 

mechanism against potentially damaging radiation. Accordingly, these secondary 

metabolites, which may be antioxidant compounds like phenolics, accumulate in the 

vacuoles of epidermal cells in response to UV radiation treatments (Hahlbrock and 

Scheel, 1989). As previously discussed, Bimi® leaves can be considered as an excellent 

by-product according to initial TAC levels: 7.2-fold higher than stalks and similar to 

florets. Furthermore, this Bimi® by-product may be revalorized with the use of 

postharvest UV treatments. 

 

III.3.3. Glucoraphanin and glucobrassicin contents 

 

Bimi® florets, leaves and stalks showed initial glucoraphanin/glucobrassicin contents of 

35.7/18.1, 30.0/1.0 and 88.1/263.0 mg kg-1, respectively (Figures III.1-2, Table III.3). As 

observed, Bimi® leaves showed 2.5/14.5-fold higher glucoraphanin/glucobrassicin levels 

than florets. Such high glucosinolates levels in Bimi® leaves may lead to a high enzymatic 

(myrosinase) conversion to their respective bioactive products, isothiocyanates 

(sulforaphane/indole-3-carbinol, respectively), as previously reported (Bertelli et al., 

1998) together with the higher myrosinase activity reported in broccoli leaves compared 

to florets or stalks (Dosz et al., 2014). Lower glucoraphanin/glucobrassicin levels have 

been reported in stalks of conventional broccoli compared to florets (Aguiló-Aguayo et 

al., 2014). 

 

Glucoraphanin levels of Bimi® leaves and stalks were initially increased by 14-25 % after 

UVB5, UVB10 and UVB15+C treatments while the rest of UV treatments induced lower 

or none glucoraphanin enhancements. Glucobrassicin showed higher enhancements than 

glucoraphanin after UV treatments ranging from 20 to 85 %, inducing UVB10 the highest 

glucobrassicin increments in florets and stalks of 71 and 85 %, respectively. Furthermore, 

the UVB10+C combination was the only treatment able to increase (34 %) the 

glucobrassicin content of Bimi® leaves. The observed glucoraphanin/glucobrassicin 

initial increments after UV treatments may be explained by a higher compound 

extractability owed to radiation-disruption of plant cells as previously discussed for TPC 

and TAC. 

 



Chapter III 
 

103 
 

Glucoraphanin and glucobrassicin contents of CTRL florets increased during storage 

showing 121 and 534 % higher values, respectively, after 72 h at 15 ºC (Figures III.1-2). 

Glucosinolates increments in broccoli and other brassicas during storage at similar 

temperatures have been also reported associated with an enhanced synthesis or release of 

bound glucosinolates during storage (Hansen et al., 1995). However, glucosinolates levels 

have been reported to start to decrease when product senescence processes initiate 

explained by the membrane damage and cell rupture, conditions favourable for hydrolytic 

breakdown of glucosinolates by myrosinase-catalysed hydrolysis or autolysis (Chong and 

Bérard, 1983; Hansen et al., 1995; Sørensen, 1990). The observed higher glucobrassicin 

increment during storage compared to glucoraphanin of CTRL florets is in accord to 

previous data of the brassica Arabidopsis thaliana where genes related to indole (i.e., 

glucobrassicin) glucosinolates biosynthesis are more predisposed to be induced in wound-

stressed tissues than those of aliphatic (i.e., glucoraphanin) glucosinolates (Mikkelsen et 

al., 2003). Glucoraphanin and glucobrassicin levels of CTRL Bimi® leaves and stalks also 

increased after 72 h although in a lower degree (18-98 % increments) compared to florets 

probably owed to higher metabolism rates in the latter younger plant organs compared to 

leaves and stalks as previously discussed. All UV treatments induced higher 

glucoraphanin/glucobrassicin contents after storage compared to non-irradiated samples 

in such Bimi® young organs inducing UVB15/UVB15+C and UVB10/UVB10+C the 

highest glucoraphanin and glucobrassicin levels, respectively, after 72 h (Figures III.1-

2). However, UVB5 induced the highest glucoraphanin/glucobrassicin increments of 

584/1,334 % in Bimi® florets after 72 h comparing to their respective initial levels. 

Accordingly, the low UVB dose of 5 kJ m-2, and its combination with UV-C, induced 

higher glucosinolates enhancements in florets during storage although higher 

glucosinolates levels were observed for the intermediate-high doses (10-15 kJ m-2) owed 

to its higher respective glucosinolates initial contents. Similarly, low UV-B doses induced 

higher glucoraphanin and glucobrassicin enhancements in broccoli sprouts compared to 

higher UV-B doses (Mewis et al., 2012). The glucosinolates biosynthesis pathway has 

been well studied in the brassica A. thaliana with their associated genes although little is 

known about glucosinolates-specific genes in broccoli (Mewis et al., 2012; Sonderby et 

al., 2010). It has been hypothesized that UV-B radiation might slow down the 

glucosinolate degradation rate in broccoli sprouts being inversely correlated with the UV-

B dose (Mewis et al., 2012). Accordingly, the expression of some A. thaliana-

homologous genes involved in the glucosinolate biosynthesis were up-regulated by UV-
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B in broccoli sprouts (Mewis et al., 2012). MYB28 is the dominant transcription factor 

which regulates the activity of the enzyme ATP sulfurylase 1 involved in the aliphatic 

glucosinolates biosynthesis pathway of A. thaliana (Sønderby et al., 2010). Accordingly, 

homologous-MYB28 relative expression and glucoraphanin content were higher in Bimi® 

broccoli treated with moderate UV-C radiation compared to a higher dose (unpublished 

data). 

 

Lower glucoraphanin/glucobrassicin changes were observed during storage of Bimi® by-

products compared to florets were UV-mediated up-regulation seemed to be higher in 

such young plant organs. However, UVB-15 treatment induced glucobrassicin 

enhancements in Bimi® leaves and stalks of 135 and 83 %, respectively, after 72 h. 

Accordingly, UVB-15 treatment may be used to enhance the glucobrassicin levels of 

leaves and stalks to revalorize these Bimi® by-products while such UVB-15 and its 

combination with UV-C may also lead the highest glucosinolates levels of fresh-cut 

Bimi® broccoli florets. 

 

III.4. CONCLUSIONS 

 

Bimi® leaves are hereby presented as a potential source of bioactive compounds such as 

phenolic compounds and glucosinolates showing levels up to 15-fold higher than edible 

florets. Furthermore, postharvest UV-B and UV-C radiation treatments are proposed in 

this study like an innovative and eco-friendly tool to revalorize Bimi® leaves and stalks, 

and increase healthiness of edible parts, through the enhancement of their bioactive 

compounds. Particularly, intermediate UV-B/C (10/9 kJ m-2) treatments induced the 

highest phenolics enhancements and glucobrassicin contents of Bimi® leaves after 

storage. Furthermore, high UV-B (15 kJ m-2) treatment, single or combined, increased the 

healthiness of Bimi® edible florets with the highest glucoraphanin levels after storage. 
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Table III.1. Total phenolic content (mg kg-1) of Bimi® broccoli by-products (leaves and 

stalks) and florets treated with UV-B treatments, and combination with UV-C, during 

incubation up to 72 h at 15 ºC (n=3±SD). Different capital letters denote significant 

differences (p < 0.05) among different treatments for the same sampling time. Different 

lowercase letters denote significant differences (p < 0.05) among different sampling times 

for the same treatment. 

 Incubation time (h) at 15 ºC 

 0 24 48 72 

Leaves     

CTRL 1,716±232 Ec 2,230±171 Bb 3,292±299 Aa 3,453±128 Ca 

UV-B5 2,624±271 BCc 2,896±76 Ac 3,285±205 Ab 3,664±192 BCa 

UV-B10 3,372±78 Ab 2,660±235 Ac 3,364±120 Ab 3,895±122 ABa 

UV-B15 2,248±126 Dc 2,246±266 Bc 3,192±153 Ab 3,954±273 ABa 

UV-B5+C 2,563±200 CDb 2,063±224 Bc 2,688±75 Bb 3,749±179 ABCa 

UV-B10+C 2,918±164 BCb 1,895±215 Bc 2,825±247 Bb 3972±15 Aa 

UV-B15+C 2,956±277 Bb 2,021±224 Bc 2,534±212 Bb 3546±192 Ca 

     

Stalks     

CTRL 360±17 Db 518±49 BCa 537±58 CDa 538±45 ABa 

UV-B5 468±44 Cb 493±46 BCb 598±42 Ca 461±31 CDb 

UV-B10 490±8 Cbc 542±3 Bb 709±33 Aa 488±45 BCDc 

UV-B15 605±69 ABa 563±19 Ba 553±31 CDa 576±34 Aa 

UV-B5+C 628±29 Aa 493±17 BCb 607±38 BCa 475±25 CDb 

UV-B10+C 557±43 Bb 667±58 Aa 680±72 ABa 439±8 Dc 

UV-B15+C 564±4 ABa 463±53 Cb 477±8 Db 508±38 BCab 

     

Florets     

CTRL 1,328±15 Cc 1,528±57 Bb 1,830±134 ABa 1,744±116 Ba 

UV-B5 1,006±47 Dc 1,418±66 BCb 1,932±168 Aa 2,018±193 ABa 

UV-B10 1,400±48 Cb 1,541±161 Bb 1,968±114 Aa 2,025±178 Aa 

UV-B15 1,686±45 Bb 1,960±189 Aa 1,594±92 BCb 2,082±131 Aa 

UV-B5+C 1,589±127 Bb 1,612±80 Bb 1,574±185 Cb 2,020±129 Aa 

UV-B10+C 1,402±71 Cb 1,237±64 Cb 1,646±48 BCa 1,923±198 ABa 

UV-B15+C 1,994±52 Aa 1,581±141 Bb 1,534±172 Cb 1,835±130 ABa 
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Table III.2. Total antioxidant capacity (mg kg-1) of Bimi® broccoli by-products (leaves 

and stalks) and florets treated with UV-B treatments, and combination with UV-C, during 

incubation up to 72 h at 15 ºC (n=3±SD). Different capital letters denote significant 

differences (p < 0.05) among different treatments for the same sampling time and plant 

part. Different lowercase letters denote significant differences (p < 0.05) among different 

sampling times for the same treatment and plant part. 

 Incubation time (h) at 15 ºC 

 0 24 48 72 

Leaves     

CTRL 552±57 Cc 656±55 BCc 1,221±50 ABa 1,031±145 Cb 

UV-B5 889±76 Bb 980±55 Ab 1,291±30 Aa 1,233±122 Ba 

UV-B10 1,196±117 Ab 718±70 Bc 1,267±84 Ab 1,429±50 ABa 

UV-B15 669±34 Cc 662±66 BCc 1,188±95 ABCb 1,461±113 Aa 

UV-B5+C 841±98 Bc 646±51 BCd 1,042±41 CDb 1,477±143 Aa 

UV-B10+C 864±40 Bc 604±55 Cd 1,103±116 BCDb 1,242±53 Ba 

UV-B15+C 820±38 Bbc 632±87 BCc 968±131 Db 1,350±129 ABa 

     

Stalks     

CTRL 77±5 Ec 169±31 Cc 483±31 Cb 1,182±94 Aa 

UV-B5 231±18 CDc 216±32 Bc 622±83 Bb 1,114±17 ABa 

UV-B10 256±10 Cc 208±25 BCc 943±31 Ab 1,151±106 Aa 

UV-B15 203±10 Dc 116±18 Dd 522±24 Cb 1,001±65 BCa 

UV-B5+C 401±14 Ac 234±23 Bd 644±61 Bb 825±70 Da 

UV-B10+C 360±37 Bc 318±25 Ac 525±44 Cb 1,170±76 Aa 

UV-B15+C 347±35 Bc 220±28 Bd 513±45 Cb 925±52 CDa 

     

Florets     

CTRL 577±58 DEb 683±75 DEb 1,103±108 ABa 1,021±76 Da 

UV-B5 369±89 Fb 826±124 BCDb 1,128±97 Aa 1,232±125 Ca 

UV-B10 684±16 CDc 737±115 CDEc 1,061±102 ABCb 1,421±37 ABCa 

UV-B15 773±43 BCc 987±50 Ab 790±99 Dc 1,467±107 Aa 

UV-B5+C 523±88 Ec 867±16 ABCb 939±103 BCDb 1,453±158 ABa 

UV-B10+C 802±81 Bc 632±62 Ec 1,018±122 ABCb 1,249±150 BCa 

UV-B15+C 1,206±52 Aa 889±77 ABb 905±85 CDb 1,337±124 ABCa 
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Table III.3. Glucoraphanin and glucobrassicin contents (mg kg-1) of Bimi® broccoli by-

products (leaves and stalks) treated with UV-B treatments, and combination with UV-C, 

during storage up to 72 h at 15 ºC (n=3±SD). Different capital letters denote significant 

differences (p < 0.05) among different treatments for the same sampling time and plant 

part. Different lowercase letters denote significant differences (p < 0.05) among different 

sampling times for the same treatment and plant part. 

 

 Glucoraphanin  Glucobrassicin 

 0 h 72 h  0 h 72 h 

Leaves      

CTRL 88.1±3.7 Bb 149.3±17.5 ABa  263.0±114.0 Ba 201.5±73.9 Ca 

UV-B5 117.0±8.7 Aa 90.7±23.9 Ba  256.5±17.8 Bb 410.0±52.4 Aa 

UV-B10 110.2±10.1 Aa 80.8±34.1 Bb  396.1±36.1 Aa 376.5±100.8 ABa 

UV-B15 104.0±4.4 Aa 133.8±13.7 ABb  131.8±3.7 Cb 309.7±72.2 Ba 

UV-B5+C 95.1±10.6 ABa 102.4±34.2 ABCa  119.4±6.8 Ca 170.9±134.5 Ca 

UV-B10+C 103.4±8.5 Aa 110.5±17.7 ABa  269.2±20.3 Bb 369.5±44.5 Ba 

UV-B15+C 113.3±1.6 Aba 98.4±12.7 Ba  248.6±2.1 Ba 106.3±41.4 Cb 

      

Stalks      

CTRL 30.0±3.7 Ba 35.5±6.9 Ba  1.0±0.2 Ca 2.0±1.1 Ba 

UV-B5 35.0±4.0 BDa 1.8±0.4 Db  6.4±0.4 Aa 3.5±0.8 Ab 

UV-B10 35.9±3.0 Ba 37.3±12.5 BCa  6.8±0.7 Aa 3.4±0.3 Ab 

UV-B15 30.0±3.2 Ba 30.7±0.3 Ca  2.4±0.2 Bb 4.4±1.1 Aa 

UV-B5+C 29.7±2.9 Ba 31.9±0.7 Ba  1.2±0.1 Ca 0.6±0.1 Ca 

UV-B10+C 50.7±3.5 Aa 42.5±7.3 ABa  1.4±0.2 Ca 0.8±0.1 Ca 

UV-B15+C 29.4±4.4 Bb 52.7±9.9 Aa  2.2±0.2 Ba 1.2±0.6 BCb 
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Figure III.1. Glucoraphanin contents of Bimi® broccoli florets treated with UV-B 

treatments, and combination with UV-C, during storage up to 72 h at 15 ºC (n=3±SD). 

Different capital letters denote significant differences (p < 0.05) among different 

treatments for the same sampling time. Different lowercase letters denote significant 

differences (p < 0.05) among different sampling times for the same treatment. 
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Figure III.2. Glucobrassicin contents of Bimi® broccoli florets treated with UV-B 

treatments, and combination with UV-C, during storage up to 72 h at 15 ºC (n=3±SD). 

Different capital letters denote significant differences (p < 0.05) among different 

treatments for the same sampling time. Different lowercase letters denote significant 

differences (p < 0.05) among different sampling times for the same treatment. 
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IV.1. INTRODUCTION 

 

The crescent consumer’s knowledge on functional foods has led to an increasing interest 

in foods not only intended to feed, but also to prevent chronic and nutritional-related 

diseases as well as to improve overall human well-being. High intake of fruit and 

vegetables has been proved to prevent a grand array of diseases, such as degenerative 

disorders, cancer and cardiovascular among others (Slavin and Lloyd, 2012). However, 

the current lifestyle turns difficult the preparation of these plant products. Thus, their 

consumption should be promoted through the development of attractive ready-to-eat 

products that should be processed with minimal and non-aggressive treatments to 

preserve as much as possible the quality parameters of the raw materials (Artés et al., 

2009). Accordingly, smoothies represent an excellent and convenient alternative to 

promote the daily consumption of fruits and vegetables (Rodríguez-Verástegui et al., 

2015). Smoothies are non-alcoholic beverages prepared from fresh or frozen fruit and/or 

vegetables, which are blended without filtering and usually mixed with crushed ice to be 

immediately consumed. Often, some smoothies may include other components like 

yogurt, milk, ice-cream, lemonade or tea. They have a milk shake-like consistency that is 

thicker than slush drinks (Castillejo et al., 2015). Fruits and vegetables are rich in phenolic 

compounds among other bioactive compounds. Phenolic compounds are excellent 

antioxidants related to several health-promoting properties such as anti-inflammatory, 

antitumoral, as well as preventing neurodegenerative and chronic disorders (El Gharras, 

2009). PAL is the key enzyme of primary (shikimate) and secondary (phenylpropanoid) 

pathways and is, therefore, involved in the biosynthesis of polyphenolic compounds 

(Dixon and Paiva, 1995). It is well reported that PAL activity may be enhanced by an 

array of biotic and abiotic stress-induced mechanisms, such as wounding, radiation 

exposure, hyperoxia storage, water stress, ultrasounds, chilling injury, low minerals, 

hormones and pathogen attack, among others (Cisneros-Zevallos, 2003; Cuéllar-

Villarreal et al., 2016). Previous studies have shown that wounding, low UV-C doses and 

hyperoxia storage, singly, enhance phenolic content on carrots and other foodstuff 

(Alegria et al., 2012; Avena-Bustillos et al., 2012; Becerra-Moreno et al., 2012; Jacobo-

Velázquez et al., 2011). Carrots occupy the sixth place among the list of most consumed 

vegetables in the American diet, although its TPC is almost the lowest among them (Chun 

et al., 2005). Accordingly, the health benefits derived from carrots could be increased by 

enhancing their phenolics levels during a controlled pre-enrichment incubation by using 



Chapter IV 
 

114 
 

postharvest abiotic stresses. Furthermore, synergistic effects on phenolics increments 

after combined application of different stresses may occur. Nevertheless, the effects on 

phenolic/antioxidant levels after combined application of wounding, intermediate UV-C 

dose and hyperoxia atmosphere on carrots has not been studied yet. Therefore, a 

functional phenolic-enriched carrot smoothie may be developed previously applying 

abiotic stresses on carrot material, singled or combined, during a pre-enrichment 

incubation prior to smoothie preparation. Moreover, a mild heat treatment of the smoothie 

may guarantee the food safety criteria and physicochemical quality of this functional 

carrot smoothie during refrigerated storage. 

 

Accordingly, the aim of this study was to optimize a pre-enrichment treatment of carrots 

to increase the phenolic/antioxidant levels in order to obtain a functional carrot smoothie 

with enhanced phenolic/antioxidants contents. Furthermore, the effects of a mild heat 

treatment and subsequent refrigerated storage on the enriched phenolic/antioxidant levels 

of the functional carrot smoothie were also studied. 

 

IV.2. MATERIALS AND METHODS 

 

IV.2.1. Plant material 

 

Fresh carrots (cvs. group Nantes, cv. Soprano) were purchased at a local market in 

Cartagena (Southeast of Spain) in April 2015. Carrots were carefully inspected, selecting 

only those with similar size (14-15 cm long and 2-3 cm diameter) and visual appearance 

free from defects (blemishes, wounds, etc.). Subsequently, carrots were sanitized in a cold 

room (8 ºC) with chlorine (100 mg L-1 NaClO; 5 ºC; pH 6.5±0.1) for 2 min, rinsed with 

tap water at 5 ºC for 1 min and drained in a perforated basket for 1 min. A ratio of 300 g 

plant material: 5 L chlorinated water was used. Carrots were wounded to shreds (2mm × 

3mm × 40-60 mm) with a food processor (FreshExpress+, Moulinex, Lyon, France). Pre-

enrichment treatments were conducted immediately after wounding. 

 

IV.2.2. Pre-treatments and incubation of plant material 

 

The UV-C treatment chamber used was previously detailed (Artés-Hernández et al. 

(2009a). Carrot shreds were placed between the two lines of UV-C lamps at 17.5 cm 
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above and below over a 35 mm thick bi-oriented PP film mounted on PS net (130 × 68 

cm) that minimized blockage of the UV-C radiation. The applied UV-C intensity of 67.6 

W m-2 was calculated as the mean of 18 UV-C readings on each side of the net using a 

VLX 254 radiometer (Vilber Lourmat, Marne la Vallee, France). Thus, both sides 

received the same UV-C intensity. The UV-C light intensity was kept constant and the 

applied dose was adjusted by the exposure time at the fixed distance. A UV-C radiation 

treatment of 4 kJ UV-C m-2 (exposure time of 139 s) was applied. Non-irradiated samples 

were used as control (hereinafter ‘CTRL’). 

 

Samples to be stored under hyperoxia conditions (hereinafter ‘HO’) were placed in plastic 

containers (30 cm diameter, 60 cm height) and connected to an air-flow-through system 

supplied with humidified flows of either air or a gas mixture containing 80 % O2 

(balanced with N2). In order to ensure a good air flow through carrot shreds, these samples 

were distributed in opened plastic petri dishes (8.5 cm diameter, 1 cm height).  CO2 partial 

pressures were kept < 0.15 kPa to avoid any physiological effect exerted by CO2 such as 

anaerobic metabolism. Samples stored under air conditions were used as control 

(hereinafter ‘Air’). Gas treatments were applied at 15 ºC for 72 h in darkness. Pre-

enrichment incubation of carrots, as well as smoothie preparation and subsequent storage, 

is summarized in Figure IV.1. 

 

IV.2.3. Carrot smoothie preparation, heat treatment and storage conditions 

 

Carrot smoothie was prepared in a food processor (Robot Cook®, Robot Coupe, 

Vincennes Cedex, France) using sterilized water in a relation of 1:1 (carrot weight: water 

volume). Heat treatment of carrot smoothie was applied using a Mastia 

thermoresistometer as previously described (Conesa et al. (2009). Immediately after 

smoothie blending, the sterilized vessel of the thermoresistometer was filled with 400 mL 

of the smoothie. The thermoresistometer was programmed to increase the initial smoothie 

temperature (8±2 ºC) with a heating rate of 30 ºC/min to 90 ºC, then maintained for 30 s 

and cooled down to a final temperature of 40 ºC (cooling rate of 30 ºC/min). After heat 

treatment, the smoothie temperature was cooled down to 5 ºC submerging the vessel in 

an ice-water bath while continuously agitation was programmed in the 

thermoresistometer. Subsequently, 15-mL aliquots of heat-treated samples were taken in 

aseptic conditions in sterile Falcon tubes through the thermoresistometer sampling port. 
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Samples were stored in darkness at 5 ºC. Non heat-treated carrot smoothie was used as 

control. Visual appearance, flavour, texture, off-colours, off-odours, lumpiness, turbidity, 

precipitation/phase separation and overall quality of heat-treated smoothie conducted by 

an informal sensory panel test of 8 persons were reported to be over the limit of 

acceptability up to 14 days at 5 ºC. Sampling was conducted on processing day (0) and 

after 7 and 14 days at 5 ºC. Five replicates per treatment and sampling day were prepared. 

 

IV.2.4. Analyses 

 

IV.2.4.1. Physiochemical analyses 

 

The pH, titratable acidity (TA), total soluble solids content (SSC) and colour (CIE Lab) 

of samples were determined as previously described (Castillejo et al. (2015). TA and SSC 

were expressed as g citric acid 100 mL−1 and ºBrix, respectively. ΔE and ΔBI were 

calculated from CIE Lab data according to equations previously described (Palou et al., 

1999). 

 

IV.2.4.2. Microbial analysis 

 

Mesophilic, psychrophilic and yeast and moulds (Y+M) growth was determined using 

standard enumeration methods as previously described (Castillejo et al. (2015). All 

microbial counts were reported as log colony forming units per gram of product (log CFU 

g−1). The detection limits were 1 log CFU mL-1 for mesophilic/psychrophilic and 2 log 

CFU mL-1 for Y+M. Each of the five replicates was analysed in duplicate. The presence 

of Salmonella spp., L. monocytogenes and generic E. coli was monitored throughout 

storage of smoothies according to the European legislation (EC_1441/2007, 2007). 

 

IV.2.4.3. Phenylalanine ammonia-lyase  

 

PAL activity was analysed as previously described (Ke and Saltveit, 1986) with 

modifications (Jacobo-Velázquez et al., 2011). Concisely, 2 g of sample was mixed with 

polyvinylpolypyrrolidone (0.2 g) and homogenized (Ultra Turrax®) in cold 50 mM borate 

buffer (pH 8.5) containing 400 μL L-1 β-mercaptoethanol. Homogenates were filtered 

through four layers of cheesecloth and then centrifuged at 10,000 × g for 20 min at 4 ºC. 
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Supernatants were used as enzyme extract. Two sets of UV-Star 96-well plates containing 

69 μL of PAL extract plus 200 µL ultrapure water were prepared for every sample and 

pre-incubated at 40 ºC for 5 min. Afterwards, 30 μL of either water (blank) or 100 mM 

L-phenylalanine substrate solution (freshly prepared before assay) were added to each of 

the well for every sample set. The absorbances of sample sets were measured at 290 nm 

using the Multiscan plate reader at time 0 and after 1 h of incubation at 40 ºC. The PAL 

activity was expressed as μmol of t-cinnamic acid synthesized kg-1 fw h-1 using a t-

cinnamic acid standard curve (0-6.75 mM). Each of the three replicates was analysed in 

duplicate. 

 

IV.2.4.4. Phenolic compounds 

 

Extraction to determine phenolic compounds and TAC extract was conducted by 

homogenization (Ultra Turrax®) of 2 g of sample in 8 mL methanol for 20 s under ice-

water bath. Subsequently, extracts were centrifuged at 13,500 × g for 20 min at 4 ºC and 

supernatants were collected and analysed. Extracts for individual phenolic compounds 

were further filtered through a 0.22 µm polyethersulphone filter and stored at −80 ºC in 

amber vials until UPLC analysis. 

 

The TPC was analysed by Folin–Ciocalteu reagent method as previously described 

(Martínez-Hernández et al., 2011).  Briefly, a 19 µL aliquot of TPC extract was placed 

on a PS flat bottom 96-well plate and 29 µL of Folin–Ciocalteu reagent 2 N (Sigma, St 

Louis, MO, USA) were added. Samples were incubated for 3 min in darkness at room 

temperature. After incubation, 192 µL of a solution containing Na2CO3 (4 g L-1) and 

NaOH (20 g L-1) were added and the reaction was carried out for 1 h at room temperature 

in darkness. Subsequently, absorbance was read at 750 nm using the same Multiscan plate 

reader as described before. TPC was expressed as chlorogenic acid (Sigma, St Louis, MO, 

USA) equivalents (ChAE) in mg kg−1 fw. Each of the three replicates was analysed in 

duplicate. 

 

Analyses of individual phenolic compounds were conducted as previously described 

(Alegria, 2015) with some modifications. Briefly, samples of 20 µL were analysed using 

an UHPLC instrument (Shimadzu, Kyoto, Japan) equipped with a DGU-20A degasser, 
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LC-30AD quaternary pump, SIL-30AC autosampler, CTO-10AS column heater and 

SPDM-20A photodiode array detector. The UHPLC system was controlled by the 

software LabSolutions (Shimadzu, v. 5.42 SP5). Chromatographic analyses were carried 

out onto a Kinetex C18 column (100 mm × 4.6 mm, 2.6 µm particle size; Phenomenex, 

Macclesfield, UK) with a KrudKatcher Ultra HPLC guard column (Phenomenex, 

Macclesfield, UK). The column temperature was maintained at 25 ºC. The mobile phase 

was acidified water (A; formic acid to final pH 2.3) and acidified methanol (B; formic 

acid to final pH 2.3). The flow rate was 1.5 mL min−1. Gradient program used was 0/88, 

1.2/88, 2.4/85, 8.3/70, 9.4/50, 11.8/50, 20.8/55, 22.0/60 (min/% phase A). Then, column 

equilibration was conducted at 0 % A for 2.2 min. Chromatograms were recorded at 320 

nm.  Phenolic acids were quantified as standards of chlorogenic acid, ferulic acid (Sigma, 

St Louis, MO, USA), 3,5-CQA and 4,5-CQA (ChromaDex, Irvine, CA, USA). The 

calibration curves were made with at least six data points. The results were expressed as 

mg kg−1 fw. Each of the three replicates was analysed in duplicate. 

 

IV.2.4.5. Total antioxidant capacity  

 

The extracts were analysed for TAC as previously described (Brand-Williams et al., 

(1995) with modifications (Martínez-Hernández et al., 2013d). Briefly, a solution of 0.7 

mM DPPH in methanol was prepared 2 h before the assay and adjusted to 1.10±0.02 nm 

immediately before use. A 21 µL aliquot of the above described extract was placed on a 

PS flat-bottom 96-well plate and 194 µL of DPPH was added. The reaction was carried 

out for 30 min at room temperature in darkness and the absorbance at 515 nm was 

measured using the Multiscan plate reader. Results were expressed as mg Trolox 

equivalent antioxidant capacity kg-1 fw. Each of the three replicates was analysed in 

duplicate. 

 

IV.2.5. Statistical Analyses 

 

A complete randomized design in triplicate with two-way ANOVA (abiotic stress 

treatment × storage) was conducted. Statistical significance was assessed at the level 

p=0.05, and Tukey’s multiple range test was used to separate means with SPSS software 

(v. 21, IBM, USA). 
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IV.3. RESULTS 

 

IV.3.1. Physicochemical quality 

 

Carrot shreds showed an initial pH and TA of 6.32-6.37 and 0.32-0.48 % (Table IV.1), 

respectively, similar to previous data (Pushkala et al., 2012). The pH of the shreds 

significantly (p < 0.05) decreased and TA increased (p < 0.05) during pre-enrichment 

incubation as a combined effect of microbial growth and phenolic acids enrichment as 

shown later. Accordingly, pH/TA of non-irradiated and irradiated shreds significantly (p 

< 0.05) decreased to 3.20-4.05/4.75-5.22 and 4.87-5.02/3.42-4.02, respectively, after pre-

enrichment incubation. The higher acidification observed in non-irradiated samples may 

be explained by the higher phenolic acids content of these samples as it will be discussed 

later. No clear influence of the atmosphere storage conditions on pH and TA of carrot 

shreds after pre-enrichment incubation was observed. Similarly, no significant (p < 0.05) 

differences on pH and TA values were observed among air or hyperoxia-stored (80 % O2) 

blueberry fruit during storage up to 35 days at 4 ºC (Zheng et al., 2003). Carrot smoothies 

from CTRL-Air, CTRL-HO, UV-C-Air and UV-C-HO carrot shreds showed initial 

pH/TA values of 3.35/2.05, 4.13/1.07, 5.03/0.68 and 5.15/1.00, respectively. Heat 

treatment did not change (p < 0.05) initial pH and TA of carrot smoothies. Quality of 

carrot beverages is difficult to maintain during storage due to its low acidity. The pH of 

carrot beverages is usually acidified with citric acid, or other acidulants, to approximately 

3.8 as a general commercial practice by the food industries in order to reduce microbial 

growth and degradative enzymatic and non-enzymatic reactions during storage (Quitão-

Teixeira et al., 2009; Talcott and Howard, 1999). Alternatively, acidification of carrot 

juice through fermentation has been proposed as a preservation method combined with 

pasteurization (Tamminen et al., 2013). Accordingly, the spontaneous fermentation 

occurred during pre-enrichment incubation of carrot shreds allowed to naturally reduce 

the pH extending the shelf life with a desirable mild acidic taste. In general, heat-treated 

carrot smoothies did not show high pH/TA changes throughout storage at 5 ºC with final 

pH/TA values of 3.8-4.5/0.87-1.14. Similarly, acidified blanched carrot juice showed 

more stable pH and TA values than non-acidified juices up to 21 days of storage at 4 ºC 

(Yu and Rupasinghe, 2012). 
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Carrot shreds showed initial SSC of 7.85-7.92 (Table IV.1) similar to previous data 

(Martínez-Hernández et al., 2016a). Carrot shreds stored under hyperoxia conditions 

presented significantly higher (p < 0.05) SSC compared to air-stored samples after pre-

enrichment incubation. Similarly, SSC of blueberry fruit increased during hyperoxia (80 

% O2) storage at 5 ºC (Zheng et al., 2003). The latter behaviour may be explained by the 

reduced microbial growth under hyperoxia conditions, as shown later, and consequently 

lower microbial sugars consumption. SSC of carrot smoothies was not highly changed 

after heat treatment. In general, SSC of non-heat-treated carrot smoothies decreased 

through storage as consequence of microbial growth. Contrary, SSC of heat-treated 

smoothies generally did not register high changes due to the lower microbial loads. 

Unchanged SSC in pasteurized carrot juice after 15 days at 5 ºC was also reported (Kaur 

and Sharma (2013). 

 

Colour is an important parameter for conformity determination of carrot beverages 

quality. ∆E is a colorimetric parameter extensively used to characterize the variation of 

colours during processing and storage of food products. BI represents the purity of brown 

colour and is reported as an important parameter in processes where enzymatic or non-

enzymatic browning take place (Palou et al., 1999). For that reason, ∆E and BI have been 

satisfactorily used to assess colour quality of carrot beverages after processing treatments 

and subsequent storage (Kaur and Sharma, 2013). UV-C pre-treatment of carrot shreds 

induced initial mild browning (∆E=5.6, ∆BI= 89.4; data not shown). Browning observed 

in some fruits and vegetables after UV-C radiation has been attributed to the increased 

POD activity (Tomás-Barberán and Espín, 2001). However, such browning of carrots 

shreds after the low UV-C dose used was not visually observed. Irradiated shreds showed 

higher BI after pre-enrichment incubation which may be owed to the pre-activated POD 

during UV-C pre-treatment (Table IV.1). Furthermore, pre-enrichment incubation under 

hyperoxia conditions induced slightly higher ∆E and ∆BI compared to carrot shreds 

incubated under air conditions. β-carotene, the main pigment responsible of the bright 

orange colour of carrots, is very susceptible to isomerization and oxidation (Knockaert et 

al., 2012). Furthermore, POD activity may increase under hyperoxia storage as previously 

reported (Yang et al., 2009). Accordingly, the observed higher colour degradation under 

hyperoxia compared to air conditions may be explained by a β-carotene degradation and 

incremented POD activity. Heat treatment of carrot smoothies induced low colour 

changes (∆E < 25, ∆BI < 96) which correspond to undetected visual colour changes by a 
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trained panel test (Kaur and Sharma, 2013). Accordingly, β-carotene degradation in carrot 

puree and juice was very low, or even enhanced, due to higher extractability after such 

heat treatment as previously modelled (Lemmens et al., 2010; Marx et al., 2003; Quitão-

Teixeira et al., 2009). Colour changes of heat-treated carrot smoothies during storage 

were lower compared to untreated smoothies which may be owed to heat inactivation of 

colour-degradative enzymes and reduced β-carotene degradation under such low storage 

temperature. Accordingly, only 5.5 % residual POD activity was reported in carrot juice 

after a similar heat treatment and it was even reduced to 2 % after 14 days at 4 ºC (Quitão-

Teixeira et al., 2009). Attending to pre-enrichment treatments, all smoothies from 

irradiated carrots shreds showed slightly higher colour changes after 14 days of storage 

at 5 ºC. Nevertheless, all heat-treated smoothies from stressed carrot shreds (CTRL-HO, 

UV-C-Air and UV-C-HO) presented a good physicochemical quality after 14 days of 

storage at 5 ºC. 

 

IV.3.2. Microbiological quality 

 

Carrot shreds showed initial mesophilic, psychrophilic and Y+M loads of 5.4, 5.1 and 4.8 

log CFU g-1, respectively (Table IV.2). UV-C pre-treatment significantly (p < 0.05) 

reduced initial microbial loads of carrots shreds by 1.1-1.3 log units. Similar microbial 

reductions have been reported in Bimi® broccoli after a UV-C dose of 4.5 kJ m-2 

(Martínez-Hernández et al., 2011). UV-C is a non-ionizing radiation able to alter 

microbial DNA through dimer formation (Bintsis et al., 2000). If the damage goes 

unrepaired, the accumulation of DNA photoproducts can be lethal to cells through the 

blockage of DNA replication and RNA transcription, which ultimately result in 

reproductive cell death. However, it has been also reported that UV-C may lead to the 

conversion of bacteria in the viable but non-cultivable state as a strategy of protection 

against the germicide effect of UV-C (to economize on energy, induction of repair 

mechanisms, inhibit the generation of mutant bacteria, etc.) (Ben Said et al., 2010). Pre-

enrichment incubation of shreds under air conditions led to mesophilic/psychrophilic and 

Y+M growth of 3.2/2.8 and 4.7 log units, respectively, after 72 h. However, pre-

enrichment incubation of non-irradiated shreds under HO conditions highly limited 

mesophilic/psychrophilic and Y+M growth to only 1.1/1.0 and 2.7 log units, respectively, 

after 72 h. Likewise, total viable counts were better controlled under hyperoxia (90 %) 

compared to air storage (Amanatidou et al., 2000). The observed microbicidal effects 
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during hyperoxia storage may be explained by several factors such as the unfavourable 

effects on the oxidation–reduction potential of the system, the oxidation of enzymes 

having sulfhydryl groups or disulfide bridges, and the accumulation of injurious reactive 

O2 species (Kader and Ben-Yehoshua, 2000). The sanitizing effects of UV-C radiation 

and hyperoxia storage in other fresh-cut fruit and vegetables have been previously 

reviewed (Artés et al., 2009). UV-C irradiated shreds showed significantly (p < 0.05) 

higher microbial growth compared to non-irradiated samples during pre-enrichment 

incubation. Latter detrimental effect of UV-C pre-treatment during storage, contrary to 

benefit from initial sanitation, may be explained by the plant cell disruption caused by 

UV-C radiation leading to leakage of electrolytes (Martínez-Hernández et al., 2013d) 

such as sugars which favours microbial growth. 

 

In general, heat treatment reduced initial microbial loads of carrot smoothies (7-8 log 

units) below detection limits. Accordingly, the applied heat treatment was enough to 

achieve pasteurization levels. Microbial loads of untreated smoothies were over 10 log 

CFU mL-1 after 7 days at 5 ºC (data not shown). Mesophilic counts of heat-treated carrot 

smoothies increased during storage registering final loads of 3.5-4.1 log CFU mL-1, 

without significant (p < 0.05) differences among pre-treatments, after 14 days at 5 ºC. 

Smoothies from UV-C-HO and UV-C-Air pre-treated shreds showed the highest 

psychrophilic growths with 4.7 and 3.5 log units increments, respectively, after 14 days 

at 5 ºC. Meanwhile, smoothies from CTRL-HO and CTRL-Air shreds registered 

psychrophiles increments of 2.9 and 1.4 log units, respectively, after 14 days at 5 ºC. As 

observed, psychrophilic growth in pasteurized smoothies was higher as the stress level 

from pre-enrichment incubation augmented following this order: HO>UV-C>UV-C+HO. 

Latter behaviour may be explained since as the stress level increased surviving 

microorganisms after heat treatment acquired higher adaptation to grow under 

unfavourable conditions such as low temperature storage. Similarly, heat-treated 

smoothies from UV-C-HO and UV-C-Air shreds significantly (p < 0.05) registered 0.8 

and 1.3 log CFU mL-1 increments, respectively, while the other two pre-treatments did 

not register significant (p < 0.05) changes after 14 days at 5 ºC. Salmonella spp., L. 

monocytogenes and generic E. coli were monitored throughout storage of smoothies with 

absence meeting the European legislation limits (EC, 2007). Phenolic acids are known to 

exhibit antimicrobial activity against a variety of microorganisms (Wen et al., 2003). In 

the same line, carrot juice have shown high antilisterial properties (Beuchat and Brackett, 
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1990). Application of combined preservative factors (called hurdles) is used by food 

industries according to the hurdle technology to achieve effective preservation of foods 

(Leistner, 2000). Consequently, the good microbiological quality (microbial loads < 6 log 

units) of all heat-treated carrot smoothies after 14 days of storage may be owed to the 

combination of achieved acidic pH, enhanced antimicrobial compounds (phenolic acids) 

and low storage temperature. 

 

IV.3.3. Phenylalanine ammonia-lyase activity 

 

PAL is the key enzyme between primary (shikimate pathway) and secondary 

(phenylpropanoid) metabolism pathways involved in the biosynthesis of polyphenolic 

compounds (Dixon and Paiva, 1995). Carrot shreds showed initial PAL activity of 12.5-

16.2 µmol cinnamic acid formed kg-1 h-1 fw (Table IV.3) similar to previous data 

(Martínez-Hernández et al., 2016a). UV-C pre-treatment did not induce significant (p < 

0.05) changes in the PAL activity of carrot shreds at day 0. PAL activity of shredded 

carrots highly increased (p < 0.05) after pre-enrichment period. CTRL-HO carrot shreds 

showed the highest increments with a PAL activity of 224.9 µmol cinnamic acid formed 

kg-1 h-1 fw after 72 h of pre-enrichment period. The rest of pre-treatments showed PAL 

activities ranging from 86.2 to 102.7 after pre-enrichment period without significant (p < 

0.05) differences among them. PAL activation after wounding and hyperoxia storage has 

been reported as an abiotic stress response being proposed ATP and reactive oxygen 

species as signalling molecules (Jacobo-Velázquez et al., 2011). Fresh carrot smoothie 

from CTRL-HO shreds showed an initial PAL activity of 112.43 µmol cinnamic acid 

formed kg-1 h-1 fw while the activity of this enzyme ranged from 40.6 to 52.5 µmol 

cinnamic acid formed kg-1 h-1 fw or the rest of smoothies. Pasteurization of carrot 

smoothie highly reduced PAL activity by 81-95 % without significant differences (p < 

0.05) among pre-treatments. Likewise, heat treatment (70 ºC for 3 min) of vegetables red 

smoothies (pH 4.4) led to significant (p < 0.05) reductions of PAL activities of 65-70 % 

(Rodríguez-Verástegui et al., 2015). In general, PAL activity of smoothies decreased 

throughout storage registering final activities of 22.4/11.7 µmol cinnamic acid formed kg-

1 h-1 fw for smoothies from CTRL-HO shreds while the rest of samples ranged among 

1.0-5.7 µmol cinnamic acid formed kg-1 h-1 fw. PAL activation due to wounding stress 

occurred during smoothie preparation may be highly reduced at low storage temperatures. 

Accordingly, no PAL activation was observed in the carrot smoothies in this storage 
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period of 14 days at 5 ºC. Similarly, PAL activity of red vegetables smoothies highly 

incremented (p < 0.05) after 20 days at 5 ºC (Rodríguez-Verástegui et al., 2015). Thus, 

the decrease of PAL activity observed in the carrot smoothies throughout storage may be 

owed to the low storage temperature and acidic pH conditions as previously reported in 

PAL preparations (Rees and Jones, 1996).  

 

IV.3.4. Phenolic compounds 

 

Carrot shreds reported initial TPC of 187.3 mg CHA kg-1 fw (Table IV.3). Similar TPC 

have been reported for the same carrot cultivar (Alegria et al., 2010). The major individual 

phenolic compounds identified were 3-CQA, 3,5-CQA, 4,5-CQA and ferulic acid (Table 

4). The phenolic contents of carrots were significantly unchanged (p < 0.05) immediately 

after UV-C pre-treatment. The TPC of carrot shreds increased (p < 0.05) by 

approximately 2,060, 1,510, 1,170 and 760 % in CTRL-HO, CTR-Air, UV-C-Air and 

UV-C-HO samples, respectively, after 72 h of pre-enrichment incubation. Postharvest 

abiotic stresses such as wounding, UV-C radiation and hyperoxia storage have been 

reported to highly increment the contents of phenolic compounds in carrots during 

subsequent storage (Alegria et al., 2012; Martínez-Hernández et al., 2011). This phenolic 

biosynthesis has been reported to be a consequence of PAL activation after these abiotic 

stresses being proposed ATP and reactive oxygen species as signalling molecules 

(Jacobo-Velázquez et al., 2011). UV-C-HO showed the lowest phenolic accumulation (p 

< 0.05) during pre-enrichment incubation among the rest of treatments probably owed to 

a partial PAL denaturation by such UV-C treatment delaying the stress-enhanced activity 

of this enzyme. The pre-enrichment incubation of carrot shreds allowed to obtain carrot 

smoothies with TPC of 710.4-1925.7 mg CHA kg-1 fw, representing 3-CQA the 87.3 % 

of the sum of phenolic compounds. 3-CQA, an ester of caffeic acid with quinic acid with 

high antioxidant capacity compared to other phenolic compounds, has been reported as 

the main phenolic compound in carrots (Castelluccio et al., 1995). The identified minor 

phenolic compounds 3,5-CQA, 4,5-CQA and ferulic acid accounted 7.8, 2.4 and 2.5 % 

of the sum of phenolic compounds, respectively. Heat treatment of carrot smoothies did 

not induce significant (p < 0.05) changes of TPC or individual phenolic compounds. 

Consistently, no TPC changes were reported between untreated and heat-treated carrot 

purees and juices (Patras et al., 2009a; Quitão-Teixeira et al., 2009). 
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The TPC of untreated smoothies registered a mild TPC increment of 10-25 % at day 7 

showing the smoothie from CTRL-HO shreds the highest increment. This TPC increment 

at day 7 is in accordance to the ferulic acid and 3,5-CQA increments (Table IV.4) and to 

the higher PAL activity observed of these samples regarding the rest of smoothies (Table 

IV.3). However, heat-treated smoothies did not show the same behaviour at day 7. Similar 

phenolic increments have been reported in red vegetables smoothies during low 

temperature storage (Rodríguez-Verástegui et al., 2015). Interestingly, high TPC 

increments of approximately 610-850 % were registered in heat-treated smoothies at day 

14 comparing to their respective initial levels. Heat-treated smoothies from non-irradiated 

air/HO shreds showed the highest (p < 0.05) TPC at day 14 with approximately 

10,960/13,824 mg CHA kg-1 fw. This high TPC enhancement of non-irradiated samples 

were due to 3-CQA and ferulic acids enhancements. The higher phenolic biosynthesis 

observed in smoothies from air-incubated carrot shreds is in accordance to the still higher 

PAL activities of these smoothies at day 14. However, PAL activity of those samples at 

day 14 may not explain such high increments of phenolic compounds observed in heat-

treated smoothies. Accordingly, this enhanced biosynthesis of phenolic compounds in 

heat-treated smoothies at day 14 may be owed to other enzymes different to PAL involved 

in the phenylpropanoid pathway. Heat treatment (100 ºC for 45 s) of carrots has been 

reported to induce TPC enhancements during subsequent storage of carrot shreds at 5 ºC 

comparing to untreated samples (Alegria et al., 2012). Accordingly, the heat treatment 

applied to the carrot smoothies could trigger signals related to other enzymes different 

from PAL involved in the phenylpropanoid pathway although the activation of these 

enzymes could be retarded until day 14 due to the low storage temperature. 

 

IV.3.5. Total antioxidant capacity 

 

The initial TAC of carrot shreds was 1,102.3±97.3 µmol Trolox kg-1 fw (Table IV.3). 

TAC increased during pre-enrichment incubation being highly correlated (R2=0.90) to 

TPC. Among pre-enrichment treatments, non-irradiated carrot shreds stored under 

hyperoxia conditions registered the highest TAC enhancements as observed for TPC. 

Similar high TAC-TPC correlations have been previously reported after wounding and 

hyperoxia storage of carrots (Jacobo-Velázquez et al., 2011). The specific antioxidant 

capacity (ratio of total antioxidant capacity over total soluble phenolics) has been 

proposed as a useful index to provide information of the effectiveness of phenolic 
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compounds to neutralize free radicals (Cisneros-Zevallos, 2003; Heredia and Cisneros-

Zevallos, 2009). A higher specific antioxidant capacity means phenolic compounds have 

a higher capacity to stabilize free radicals (Reyes et al., 2007). Irradiated samples showed 

significantly (p < 0.05) higher specific antioxidant capacities compared to non-irradiated 

samples reporting UV-C-HO shreds the highest value with 1010.7 µmol Trolox kg-1 fw. 

Similar specific antioxidant activity was reported by induced carrot phenolics after 

postharvest abiotic stresses (Cisneros-Zevallos, 2003). 

 

Smoothies from carrots without UV-C pre-treatment showed the highest (p < 0.05) TAC 

levels with 1,462.2 (hyperoxia) and 1,343.8 (air) µmol Trolox kg-1 fw. On the other side, 

smoothies from irradiated carrots showed lower TAC levels with 829.1 (hyperoxia) and 

1,056.9 (air) µmol Trolox kg-1 fw. Similar to TPC, heat treatment of carrot smoothies did 

not induce significant (p < 0.05) changes of TAC. TAC of smoothies increased by 64-

227 % after 14 days of storage at 5 ºC. The highest TAC increments after 14 days in un-

heated smoothies was observed in those samples from non-irradiated carrots. However, 

the highest TAC increments in heat-treated smoothies were registered by UV-C 

pretreated samples. Latter behaviour may be explained since UV-C pre-treatment was 

able to compensate subsequent reduction of activities of enzymes involved in the 

phenylpropanoid pathway after heat treatment. 

 

IV.4. CONCLUSIONS 
 

Carrot is a vegetable highly consumed which low phenolic levels could be naturally 

increased leading to a phenolic/antioxidant enriched plant material to produce a 

functional carrot smoothie. The phenolic levels of shredded carrots used for the smoothie 

preparation were highly enhanced after pre-enrichment incubation for 72 h at 15 ºC up to 

2,060 % in those non-irradiated shreds stored under hyperoxia conditions. The total 

antioxidant capacity was highly correlated to total phenolic content. The high 

temperature-short time heat treatment reduced microbial loads below the detection limits 

with low growth during subsequent refrigerated storage. The physicochemical quality 

was good for all smoothies at the end of storage. UV-C pretreatment of carrot shreds 

resulted in carrot smoothies at the end of storage with higher psychrophilic and yeasts 

and moulds loads and lower phenolic levels. Accordingly, pre-enrichment incubation of 

carrot shreds under hyperoxia conditions allowed to obtain a functional smoothie with 
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high phenolic levels and good microbiological and physicochemical quality up 14 days 

at 5 ºC. 
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Figure IV.1. Flow diagram of pre-enrichment incubation of carrots, smoothie preparation 

and storage conditions. 

 

 

  

Thermal treatment (90 ºC / 30 s) 

Smoothie preparation (carrot:water, 1:1)

Carrot sanitation (100 ppm NaClO; 5°C; pH 6.5; 2 min) 

+ Rinsing (water 5°C; 1 min) 
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Table IV.1. pH, titratable acidity (TA; %), soluble solids content (SSC; º Brix), total colour differences (ΔE) and browning index differences (ΔBI) 

changes of carrot shreds after different treatments (hyperoxia, UV-C radiation and controls) during pre-enrichment incubation (72 h at 15 ºC) and 

subsequent storage at 5 ºC of prepared non-treated or heat-treated (90 ºC for 30 s) smoothie (n=5±SD). Different capital letter denotes significant 

differences (p < 0.05) among different treatments for the same sampling time. Different lowercase letter denotes significant differences (p < 0.05) 

among different sampling times for the same treatment. 

 Carrot shreds incubation  Non-treated smoothie  Heat-treated smoothie 

 0 h 72 h  0 d 7 d 14 d  0 d 7 d 14 d 

           
pH           

CTRL-Air 6.32±0.31 Aa 3.20±0.28 Cb  3.35±0.15 Ca 3.47±0.26 Ba 3.52±0.28 Ba  3.40±0.32 Ca 3.51±0.21 Ca 3.51±0.22 Ca 

CTRL-HO 6.32±0.31 Aa 4.05±0.33 Bb  4.13±0.24 Ba 4.08±0.11 Aa 4.22±0.34 Aa  4.11±0.27 Ba 4.17±0.18 Ba 4.19±0.26 ABa 
UV-C-Air 6.37±0.42 Aa 4.87±0.52 Ab  5.03±0.21 Aa 4.20±0.31 Ab 4.10±0.19 Ab  4.85±0.37 Aa 4.84±0.34 Aa 4.53±0.37 Aa 

UV-C-HO 6.37±0.42 Aa 5.02±0.34 Ab  5.15±0.36 Aa 4.02±0.48 Ab 3.93±0.21 Ab  5.05±0.51 Aa 4.21±0.16 Bb 3.84±0.24 Bb 
           

TA           

CTRL-Air 0.32±0.02 Ab 5.22±0.41 Aa  2.05±0.08 Ac 4.48±0.38 Aa 3.63±0.26 Bb  1.86±0.26 Ab 1.11±0.15 Ac 2.83±0.16 Aa 
CTRL-HO 0.32±0.02 Ab 4.75±0.22 Aa  1.07±0.06 Bc 3.12±0.34 Ba 2.44±0.15 Cb  1.00±0.06 Bb 1.15±0.02 Aa 0.91±0.08 Bb 

UV-C-Air 0.48±0.04 Ab 3.42±0.29 Ca  0.68±0.04 Cb 3.32±0.39 Ba 3.56±0.29 Ba  0.72±0.07 Ca 0.76±0.03 Ba 0.87±0.04 Ba 
UV-C-HO 0.48±0.04 Ab 4.02±0.34 Ba  1.01±0.11 Bc 4.52±0.32 Ab 5.04±0.27 Aa  0.84±0.04 Cb 1.08±0.16 Aa 1.14±0.08 Ba 

           

SSC           
CTRL-Air 7.92±0.52 Aa 5.65±0.31 Db  2.70±0.23 Dc 3.10±0.08 Bb 3.50±0.15 Aa  2.80±0.38 Bb 3.20±0.09 Ca 3.21±0.23 Ca 

CTRL-HO 7.92±0.52 Aa 9.50±0.29 Ab  4.90±0.34 Aa 3.30±0.31 Bb 2.10±0.26 Cc  3.70±0.18 Ab 3.60±0.21 Bb 4.00±0.14 Aa 
UV-C-Air 7.85±0.24 Aa 6.42±0.34 Cb  3.20±0.12 Ca 2.50±0.16 Cb 2.90±0.31 Bc  2.70±0.34 Bc 4.00±0.11 Aa 3.60±0.16 BCb 

UV-C-HO 7.85±0.24 Aa 8.42±0.27 Bb  4.30±0.28 Bb 5.20±0.14 Aa 3.60±0.22 Ac  3.80±0.26 Aa 3.81±0.27 ABa 3.92±0.24 ABa 
           

ΔE           

CTRL-Air - 9.48±0.67 C  - 17.89±0.74 Cb 48.16±4.52 Aa  - 2.00±0.31 Cb 6.17±0.41 Ca 
CTRL-HO - 11.89±1.75 B  - 20.49±1.12 Bb 30.09±3.62 Ba  - 3.48±0.26 Bb 9.08±0.26 Ba 

UV-C-Air 5.88±0.42 A 7.65±0.42 D  - 12.16±0.62 Db 22.40±1.88 Ca  - 2.96±0.31 Cb 12.85±0.94 Aa 
UV-C-HO 5.88±0.42 A 15.53±1.02 A  - 32.21±1.84 Aa 32.16±3.26 Ba  - 6.96±0.42 Ab 10.05±1.21 Ba 
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ΔBI           
CTRL-Air - 71.97±8.11 B  - 60.60±7.12 Cb 64.49±4.32 Ca  - 12.65±1.81 Bb 51.62±4.08 Ba 

CTRL-HO - 100.21±12.68 A  - 47.03±5.62 Db 78.44±6.01 Ba  - 20.79±1.36 Ab 61.65±5.13 Aa 
UV-C-Air 89.39±11.12 A 74.84±5.11 B  - 79.67±9.52 Bb 98.18±7.60 Aa  - 8.55±0.96 Cb 29.73±1.62 Ca 

UV-C-HO 89.39±11.12 A 151.11±12.65 A  - 108.03±9.11 Ab 116.80±10.34 Aa  - 14.30±1.12 Bb 66.53±4.23 Aa 
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Table IV.2. Mesophilic, psychrophilic and yeasts and moulds counts (log CFU g-1) of carrot shreds after different treatments (hyperoxia, UV-C 

radiation and controls) during pre-enrichment incubation (72 h at 15 ºC) and subsequent storage at 5 ºC of prepared non-treated or heat-treated (90 

ºC for 30 s) smoothie (n=5±SD). Different capital letter denotes significant differences (p < 0.05) among different treatments for the same sampling 

time. Different lowercase letter denotes significant differences (p < 0.05) among different sampling times for the same treatment. 

 

 Carrot shreds incubation  
Non-treated 

smoothie 

 Heat-treated smoothie 

 0 h 72 h 
  

0 d 7 d 14 d 

         

Mesophiles         

CTRL-Air 5.3±0.4 Ab 8.6±0.6 Aa  8.1±1.0 A  < DT* 3.4±0.1 Aa 3.5±0.2 Aa 

CTRL-HO 5.3±0.4 Ab 6.5±0.4 Ba  6.3±0.4 B  1.5±0.7 Bb 3.4±0.4 Aa 3.8±0.2 Aa 

UV-C-Air 4.1±0.5 Bb 8.5±0.9 Aa  8.4±0.7 A  2.4±0.2 Ab 3.5±0.4 Aa 3.9±0.1 Aa 

UV-C-HO 4.1±0.5 Bb 8.3±0.7 Aa  8.2±0.7 A  < DT 3.3±0.5 Aa 4.1±0.5 Aa 

          

Psychrophiles         

CTRL-Air 5.1±0.4 Ab 7.9±0.9 Ba  8.0±0.7   2.8±0.3 Ab 3.1±0.2 Aa 4.2±0.6 Ba 

CTRL-HO 5.1±0.4 Ab 6.6±0.7 Ca  6.4±1.0   < DT 2.8±0.1 Ab 3.9±0.4 Ba 

UV-C-Air 4.0±0.3 Bb 8.6±0.2 Aa  7.6±0.4   2.5±0.4 Ab 3.1±0.4 Ab 6.0±0.8 Aa 

UV-C-HO 4.0±0.3 Bb 7.8±0.8 Ba  7.2±0.3   < DT 3.0±0.2 Ab 5.7±0.2 Aa 

         

Y+M**          

CTRL-Air 4.8±0.6 Ab 9.5±1.1 Aa  8.5±0.6   2.3±0.4 2.0±0.0 Aa 2.0±0.0 Ba 

CTRL-HO 4.8±0.6 Ab 7.5±0.9 Ba  7.3±0.4   < DT 2.0±0.0 Aa 2.0±0.0 Ba 

UV-C-Air 3.5±0.2 Bb 7.6±0.4 Ba  7.2±0.8   < DT 2.0±0.0 Aa 2.8±1.2 ABa 

UV-C-HO 3.5±0.2 Bb 7.1±0.5 Ba  6.4±0.4   < DT 2.8±0.7 Aa 3.3±0.4 Aa 

         

*DT: Detection limit (1 log CFU mL-1 for mesophilic/psychrophilic and 2 log CFU mL-1 for Y+M); /** 
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Table IV.3. Phenylalanine ammonia-lyase activity (PAL; μmol t-cinnamic acid synthesized kg-1 fw h-1), total phenolic content (TPC; Chlorogenic 

acid equivalent kg-1 fw) and total antioxidant capacity (TAC; mg Trolox equivalents kg-1 fw) of carrot shreds after different treatments (hyperoxia, 

UV-C radiation and controls) during pre-enrichment incubation (72 h at 15 ºC) and subsequent storage at 5 ºC of prepared non-treated or heat-

treated (90 ºC for 30 s) smoothie (n=5±SD). Different capital letter denotes significant differences (p < 0.05) among different treatments for the 

same sampling time. Different lowercase letter denotes significant differences (p < 0.05) among different sampling times for the same treatment. 

 

 Carrot shreds incubation 
 

Non-treated smoothie 
 

Heat-treated smoothie 

 0 h 72 h  0 d 7 d 14 d  0 d 7 d 14 d 

           
PAL           

CTRL-Air 16.2±1.1 Ab 102.7±8.6 Ba  46.3±13.4 Ba 3.1±0.4 Bb 1.8±0.6 Bb  2.4±0.7 B 5.5±1.3 Ca 5.7±0.3 Ba 

CTRL-HO 16.2±1.1 Ab 224.9±11.1 Aa  112.4±3.1 Aa 32.2±9.8 Ab 22.4±1.5 Ab  4.2±3.2 ABb 10.6±1.3 Aa 11.7±3.5 Aa 
UV-C-Air 12.5±0.9 Ab 86.2±7.1 Ba  40.6±6.0 Ba 3.9±0.6 Bb 1.6±0.4 Bb  7.8±0.6 Aa 6.2±2.5 BCa 1.6±0.4 Cb 

UV-C-HO 12.5±0.9 Ab 97.6±6.3 Ba  52.5±3.1 Ba 3.2±1.3 Bb 1.0±0.2 Bb  5.6±2.4 ABa 9.0±1.3 ABa 2.2±0.6 Cb 
           

TPC           

CTRL-Air 187.3±12.5 Ab 3012.3±411.2 Ba  1486.7±67.8 Ba 1636.2±48.7 Ba 1667.4±159.1 Aa  1396.4±260.3 Bb 1332.9±53.1 Bb 10958.1±749.6 Ba 
CTRL-HO 187.3±12.5 Ab 4050.8±362.2 Aa  1925.7±93.5 Ab 2410.6±299.0 Aa 1727.4±22.9 Ab  1955.3±222.2 Ab 1889.5±54.2 Ab 13823.5±285.7 Aa 

UV-C-Air 177.5±15.1 Ab 2253.2±120.1 Ca  989.3±64.7 Cb 1117.3±51.4 Ca 1001.3±80.0 Bab  981.8±69.9 Cc 1150.4±34.2 Cb 8633.9±123.3 Ca 
UV-C-HO 177.5±15.1 Ab 1562.2±132.0 Da  710.4±43.9 Db 832.9±5.1 Ca 733.9±7.7 Cb  744.6±107.5 Cb 749.2±25.2 Db 7102.3±509.1 Da 

           

TAC           
CTRL-Air 1102.3±97.3 Ab 2701.3±185.2 Aa  1343.8±48.3 Bc 1812.2±20.5 Cb 2562.4±145.7 Ba  1462.5±116.9 Ab 2359.5±98.7 Ba 2472.3±88.4 Ba 

CTRL-HO 1102.3±97.3 Ab 3012.0±181.2 Aa  1462.2±103.2 Ac 4640.1±140.1 Aa 3651.2±45.6 Ab  1238.6±140.7 Bc 2287.3±23.0 Cb 2522.2±58.0 Ba 
UV-C-Air 952.2±42.6 Ab 2095.2±106.2 Ba  1056.9±28.9 Cc 1851.9±30.8 Cb 2252.8±73.4 Ca  1115.5±67.8 Bc 2561.7±47.6 Aa 2480.7±57.9 Bb 

UV-C-HO 952.2±42.6 Ab 1542.6±97.5 Ca  829.1±22.6 Dc 2701.1±17.8 Ba 2106.7±66.0 Cb  830.0±60.0 Cc 1976.8±35.3 Db 2710.7±51.2 Aa 
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Table  IV.4. Individual phenolic contents (mg kg-1 fw) of carrot shreds after different treatments (hyperoxia, UV-C radiation and controls) during 

pre-enrichment incubation (72 h at 15 ºC) and subsequent storage at 5 ºC of prepared non-treated or heat-treated (90 ºC for 30 s) smoothie (n=5±SD). 

Different capital letter denotes significant differences (p < 0.05) among different treatments for the same sampling time. Different lowercase letter 

denotes significant differences (p < 0.05) among different sampling times for the same treatment. 

 Carrot shreds incubation  Non-treated smoothie  Heat-treated smoothie 

 0 h 72 h  0 d 7 d 14 d  0 d 7 d 14 d 

           
3-CQA           

CTRL-Air 45.32±4.26 Bb 302.10±21.02 Ba  146.50±6.03 Ba 131.58±1.30 Ab 116.16±0.84 Ac  155.86±12.89 ABb 177.32±8.08 Ba 186.57±3.78 Ca 
CTRL-HO 45.32±4.26 Bb 385.25±11.26 Aa  199.11±13.00 Aa 115.59±5.70 Bb 46.04±2.81 Cc  186.78±30.28 Bb 228.57±23.79 Aab 247.85±9.80 Aa 

UV-C-Air 60.26±9.42 Ab 375.29±40.89 Aa  180.18±12.91 Aa 112.55±10.52 BCb 67.59±13.51 Bc  209.60±7.96 Aa 178.48±8.33 Bb  162.21±3.96 Dc 
UV-C-HO 60.26±9.42 Ab 350.68±20.25 ABa  158.28±7.95 Ba 103.62±1.75 Cb 52.05±2.37 Cc  156.90±3.22 Bb 133.73±9.16 Cc 225.33±8.90 Ba 

           

3,5-CQA           
CTRL-Air 29.16±1.12 Aa 35.16±4.11 Aa  16.06±0.64 Ba 10.39±0.18 Ba 14.53±0.28 Ba  15.36±0.44 Ba 15.63±0.25 Ba 15.51±0.28 Ca 

CTRL-HO 29.16±1.12 Ab 40.26±1.82 Aa  18.73±0.30 Ab 21.17±1.38 Aa 14.18±1.63 Bc  17.66±1.69 Ab 18.44±0.43 Aab 20.20±0.13 Aa 
UV-C-Air 20.09±3.65 Bb 36.26±2.05 Aa  15.25±0.38 Bb 21.33±1.08 Aa 17.42±0.37 Ab  16.82±0.65 ABb 18.96±0.92 Aa 17.19±1.18 Bab 

UV-C-HO 20.09±3.65 Ba 28.15±2.72 Ba  12.28±0.45 Cc 15.73±0.40 ABa 13.36±0.14 Bb  12.70±0.07 Cb 11.34±0.42 Cc 14.21±0.10 Da 
           

4,5-CQA           

CTRL-Air 6.04±0.86 Ab 9.85±0.45 ABa  5.11±0.32 Ba 3.32±0.88 Aa 4.73±0.16 Aa  3.17±0.12 Ca 4.75±0.11 Ba 4.65±0.15 Ba 
CTRL-HO 6.04±0.86 Ab 12.36±1.16 Aa  5.55±0.25 Aa 5.20±0.23 Aa 3.80±0.04 Bb  5.25±0.55 Aa 5.23±0.08 Aa 5.73±0.03 Aa 

UV-C-Air 5.57±0.98 Ab 8.98±0.71 Ba  4.13±0.05 Cb 4.68±0.28 Aa 4.02±0.33 Bb   4.53±0.14 ABa 4.70±0.22 Ba 4.43±0.27 Ba 
UV-C-HO 5.57±0.98 Ab 8.27±0.63 Ba  3.99±0.09 Cb 4.37±0.09 Aa 3.76±0.08 Bc  4.15±0.09 BCb 3.73±0.18 Cc 4.58±0.05 Ba 

               

Ferulic acid           
CTRL-Air 0.88±0.11 Bb 9.45±0.38 Ba  4.65±0.24 ABa 3.72±3.22 Ba 6.06±0.26 Aa  7.70±1.18Ab 9.93±0.29 Ba 10.25±0.26 Ba 

CTRL-HO 0.88±0.11 Bb 12.06±1.02 Aa  5.92±1.32 Aa 7.34±0.82 Aa 3.33±0.16 Bb  8.50±1.94 Ab 10.74±0.43 Aab 12.27±0.50 Aa 
UV-C-Air 1.85±0.21 Ab 6.82±0.42 Ca  2.91±0.97 Ca 4.35±0.47 ABa 2.71±1.03 Ba  4.67±0.41 Bb 5.43±0.44 Ca 4.87±0.14 Cab 

UV-C-HO 1.85±0.21 Ab 7.06±0.81 Ca  3.05±0.58 BCb 4.75±0.01 ABa 2.54±0.39 Bb  2.99±1.17 Bb 2.92±0.34 Db 4.70±0.08 Ca 
           

3-CQA: 3-caffeoylquinic acid (Chlorogenic acid); 3,5-CQA: 3,5-dicaffeoylquinic acid (Isochlorogenic acid A); 4,5-CQA: 4,5-dicaffeoylquinic acid (Isochlorogenic acid C). 
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V.1. INTRODUCTION 

 

The current worldwide drive for a healthier lifestyle has led to a rising demand for 

convenient fresh foods, free from additives, with high nutritional value, including 

antioxidant and free-radical scavenging properties, to be consumed both at home and 

in food services (Artés et al., 2009). Accordingly, the fresh-cut produce market has 

undergone a rapid growth within the food industry, caused by trends in life style, diet, 

importance for health, and healthy alternative in restaurants. Fresh-cut produce are 

more perishable than intact vegetables because they have been subjected to several 

physical stress, such as cutting, slicing, peeling, shredding, trimming, and coring 

(Iqbal et al., 2008). In the past years, consumption of fruit and vegetable juices, and 

more recently smoothies, are increasing due to its practicability being a potential 

alternative to whole fruit and vegetable intake. Depending on the type of beverage, a 

range of phytochemicals, such as phenolic compounds, may also be present with the 

related health-promoting properties (Di Cagno et al., 2011; Ruxton, 2008). Phenolic 

compounds, and specifically, hydroxycinnamic acids, are well known for its high 

antioxidant capacity being an important tool to prevent degenerative diseases. PAL 

catalyses the first step on phenylpropanoid pathway, regulating the propagation of 

secondary metabolites, being consequently involved in the biosynthesis of phenolic 

compounds. 

 

Novel preservation technologies have emerged to maintain quality and 

bioactive/nutritional content of processed food guarantying always the food safety 

(Artés et al., 2009). HPP is a novel non-thermal technology which uses water as a 

medium to transmit pressures usually up to 800 MPa. One of the main advantages of 

HPP is the almost instantaneous isostatic pressure transmission to the product, 

independent of size, shape and food composition yielding highly homogeneous 

products. Food treated by HPP has been shown to keep almost its original 

bioactive/nutritional compounds, freshness, flavour, taste and colour changes are 

minimal (Patras et al., 2009b; Pereira and Vicente, 2010). 

 

To the best of our knowledge, research on the effects of HPP on phenolic content and 

PAL activity of carrot smoothies is very scare. The main objective of the present study 

was evaluating physicochemical and microbial quality changes, as well as PAL 
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activity and TPC, of a carrot smoothie after different HPP treatments and 7 days of 

cold storage. 

 

V.2. MATERIAL AND METHODS 

 

V.2.1. Plant material and smoothie preparation 

 

Carrots, butternut squash and oranges were bought in a local supermarket in Cartagena 

(Spain). Plant material was carefully inspected, selecting those with similar visual 

appearance and size. Minimally processing was performed in a disinfected cold room at 

8 ºC at the Pilot Plant of the Universidad Politécnica de Cartagena. Carrots were topped 

and butternut squash was peeled. Subsequently, plant material was sanitized with cold 

chlorinated water (100 mg L-1 NaOCl; 5 ºC; pH 6.5±0.1) for 2 min, rinsed with tap water 

at 5 ºC for 1 min and drained in a perforated basket for 1 min. A ratio of 300 g plant 

material: 5 L chlorine was used. 

 

Smoothie preparation was conducted with a food processor (Robot Cook®, Robot Coupe, 

Vincennes Cedex, France) in proportions of 350 g carrots, 200 g butternut squash and 500 

mL orange juice (fresh squeezed). Approximately 80 g of smoothie were filled under 

aseptic conditions into a sterile squeeze PVC pouch (9 cm × 13 cm; 118 mL; Infantino, 

San Diego, USA) immediately after smoothie preparation. Subsequently, pouches filled 

with the smoothie were immediately treated in a HPP equipment (HP Pilot Food 

Processor, Stansted Fluid Power Ltd., Essex, U.K.) at 300, 400, 500 or 600 MPa 

(hereinafter T1, T2, T3 and T4, respectively) for 5 min at 23 ºC. Samples without 

processing were used as control (hereinafter CTRL). Sampling was conducted on 

processing day (0) and after 7 days at 5 ºC. Three replicates per treatment and sampling 

day were prepared. 

 

V.2.2. Physicochemical analyses 

 

The pH, TA, SSC and colour of smoothies were determined according to Castillejo et al. 

(2015). Briefly, a pH-meter (Basic20, Crison, Alella, Spain) was used to determine the 

pH. The SSC of the juice was determined by a digital hand-held refractometer (Atago N1, 

Tokyo, Japan) at 20 ºC and expressed as ºBrix. TA was determined by titration (0.1 M 
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NaOH to final pH 8.1) of 7 mL of smoothie plus 33 mL of distilled water and expressed 

as % (g malic acid 100 mL-1). Colour of smoothies was determined using a colorimeter 

(Chroma Meter CR-300, Minolta, Japan). Colour measurements were recorded using the 

standard tristimulus parameters (L*, a*, b*) of the CIE Lab system and Hue angle 

parameter was calculated. Each of the three replicates was analysed in duplicate. 

 

V.2.3. Microbiological analyses 

 

Total mesophilic load was evaluated using standard enumeration methods according to 

previously described method (Castillejo et al., 2015). All microbial counts were reported 

as log colony forming units per gram of product (log CFU g−1). Each of the three 

replicates was analysed in duplicate. 

 

V.2.4. Total phenolic content 

 

TPC extraction was conducted by homogenization (Ultra Turrax®) of 2 g of sample in 

8 mL methanol for 20 s under ice-water bath. Subsequently, extracts were centrifuged 

at 13,500 × g for 20 min at 4 ºC and supernatants were collected and used as TPC 

extract. TPC was analysed by Folin–Ciocalteu reagent method previously described 

with some modifications (Martínez-Hernández et al., 2013d; Swain and Hillis, 1959). 

Briefly, a 19 µL extract was placed on a PS flat bottom 96-well plate (Greiner Bio-

One, Frickenhausen, Germany) and 29 µL of Folin–Ciocalteu reagent 1 N was added. 

Samples were incubated for 3 min in darkness at room temperature. After incubation, 

192 µL of a of a buffer solution (37.7 mM Na2CO3; 0.5 M NaOH) was added and the 

reaction was carried out for 1 h at room temperature in darkness, measuring the 

absorbance at 750 nm using the Multiscan plate reader. TPC was expressed as mg 

chlorogenic acid equivalents (ChAE) kg−1 fw. Each of the three replicates was 

analysed in duplicate. 

 

V.2.5. Phenylalanine ammonia-lyase activity 

 

PAL activity was analysed according to previously described method with slight 

modifications (Jacobo-Velázquez et al., 2011). Concisely, smoothie samples (2 g) were 

mixed with polyvinylpolypyrrolidone (100 g L-1) and homogenized in cold 50 mM borate 
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buffer (pH 8.5; 5 ºC) containing 400 μL L-1 β-mercaptoethanol. Homogenates were 

filtered through four-layers cheesecloth and then centrifuged at 10,000 × g for 20 min at 

4 ºC. Supernatants were used as PAL extract. Two sets of UV Star 96-well plates 

containing 69 μL of PAL extract plus 200 µL ultrapure water were prepared for every 

sample and pre-incubated at 40 ºC for 5 min. Afterwards, 30 μL of either water (blank) 

or 100 mM L-phenylalanine substrate solution (freshly prepared before assay) were added 

to each of the well for every sample set. The absorbances of the sample sets were 

measured at 290 nm at time 0 and after 1 h of incubation at 40 ºC in the Multiscan plate 

reader. The PAL activity was calculated as μmol of t-cinnamic acid synthesized kg-1 fw 

h-1. 

 

V.2.6. Statistical analyses  

 

A complete randomized design in triplicate, with two-way ANOVA (treatment × storage) 

was conducted. Statistical significance was assessed at the level p=0.05, and Tukey’s 

multiple range test was used to separate means with SPSS software (v. 21, IBM, USA). 

 

V.3. RESULTS AND DISCUSSION 

 

Smoothie showed initial pH, TA and SSC of 4.48, 3.46 % and 11.1 ºBrix, respectively, 

which were decreased by 0.10-0.25 units without significant (p < 0.05) differences among 

treatments (Table V.1). Latter quality parameters of smoothies did not greatly change 

after 7 days of storage at 5 ºC. 

 

Colour is one of the main characteristics that is strongly associated with the concept of 

quality (Wibowo et al., 2015). In general, HPP treatments did not induce great colour 

changes (ΔE < 10) except T4 treatment which registered ΔE=42 mainly due to reduction 

of smoothie luminosity and redness (Table V.1). This might indicate an enhancement on 

colour compounds to lighter tones (López Camelo and Gómez, 2004)  and consequently 

losses on red colour. In accordance to previous research (Melendez-Martinez et al., 2003), 

our smoothie belonged to ranged standards regarding L* parameter for orange juices (58-

60) after 7 days of storage. Although no significant (p < 0.05) colour changes were 

observed after 7 days of storage, T4 samples showed the highest ΔE of 48, comparing to 
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its initial level, while ΔE < 20 were registered for the rest of treatments. Those values are 

in accordance to previous studies on orange juices (Meléndez-Martínez et al., 2011). 

 

The initial mesophilic load of CTRL samples of 3 log CFU g-1 was greatly reduced (> 2 

log units) after HPP treatments, without significant (p < 0.05) differences among them, 

with values close or below the detection limit (1 log CFU g-1) (Table V.2). Total 

mesophilic loads of HPP-treated samples remained unchanged (p < 0.05) after 7 days at 

5 ºC while it was increased by 4.1 log units in CTRL samples. Similar results have been 

observed in previous studies with different food matrix (Bull et al., 2004; Considine et 

al., 2008), indicating an enzymatic denaturation and disruption of microbial cell 

membranes (Yordanov and Angelova, 2010). 

 

PAL regulates phenolic compounds as a response to metabolic pathways (Cisneros-

Zevallos, 2003). CTRL samples initiated with 206.4 µmol cinnamic acid formed kg-1 h-1 

which was reduced by 56-83 % after HPP treatments, except for T3 samples that showed 

20 % increased PAL activity (Table V.2). PAL activity was also reduced after thermal 

treatment on red smoothies being explained by the low pH of the smoothie affecting to 

the signal for triggering this enzyme (Rodríguez-Verástegui et al., 2015). Contrary to 

initial PAL changes after HPP treatments, T1 smoothie registered a PAL activity increase 

of 4.5-fold after storage while T3 samples showed the highest reduction (71 %). PAL 

activity of CTRL samples was reduced by 88 % after storage similar to minimally 

processed carrots (Jacobo-Velázquez et al., 2011). T4 smoothies presented a steady 

behaviour with 99.2 µmol cinnamic acid formed kg-1 h-1 after 7 days of storage at 5 ºC. 

Similar PAL behaviour during storage was observed in fresh-cut carrot slices after 

microwave treatments (Martínez-Hernández et al., 2016a). 

 

Phenolic compounds are one of major antioxidant constituents on orange vegetables 

(Kjeldsen et al., 2003). CTRL samples showed initial TPC of 712.1 mg ChAE kg fw-1 

being reduced by 31, 14 and 7 % after T1, T2 and T3/T4 treatments, respectively (Table 

V.2). However, longer (15 min) HPP treatments (500 MPa and 600MPa) induced TPC 

increases in blackberry puree probably owed to a better extractability of phenolic acids 

(Patras et al., 2009a). TPC of CTRL/T1/T2 and T3/T4 samples increased by 1.5-1.6 and 

1.1-1.3-fold, respectively. T2 samples registered the highest TPC after storage. The 

observed TPC enhancement after storage may be explained by a combined effect of: 1) 
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progressive higher phenolic extractability after storage due to further plant cells 

disruption during storage and 2) phenolic biosynthesis during storage. 

 

V.4. CONCLUSIONS 

 

In general, studied HPP treatments did not change the initial physiochemical quality 

which was well maintained after 7 days of storage at 5 ºC. HPP treatments greatly reduced 

initial microbial loads being kept during storage. HPP did not induce significant 

reductions on PAL activity and TPC content comparing to control smoothies. Smoothies 

treated with 400 MPa achieved the highest TPC after storage. 
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Table V.1. Soluble solids content (SSC), pH, titratable acidity (TA) and colour changes 

of orange smoothie after different high hydrostatic processing treatments and after 7 days 

of storage at 5 ºC. 

 

Treatment 
Processing day 

SSC ( ºBrix) pH TA (%) L* a* b* ΔE 

CTRL 11.1 4.48 3.46 61.68 7.26 62.28 - 

T1 11.3 4.33 3.20 62.73 7.62 63.09 0.9 

T2 11.0 4.28 3.28 62.45 7.83 63.84 1.7 
T3 11.0 4.28 3.29 62.63 8.63 66.32 9.6 

T4 11.0 4.25 2.75 57.80 4.05 54.64 41.9 

  

 7 days at 5 ºC 

  SSC ( ºBrix) pH TA (%) L* a* b* ΔE 

CTRL 12.1 4.33 3.14 64.53 7.61 61.56 4.4 

T1 12.2 4.38 3.36 65.32 7.82 58.51 13.9 

T2 13.0 4.38 

 
3.72 63.64 6.34 58.57 15.7 

T3 12.0 4.31 3.22 64.88 7.76 60.38 20.1 

T4 12.4 4.41 3.05 64.79 7.32 60.70 48.1 

 

 

Table V.2. Total mesophilic count (TMC), phenylalanine ammonia-lyase (PAL) and total 

phenolic content (TPC) of orange smoothie after different high hydrostatic processing 

treatments and after 7 days of storage at 5 ºC. 

 

Treatment 
Processing day 

TMC* PAL*** TPC** 

CTRL 3.4 206.4 712.1 

T1 < 1 34.7 491.1 

T2 1.3 91.2 609.0 
T3 < 1 248.5 662.6 

T4 1.2 71.4 662.1 

    

      7 days at 5 ºC 

  TMC* PAL*** TPC** 

CTRL 7.4 25.2 1032.6 

T1 < 1 156.4 787.5 

T2 1.4 1.0 914.6 

T3 < 1 70.9 748.8 

T4 1.4 99.2 851.6 

*TMC expressed as log CFU g-1; ** TPC expressed as mg chlorogenic acid equivalent kg-1 fw; ***PAL 

expressed as μmol of t-cinnamic acid synthesized kg-1 fw h-1 
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VI.1. INTRODUCTION 

 

Apple juice is the most worldwide consumed fruit juice, together with orange juice, due 

to its excellent sensory attributes and health-promoting related properties derived from 

the phytochemicals present in this fruit (AIJN, 2014a; Hyson, 2011; USDA, 2013). Food 

safety and the inactivation of oxidizing enzymes, have been conventionally controlled by 

heat treatments but in detriment of the sensory quality of the product. Accordingly, novel 

sustainable preservation technologies have emerged to maintain quality and 

bioactive/nutritional content of processed food guarantying the food safety (Artés et al., 

2009). HPP is a non-thermal technology which uses water as a medium to transmit 

pressures usually up to 800 MPa. One of the main advantages of HPP is the almost 

instantaneous isostatic pressure transmission to the product, independently of size, shape 

and food composition yielding highly homogeneous products. HPP treatments may 

achieve high inactivations of pathogenic bacteria as recently reviewed (Rendueles et al., 

2011). Excellent microbial reductions have been achieved by HPP treatments in fruit and 

vegetables juices, with just mild treatments like 300 MPa for 5 min at 22 ºC (Formica-

Oliveira et al., 2016b), while preserving, in a great content, its original 

bioactive/nutritional compounds, freshness, flavour and taste (Baron et al., 2006; Patras 

et al., 2009a). However, such mild-moderate HPP treatments at room temperature 

enhance the activity of quality degradative enzymes such as polyphenoloxidase (PPO), 

the main responsible of apple juice browning, as it is recently reviewed (Eisenmenger and 

Reyes-De-Corcuera, 2009). Accordingly, HPP treatment at 400 MPa for 5 min at 20 ºC 

induced a 65 % increase of the PPO activity in apple juice (Buckow et al., 2009). 

Reactivation of PPO and other enzymes has been also observed during shelf life of other 

HPP-treated products (Jacobo-Velazquez and Hernandez-Brenes, 2010). Furthermore, 

besides the evident sensory quality loss, application of high temperatures during HPP 

treatment has even shown an antagonistic effect between pressure and temperature on 

PPO inactivation in apple juice and other food products (Buckow et al., 2009; Ludikhuyze 

et al., 2002). Accordingly, there is a need to find combined treatments of mild HPP 

treatment (low pressures/temperature/time), which are economically affordable by the 

food industry, and antibrowning agents. 

 

Several antibrowning agents such as sulfiting agents, reducing agents (ascorbic acid and 

analogues, glutathione, l-cysteine), enzyme inhibitors (aromatic carboxylic acids, 



Chapter VI 
 

148 
 

substituted resorcinols, anions, peptides), chelating agents (phosphates, EDTA, organic 

acids), acidulants (citric acid, phosphoric acid) and enzymes have been used to inhibit 

PPO activity in food products (compiled by Özoğlu and Bayındırlı (2002)). However, the 

actual consumer demands healthy food with natural ingredients free from additives. 

Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides from the bacterial 

digestion of starch, which have been studied as natural antibrowning agents in fruit and 

vegetable juices (Hicks et al., 1996; Iyengar and McEvily, 1992). They are cylindrically 

shaped molecules with a cavity of hydrophilic outer surface, and hydrophobic internal 

surface which is able to form inclusion complexes with PPO substrates (Kalogeropoulos 

et al., 2010). Among CDs, maltosyl-β-CD (mβCD) has shown excellent antibrowning 

effect and solubility, while being safe even when administered parenterally contrary to 

parent β-CD (Del Valle, 2004; López-Nicolás et al., 2007a). Enzymatic browning in apple 

juice has been satisfactorily observed and characterized by colorimetric methods (López-

Nicolás et al., 2007a; López-Nicolás et al., 2007b). To the best of our knowledge, there 

are no studies on application of CDs with HPP on fruit and/or vegetable juices. 

 

The aim of this study was the study of enzymatic browning in apple juice treated with 

mβCD after HPP treatments. 

 

VI.2. MATERIAL AND METHODS 

 

VI.2.1. Plant material and juice preparation 

 

Apples (Malus domestica cv. Royal Gala) were purchased from a local supermarket in 

February and stored at 5 ºC until the next day when they were processed. Apple juicing 

was conducted with a juicer (MP75, Braun, Germany). Immediately after juicing, 25 mL 

of the apple juice were introduced in a 150 mL plastic squeeze pouch (Fill n Squeeze, 

Lucro Liquido Ltd, Huddersfield, UK) and mβCD and HPP treatments were immediately 

applied within the first minute after juicing. Accordingly, minute 1 was considered as 

time 0. 
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VI.2.2. Maltosyl-β-cyclodextrin and HPP treatments 

 

Maltosyl-β-CD (Alfa Chemistry, Stony Brook NY, USA) was pre-dissolved in 5 mL of 

nanopure water and added to the 25 mL of pre-packaged apple juice, giving a final 

concentration of 90 mM (according to López-Nicolás et al. (2007a)), capped and 

homogenized by hand for 5 s. As control (CTRL), 5 mL of nanopure water was used. 

 

HPP treatments were conducted immediately after processing with a HPP device (HP 

Pilot Food Processor, Stansted Fluid Power Ltd., Essex, UK) at 0, 300 and 600 MPa for 

5 min at 22 ºC. HPP treatments were applied to CTRL (CTRL-HPP0, CTRL-HPP300 and 

CTRL-HPP600) and mβCD samples (mβCD-HPP0, mβCD-HPP300 and mβCD-

HPP600). Colour changes of samples were measured for 60 min at 22 ºC after preparation. 

 

VI.2.3. Colour changes 

 

Colour changes were determined using a colorimeter (Chroma Meter CR-300, Minolta, 

Japan) calibrated with a white reference plate (light source C), 2º observer and 8-mm 

viewing aperture. Samples were introduced in a special glass tube mounted on a device 

connected to the colorimeter. Three colour readings were taken turning the tube every 

caption and all three measurements were automatically averaged by the device and 

recorded. Measurements were recorded using the standard tristimulus parameters (L*, a*, 

b*) of the CIE Lab system.  

 

Browning is the main colour degradation process occurred in apple juice. Accordingly, 

BI was calculated from CIE Lab parameters according to equation (VI.1) as previously 

described (Palou et al., 1999). 

𝐵𝐼 =
100 × [[

[𝑎∗2+(1.75 × 𝐿∗)]

[(5.645 × 𝐿∗)+𝑎∗2−(3.012 × 𝑏∗)]
]−0.31]

0.172
                                 (VI.1) 

Complimentary, ∆E is a colorimetric parameter extensively used to characterize the 

variation of colours during processing and storage of food products (Lante and Zocca, 

2010; Martínez-Hernández et al., 2013a). ∆E was calculated according to equation (VI.2) 

as previously described (Walkling-Ribeiro et al., 2010). 

∆𝐸 = √(𝐿∗ − 𝐿∗
0)2 + (𝑎∗ − 𝑎∗

0)2 + (𝑏∗ − 𝑏∗
0)2                          (VI.2) 
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VI.2.4. Mathematical modelling of colour changes 

 

Experimental data were fitted to a fractional conversion model according to equation 

(VI.3) as previously proposed by Soliva-Fortuny et al. (2001) and López-Nicolás et al. 

(2007a) by nonlinear regression procedures of the Statgraphics Plus (version 5.1) 

software. 

𝑒−𝑘 𝑡 =
(∆𝐸𝑓−∆𝐸)

(∆𝐸𝑓)
                                                 (VI.3) 

where ∆E is current value of total colour difference, ∆Ef is the non-zero value of the 

parameter upon prolonged time, t is the time after treatments and k is the first-order kinetic 

constant. 

 

VI.3. RESULTS AND DISCUSSION 

 

VI.3.1. Colour changes after HPP treatments 

 

Colorimetric studies are considered as a satisfactory method for observing and 

characterizing enzymatic browning in apple juice (López-Nicolás et al., 2007a; López-

Nicolás et al., 2007b). ∆E is a colorimetric parameter extensively used to characterize the 

variation of colours during processing and storage of food products. BI represents the 

purity of brown colour and is reported as an important parameter in processes where 

enzymatic or non-enzymatic browning take place (Palou et al., 1999). Colour data were 

registered in this experiment for the first hour after juicing since browning mainly occurs 

in this initial period of time (López-Nicolás et al., 2007a). Furthermore, 83 % of browning 

have been registered within the first hour in some other foods after long incubation 

periods (Cheng and Crisosto, 1995). Data modelling provides important kinetic 

parameters to clarify and predict quality changes in these kind of products, which is still 

one of the most challenging goals for food processors. Colour changes of apple juice were 

well modelled with the previous model proposed by Soliva-Fortuny et al. (2001) to study 

the influence of enzymatic browning on the colour parameters of fresh-cut apples in 

several conditions. Colour data were well fitted with this model with root-mean-square 

error (RMSE) of 0.15-1.28 (Table VI.1). Among HPP treatments, no relevant RMSE 

differences were observed among treatments. In general, CTRL-HPP0 and CTRL-

HPP600 showed similar colour kinetic behaviour with an initial exponential high colour 
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change followed by a lag phase (Figures VI.1a and VI.2a). However, CTRL-HPP300 

showed a lower exponential colour change but it was constant in the period that data were 

registered being not clearly observed a lag phase as for CTRL-HPP0 and CTRL-HPP600 

samples (Figures VI.1a and VI.2a). Exponential colour changes were faster in CTRL 

samples showing after 14 min similar lag phase as that reached by CTRL-HPP600 only 

after 24 min. Accordingly, CTRL-HPP300 showed the lowest k values followed by 

CTRL-HPP600 and CTRL-HPP0 (Table VI.1). The kinetic colour change behaviour 

observed in these samples could be explained by high PPO and POD activities in the 

exponential phase which were highly reduced in the lag phase when free substrates 

contents were used reaching minimum levels. Such initial colour degradation, retarded in 

HPP samples, was owed to HPP enzymatic inactivation. Accordingly, PPO inactivation 

after several HPP treatments (0.1-700 MPa; 20-60 ºC; up to 30 min) has been previously 

modelled in apple juice (Buckow et al., 2009). The faster colour degradation observed in 

CTRL-HPP600 compared to CTRL-HPP300 samples could be owed to a higher 

accessibility of phenolic compounds for PPO and POD enzymes due to plant cell 

disruption achieved by such high pressure. However, CTRL-HPP300 treatment induced 

lower phenolic extractability while applied pressure was enough to reduce PPO and/or 

POD activities. Nevertheless, the low colour degradation in CTRL-HPP300 was constant 

for the registered time leading to higher colour changes after long time periods. 

Furthermore, a higher PPO and/or POD activation could occur under such low pressure. 

Accordingly, CTRL-HPP300 juice showed darker colour after 90 min regarding CTRL-

HPP600 and CTRL-HPP0 (Figure VI.3). HPP treatment is a non-thermal technology, 

which highly control microbial growth in several food products although there is much 

evidence about their limitations for fruit and vegetables juices susceptible to browning, 

being apple juice the main challenging goal for food processors. Accordingly, enzymatic 

activation in fruit and vegetables juices after HPP treatments has been recently reviewed 

(Eisenmenger and Reyes-De-Corcuera, 2009). Latter authors stated three possible 

hypotheses for this fact: (1) reversibility in enzyme conformation or rearrangement of the 

active sites facilitating the enzymatic reaction; (2) changes in substrate or media 

properties; or (3) favouring the equilibrium toward enzyme release against inhibition 

from their conjugated complex. 

 

Colour degradation of apple juice is mainly due to browning (Nicolas et al., 1994; Pathare 

et al., 2013). Attending to colour parameters studied, all of them could be considered as 



Chapter VI 
 

152 
 

good browning indicators in apple juice since a similar kinetic behaviour was observed 

for all treatments with such colour parameters. The used model was better adjusted for 

∆E with RMSE values 0.10-0.40 units lower compared to BI (Table VI.1). However, 

modelled BI data still reached low values which ensured a good data fit to this model. 

 

VI.3.2. Colour changes after HPP treatments using maltosyl-β-cyclodextrin 

 

Colour changes of apple juice treated with mβCD are presented in Figures VI.1b and 

VI.2b. Data of mβCD-treated samples were also well fitted in the applied model with 

RMSE of 0,15-0,54 (Table VI.1). Colour changes were highly reduced by mβCD 

treatment as observed in Figure VI.4. mβCD-HPP300 showed the lowest colour changes 

while mβCD-HPP600 registered the highest colour differences among mβCD-treated 

samples (Figure VI.1b, VI.2b, VI.4). Contrary to CTRL-HPP300, colour was very well 

preserved in mβCD-HPP300 samples registering the lowest browning. As previously 

commented, HPP600 treatment could lead to higher extractability of phenolic compounds 

being more available for PPO and/or POD enzymes unless previous CD treatment of those 

samples highly formed inclusion complexes with such free phenolic compounds leading 

to the observed low colour changes. The excellent visual quality of mβCD-HPP300 could 

be owed to a low phenolic extraction and consequently better efficiency in the formation 

of inclusion complexes with the available free phenolics compounds. Furthermore, the 

formation of inclusion complexes of mβCD with PPO and/or POD in apple juice has been 

previously modelled according to colour data (López-Nicolás et al., 2007a). β-CD has 

been the most commercially successful of the CD family, while α- and γ-CD have 

considerably smaller markets, although its use in the food industry is limited due to its 

low solubility in aqueous medium (Martina and Cravotto, 2015). The substitution of the 

hydroxyl groups of CD causes dramatic improvements in aqueous solubility and guest 

specificity, particularly in the case of β-CD providing the maltosyl substitution group a 

more intense bonding with better stabilization of the inclusion (Acarturk et al., 1993; 

López-Nicolás et al., 1995; Veiga et al., 2002). Accordingly, (López-Nicolás et al. 

(2007a)) reported lower colour changes with mβCD compared to the unmodified β-CD 

showing 90 mM excellent control of colour changes as it was corroborated in our 

experiments. 
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As hereby observed, HPP treatments may not modify the inclusion complexes formed 

leading to the observed low colour changes in the apple juice. Further research must be 

conducted in order to study the shelf life of the juice which may be much longer under 

low temperature storage. 

  

VI.4. CONCLUSIONS 

 

HPP is a non-thermal technology able to reduce microbial loads under moderate pressures 

although enzymatic browning may be considerably enhanced in apple juice. Colour 

degradation of apple juice treated at low-moderate and high pressure was well modelled 

with a fractional conversion model with RMSE < 1.3. The addition of maltosyl-β-

cyclodextrin (90 mM) highly controlled enzymatic browning in HPP treated (0, 300 and 

600 MPa for 5 min at 22 ºC) apple juice during 1 h at room temperature. Accordingly, the 

addition of maltosyl-β-cyclodextrin to apple juice, prior to a HPP treatment at 300 MPa 

for 5 min at 22 ºC, is presented as an excellent combined treatment for apple juice to 

control enzymatic browning. 
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Table VI.1. Parameter values of the fractional conversion model used to describe the 

enzymatic browning in apple juice after maltosyl-β-cyclodextrin (mβCD) and high 

pressure processing treatments (0, HPP0; 300, HPP300; and 600 MPa, HPP600 for 5 min 

at 22 ºC) during 60 min at 22 ºC. 

 

  ∆E ∆BI 

  k RMSE k RMSE 

CTRL HPP0 0.1361 0.86 0.1125 1.28 

 HPP300 0.0294 1.22 0.0343 1.15 

 HPP600 0.0698 0.75 0.0555 1.00 

      

mβ-CD HPP0 0.0865 0.29 0.0292 0.44 

 HPP300 0.2093 0.15 0.0973 0.38 

 HPP600 0.0587 0.22 0.0480 0.54 
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Figure VI.1. Evolution of total colour differences (∆E) in control (CTRL; A) and 

maltosyl-β-cyclodextrin (mβCD; B) apple juice after high pressure processing treatments 

(0, HPP0; 300, HPP300; and 600 MPa, HPP600 for 5 min at 22 ºC) during 60 min at 22 

ºC. Points represent experimental data (n=3). Lines represent fitted data. 

 

 

 

 

 

Figure VI.2. Evolution of browning index differences (∆BI) in control (CTRL; A) and 

maltosyl-β-cyclodextrin (mβCD; B) apple juice after high pressure processing treatments 

(0, HPP0; 300, HPP300; and 600 MPa, HPP600 for 5 min at 22 ºC) during 60 min at 22 

ºC. Points represent experimental data (n=3). Lines represent fitted data. 
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Figure VI.3. Apple juice treated with different high pressure processing treatments (0, 

HPP0; 300, HPP300; and 600 MPa, HPP600 for 5 min at 22 ºC) after 90 min at 22 ºC. 

 

 

 

Figure VI.4. Apple juice pre-treated with maltosyl-β-cyclodextrin (mβCD) and different 

high pressure processing treatments (0, HPP0; 300, HPP300; and 600 MPa, HPP600 for 

5 min at 22 ºC) after 90 min at 22 ºC. 
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VII.1. INTRODUCTION 

 

Fruit and vegetables have a high content of phytochemicals like polyphenols, vitamins, 

carotenoids, etc. (Sánchez-Moreno, 2002) which have been proved to prevent a grand 

array of diseases, such as degenerative disorders, cancer and cardiovascular diseases 

among others (Slavin and Lloyd, 2012). Nevertheless, fruit and vegetables worldwide 

consumption is below the recommended daily intake (WHO/FAO, 2003). Accordingly, 

fruit and vegetables intake may be enhanced through the development of more attractive 

and ready/easy-to-eat products such as blended beverages. Nevertheless, microbial 

growth and enzymatic/non-enzymatic degradative reactions of fruit and vegetables 

blended beverages are highly enhanced during storage leading to limited shelf life 

(Cheftel, 1995). Blended fruit and vegetables beverage may still have a high plant cell 

viability with consequent physiological behaviour. Furthermore, several processing 

treatments and/or food preservatives of blended beverages are avoided in order to 

preserve their sensory quality. On the other side, fresh-cut fruit and vegetables have 

higher shelf life, compared to untreated related beverages, due to techniques such as MAP 

and edible coatings, among others (Artés et al., 2009). In this sense, the new product 

concept ‘ready-to-blend’ (RB) fruit and vegetables, firstly reported here, may combine 

the ‘long’ shelf life of a fresh-cut product with the convenient consumption of a beverage. 

A RB product may be defined as a fresh-cut (which implies correspondent plant material 

preparation, sanitizing treatments and MAP combined with low storage temperature) 

fruit, vegetable, or a mix of them, which is packaged under specific proportions ready for 

domestic blending.  

 

Chitosan, a deacetylated form of chitin, is a natural product with excellent antimicrobial 

properties and high potential to be used within the edible coatings of fresh-cut products 

to increase their shelf life (Wang et al., 2007). The most feasible hypothesis about the 

antimicrobial activity of chitosan is a change in cell permeability due to interactions 

between the polycationic chitosan and the electronegative charges on the cell surfaces. 

This interaction leads to the leakage of intracellular electrolytes and proteinaceous 

constituents leading to microbial cell death (Devlieghere et al., 2004). Vitamin B12 

deficiency may lead to serious health consequences such as impair the utilization of 

folate, neurological deterioration, megaloblastic anaemia, elevated plasma homocysteine 

and possibly, impaired immune function. It is mainly found in animal products so there 
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is a need to be supplemented in specific populations groups such as vegetarians/vegans, 

elderly, etc. Accordingly, several studies, mainly from industrialized nations, have 

demonstrated the benefits of vitamin B12 supplementation in such susceptible population 

groups through fortified products (Allen et al., 2006; Molina et al., 2012). ‘Fortification’ 

or ‘enrichment’, is the ‘addition of one or more essential nutrients to a food whether or 

not it is normally contained in it, for the purpose of preventing or correcting a 

demonstrated deficiency of one or more nutrients in the population or specific population 

groups’ (Commission, 2015). Hence, a RB product fortified with vitamin B12 may be an 

excellent solution with good microbial and nutritional/bioactive quality which ensures the 

daily vitamin B12 recommended intakes. 

 

The objective of this work was to investigate the effect of a chitosan coating fortified with 

B12 on a RB fruit/vegetable mix stored at 5 ºC on the physicochemical, microbial and 

bioactive quality of beverages prepared on different blending days (BD: 0, 4, 7 and 9 d). 

Moreover, quality changes of such beverages were assayed during a subsequent storage 

at 5 ºC for up to 48 h (beverage sampling times: 0 h, 24 h and 48 h) simulating a domestic 

storage of an eventual beverage leftover from a blending day. Quality parameters of the 

RB fresh-cut fruit/vegetables mix were studied on the prepared beverage in order to 

provide data of the product really ingested by the consumer. 

 

VII.2. MATERIAL AND METHODS 

 

VII.2.1. Plant material, preparation, treatments and storage conditions 

 

Pineapple (Ananas comosus cv. Smooth cayenne), melon (Cucumis melo cv. Piel de sapo) 

and carrots (cvs. group Nantes, cv. Soprano) were obtained from a local supermarket 

(Cartagena, Spain) and stored at 5 ºC and 90–95 % RH until the next day, when they were 

processed. Minimal processing was accomplished in a disinfected cold room at 10 ºC. 

Plant material was previously pre-washed with cold tap water (1 min; 5 ºC). 

Subsequently, pineapples and melons were peeled and the core was removed. Carrots 

were topped. Then, plant material was washed in chlorinated cold water (100 mg L−1; 5 

ºC; pH 6.5; 2 min; 300 g plant material:5 L chlorinated water), rinsed with tap water (1 

min; 5 ºC) and drained in a perforated basket. Sanitized melons and pineapples were cut 

into 2 × 2 × 2 cm cubes while carrots were cut into slices of 8 mm thickness using a 
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manual slicer. The cutting material was previously sharpened and disinfected with 700 g 

L−1 ethanol. Subsequently, plant material was submerged in the following coating 

treatments for 1 min: 

 

• CTRL: acidified water with acetic acid to pH=5.1. Such pH was selected in order 

avoid interferences due to acidic conditions of latter treatments. 

• Chitosan (CH): The CH coating solution contained 10 g L-1 of chitosan (75–85 % 

deacetylated; medium molecular weight), 10 mL L-1 of potato starch, 10 mL L-1 

of glycerol and 5 mL L-1 of acetic acid (Durango et al., 2006). The final pH of CH 

coating treatment was 5.1. 

• Chitosan + vitamin B12 (CH+B12): CH coating solution was enriched with 25 

mg L-1 vitamin B12 supplement powder (cyanocobalamin 1 %; Bulk 

suppkements.com, Henderson, USA). The final pH of CH+B12 coating treatment 

was 5.1. 

 

Coated plant material was subsequently dried under forced air into a cleanroom (5 ºC, 90 

% RH) for 2 h. Then, approximately 50 g of coated pineapple cubes, 100 g of coated 

carrot slices and 50 g of coated melon cubes were weighed into a rectangular basket (170 

mm × 120 mm × 60 mm). Such fresh-cut fruit/vegetable proportions per each RB basket 

were determined based on preliminary informal sensory tests in order to obtain an orange 

fresh blended beverage using 200 mL of water. RB baskets were then thermally sealed 

on the top with a bi-oriented two-layer PP: PE film of 25+25 µm thickness (Plásticos del 

Segura, Murcia, Spain) in order to generate a MAP. O2 transmission rate (TR) and CO2 

TR at 23 ºC and 0 % RH was similar with 500 cm3 m-2 d-1 atm-1 and water vapour TR at 

23 ºC and 85 % RH was 0.5 g m-2 d-1 atm-1 (data provided by the supplier). Baskets were 

stored at 5 ºC (90-95 % RH) in darkness after 0 (BD0), 4 (BD4), 7 (BD7) and 9 d (BD9). 

Five replicates per treatment and BD were prepared. 

Beverages were prepared using all the product contained in a RB basket, with addition of 

200 mL of still mineral water, with a food processor (3.7 L Robot Cook®, Robot Coupe, 

Montceau-en-Bourgogne, France) for 1.5 min at 1,450 × g followed by 0.5 min at 3,260 

× g. Every RB fruit/vegetables basket resulted in three beverage portions of 

approximately 140 mL each. Domestic storage of beverages, prepared at different BD, 

was simulated by introducing every beverage portion (140 mL) in a 150-mL transparent 

glass bottle and stored up to 48 h at 5 ºC in darkness using each of the three prepared 
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beverages for a different beverage sampling time: 0 h, 24 h and 48 h. The experiment 

layout is described in Figure VII.1 for better clarification. 

 

VII.2.2. Respiration rate and gas analysis within modified atmosphere packages 

 

The respiration rate (RR) of each fresh-cut RB fruit/vegetables portion was determined 

using a closed system as previously described (Martínez-Hernández et al., 2011). Three 

replicates per treatment were placed within 750 mL glass jars at 5 ºC up to 9 days. The 

increases in CO2 were monitored after closing the jars for 2 h. Headspace gas samples (1 

mL) were withdrawn from the jars with a gas-tight syringe and analysed in a gas 

chromatograph (GC; PerkinElmer Precisely Clarus 500, Massachusetts, USA). Three 

replicates were made from each jar every evaluation day. 

 

The gas composition (O2 and CO2) within RB packages was also monitored throughout 

storage at 5 ºC. Headspace gas samples (1 mL) were withdrawn and analysed in the GC 

described above from three replicates for each treatment and evaluation period. Three 

replicates per basket were analysed every sampling day prior to beverage preparation. 

 

VII.2.3. Cell viability of prepared beverages 

 

Cell viability in the fresh blended beverage was determined according to the stain 2,3,5-

triphenyltetrazolium chloride (TTC) as previously described (Silva et al., 2012). Briefly, 

600 mg of the beverage was mixed with 18 mL of TTC [prepared at 6 g L-1 in 50 mmol 

L-1 phosphate buffer (pH 7.4)] and allowed to incubate for 24 h at 28 ºC in darkness. 

Subsequently, 42 mL of ethanol 95 % (v/v) were added. Formed formazan was extracted 

by incubating samples at 100ºC for 4 min followed by centrifugation at 6,000 × g for 20 

min at 20 ºC. Absorbance of samples was measured at 490 nm using an UV-visible 

spectrophotometer (Hewlett Packard, model 8453, Columbia, USA). 

 

VII.2.4. Physiochemical quality 

 

Physicochemical quality was determined based on pH, TA, SSC and CIE Lab colour 

parameters determined with the same equipment and methodology described by Castillejo 
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et al. (2016a). Total colour differences (ΔE) throughout storage, compared to their 

respective initial values, were calculated as previously described (Tontul et al., 2016). 

 

VII.2.5. Microbial quality 

 

Epiphytic microflora (mesophilic, psychrophilic, Enterobacteriaceae, lactobacilli (LAB) 

and yeast and mould (Y+M)) growth was determined using standard enumeration 

methods according to Martínez-Hernández et al. (2013a). All microbial counts were 

reported as log colony forming units per gram of product (log CFU g−1). Each of the five 

replicates was analysed in duplicate. The presence of Salmonella spp., L. monocytogenes 

and generic E. coli was monitored according to the European legislation (Regulation EC 

1441/2007, 2007). 

 

VII.2.6. Enzymatic analyses 

 

VII.2.6.1. Polyphenoloxidase and peroxidase 

 

PPO and POD extraction and analysis were conducted according to Rodríguez-Verástegui 

et al. (2015). PPO and POD activities (ΔAmin−1) were estimated by the initial velocity 

method from the linear portion of the curves. One enzyme unit of activity (U) refers to 

the increase in absorbance of 1 min−1. PPO and POD activities were expressed as U g-1 

fw. Each of the five replicates was analysed by duplicate. 

 

VII.2.6.2. Pectin methylesterase 

 

PME extraction and analysis was conducted according to Cameron et al. (1992) with 

modifications. Briefly, a beverage sample of 2 g was homogenized (UltraTurrax®) with 

3.5 mL of cold NaCl buffer (88 g L-1) containing 31.4 g L−1 polyvinylpolypyrrolidone. 

pH of homogenate was adjusted to 7.5 with NaOH. Subsequently, the homogenate was 

filtered (four-layer cheesecloth) and centrifuged at 15,000 × g for 20 min at 4 ºC. The 

supernatant was collected and used as PME extract. PME was analysed by mixing 40 μL 

of enzyme extract with 150 μL of pectin (5 g L-1; pH 7.5) and 15 μL bromothymol blue 

[250 mg L-1 prepared in phosphate buffer 3 mmol L-1 (pH 7,5)] in a PS flat-bottom 96-

well plate. The increase in absorbance at 620 nm at 25 ºC for 20 min with the Multiscan 
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plate reader. PME activity was estimated and expressed as explained for PPO and POD. 

Each of the five replicates was analysed by duplicate. 

 

VII.2.7. Vitamin B12 

 

The vitamin B12 content of beverages was determined with a commercial kit 

(RIDASCREEN®FAST Vitamin B12, R-Biopharm, Darmstadt, Germany). Vitamin B12 

extraction was conducted by homogenization (Ultra Turrax®) for 5 s of 1 mL of beverage 

and 4 mL of phosphate buffered saline buffer (supplied by the kit). Then, samples were 

heated at 100 ºC in a water bath for 3 min and immediately cooled to room temperature 

with an ice-water bath. Subsequently, samples were centrifuged (4,000 × g for 10 min at 

15 ºC). Ascorbic acid was removed from the supernatant using an ascorbate oxidase 

spatula (Roche Diagnostics GmbH, Mannheim, Germany) in order to avoid interferences 

with the kit. Finally, latter supernatant was used as vitamin B12 extract and analysis was 

conducted according to the commercial kit protocol. The results were expressed as µg 

kg−1 fw. Each of the five replicates was analysed by duplicate. 

 

VII.2.8. Total phenolic content and antioxidant capacity 

 

Extraction to determine TPC and TAC was conducted according to Rodríguez-Verástegui 

et al. (2015) but with slight modifications. Briefly, a beverage samples of 2 g was 

homogenized (UltraTurrax®) in 8 mL methanol. Subsequently, supernatant from 

centrifuged extract (13,500 × g, 20 min, 4 ºC) was collected and used as TPC and TAC 

extract. TPC and TAC were determined as previously described (Martínez-Hernández et 

al., 2013a). TPC was expressed as chlorogenic acid equivalents (ChAE) in mg kg−1 fw. 

TAC was expressed as mg Trolox kg-1 fw. Each of the five replicates was analysed in 

duplicate. 

 

VII.2.9. Statistical Analysis 

 

The experiment was a two-factor (treatment × storage time) design subjected to analysis 

of variance (ANOVA) using Statgraphics Plus software (vs. 5.1, Statpoint Technologies 

Inc., Warrenton, USA). Statistical significance was assessed at the level p = 0.05, and 

Tukey’s multiple range test was used to separate means. 
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VII.3. Results and discussion 

 

VII.3.1. Respiration rate 

 

The RB fruit/vegetable mix unit showed an initial RR of 43.9-61.5 nmol CO2 kg-1 s-1 

(Figure VII.2). There were no significant (p < 0.05) RR differences among treatments 

throughout cold storage. RR of samples increased through storage registering a first great 

RR increment on day 3 although the maximum RR values were observed on day 6 with 

levels of 389.4-465.3 nmol CO2 kg-1 s-1. After latter respiration maximum, RR decreased 

to similar levels registered on days 1-2. Increased respiration after some storage period in 

non-climacteric tissues may be caused by the onset of decay by microorganisms. 

Furthermore, wounding during minimal processing of fresh-cut products induces elevated 

C2H4 production rates that may stimulate respiration and consequently accelerate 

deterioration and senescence in vegetative tissues (Fonseca et al., 2002). The observed 

RR behaviour is in accordance to microbial growth monitored after 4-7 days of storage, 

as shown later, and the delayed, due to the low storage temperature, wounding-induced 

abiotic response of the plant tissue. Such maximum RR is also in accordance to the 

reduction trend of SSC and TA, directly related to carbohydrates and organic acids 

consumption respectively, during aerobic respiration as observed in samples on day 7 (see 

microbial data). This RR behaviour has been reported in other non-climateric fresh-cut 

fruit and vegetables as widely reported and reviewed (Fonseca et al., 2002). 

 

Although no significant (p < 0.05) RR differences were found between coated and 

uncoated samples throughout storage, a lower RR trend was observed in uncoated 

samples compared to coated ones. Edible coatings are used as a protective barrier to 

reduce RR which is attributed to a modification of the internal gas atmosphere of the fruit 

and vegetables surface. In this sense, chitosan coating is likely to modify the internal gas 

atmosphere of the plant product without observed anaerobic respiration since chitosan 

coatings are more selectively permeable to O2 than to CO2 (Bai et al., 1988). Accordingly, 

RR reductions have been observed in fresh-cut products coated with chitosan 

(Hernández-Muñoz et al., 2008; Kittur et al., 2001; Valenzuela et al., 2015). 
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VII.3.2. Modified atmosphere  

 

The gas composition within the RB fruit/vegetable mix portion during the passive MAP 

generation is shown in Figure VII.3. According to RR data, no significant (p < 0.05) gas 

partial pressure differences among coated or uncoated samples were observed throughout 

storage. As expected, CO2 partial pressures increased and O2 decreased throughout 

passive MAP generation starting to reach the equilibrium state from days 4-5 until the 

end of storage with O2/CO2 ranges of 3-5/13-17 kPa. Latter gas equilibrium is in 

accordance to the recommended gas partial pressures in MAP of fresh-cut carrot, 

pineapple and melon, combined with low storage temperature and high RH, to extend 

their shelf lives (Cantwell and Suslow, 2002b). 

 

VII.3.3. Cell viability of fresh blended beverages prepared from fresh-cut samples 

 

Tetrazolium salts such as TTC are well-known compounds with high redox potentials 

which can be inserted into the mitochondrial respiratory chain and are often reduced to 

deeply coloured formazans. In this sense, they have been frequently used to determine 

cell viability with the advantage over other methods that the amount of the end product 

(formazan) can be determined spectrophotometrically. Accordingly, TTC method is a 

more objective method when compared to counting individual cells, which are frequently 

difficult to distinguish by microscopic observation, after vital staining (i.e., fluorescein 

3,6-diacetate; FDA). Fresh prepared beverage showed an absorbance of 0.25 at 490 nm. 

According to Silva et al. (2012), TTC absorbance value of 0.25 approximately 

corresponds to 40 % of viable cells. The high viable cell percentage includes such 

beverages in the postharvest physiology area contrary to other fruit/vegetables beverages 

which are supplemented with ingredients/processing coadjutants and are frequently 

treated (thermal or non-thermal treatments) leading to high, or total, reduction of the 

viability of their plant cells. However, further investigations need to be conducted to 

deeply study the changes in the viable cell percentages of the beverages depending of the 

blending mode/device, time and speed, being correlated to other studied physical (particle 

size, viscosity, etc.) and physiological properties (RR, etc.). 
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VII.3.4. Physicochemical quality 

 

The physicochemical quality (SSC, pH and TA) of beverages is presented in Figure VII.4. 

Accordingly, samples had initial SSC, pH and TA of 4.9 %, 4.8 and 0.182 %, respectively, 

on BD0-0h (blending day 0-beverage storage 0 h). Attending to treatments, beverages 

from coated samples showed SSC and TA values of 0.2-0.3 and 0.043-0.067 units lower, 

respectively, and related 0.2 pH units increment compared to beverages from uncoated 

samples on BD0-0h. Chitosan with a partial positive charge has been shown to possess 

acid-binding properties and to be effective in aiding the separation of colloidal and 

dispersed particles from food processing wastes (No et al., 2007). Latter chitosan 

properties may explain the reduced TA and SSC values according to similar observations 

reported in chitosan-treated carrot and apple juice (Imeri and Knorr, 1988). In general, no 

significant (p < 0.05) differences on CIE Lab colour parameters were observed between 

beverages from uncoated or coated RB samples on BD0-0h with initial values of 

luminosity (L*)=41.6-42.3, redness (a*)=14.1-14.9 and yellowness (b*)=31.3-33.7. The 

vitamin B12 fortification of CH+B12 treatment did not significantly (p < 0.05) affect the 

physicochemical parameters of DB0-0h samples regarding CH coating. Similarly, 

chitosan (89.9 % deacylation) coatings enriched with higher quantities of vitamin E (2 g 

L-1) did not induce initial pH and TA changes on strawberries (Han et al., 2004). 

 

Attending to physicochemical differences between blending days, no high SSC and pH 

variations were observed after 9 d of storage (Figure VII.4). Colour differences of samples 

increased according to storage time (Table VII.1). Hence, BD4-0h, BD7-0h and BD9-0h 

samples showed ΔE mean values of 1.3, 6.3 and 11.0, respectively, compared to their 

respective values on BD0-0h. Latter colour differences throughout storage were mainly 

due to b* and L* increases ranging from 4 to 9 ΔE increment units after 9 days. Similar 

changes have been previously reported in fresh-cut pineapples, carrots and melons 

(Martínez-Hernández et al., 2016a; Montero-Calderón et al., 2008; Saftner et al., 2003). 

No significant (p < 0.05) colour differences between treatments were observed on BD4-

0h, BD4-0h and BD7-0h samples. However, CH beverages showed slightly higher L* and 

b* values after 48 h compared to CTRL and CH+B12 samples which were similar (p < 

0.05) among them. Similar colour protecting effects, related to lower water losses with 

chitosan coatings, have been observed in several fruits as previously reviewed (No et al., 

2007). However, such colour protecting effect was not observed in CH+B12 samples 
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probably since negatively charged vitamins added into the chitosan coating solutions 

might absorb, to some extent, chitosan molecules (Koide, 1998), thus reducing the colour 

stabilization ability of this coating (Han et al., 2004). Attending to TA, the reduction of 

0.087 units observed in CTRL samples after 9 days was approximately 2-fold reduced in 

coated samples with no influence of vitamin B12 fortification. Similarly, Hernández-

Muñoz et al. (2008) reported lower TA reductions in strawberries coated with chitosan 

(high molecular weight) compared to uncoated samples owed to a greater water loss by 

uncoated samples since TA is given as a percentage of citric acid per sample wet weight. 

 

The physicochemical quality of beverages was not highly changed during subsequent 

storage up to 48 h at 5 ºC. Accordingly, SSC was not significantly (p < 0.05) changed 

after 48 h of storage for any of the beverages prepared from the RB samples stored up to 

9 days. Similarly, pH changes lower than 0.25 units were observed for all beverages after 

48 h. In general, TA was only slightly (< 0.012 units) changed after 48 h in all beverages 

prepared from 9 d-RB samples. TA of beverages prepared from 9 d-samples remained 

unchanged after 24 h, although it increased by 0.058 units after 48 h. The TA increase of 

latter samples is in accord to microbial growth observed in those samples after 9 days (as 

shown later). Colour of beverages prepared from 0-7 d RB samples showed low colour 

changes after 48 h with ΔE < 6.0. However, and comparing to last samples, colour 

changes after 48 h in beverages prepared from 9 d-RB samples were doubled (ΔE = 12.0-

16.3) without high differences among treatments. Latter colour changes were mainly due 

to L* and b* reductions (5-10 and 8-10 lower units) after 48 h, respectively, in accordance 

to high PPO and POD activities observed in those samples (as shown later). 

 

Conclusively, coating treatments did not highly affect the physicochemical quality of 

prepared beverages. Furthermore, low physicochemical differences between 0 h-samples 

were observed as well as during subsequent 48 h storage. 

 

VII.3.5. Microbial quality 

 

Microbial quality (psychrophiles, mesophiles, Enterobacteriaceae, LAB, Y+M) of 

samples is shown in Figure VII.5 and Supplementary material VII.1. Psychrophilic 

(Figure VII.5A) and mesophilic (Supplementary material VII.1) initial loads of BD0-0h 

samples were below the detection limit (1 log CFU g-1). It could be explained by the high 
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NaOCl effectiveness to reduce the initial loads of these microbial groups. LAB (Figure 

VII.5B), Enterobacteriaceae (Figure VII.5C) and Y+M (Figure VII.5D) counts of BD0-

0h samples were 2.0, 2.6 and 2.9 log CFU g-1, respectively. CH treatment greatly reduced 

Enterobacteriaceae loads of B0-0h CTRL samples by > 1.6 log units (counts below the 

detection limit). Nevertheless, LAB counts were only decreased by 0.3 log units while 

Y+M loads remained unchanged (p < 0.05) after CH treatment. The higher antimicrobial 

activity of chitosan against Enterobacteriaceae may be found in the gram-negative nature 

of this microbial group compared to LAB, gram-negative bacteria. Accordingly, the 

leakage of intracellular microbial material after chitosan treatment in gram-negative was 

found superior to that reported in gram-positive bacteria (Chung and Chen, 2008; 

Helander et al., 2001). Similarly, LAB were less susceptible to chitosan while gram-

negative bacteria, including Enterobacteriaceae, were more susceptible to this natural 

antimicrobial compound (Devlieghere et al., 2004). 

 

Attending to microbial counts of samples at different blending days, a similar behaviour 

was generally observed for all microbial groups. Hence, microbial loads of 0 h-samples 

were not greatly changed for the first 7 days storage with < 0.7 log units increments. 

Furthermore, psychrophilic and mesophilic loads on days 4 and 7 were similar to the rest 

of microbial groups apart from their initial low levels. A general high microbial growth 

of 2.2-3.6, 1.5-2.3 and 0.3-1.2 log units for mesophilic/psychrophilic/LAB, 

Enterobacteriaceae and Y+M, respectively, was registered from day 7 to day 9. Higher 

microbial loads were registered in CTRL compared to CH and CH+B12 samples at day 

9. Accordingly, CH and CH+B12 samples showed 0.5-1.2 log units lower microbial 

increments from day 7 to day 9 compared to uncoated samples. 

 

As expected, microbial loads of prepared beverages at different blending days increased 

during subsequent storage up to 48 h. However, microbial levels of samples were below 

6 log CFU g-1 after 48 h, even in beverages prepared from 9 d-RB samples, except for 

mesophilic, psychrophilic and LAB counts of CTRL samples. In general, CH and 

CH+B12 beverages showed lower microbial counts compared to CTRL samples after 48 

h. 

 

Conclusively, CH coating of RB fruit/vegetable mix led to lower microbial growth of 

prepared beverages during their subsequent storage up to 48 h. Accordingly, beverages 
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prepared from chitosan-coated samples showed psychrophilic/LAB and 

Enterobacteriaceae/Y+M loads below 6 and 5 log CFU g-1 after 48 h. 

 

VII.3.6. Enzymatic activity 

 

Initial PPO and POD activities of BD0-0h CTRL samples were 0.15 and 3.10 U g-1, 

respectively (Figures VII.6A and VII.6B), showing CH/CH+B12 beverages 

approximately 2-fold higher (p < 0.05) PPO/POD activities. The higher PPO/POD 

activity in chitosan-containing samples could be probably owed to a better enzymatic 

extraction in these samples due to the positive charge of chitosan. However, PPO and 

POD activities of chitosan-containing samples on BD0, BD4 and BD7 were markedly 

reduced while enzymatic activities from CTRL samples were increased. The control of 

enzymatic browning in beverages by chitosan has been also previously described in 

filtered apple and pear juices. Latter effect could be probably attributed to the ability of 

the positively charged polymer to coagulate suspended solids to which PPO and POD are 

bound (Sapers, 1992). PPO/POD activities of all samples were increased from BD7 to 

BD9 without significant (p < 0.05) differences among treatments. A similar PPO activity 

behaviour was observed between all treatments during storage up to 48 h. POD activity 

of CTRL and CH beverages remained unchanged (p < 0.05) during 48 h of storage. 

However, POD activity of CH+B12 samples was highly reduced (30-40 %) after 24 h 

remaining stable for the 24-48 h period. Accordingly, the lower POD activity in CH+B12 

beverages throughout storage could be owed to a hypothetical inhibiting effect of vitamin 

B12 on the POD activity. Latter hypotheses is also in accord to the observed lower colour 

differences in CH+B12 beverages prepared from 9 d-stored RB samples regarding CH 

treatment (Table VII.1). 

 

Initial PME activity of BD0-0h samples was 0.35 U g-1 without significant (p < 0.05) 

differences among treatments (Figure VII.6C). PME activity increased from BD0-0h to 

BD4-0h by 60-80 % followed by a decrease, registering on BD7-0h and BD9-0h PME 

activity values 50-80 % lower compared to BD0-0h. No significant (p < 0.05) differences 

among treatments were found on latter samples. PME activity throughout storage of 

beverages generally increased registering higher increments as the storage time of the RB 

samples did, regardless of the treatment. 
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PPO/POD and PME enzymes are the main quality degrading enzymes affecting to colour 

and firmness, respectively, of plant products limiting their shelf lives. The activities of 

latter enzymes are even enhanced when cell disruption occurs, for example after blending, 

when enzymes come in contact with their respective subtracts. Then, undesirable 

browning products and degradation of firmness-related molecules occurs. The hereby 

applied chitosan coating led to lower activities of those browning-related enzymes during 

storage of the RB fruit/vegetable mix. Furthermore, vitamin B12 fortification enhanced 

latter effect particularly for POD while did not negatively affect to PME or PPO activities. 

 

VII.3.7. Vitamin B12 

 

The vitamin B12 content of CH+B12 samples on BD0 was 8.6 μg kg-1 (data not shown). 

The vitamin B12 increased throughout storage of the CH+B12 RB portions registering 

significant (p < 0.05) increments of 40 and 50 % on BD7-0h and BD9-0h, respectively, 

compared to BD0-0h CH+B12 samples. Latter vitamin B12 increment could be owed to 

a better extraction favoured by the product storage. There were no significant (p < 0.05) 

vitamin B12 changes during the 48 h-storage of beverages for any of the blending times. 

Accordingly, a 200 mL dose of the vitamin B12-beverage may ensure the daily vitamin 

B12 intake of 2.0 μg day-1 recommended by the FAO/WHO (2004). In this sense, this 

particular beverage may be considered a fortified food, which may supplement/cover 

vitamin B12 deficiencies in selected populations groups such as vegetarians/vegans, 

elderly, individuals with disorders of malnutrition, etc. 

 

VII.3.8. Total phenolic content and antioxidant capacity 

 

TPC of BD0-0h samples was 246.9 mg ChAE kg-1 without significant (p < 0.05) 

differences among treatments (Figure VII.7A). In general, no high TPC changes (< 15 %) 

were observed between different blending days. However, BD0-0h CH+B12 samples 

showed an 80 % TPC increment after 9 days regarding their respective TPC levels on 

BD0-0h. A latter TPC increment of 100-110 % was lately observed in BD9-24h 

beverages, while no significant (p < 0.05) TPC changes were registered for the remaining 

samples at 48 h. The phenolic compounds accumulation after wounding stress has been 

related to PAL activation being proposed ATP and reactive oxygen species as signalling 

molecules (Reyes et al., 2007). Accordingly, TPC increments in red vegetables smoothies 
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after 10 days at 5 ºC were well correlated to increments of PAL activity owed to the 

wounding stress occurred during smoothie preparation (Rodríguez-Verástegui et al., 

2015). 

 

TAC of BD0-0h beverages was 180.2 mg ChAE kg-1 without significant (p < 0.05) 

differences among samples (Figure VII.7B). TAC only decreased by approximately 20 % 

after 7 days although a high TAC descend of approximately 90 % was reached on BD9-

0h samples, without significant (p < 0.05) differences among treatments. Latter TAC 

decrease may be correlated to the vitamin C degradation of samples since high TAC-

vitamin C correlations of 75 and 34 % have been reported in melon and pineapple, 

respectively (Guo et al., 2003). TAC of BD0 and BD4 beverages decreased by 10-23 % 

after 48 h. Correspondingly, vitamin C of red vegetable smoothies was decreased by 40 

% after 4 days at 5 ºC (Castillejo et al., 2016b). Such TAC losses after 48 h were even 

aggravated in BD7 samples with a TAC reduction of 40-50%. However, TAC behaviour 

in stored beverages from BD9 RB samples showed a different behaviour. Interestingly, 

TAC of CTRL samples remained unchanged (p < 0.05) after 48 h while TAC levels of 

CH and CH+B12 samples highly increased by approximately 100-140 %, without 

significant (p < 0.05) differences among both coating treatments. Latter TAC increment 

of CH and CH+B12 samples is correlated to TPC enhancements observed in those 

samples. However, unchanged TAC of CTRL samples may be owed to a high vitamin C 

degradation which was somehow reduced with the chitosan coating as previously 

reported (Xiao et al., 2010). 

 

VII.4. CONCLUSIONS 

 

The MAP of the ready-to-blend fruit/vegetable mix, jointly with a chitosan coating, 

greatly maintained the quality of the product up to 9 days at 5 ºC. The beverage prepared 

from the ready-to-blend fruit/vegetable mix showed ≈ 40 % viable cells. The activities of 

the main quality-degradative enzymes in the beverages from the ready-to-blend samples 

were reduced while epiphytic microflora loads were kept below 6 log units. Chitosan 

coating and vitamin B12 fortification did not negatively affect the total phenolic content 

neither the total antioxidant capacity of beverages which were even enhanced after 24 h 

in those beverages prepared from ready-to-blend samples stored for 9 days at 5 ºC. The 

vitamin B12 fortification of the ready-to-blend fruit/vegetable mix ensured the 
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recommended daily vitamin B12 intake in a 200 mL beverage dose, avoiding pills and 

other vitamin B12 supplements in selected populations groups such as 

vegans/vegetarians, elderly, individuals with disorders of malnutrition, etc. 
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Figure VII.1. Flow diagram of the experiment including preparation of the ready-to-

blend fresh-cut portion, beverage preparation and storage conditions. 

 

Drying under forced air into a cleanroom (5 ºC, 90 % RH) for 2 h 

Processing day 4 d at 5ºC 

 

9 d at 5ºC 7 d at 5ºC 

 

Beverage preparation 

Blending day 0: BD0 
(1 basket of ready-to-blend 

fruit/vegetable mix+200 mL water)

Beverage preparation 

Blending day 4: BD4 
 (1 basket of ready-to-blend 

fruit/vegetable mix+200 mL water) 

Beverage preparation 

Blending day 7: BD7 
 (1 basket of ready-to-blend 

fruit/vegetable mix+200 mL water) 

Beverage preparation 

Blending day 9: BD9 
 (1 basket of ready-to-blend 

fruit/vegetable mix+200 mL water) 



Chapter VII 
 

175 
 

 

 

Figure VII.2. Respiration rate of ready-to-blend fresh-cut fruit/vegetable mix stored up 

to 9 days at 5 ºC (n=5±SD). Different capital letter denotes significant differences (p < 

0.05) among different treatments for the same sampling time. Different lowercase letter 

denotes significant differences (p < 0.05) among different sampling times for the same 

treatment. 

 

 

 

 

Figure VII.3. Gas partial pressures of a fresh-cut fruit/vegetable mix stored up to 9 days 

at 5 ºC (n=5±SD). Different capital letter denotes significant differences (p < 0.05) among 

different treatments for the same sampling time. Different lowercase letter denotes 

significant differences (p < 0.05) among different sampling times for the same treatment. 
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Figure VII.4. Soluble solids content (SSC; %), pH and titratable acidity (TA; %) of fresh 

blended beverages, stored up to 48 h at 5 ºC, prepared on different blending days (BD) 

from a fresh-cut fruit/vegetable mix stored up to 9 days at 5 ºC (n=5±SD). Different 

capital letter denotes significant differences (p < 0.05) among different treatments for the 

same sampling time. Different lowercase letter denotes significant differences (p < 0.05) 

among different sampling times for the same treatment. 
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Figure VII.5. Psychrophilic (A), lactobacilli (B), Enterobacteriaceae (C) and yeasts and 

moulds (D) counts of fresh blended beverages, stored up to 48 h at 5 ºC, prepared on 

different blending days (BD) from a fresh-cut fruit/vegetable mix stored up to 9 days at 5 

ºC (n=5±SD). Different capital letter denotes significant differences (p < 0.05) among 

different treatments for the same sampling time. Different lowercase letter denotes 

significant differences (p < 0.05) among different sampling times for the same treatment. 
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Figure VII.6. Polyphenoloxidase (PPO; A), peroxidase (POD; B) and pectin 

methylesterase (PME; C) activities of fresh blended beverages, stored up to 48 h at 5 ºC, 

prepared on different blending days (BD) from a fresh-cut fruit/vegetable mix stored up 

to 9 days at 5 ºC (n=5±SD). Different capital letter denotes significant differences (p < 

0.05) among different treatments for the same sampling time. Different lowercase letter 

denotes significant differences (p < 0.05) among different sampling times for the same 

treatment. 
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Figure VII.7. Total phenolic content (TPC; A) and total antioxidant capacity (TAC; B) 

of fresh blended beverages, stored up to 48 h at 5 ºC, prepared on different blending days 

(BD) from a fresh-cut fruit/vegetable mix stored up to 9 days at 5 ºC (n=5±SD). Different 

capital letter denotes significant differences (p < 0.05) among different treatments for the 

same sampling time. Different lowercase letter denotes significant differences (p < 0.05) 

among different sampling times for the same treatment. 
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Supplementary material VII.1. Mesophilic counts of fresh blended beverages, stored 

up to 48 h at 5 ºC, prepared on different blending days (BD) from a fresh-cut 

fruit/vegetable mix stored up to 9 days at 5 ºC (n=5±SD). Different capital letter denotes 

significant differences (p < 0.05) among different treatments for the same sampling time. 

Different lowercase letter denotes significant differences (p < 0.05) among different 

sampling times for the same treatment. 
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Table VII.1. Total colour differences of fresh blended beverages, stored up to 48 h at 5 

ºC, prepared on different blending days (BD) from a fresh-cut fruit/vegetable mix stored 

up to 9 days at 5 ºC (n=5±SD). Different capital letter denotes significant differences (p 

< 0.05) among different treatments for the same sampling time. Different lowercase letter 

denotes significant differences (p < 0.05) among different sampling times for the same 

treatment. 

 

 CTRL CH CH+B12 

BD0    

0 h - 1.7±0.9 Aa 2.9±0.9 Aa 

24 h 1.0±0.7 Aa 1.3±0.5 Aa 0.9±0.2 Ab 

48 h 1.2±0.7 Aa 1.8±0.7 Aa 1.7±0.1 Ab 

    

BD4    

0 h - 1.8±0.5 Ab 2.5±0.1 Ab 

24 h 1.4±0.6 Ab 1.6±0.4 Ab 2.1±1.5 Ab 

48 h 4.1±1.0 Aa 4.3±0.9 Aa 5.3±1.9 Aa 

    

BD7    

0 h - 2.2±0.8 Ab 1.7±0.8 Ab 

24 h 3.7±1.1 ABa 2.8±1.5 Bb 5.8±1.9 Aa 

48 h 6.0±2.7 Aa 5.8±1.9 Aa 6.0±1.5 Aa 

    

BD9    

0 h - 7.7±1.5 Ab 4.2±1.2 Bc 

24 h 12.0±1.8 Ba 16.3±1.1 Aa 13.4±1.1 Ba 

48 h 9.3±1.1 Ca 14.7±0.4 Aa 10.8±0.6 Bb 
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CONCLUSIONS 

 

Different postharvest abiotic stresses, such as wounding, hyperoxia storage and UV 

radiation were studied in this PhD Thesis to induce the activation of PAL enzyme and 

related antioxidant phenolic contents in carrots. We found increases up to 2,000 % after 

72 h at 15 ºC, being this finding of special interest for the food and pharmaceutical 

industries. Phenolic accumulations up to 500 % were also reached by UV-B irradiated 

samples after 72 h at 15 ºC. Revalorization of Bimi® broccoli by-products (leaves and 

stalks which represent the 75 % of the plant) was also possible by UV irradiation. 

Innovative carrot-based smoothies were developed from such phenolic-enhanced carrots 

being their microbial and physicochemical quality well preserved by mild thermal 

treatment during 14 days at 5 ºC. A non-thermal treatment (HPP) was also studied on 

orange-coloured smoothies leading to an excellent shelf life of such beverages. HPP 

treatments may contrary induce enzymatic browning in determined beverages. 

Accordingly, apple juice was used as a beverage model being the enzymatic browning  

highly controlled by maltosyl-β-cyclodextrin, which was well modelled with a fractional 

conversion model,  being not affected such encapsulation by the HPP treatment. A new 

‘ready-to-blend’ concept was firstly developed in this PhD Thesis by studying the quality 

changes of a fresh-cut ready-to-blend fruit/vegetable mix during storage and the related 

prepared smoothies at different blending times. The shelf life of such ready-to-blend 

product was extended by a chitosan coating and added value was increased to the product 

by fortification with vitamin B12, being of high interest for determined populations 

groups (vegetarians/vegans, elderly, etc.) with special needs of this vitamin. 
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