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Abstract

Gear researchers are always trying to find a trade-off solution between obtaining accurate results
from gear stress analyses and low computational costs. Both factors, accuracy on the one hand,
and a low computational cost on the other hand, usually go in opposite directions. In this paper, a
finite element model for stress analysis of gear drives is proposed with the ultimate goal of obtaining
accurate results regarding contact and bending stresses with lower computational cost than other
finite element models presented in the literature. The proposed finite element model allows the
whole cycle of meshing to be analyzed and is based on the application of multi-point constraints
for mesh refinement and the application of elements with a reduced number of integration points.
Node coordinates are computationally and automatically determined by application of the gear
theory. Several numerical examples are presented.
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1. Introduction

Stress analysis is an important aspect in the design and the analysis of gear drives. The solution
of the stress analysis should provide the actual size of the contact pattern due to the transmitted
load, the contact stresses on the contacting surfaces and underneath the contacting surfaces, the
bending stresses at the fillet of the gear teeth, and the surface deformation for the calculation of
loaded transmission errors.

Many approaches for gear stress analysis have been applied so far. Many of them are based on
the application of the finite element method in which this paper is focused on. First applications of
the finite element method in gears were directed towards the determination of root bending stresses
as in [1] for a two dimension analysis and in [2] for a three dimension analysis. Later, finite element
analyses covered as well the contact problem as in [3] for a two dimension analysis and in [4] for
a three dimension analysis. The analysis of the stress evolution along a whole cycle of meshing
and the automatic determination of the node coordinates were steps forward in the application of
the finite element method to gears [5]. Some improvements of the finite element model to consider
torsional deformation of the gears and the effect of shaft deflections came later [6, 7].
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Some other approaches for stress analysis of gears are based on numerical methods that combine
analytical solutions with finite element analysis. Those methods are in general more computational
effective than those that are based exclusively on the application of the finite element method [8].
Other numerical methods with reduced computational cost are based on the application of shell
theory to gears [9]. Although finite element analysis can be very accurate, in general its main
drawback is the computational cost derived from the amount of finite elements that are required
around the contact area and along the fillet profile. First examples of reduction of the number of
finite elements in the fillet region of the gear teeth by means of transition elements can be found
in [10] for a three dimension problem. Here, transition elements in the contact region for a two
dimension problem were applied as well. Later, a reduction of the number of elements based on
the application of surface-based tie constraints was applied in [11]. The high computational cost of
many finite element models is due mainly to the symmetry of the mesh in both, driving and coast
sides, as the finite element model proposed in [5] and shown in Fig. 1 for the case of a spur gear
drive.

Reference node on the wheel axis of rotation

Reference node on the pinion axis of rotation

Figure 1: Example of a finite element model that requires a high computational cost.

In the characterization of gear materials, several magnitudes regarding strength are managed.
Regarding the contact area, a fatigue strength for Hertzian pressure and a tensile strength can be
considered. Maximum contact pressure and effective Tresca or Von Mises stresses should be taken

2



into account for comparison with those magnitudes previously mentioned, respectively. Regarding
the bending area, a fatigue strength for tooth root stress is usually considered. For such a value,
the maximum principal stress should be taken into account for comparison.

The main goals of this research are summarized as follows and are based on the application of
a finite element model that allows to:

(i) Get accurate results of the maximum value of contact pressure on the contacting surfaces.

(ii) Get accurate results of the maximum value of Tresca or Von Mises effective stress underneath
the contacting surfaces.

(iii) Get accurate results of the maximum principal stress at the fillet of gear teeth.

(iv) Analyze a whole cycle of meshing and obtain results for several contact positions and not
just for one contact position.

(v) Reduce the computational cost respect to existing finite element models.

The proposed finite element model will be validated by means of comparison of the obtained
results with those provided through the application of Hertz theory when it can be applied, or by
means of the observation of convergency of the results through mesh refinement. Several numerical
examples are presented. The proposed ideas are valid for most types of gear geometries, although
worm geometries would require some adjustments. Accuracy of the results and computational cost
are compared to previous finite element models as the one shown in Fig. 1.

2. Finite element model definition

The definition of the proposed finite element model is based upon the following steps:

• Step 1. Point coordinates on the gear tooth surfaces, either for profile or fillet regions, are
determined analytically considering the gear type, its generating tool and the cutting method
through the application of the gear theory [12]. These coordinates and the coordinates of
some points defined on the gear rim are considered to design the gear tooth volume. Fig. 2(a)
shows the points that are considered to form the designed volume of one gear tooth.

• Step 2. The designed gear tooth volume is divided considering six intermediate auxiliary
surfaces as it is illustrated in Fig. 2(b). A total of eight layers of elements will therefore
be considered in the mesh of the designed gear tooth volume. Layers can be managed
independently from each other as it will be shown later.

• Step 3. Nodes on the gear tooth surfaces, on the gear rim, and inside the designed volume,
are automatically determined (see Fig. 2(c)) from the previous defined point coordinates,
following the arrangement of layers shown in Fig. 2(b) and according to a strategy for mesh
refinement based on multi-point constraints that will be exposed later. A reduced number of
nodes are illustrated here for the purpose of clarity.

• Step 4. Linear elements are formed from the previously defined nodes and following the
connectivity that is shown in Fig. 2(d).
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Figure 2: For finite element model definition: (a) points, (b) imaginary layers and intermediate surfaces, (c) nodes,
and (d) finite elements.

• Step 5. Nodes defined on both sides and the bottom part of the gear rim constitute a rigid
surface that is rigidly connected to a reference node defined in the gear axis as it is illustrated
in Fig. 3. A torque is applied at such a reference node in the pinion model whereas the
reference node of the wheel model is held at rest.

• Step 6. Some contact positions are analyzed through consideration of several load steps. At
each load step, the reference node defined in the wheel axis of rotation is rotated an angle
provided by the tooth contact analysis of the gear drive and then held at rest, while the same
torque is kept applied to the pinion reference node during the whole analysis.

2.1. Multi-point constraints

A strategy for mesh refinement based on the application of multi-point constraints has been
applied across the whole model. Such a strategy allows either refinement from two elements to one
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axis of rotation
reference node

rigid surface

rigid surface

gear rim

Figure 3: For definition of the rigid surface.

element or refinement from four elements to one element. Figure 4 shows the nodes involved in the
connection between some elements that belong to layer 1 and layer 2 (see Fig. 2). In this case, a
refinement from four elements in layer 2 to one element in layer 1 is presented.

Mesh transitions require application of constraints at the degrees of freedom of some nodes,
called dependent nodes, as linear functions of the degrees of freedom of some other nodes, called
independent nodes, in order to assure the continuity in the field of displacements. Figure 4 shows
nodes n2, n4, n5, n6, and n8, as dependent nodes, and nodes n1, n3, n7, and n9, as independent

nodes. A degree of freedom dof of a dependent node can be defined as follows.

dofn2
= f2(dofn1

, dofn3
)

dofn4
= f4(dofn1

, dofn7
)

dofn5
= f5(dofn1

, dofn3
, dofn7

, dofn9
) (1)

dofn6
= f6(dofn3

, dofn9
)

dofn8
= f8(dofn7

, dofn9
)

Here, f2, f4, f5, f6 and f8 are linear interpolation functions of the elements and are given by a
general purpose computer program for stress analysis based on the finite element method [13]. A
similar procedure is applied across the whole model. Those nodes that belong to either both sides
of the rim or the bottom part of the rim and are considered dependent, are not used to define the
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Figure 4: For illustration of multi-point constraints.

rigid surface shown in Fig. 3. Only independent nodes can be part of the rigid surface.

2.2. Types of element formulations

The finite element model is defined through linear elements of eight nodes. This type of element
shows a better behavior in the determination of contact pressures respect to quadratic elements [13].
The arrangement of nodes and elements through eight layers (see Fig. 2) allows an independent
selection of elements with different formulations for each layer. In this way, whereas layers 5 and
6, which are closer to the areas of interest in the gear stress analysis, can be defined by means of
linear elements with the complete number of integration points (a total of eight integration points
for each element), the other layers can be defined by means of linear elements with a reduced
number of integrations points (one integration point for each element). Whereas elements with the
complete number of integration points allow a better accuracy of the results, the elements with a
reduced number of integration points allow the computational cost to be decreased since stresses
are evaluated at just one point. The drawback of reduced-integration elements is that they may
behave more stiffly. This circumstance will be discussed in Section 3. Figure 5 shows a possible
strategy for the arrangement of element formulations in the finite element model.

2.3. Arrangement for mesh refinement and connection of several teeth

The mesh of the model is arranged through a strategy for refinement either across the transverse
sections of the gear teeth or along the axis of the gear. Figure 6 shows the transverse sections of two
gear teeth in the finite element model for illustration of this arrangement. A number of elements
in the active profile np and a number of elements in the fillet nf are defined. These numbers
of elements appear on layers 5 and 6 (see Fig. 2). As the mesh is spread across the transverse
sections of the gear teeth, the number of elements are reduced by considering a multiplication
factor of 1/2 from layer to layer. Simultaneously, if a number of elements in longitudinal (along
gear axis) direction nl is defined for layers 5 and 6, the number of elements in longitudinal direction
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Figure 5: Arrangement for different formulations of the linear elements.

is reduced considering also a multiplication factor of 1/2 from layer to layer. Since four reductions
of elements are applied across the transverse section, the variables np and nl, that can be defined
independently, are given as follows

np = {1 · 24, 2 · 24, 3 · 24, 4 · 24, 5 · 24, ...} = {16, 32, 48, 64, 80, ...}

nl = {1 · 24, 2 · 24, 3 · 24, 4 · 24, 5 · 24, ...} = {16, 32, 48, 64, 80, ...}

whereas for nf two possibilities have been considered: nf = {8, 16}.
Regarding the connection between the teeth, layer 8 of a given tooth is connected with layers

5 and 6 of the following tooth. A transition in the number of elements in longitudinal direction is
required either on the fillet of layer 8 of the given tooth or the fillet of layers 5 and 6 of the following
tooth to make the connection possible. Layer 7 of the given tooth is also connected with layers 3
and 4 of the following tooth. Layers 1 and 2 of adjacent teeth are also connected. Distances a, b,
c, and d have to be defined with the same values at both sides of the gear teeth for the connection
of several teeth. Some nodes on the left side of the rim of the following tooth needs to be removed
since they are already present in the given tooth. Rigid surface is also adjusted when several teeth
are included into the model.

2.4. Different models for both rotations

Whereas the model shown in Fig. 1 allows for the analysis of stresses considering both rotations,
counterclockwise and clockwise, and can be useful to detect contacts on the coast side due to a loss
of backlash, the model proposed in this paper can only be applied for one direction of rotation.
This means that a different finite element model is required for the analysis of stresses when the
pinion rotates counterclockwise or when the pinion rotates clockwise. Figure 7 shows two models
of a right-hand helical pinion for both rotation directions.
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Figure 6: Arrangement for elements across the gear tooth sections and along the gear axis.

3. Numerical examples

The goals of this section are as follows:

(1) To prove the correctness of the results yielded by the proposed finite element model in terms
of maximum contact pressure, maximum effective Tresca or Von Mises stress underneath the
contacting surfaces, and maximum principal stress on the fillet area, all along the whole cycle
of meshing.

(2) Comparison of the computational cost between the proposed model and the previous model
shown in Fig. 1.

(3) Investigate the effects of multi-point constraints and reduced-integration elements in the
accuracy of the results and computational cost.

(4) Investigate the effects of the thickness of layers 5 and 6 (see Fig. 2) in the results.

The contents of this section are:

(i) Validation of the proposed model with Hertz theory.

(ii) Comparison of the proposed model and the previous model.

(iii) Validation of the proposed model regarding bending stresses.
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Figure 7: Finite element models of a right-hand helical pinion when it rotates: (a) counterclockwise, and (b) clockwise.

3.1. Validation of the proposed model with Hertz theory

An approach based on Hertz theory was implemented in [14] for stress analysis of gear drives
with double crowned gear tooth surfaces and a localized bearing contact. The same numerical
example is considered here and summarized in Table 1 for comparison of the obtained results with
those provided by the proposed finite element model.

A finite element model of five pairs of teeth is considered (see Fig. 8). The use of five pairs
of teeth allows the boundary constraints provided by the rigid surfaces of the pinion and the gear
models to be far enough from the contact areas. The number of elements at contact and fillet
regions are (see subsection 2.3) nl = 64, np = 64 and nf = 16. A total of 118240 elements with
174644 nodes are considered. A contact interaction based on master gear tooth surfaces with
slave pinion gear tooth surfaces is considered [13]. Several analyses considering different values of
the thickness coefficient ct of the two contacting layers (see Fig. 8) have been considered (0.05,
0.075, 0.1, 0.125, 0.15, 0.175, and 0.2). Initially, the analyses are carried out at just the mean
contact position where the Hertz results are provided. Figure 9 shows the results corresponding to
the maximum contact pressure po, contact area Ac, and maximum Tresca stress (with an average
threshold [13] of 75%) σT,o , for the different analyses. Different strategies to consider reduced
integration elements are illustrated as well: (1) with no reduced-integration elements, (2) with
reduced-integration elements at layers 1, 2, 3, 7, and 8, and (3) with reduced-integration elements
at layers 1, 2, 3, 4, 7, and 8.

A minimum for the maximum contact pressure po is observed for a given thickness coefficient
at each applied strategy. The relative error ε respect to Hertz results is illustrated as well for the
thickness coefficient where contact pressure is minimum. Although it is shown that the relative
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Table 1: Data of a spur gear drive and Hertz results.

Number of teeth of the pinion, N1 21
Number of teeth of the gear, N2 50
Module, m [mm] 4.0
Pressure angle, α [degrees] 25.0
Face width, F [mm] 40.0
Parabola coefficient for profile crowning , ap [mm−1] 0.00025
Parabola vertex location for profile crowning , uo [mm] 0.0
Parabola coefficient for longitudinal crowning, design C (see [14]) , al [mm−1] 0.0004
Parabola vertex location for longitudinal crowning , lo [mm] 0.0
Applied torque, T [Nm] 200.0
Young’s module, E [MPa] 206800.0
Poisson’s ratio, ν 0.29
Maximum contact pressure at the mean contact position, po [MPa] 1241.2
Maximum effective Tresca stress at the mean contact position, σT,o [MPa] 761.5
Semi-length of the major axis of the contact ellipse, a [mm] 7.514
Semi-length of the minor axis of the contact ellipse, b [mm] 0.268
Contact area, Ac [mm2] 6.322

error for the maximum contact pressure in strategy (2) is lower than in strategy (1), this fact is just
circumstantial. Actually, contact areas Ac are much further from Hertz results for strategies (2)
and (3) than for strategy (1). The evaluation is that reduced-integration elements are stiffer, so the
contact stresses and contact pressures are much lower as larger is the number of reduced-integration
elements in the model.

On the other hand, it is observed a good approximation to the maximum contact pressure in
any of the considered strategies, although the values of contact areas and maximum Tresca stresses
are far from the results provided by Hertz theory. In fact, a larger number of elements underneath
the contacting surfaces and along a depth equal to the length of the semi-minor axis b would be
required to improve these results, as it is illustrated in [14]. The problem of the finite element
model presented in [14] is that it is not operative as the mesh would need to be adjusted for each
contact position as well as it would have a very high computational cost.

3.2. Comparison of the proposed model and the previous model

A model as the one shown in Fig. 1 is considered here for comparison with the proposed model.
Details and features of this model can be found in [12].

Figure 10(a) shows the evolution of the maximum contact pressure po along two cycles of
meshing distributed along twenty one contact positions. The contact positions are obtained from
application of a Tooth Contact Analysis (TCA) algorithm [15] wherein three pairs of contacting
teeth are taken into account. Results of TCA algorithm are illustrated in Figures 10(c) and 10(d).
Two configurations of the proposed finite element model (as the one shown in Fig. 8) are considered
in the results shown in Fig. 10(a), with np = 64 and np = 48, respectively, keeping nl = 64
and nf = 16 for both configurations. Completed integration elements are considered here. The
computation time for both analyses along the two cycles of meshing are represented as well. Results
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Reference node on the wheel axis of rotation

Reference node on the pinion axis of rotation
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Figure 8: Finite element model for comparison of stresses with Hertz results and illustration of coefficient ct.

provided by the model with np = 48 show a good agreement with those obtained using the model
with np = 64. A reduction in computational time is observed as well.

Figure 10(b) shows the evolution of po obtained from the proposed model with nl = 64, np = 48,
and nf = 16 and from the previous model (as the one shown in Fig. 1) with the same number
of nodes in the contacting surfaces. The depth of the contacting layer of the previous model has
been modified and now is constant and equal to the depth of the contacting layer of elements of
the proposed model. The proposed model has 94360 elements with 139894 nodes. The previous
model (for the same number of nodes on the contacting surfaces as the proposed model) has 286720
elements with 345932 nodes. Results of the evolution of po along the two cycles of meshing show
a good agreement between both models. The maximum relative error is ε = 4.3%. However, the
computational time is much lower for the proposed model than that for the previous model. The
illustrated computational time is for two cycles of meshing and twenty one contact positions.

Finite element models with reduced integration elements (considering strategies (2) and (3) as it
is illustrated in Fig. 9) were also investigated considering two cycles of meshing. They give similar
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strategies for arrangement of reduced-integration elements: maximum contact pressure po (up-left), contact area Ac

(up-rigth), and maximum Tresca stress (down-left).

results regarding po evolution to the model with complete integration elements, but reduction of
time is not significant. The computational time is 21.4 minutes for strategy (2) and 20.7 minutes
for strategy (3) versus the 21.5 minutes of strategy (1) with complete integration elements.

3.3. Validation of the proposed model regarding bending stresses

The validation of the proposed model in regard to bending stresses is executed in two stages. In
the first stage, the previous model similar to the one shown in Fig. 1 is considered. Nine analyses
are executed at the mean contact position considering different mesh sizes at the fillet region in
order to observe if results converge. In the second stage, the proposed and the previous models
are compared considering two cycles of meshing in order to test the proposed model in regard to
bending stresses.
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Figure 10: For comparison of proposed model and previous model: evolution of maximum contact pressure po along
two cycles of meshing at the middle pair of contacting teeth for (a) the proposed model with different configurations,
and (b), the proposed model and the previous model; (c) function of transmission errors (TE) along pinion rotation
φ1, and (d) formation of the bearing contact obtained from TCA algorithm.

The maximum principal stress at the fillet region of the middle tooth, σ1o, is investigated.
Finite element models similar to the one shown in Fig. 1 with nl = 64 and np = 48 are built. At
each model, nf takes one of these values nf = {2, 4, 6, 8, 10, 12, 14, 16, 18} to build the nine finite
element models. Figure 11(a) shows the values of σ1o at the different models. Convergency of the
results is observed. Relative errors for nf = 8 and nf = 16 are illustrated considering as a reference
the value obtained for nf = 18.

In the second stage, the previous model with nf = 16 is considered as a reference to test the
proposed model. Two cycles of meshing are considered. Figure 11(b) shows the evolution of σ1o
along the two cycles of meshing (see Fig. 10(c)). Here, the proposed model is built with complete
integration elements. Two configurations are considered, with nf = {8, 16}. The maximum relative
error occurs at contact position 12. A more rigid behaviour of the proposed model explains the
low values of bending stresses respect to those that are obtained using the previous model. Similar
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results are observed for the wheel in Fig. 11(c).
Figure 11(d) shows the differences in the field of maximum principal stresses at the fillet of the

middle tooth for the previous and the proposed models. The area of transition that was designed
for the fillets of the proposed model (see Fig. 6) alters the field of stresses, although the maximum
value has a relative error about 12.0%.
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Figure 11: For validation of the proposed model regarding bending stresses: (a) maximum principal stress σ1o at the
fillet of the middle tooth of the pinion for different configurations of the previous model (contact at mean contact
position), (b) comparison of the evolution of σ1o at the pinion along the cycle of meshing, (c) comparison of the
evolution of σ1o at the wheel along the cycle of meshing, and (d) comparison of the field of σ1o at the mean contact
position.

4. Conclusions

The performed research allows the following conclusions to be drawn:

(1) A new finite element model based on the application of multi-point constraints and reduced-
integrated elements has been proposed. It allows for a considerable reduction of the compu-
tational cost in the analysis of the whole cycle of meshing, mainly due to the reduction of
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the number of nodes and elements provided by the multi-point constraints rather than by
the use of reduced-integration elements.

(2) The proposed finite element model can provide accurate results of maximum contact pres-
sure as previous finite element models do, but with a lower computational cost. However,
maximum effective Tresca stress (and for the same reason, maximum effective Von Mises
stress) is not captured neither by the proposed model nor the existing model. More elements
underneath the contacting surfaces would be required as it is illustrated in [14].

(3) A more rigid behaviour of the teeth in the proposed model provides lower values of bending
stresses along the whole cycle of meshing, with relative errors about 10%, respect to the
results provided by the previous model.
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