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Abstract 

Conventional wastewater treatment plants (WWTP) are necessary to modify the 
wastewater properties in order to turn it acceptable for a safe discharge into the 
environment or a certain reuse purpose. Biological oxidation is the most 
important of the processes involved in conventional WWTP. Organic substances 
dissolved in the water are removed by means of bacteria presented in the 
biological reactor. Air is necessary to enable the reduction of the organic content 
of the water by the bacteria. Bubbles of air are introduced into the reactor 
through air diffusers.  Air diffusers can account up to 70% of WWTP total 
energy consumption. 

So a deep understanding of the dynamic behaviour of the flow is necessary for 
optimizing the process and saving energy. 

A numerical analysis of the effects of the aeration in the fluid dynamics 
behaviour of a real multi‐zone activated sludge reactor is carried out. The 
purpose is to identify and analyse the changes originated in the velocity field by 
the aeration. 

A numerical modelling of the activated sludge system located in San Pedro del 
Pinatar (Murcia, Spain) is developed throughout a general-purpose CFD code. 
The multiphase flow is simulated with an Euler‐Lagrange approach; modelling 
the bubbles as discrete phase. Two simulations, one with aeration and the other 



without it, are carried out. The numerical results show that the aeration has a 
notable effect in the performance of the reactor. Changes in velocity field, 
stagnant zones, residence time distribution or even free surface level originated 
by the aeration in the reactor are studied. In general, the aeration reduced the 
amount of stagnant volume in the reactor. However, when the aeration is 
activated, some re‐circulating zones are formed, reducing the residence time in 
the reactor. 
Keywords:  Air bubbles-water interaction, Activated Sludge System, Wastewater 
Treatment Plant, Numerical modelling. 

1 Introduction 

Nowadays, people are more concerned about environment. The concept 
Sustainable Development is taken into account by governments and companies, 
which make a considerable economical effort to carry out the restrictive 
environmental laws. In this context, it is clear the necessity of treating city 
wastewater (sewage) before discharging it into the environment, or even treating 
it for other purposes such as irrigation. The sewage treatment is carried out in 
Waste Water Treatment Plants (WWTPs). Conventional WWTPs includes 
physical, chemical and biological processes to remove physical, chemical and 
biological contaminants. Biological oxidation is one of the most important 
processes involved in the treatment. Bacteria and other microorganisms 
(biological floc) remove organic substances dissolved in the water. The 
combination of wastewater and biological floc is called mixed liquor. Oxygen is 
necessary to enable the oxidation of the organic content of the sewage, air 
bubbles need to be added to the mix. Activated sludge plants are widely used to 
hold this biological process.  

Activated sludge plants can account for up to 70% of total energy consumption 
of a WWTP, due mainly to the aeration process through the air diffusers [1]. So 
it is necessary a knowledge of the fluid dynamic phenomena which occur in the 
plant. This knowledge allows us to optimize the processes, saving energy and 
guaranteeing an efficient treatment. A numerical modeling of a real multi-zone 
activated sludge plant is carried out in this work. In addition to the air diffusers, 
the plant has mixers impellers to improve the mixed process. Computational 
Fluid Dynamics (CFD) has been widely used for simulating activated sludge 
systems. Bubble column have been numerically investigated either with Euler-
Euler approach [2], [3] or with Euler-Lagrange approach [4]. Euler-Lagrange 
approach tents to have higher computational cost: however it allows us to study 
the trajectory of each individual bubble. Regarding the turbulence model, 
different turbulence model have been studied: Le Moullec [5] analyzed two 
different turbulence models for an activated sludge system; he concluded that 
Reynolds Stress Model (RSM) gave more accurate residence time distribution 
(RTD) than the ݇ െ -model. Despite this, most of the works [6] use the well ߝ
known ݇ െ  model. In the work of Yang et al. [7] a numerical modelling of a ߝ
full scale oxidation ditch is carried out, simulating the mixer impellers as plane 



regions with a pressure jump between both sides of the planes. 

Using the above mentioned bibliography, this work analyzes the effects of the air 
bubbles on the fluid dynamic behavior of a real multi zone activated sludge 
plant. The peculiarity of this plant is the complexity of the configuration: it has 
four zones, two of them with air diffusers on the ground and the other two 
without them. The zones are separated by partition walls, which have two holes 
in its inferior parts. It is interesting to study how the air bubbles modify the flow 
through the holes. The plant also has two mixer impellers in each zone, adding 
other fluid dynamic phenomenon to the aeration. 

The aim of this work is to study the influence of the air bubbles in the fluid 
dynamic behavior of the plant. Two simulations are carried out, one with 
aeration and other without aeration. The hydraulic performance of the reactor is 
evaluated in terms of stagnant volume (percentage of liquid with low velocity). 
Other aspects like the influence of the aeration in the free surface level are 
mentioned. The results obtained provide useful information for the improvement 
of the efficiency of the plant, taking advantage of the effects produced by the 
bubbles.  

2 Installation description 

The numerical modeling developed in this work corresponds to the multi zone 
activated sludge reactor of the WWTP located in San Pedro del Pinatar (Murcia, 
Spain), see Figure 1. This reactor holds the biological oxidation of the treated 
sewage. It is divided into two parallel lanes, each one is formed by four zones. 
Each zone has two mixer impellers (FLYGT-S460) in two opposite corners. The 
impellers are installed forming a 20º angle with the wall. The air diffusers 
(FLYGT membrane EDPM 9’’) are located uniformly on the floors of Zone 2 
(616 diffusers) and Zone 4 (300 diffusers). The four zones are separated by three 
partition walls. The first partition wall has 5.53 m height, while the second and 
third ones have 5.05 m height. All the partition walls have two inferior holes of 
0.4x0.45 m. So the water can pass to one zone to the next zone either, over the 
partition wall or through the inferior holes. The outlet weir is 5.43 m above the 
floor. 
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included in the modelling. 

3.1.2 Air bubbles governing equations  

Air bubbles are considered as discrete phase. Many bubbles are released 
uniformly from the floor of zones 2 and 4. The trajectory ݎ௣ of each bubble is 
calculated by means of the integration of the force balance on the particle: 

ௗ௥೛
ௗ௧

ൌ ܷ௣,  (4) 

ௗ௎೛
ௗ௧

ൌ ஽൫ܷܨ െ ܷ௣൯ ൅
௚ೝሺఘ೛ିఘሻ

ఘ೛
൅

ఘ

ఘ೛
ܷ௣

డ௎

డ௥೛
,  (5) 

஽ܨ ൌ
ଵ଼ఓ

ఘ೛஽೛
మ

஼ವோ௘೛
ଶସ

,  (6) 

஽ܥ ൌ ܽଵ ൅
௔మ
ோ௘೛

൅
௔య
ோ௘೛

మ,  (7) 

with ܴ݁௣ ൌ ሺܦߩ௣หܷ െ ܷ௣หሻ/ߤ the Reynolds number of the particle. The 
coefficients ܽଵ, ܽଶ	and	ܽଷ are constants used for smooth particles over several 
ranges of ܴ݁ (Morsi et al. [8]); ܨ஽൫ܷ െ ܷ௣൯ is the drag force per unit particle 
mass,	݃௥ሺߩ௣ െ ሻߩ ⁄௣ߩ  is the gravity force per unit particle mass, 
ሺߩ ⁄௣ሻߩ ܷ௣ ሺ߲ܷ ⁄௣ሻݎ߲  is the force due to the pressure gradient in the fluid.  

The dispersion of particles due to turbulence in the continuous phase is simulated 
using a stochastic tracking model. In the RANS steady equations the velocity of 
the fluid is composed by a mean velocity ௝ܷ and a random velocity fluctuation  
 ௝ is kept constant forݑ ,௝. When the trajectory of a droplet is integrated (Eq. (5))ݑ
a certain interval of time	ݐ௘, which depends on the characteristic time scale or 
lifetime of eddies. The lifetime of the eddies is written as ݐ௘ ൌ െݐ௟log	ሺݎሻ. Where 

௟ݐ ,௟ is the time scale of the Lagrangian flowݐ ൌ ௟ܥ
௞

ఌ
 , in the turbulence model 

݇ െ  .is a random number between 0 and 1 ݎ  ௟ is 0.15. The termܥ the value of ,ߝ
The dispersion is simulated computing each trajectory for a sufficient number of 
particles (tries). 

3.1.3 Interaction between dispersed and continuous phase 

The effect of the air bubbles on the liquid is taken into account by means of the 
incorporation of source terms into the right terms of the equations of the liquid 
(Eqs. (1-2)). ܨ௜ is the momentum communicated from the bubbles to the mixed 
liquor, this source term is added into the balance of kinetic momentum of the 
liquid (Eq. (2)).  



3.2 Computational domain and meshing detail 

The domain of the problem includes the four zones described in the previous 
section, as well as the impellers and the inferior holes of the partition walls. The 
height of the domain has to mimic the free surface level, so it depends on the 
liquid flow rate and the aeration. 

The mesh is mainly Cartesian and structured. The sizes of the elements vary 
from 0.02 m around the impellers to 0.14 m in the core of the domain. The mesh 
has 5.2 millions of elements.   

3.3 Solver settings and boundary conditions 

The numerical modelling are developed using a general-purpose CFD code, 
based on a finite volume procedure. The equations are discretized by a 
staggered-grid scheme. The coupling between mass and momentum equations 
are solved by the “SIMPLE” algorithm through pressure. The well-known “up-
wind” second-order differencing scheme is employed for the convective terms of 
the equations. The case is considered converged when the normalized residual 
for mass, momentum and turbulent variables are lower than 10ିହ. 

The sides and ground walls of the domain are treated as non-slip walls, while the 
conventional symmetry condition it used for the top surfaces, simulating the free 
surface level behaviour. The usual pressure-outlet boundary condition is used in 
the exit of the domain. The liquid goes into the domain with uniform velocity 
through the inlet surface. The mixer impellers are simulated by means of a 
pressure jump in a plane region, including the azimuthal velocity. The air 
bubbles are injected uniformly through the grounds of zones 2 and 4.  

4 Numerical results 

Two simulations of the biological reactor have been carried out with the 
numerical modelling developed. Both of them have the same wastewater influent 
flow rate; in one simulation the air diffusers are working, in the other they are 
not working. 

4.1 Description of the flow 

The numerical results show a notable influence of the aeration on the velocity 
field in the reactor. Without aeration, a vortex is generated in each zone (Fig. 
2.a). The vortex is generated because of the jets of the mixers impellers; the pair 
of mixer impellers of each zone are located in opposite corners of the zone, faced 
each other; the jets are parallel, but not aligned. This jets misalignment generates 
a big vortex in the center of the zone. However, when the air diffusers of zones 2 
and 4 start to work, the columns of air bubbles generate an upward force in the 
liquid. This upward force adds a vertical component to the liquid velocity, 



splitting the vortex which there was without aeration in two or three smaller and 
weaker vortex (Fig. 2.b). This phenomenon is stronger in Zone 2 than in Zone 4, 
because Zone 2 has more air diffusers and therefore more air flow rate. 

Another notable effect of the aeration on the liquid is the circulation through the 
inferior holes of the partition walls. Without aeration, there is hardly liquid 
circulation through the inferior holes of the second and third partition walls. 
However, when the air diffusers are activated, the upward force of the bubbles in 
the liquid generates a depression in the lower part of the zones 2 and 4 (Fig. 3). 
This depression favours the circulation of the mixed liquor from Zone 3 to Zone 
4 and from Zone 3 to Zone 2, producing a recirculation. As explained in the 
installation description, the first partition wall is higher than the other two, 
causing two different free surface levels: one for the Zone 1 and another for the 
other three zones. Without aeration, the free surface level in Zone 1 is a little 
higher than the first partition wall: a little fraction of the liquid flow rate passes 
over the wall, while the rest is drawn off by the inferior holes. Nevertheless, 
when the air diffusers start to work, because of the depression generated on the 
bottom of Zone 2, all the liquid is drawn off by the inferior holes, decreasing 8 
cm the free surface level of Zone 1. The free surface level in the other three 
zones is not affected by the aeration. 

Air bubbles also have influence on the residence time of the waste water in the 
reactor. The average residence time is useful for calculating which fraction of the 
reactor volume is active volume (not recirculating volume). Without aeration, the 
average residence time of the liquid in the reactor is 361 minutes, whereas when 
the air diffusers are working the average residence time in the biological reactor 
is 321 minutes. These residence times mean that without aeration the reactor 
active volume is 82.5%, with aeration the active volume decreases until 73.3%. 
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produces the decrease of the free surface level of Zone 1. Free surface level 
of Zone 1 is 5.533 m without aeration and 5.451 m with aeration. 

- The air bubbles have notable influence in the residence time of the liquid in 
the reactor, decreasing the active volume from 82.5% (without aeration) to 
72.3% (with aeration). 

- The aeration generates a decrease in the amount of stagnant volume in the 
reactor. The amount of liquid with velocity lower than 0.1 m/s without 
aeration is 37.5%, however, with the air diffusers activated, only 19.6% of 
the liquid of the reactor has velocity lower than 0.1 m/s. 
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