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Chapter 1. Introduction

Since the first radar systems were developed during The Second World War, they have
experimented a lot of changes. The performances of radars have been improved by using
signal processing techniques. Due to the fact that the digital systems are increasing, they offers
many possibilities in order to solve the issues which can arise for radar systems.

In the present work, we study one of these techniques. It is known as Pulse Compression,
whose usage is widely extended nowadays. Before explaining the pulse compression technique
we revise some important concepts, which help us to understand the purpose of the project.

We look, firstly, at the basic concepts of the radar systems; secondly, at basic concepts that are
related to signal analysis (Chapter 2) and filtering theory (Chapter 3); thirdly, at the pulse
compression theoretic analysis; and to finish, at the results and conclusions obtained.

1.1. Radar Systems

Radar means Radio Detection And Ranging. There are many and very different
applications based on radar systems, thus the characteristics fulfilled by radars are very wide.
However, in general, the basic operation of radars is the same, and it is based on the following
principle.

Basic principle

Let us assume the next scenario, Fig 1.-1, where there are a waveform transmitter, a waveform
receiver and an object (target) which possesses electromagnetic properties (¢, u) [Peyton Z.
Peebles Jr, 1998].

RH"“H..
| T &1
X

\ |
RX \/

Fig 1.-1: Basic principle of radar systems.
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Therefore, the emitter illuminates the target by transmitting the following waveform

s(t) = Asin(wyt + 6(t)) (1.-1)

Where 6(t) is a possible phase or frequency modulation function.

After reaching the target, the back to receiver signal is

r(t) = A’ sin(wy't + 6'(t)) (1-2)

Thus, we can extract information about the target by processing ( 1.-2 ). Once we understand
the basic principle of radar, it is interesting to know about the different types of radars.

Classification of radar systems

Several criteria to classify the radar systems exist, but the most important criteria are the
following [F. Quesada et al., 2010]

e According to the type of target a radar system can be classified as:

Primary. In this case the target is passive, in other words, the target reflects
only the energy transmitted by the radar transponder.

Secondary. The target possesses a receiver and transmitter system, which is
able to answer to the request of the radar. This type of radars need less
transmission power than the primary radars, since the back to radar signals
only go over one-way route.

e Depending on the relative position between emitter and receiver the radar systems
can be:

Monostatics. The emitter and receiver are placed in the same location.

Bistatics. The emitter are receiver are situated in different places. This fact can
have applications in the military area in order to hide the location of the
receiver.

e According to its functionality a radar can be:

Surveillance radar. These devices are able to detect and identify targets.
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Tracking radar. These systems are capable of detecting and tracking targets.
Surveillance-tracking radar. These devices detect, identify and track targets.

To finish the classification of radars, there are two different types of radar according to
the transmitted waveform:

Continuous wave radar (CW). The system is constantly transmitting and
receiving a sinusoidal signal. This type of signal is shown in Fig 1.-2.1.

Pulsed wave radar. In this case, the radar takes a time term to transmit, and
then, it takes another time interval to receive. The typical signal for this type of
radars is illustrated by Fig 1.-2.2.

Fig 1.-2.1: CW-Radar transmitted signal.

Fig 1.-2.2: Pulse Radar transmitted signal.
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1.2 Energy and power of radar’s signal

As it is described in [Peyton Z. Peebles Jr, 1998], the most general radar’s waveform
expression is

s(t) = a(t) sin(wot + P + 6(t)) (1.-3)

Where a(t) is an arbitrary amplitude modulation function, and, 8(t) is a phase function due to
some form of frequency or phase modulation. ( 1.-3 ) may be defined either —oo < t < 40 or
in a limited time period. In the second case, the signal can be rewritten as

T

s(t) = a(t)rect ;7

sin(wot + ¢o + (1))
(1.-4)

_ { a(t) sin(a)ot + ¢ + G(t)) 0<t<T
0 elsewhere

Where T is the time period in which the system is transmitting. The pulse is repeatedly
transmitted, thereby (1.-4) is rewritten as

—(n—1DT,
s(t) = a(t) Z rect - DT 2 sin(wpt + ¢o + (1)) (1.-5)

n=1
Where Ty is the pulse repetition interval.

Peak and average powers

It is well-known that any circuit can be simplified by using the Thevenin’s equivalence.
Therefore we can model a radar system as the following straightforward circuit (Fig 1.-3)

+

R, +jX,
s(t)

Fig 1.-3: Thevenin’s equivalent circuit.
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Let us suppose that the system is matched, to fulfill the maximum power transfer theorem;
thereby, the available instantaneous power is expressed as

2 2
Pi(t) = SLS?) = a8(;) [1 + cos(2wot + 2¢¢ + 26(¢))] (1.-6)
t t

Since 6(t) varies much slower than wyt + ¢, the cosine term can be approximated as a pure
cosine, thus, the average instantaneous power is

a(t)?

1.-7
T (1.-7)

P.(t) =

Starting from ( 1.-7 ), we can define the average peak transmitted power as the average
transmitted power over one cycle of the carrier when s(t) accomplishes its maximum

1
P.(t) = —[1 — cycle average s(t)]max

4R, (1.-8)

Where [-];nax is the maximum value of the function within brackets.

Also we can calculate the available average transmitted power for a given time interval (Tg) as

Tr
P, (t) = f s(t)?dt (1.-9)
0

4R,Tx

It is often used the next expression for pulsed waveform radars

Tg
2

f s(t)?dt (1.-10)
Tr

t

1
factor.

A normalized expression of (1.-9) or (1.-10) is usually used, it does not contain the RT
t!'R
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Energy

Also the energy of transmitted signal can be calculated as

Tr 1 rTr
E; = f s(t)?dt =~ —f a(t)?dt (1.-11)
0 2 0

Tgr represents the repetition interval of pulsed signal or the fundamental period of the
modulation functions a(t) and 8(t) in CW radar.

1.3 Basic principles of radar systems

Above we studied the basic principle of radar; the purpose of this section is to study another
principles of radars used to detect and range the target [Peyton Z. Peebles Jr, 1998].

Elementary range measurement

Let us assume a monostatic pulsed system which transmits a square pulse. This pulse strikes a
target, therefore a part of the pulse energy is reflected. The reflected energy travels back to
the radar system. This fact is illustrated in Fig 1.-4.

Transmitted Signal

Received Signal

Fig 1.-4: Pulsed radar. Transmitted signal & Rejected signal from targets.
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The returned pulse to the radar is delayed with respect to the transmitted signal by Tg. This
fact is due to the path travelled by the signal. As the ligth’s speed is well-known, the radial
distance from the radar to the target is

R=_—_R (1.-12)

In this scenario a stationary target was considered. In a real case, the target could be in motion
and other effects must be considered. These effects are discussed below.

Doppler Effect due to target motion

Let us suppose the scenario shown in Fig 1.-5,

<Y

RADAR

Ro

Fig 1.-5: Scenario with a Target in motion.

The figure illustrates a radar system which illuminates a target in motion. In order to
understand the Doppler Effect concept, we assume the transmitted signal shown in Fig 1.-6.
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Fig 1.-6: Transmitted Waveform. Doppler Effect.

1 : .
Where Ty = X In t = 0 the first wave front, s;(t = 0), leaves from the transmitter, and the
0

target is at a distance R, [Peyton Z. Peebles Jr, 1998]. When the first wave front reaches the
target, a At; time period has passed, thus the range of target is

Rl = RO + Iv_r)lAtl (1-'13)

Where v, is the radial distance as shown in Fig 1.-5. The first wave front takes the next time of
travel

Ry
Aty = — (1.-14)
c

By using the equations (1.-13) and ( 1.-14 ), we obtain

Ro

Aty = ——
A

(1.-15)

If t; is the time of arrival to the radar taken by the reflected signal, it must be equal to 2At;

2R,
t) =——— (1.-16)
c+ vl
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Then, the second wave front, s:(t = T), is transmitted. When this wave front strikes the
target, the new position of the target is

R, = Ry + |v/|Ty + [vy|At, (1.-17)
In the same way as (1.-16)
At, = Aty (1.-18)
2=7¢ .

And the time of arrival for the s;(t = T,)) wave front is

c+ v DTy + 2R
t2=T+2At2=( lrl)ﬂ, 0 (1.-19)
C_Ivrl

Therefore, the received waveform is shown in Fig 1.-7

t2

Fig 1.-7: Back to radar Waveform. Doppler Effect.

Thereby, the received signal has the next frequency

1 (el (1.20)
fr_tz—tl_ ¢+ [v/] o '
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Thus, the frequency increment, f;, is

fd=fr—fo=—_2|v—i>| f (1.-21)
¢+ v
Since, ¢ > |v,| often occurs
—2|v;
fur 2, (1-22)
c

The frequency change is known as Doppler frequency, and it is one of the most important
phenomenon in the radar theory.

Received waveform

According to the effects we have studied, if a general radar waveform, equation ( 1.-3 ), is
transmitted, the signal back into the radar is

sp(t) = aa(t — 7)) sin((wg + wg)(t —7,) + Ppo + 0(t — 7,)) (1.-23)

2|vr]

c

2R . .
Where 7, = Tt and w = 27r( fo); R, is the relative range between the radar transponder

and the target.

10
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Chapter 2. Radar signals and networks

The study of general aspects about signals and its passage through networks is needed
in order to understand the radar systems. We will revise these concepts in this section.

We start from a real signal and continue to other signal representation forms and their
relationships with the real signal [Peyton Z. Peebles Jr, 1998]. Then, we will study the
networks, which are traversed by the signals, and the optimum filter which maximizes the
peak signal power to average noise power ratio.

2.1 Real Radar signals

Considering the next radar signal [Peyton Z. Peebles Jr, 1998]

s(t) = a(t) cos[wot + ¢po + 0(t)] (2.-1)

Where a(t) is an arbitrary amplitude modulation function and 6(t) is an arbitrary phase
modulation function. Now, we apply the following trigonometric identity to (2.-1)

cos[x + y] = cos[x] cos[y] — sin[x] sin[y] (2.-2)

We obtain

s(t) = a(t){cos[0(t)] cos[wyt + o] — sin[(t)] sin[wyt + Ppl}

= 5;(t) cos[wgt + Pg] — 54(t) sin[wyt + o] (2-3)

Where
si(t) = a(t) cos[O(t)] (2.-4)
sq(t) = a(t) sin[0(t)] (2.-5)

11
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In the expression ( 2.-3 ), the carrier information is separated from the modulations terms,
therefore, this signal form is interesting from a practical point of view.

Another representation of ( 2.-1), by using the expansion of cosine into its exponential form, is

a(t . .
s(t) = a(t) cos[wot + Py + 0()] = %{61[‘“0”"50)’9“)] + e /@ot+do+0(D]}

1 | ' (2.-6)
= E{g(t)e][wot+¢o] + g*(t)e—l[wof+¢o]}
Where
9(®) = a(®e/ PO = 5,(6) + s (£) (2:7)
And its conjugate is
9" () = a(®e O = 5,(t) — js5,(©) (2.-8)

The function (2.-7) is called the complex envelope of s(t).

The expression ( 2.-6 ) fulfills the property that it has a complex term, but its sum is a real signal.
Now we will interpret (2.-6 ) in frequency domain.

2.1.1 Spectrum

Applying the Fourier transform to ( 2.-6 ), we obtain

1 ; .
S(w) = E{G(a) — wg)elPo + G*(—w — wy)e I Po} (2-9)

Where w = 2nf and w, = 27f,.

12
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1 1
216" (-0 - w0l 716 - w)]

-(DO 0 (J)O w
Fig 2.-1: Real Radar Signal Spectrum.

Fig 2.-1 shows that the spectrum of g(t) has two principal terms, one in negative w region and
another one in positive w region. This expression assumes that w, is larger than bandwidth of
G(w), thus, either G(w) is bandlimited or the terms do not affect each other (the terms are
isolated).

2.1.2 Energy

By use of the energy definition to (2.-1)

Es = f_ms(t)zdt = f_ooa(t)2 cos?[wot + ¢ + O(1)] dt
" = a(e)?
|5

—oo a(t)z (2-'10)

2

dt

{1+ cos[2wyt + 2 + 20()]}dt ~ f

+ 00 +00

According to (2.-10), the signal energy depends only on the amplitude a(t), and not on the FM
modulation function.

Next, we apply the Parseval’s theorem to calculate the signal energy in the frequency domain

E,=— [s(w)]|?dw (2.-11)

We can substitute (2.-9) in (2.-11)

13
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1 (™1 , N
Es=2— |—{G(a)—a)0)el¢°+G(—a)—a)0)e‘1¢0} dw
M)y 12
1 (7”1 .
=2, Z|{G(w—w0)2e21¢0+2|G(w)|2 (2-12)
. 11 (% E
G*(—w — wy)e Ul dw = = — G 2dw = -2
+ G (—w — wy)“e Hdw 227T+Oo|(w)|a) 5

Where the cross terms have been neglected and Ej; is the energy of g@).

2.1.3 Autocorrelation function

By using the autocorrelation definition

1 +T
ITl—irJlrlooﬁ > s(t)s(t + t)dt for power signals
Rss(7) =

+00 (2.-13)
L f s(t)s(t + 7)dt for energy signals

The form for the power signals is applied when the signals are continuous (exist in —oo < t <
+0), for instance, in the CW-radar. Moreover, the form for energy signals is used for pulsed
waveforms. R, (0) gives the average power signal and total energy signal respectively.

2.2 Complex Radar signals

In this section, we will study a complex form of s(t). This signal form consists only of
the first term of the expression ( 2.-6 ), [Peyton Z. Peebles Jr, 1998].This signal is denoted by

() = g(t)e/lwot+ol (2.-14)

Which is related to s(t) by

s(t) = Re[y.(1)] (2.-15)

14
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Now, we demonstrate ( 2.-15)

Y (t) = g(t)ej[wot"'(l’o] = a(t)ej[wot+¢o+9(f)]

= a(t){cos[wot + ¢o + 8(O)] + j sin[6(8)] sin[wet + ¢o] + O()} (2-16)

Where it can be observed that the real term is s(t).

The usage of this waveform is useful because its modulus is equal to the amplitude a(t) and its
phase is equal to the phase of s(t).

2.2.1 Spectrum

By applying a direct Fourier transform to ( 2.-16)

Y. () = Ye(t)e I@tdt = g(t)ellwot+bole=iot gt — G(w — wy)e I Po
+00 25( ) o 600 (2.-17)
w)
=~ - =2U S
(D) @2 = 20(@s@)
21S(w)l
-0q 0 O " w

Fig 2.-2: Complex Radar Signal Spectrum.

If wg is larger than bandwidth of g(t) and it is bandlimited, zero energy occurs in the w < 0
region, thereby the approximation used in ( 2.-17 ) is exact. Even in cases where the signal is
nonzero in the w < 0 region, there is a signal transformation that forces the spectral energy in
w < 0 to be zero. The signal resulting from this transformation is called the analytic signal.

15
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2.2.2 Autocorrelation function

In same way as in the real signal, the autocorrelation function is defined as

+T

1
TEI}rlooﬁ B Y ()Y (t +T)dt for power signals

Ry . (T) = (2.-18)

+00
lf Y (O (t + 1T)dt for energy signals

The autocorrelation function is key for pulse compression, since the matched filtering is
directly related to this operation as we will study in future sections.

2.3 Analytic Radar signals

The analytic signal forces the spectrum in w < 0 region to be zero [Peyton Z. Peebles
Jr, 1998].

2|S ()l

Y 0 ®9 w
Fig 2.-3: Analytic Radar Signal Spectrum.

Note that Fig 2.-3 depicts a spectrum of signal which is completely zero in w < 0 region. It
differs from the spectrum illustrated by Fig 2.-2 that possesses low energy in negative w
region.

16
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2.3.1 Spectrum and waveform

Starting from the assumption that the expression ( 2.-17) is exact

Y(w) =2U(w)S(w) =1+ sgn(w)]S(w) (2.-19)

Where sgn(w) denotes the sign function in frequency domain.

Now, the signal in the time domain results via applying the inverse Fourier transform.
According to the inverse Fourier transform properties

X(w)Y(w) TF—_i x(t) * y(t) (2.-20)
U(w)TF—_1>%6(t)+2+.Tt (2.-21)
We obtain
+0o0 1 : 1 [+
vo=2] s©se-ord e[ S,

=s(t) +j8(t)

The imaginary part, §(t), is known as the Hilbert transform of s(t).

2.3.2 Hilbert transform

The real part of ( 2.-22 ) is the real radar signal, and the imaginary part guarantees that the
spectrum is zero in the negative w region.

If we apply the Hilbert transform to $(t), we obtain

1))
s(t)——;f_oo (t—f)df (2.-23)

Therefore, s(t) is recovered from §(t) by applying a Hilbert transformation. Considering the
next fact

17
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V4

1 +00 A A
f_w (:55?;) dfT—I;S(a))[—jsgn(a))] (2.-24)

The expression ( 2.-23 ) can be demonstrated by the next graphical sequence in frequency
domain

/2

-n/2

0
Fig 2.-4.1: Phase of s(t)

n/2

-m/2

0
Fig 2.-4.2: Phase of TH(s(t))
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-m/2

0
Fig 2.-4.3: Phase of TH(5(t))

The signal phase is shifted in the first step (Fig 2.-4.1 to Fig 2.-4.2), and is once again shifted in
the second step (Fig 2.-4.2 to Fig 2.-4.3), resulting a —m total shifting. This process is equivalent
to filter s(t) by a constant-phase filter, which its response is

-j w>0
H(w) =—jsgn(w) ={0 w=0 (2.-25)
+j] w<0

This transfer function is not realizable but it can be approximated.
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2.3.3 Relationship to Complex signal

If Y.(t) =0 or Y.(t) =0 for w <0, the complex signal, Y.(t), is equal to the analytic
signal, ¥ (t) ; the most signals used in radars fulfill these conditions. Thus, assuming s(t)
bandlimited, it can be easily demonstrated the following relationships.

Pe(8) = (o) (2.-26)
s(t) = Re[p ()] = a(t) cos[wot + ¢pg + O (D)] (2-27)
$(6) = Im[p(©)] = a(t) sin[wot + o + 6(¢)] (2.-28)
lW(®)| = a(t) (2.-29)
arg[y(t)] = tan™? [%] = wot + ¢y + 6(t) (2-30)

2.3.4 Energy in Analytic Signal

Now, by using the energy definition and the Parseval’s theorem

+coo 1 +0oo 1 +oo
By= | woPd=5 [ w@Pdo =5 [ I+ sgn@)s@)Pdo

1

+00 1 [+ (2.-31)
= —f 4|S(w)|*dw = —j 2|S(w)|?dw = 2E;
0 2w J)_

21

Finally, we can find a relationship between the analytic signal energy and the energies of the
other signal forms

Elp:EwC (2.-32)
Ey = Eg (2.-33)
E¢ = 2E (2.-34)
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2.3.5 Properties of Analytic Signal

Given two analytic signals, ¥, (t) and ¥, (t), by application of convolution of the conjugated
first signal with the non-conjugated second signal, and via Fourier transform properties

+00
f PiOY,(t —t)dt = Y] (—w)¥,(w) =0 (2.-35)
We can show ( 2.-35) with a straightforward graphic sequence illustrated in Fig 2.-5.1 and 2.-5.2

EAG)]

-0, 0 [oN

Fig 2.- 5.1: 1, (t) Spectrum

17 (—w)|

-(00 0 (@

Fig 2.- 5.2: Y} (t) Spectrum

o

By multiplication of (Fig 2.-5.1) and (Fig 2.-5.2) a zero spectrum results, thus equation ( 2.-35 ) is
demonstrated.

Below we apply the correlation to 1, (t) and ¥, (t)

+00 1 (*® ;
f_ DO+ 0T = P () +ipa (-0 = o f_ W@l e,
~ 0

In this case the 1, (—t) spectrum is reversed ¥, (w), in the same way as the preceding case.
Then by multiplication of ¥; (w) and ¥, (—w) zero spectrum is obtained.
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However, the following convolution is non-zero

+0o 1 + 00 .
f Y1 (Y, (r —t)dt = %f Y, (0¥, (w)el®Tdw # 0 (2.-37)

And the next correlation is also non-zero

+o00 1 +o0 )
YO (c + Ot = - f W ()P, (@) dw % 0 (2.38)

— 00

2.4 Interesting parameters: Signal Duration and Frequency

In radar systems, the duration and bandwidth of the signals are often defined
differently than in other classical technologies. We will study these concepts in this section,
but before, it is necessary revise some properties [Peyton Z. Peebles Jr, 1998].

2.4.1 Relationships from Parseval’s theorem

Given a waveform v(t), whose Fourier transform is V(w), firstly, we apply the Parseval’s
theorem to the following functions f; (t) = f,(t) = (—jt)™v(t) then

+00 +00 +o
f A ©fOdt = f (e (O)]2de = f £ (e) | 2de
- L el @f (2391
=E Y da)—m dw m=0,1,2,3,...

In the same manner, the Parseval’s theorem is applied to the next functions f;(t) = f,(t) =
d™v(t)
dcn

+00 f+oo [dnv(t) 2

) O f)dt = | = %L;w|0w)nV(w)|2dw

1 + 0o (2-'40)
= Ef w'V(w)|?do n=0,1,2,3,..
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In the last case, we take f;(t) = (—jt)™v(t) and f,(t) = d’;lzr(f)
o o dro) oy
| RO f o @ “arde=m [ @me e S
+oo di(a)) (2-41)
o"V(w)dw n=0,1,2,3,.. and m
= 0 1 2 3

2.4.2 Mean Time and RMS Duration

In order to measure the radar accuracy, it is necessary to define the Root-Mean-Squared
duration of the signal. This parameter gives information about the spread of a signal around a
mean time. By use of equation ( 2.-41) with m=1 and n=0 and the equation ( 2.-39 ) with m=0 we
obtain a mean time expression in the frequency domain.

+oo —J +oo d¥ ’ +00 d¥(w)*
Y f_oo |l/J(t)|2dt %f;ool'l’(w)lzdw f0+00|'1”(w)|2da)

In the same way, this parameter is defined for s(t) and g(t) as

d
;Lo tla®Pde [12 6w [2E@Y ]dw 2as)
T lg@ar 7 f_OOIG(w)IZdw
+00 d *
o TP es?de I, S() [%] dw

= =—j (2.-44)
[ s(6)2de IX21S(w)12dw

These parameters represent the gravity center of the signals. Once calculated the mean time,
now we define the normalized second moment of the three signals (it is called RMS duration)

+00 1 oo [d¥Y 2 o [dW 2
,_LZemord_gml %] do J; dfuw)] dw

T PYrms — = = (2.-45)

Loword L ppde fy 1¥(@)2do
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+o00 dG((U)
.2 rms:f_ tg@de [ [ ] da (2.46)
’ [Zlg®de [7716(w)[2dw
+o0 +oo [dS( )2
2 _ J o, ts(®)?dt _ |- [ da‘)‘) ] dw (2.-47)

srms — f

szt [T71S(w)Pdw

It is possible to demonstrate that T2y 1,5 = T2 rms = T%5rms DY substituting (2.-19 ) into ( 2.-
45)and (2.-17)into (2.-46)

f+oo[dW(w)] w3 f+°° [dS(a))] o

2 _Jo dw

T wrms = Foo 5 = o = 72 srms (2.-48)
I @lPdo 1 45(w)Pde
+oo [dG (w 2 +oo [ dS(w
2 _f_oo[ dgo )] dw f [2 ( )] dw
I PG (@)de [ 128 () Pdw
(2.-49)

2f+oo4[d5(w)] do

217 4lS(@)2dw

— 2

s,rms

For convenience, the zero origin is usually chosen in order to set fw = fg =t, = 0. Therefore,

the RMS duration is related to the energy signal dispersion in the time domain.

2.4.3 Mean Frequency and RMS Bandwidth

In the same way as the preceding section, we can define mean frequency and RMS bandwidth.
By applying the normalized first central moment in frequency domain, it results

T elv(w)Pde
Dy = 7o (2.-50)
Jy ¥ (@)Pdw

[P 0l6(w)Pde
Wy = —3
Jo16(w)|2dw

(2.-51)
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[*7 wlS(w)Pdw
wg = o (2.-52)

J1S(@)2dw

By replacing ( 2.-19) into (2.-50)
1 +00 2
B 7]_00 4w|S(w)Pdw

Wy = = Wy ( 2.-53)

112 41S(@)Pdw

By replacing (2.-17) into ( 2.-50 ) and using the variable change 1 = w — w,

e Upperterm: 1, =+
e Llowerterm:: 4; = —
e Differential term: d1 = dw

1 [ee] i [ee) i
325 0l6w = w)e i do  [*7(2+ w)|6 (e[ da
B T I216@e o 12da

1 -+ .
7f-+oo |G (@ — wo)e™/Po|?dw (2.54)
21601 [17 A16(A)[2dA B
= Wy +00 P +00 2 = Wy + wg
o l6@zda - [C16(A)]2dA
Then, we define the RMS bandwidth of the signals in frequency domain
%) _ 12 [} _ _
. _ f0+ [w — @y ¥ (w)]? dw B f0+ [w? + &y — 20@,] |V (0)|*dw B
e IORE I 1w (@)2dw
J° 0?1 (@) 2dw + @y? [ 1 (0)Pdw — 28y, [ o|¥ (0)?dw (2.55)
Iy 71w (@) Pde
to 2 2
¥ (w)|*dw _
b ©) + By? — 2By By = 03, — b3
Iy 719 (@) 2dw v
0o _ 12
. _f_+oo [w — @,]"1G(w)? do — _
g rms = T = wg — g (2.-56)
I, 16(@)|?dw
+00
[w— @ ?|IS())|? dw —
w_g,rms = f_oo Foo > () = (1)3 - 53 (2.-57)
L 1S(w)|?dw
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Where w_lzp, w_gz, w? are normalized second moments. In addition, by using ( 2.-39) with m=0, ( 2.-
40 ) with n=1 and ( 2.-41 ) with m=0 and n=2, the normalized second moment can have another

form

% voo |dyp (D)
w? = T et @rdo Lo Far] (2.-58)
@k 0 Pde
+ 00 2 2 f+00 dg(t) 2 d(l)
F _ f_oo w?|G(w)|* dw _ e dt (2.59)
TPl [FTg01Pdw
to , oo |ds(6) |2 p
— _ L @?IS@)Pdo Jow [T | *¢ (2.60)
T RIS@lde  [f7Is@0)de

The RMS bandwidth gives information about the spectral energy dispersion around @y,. A
straightforward way to calculate the rms bandwidth is to use ( 2.-56 ) for signals whose @, = 0.
wg = 0 occurs when G(w) has even symmetry, and most of signals used in radar systems fulfil

these requirements.

2.5 Transmissions of Signals through networks

In this section we are going to study the passage of signals through linear networks.
For this purpose, we will study the following situations:
1. Realsignal through real networks. This case represents the situation in the real world.
2. Analytic signal through real network.
3. Analytic signal through analytic network. We will revise this case since it is interesting

to simplify the signal analysis.
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2.5.1 Real Signals through Real Networks

This case is a basic application of convolution as shown Fig 2.-6 [Peyton Z. Peebles Jr, 1998]

REAL FILTER

s(t) — h(t) > s(t) =s(t) *h(t)

Fig 2.-6: Real Signal across Real Network.

Given a real signal s(t) and real impulse response h(t), the output signal, so(t), is

so(t) = f+ws(l)h(t —)dA = s(t) * h(t) (2.-61)

By Fourier properties the output signal in frequency domain, S,(w), is obtained as

So(w) = S(W)H(w) for —oo < w <+ (2.-62)
2.5.2 Analytic Signal through Real Networks

This situation is depicted by the Fig 2.-7. By using the equation (2.-22), Y (t) = s(t) + j§(t), and
by applying ¥ (t) as input to a real filter, we obtain

REAL FILTER

Y@) 1 h(® — Yo (t) = P(t) * h(t)

Fig 2.-7: Analytic Signal across Real Network.

PYo(t) = Y(@) * h(t) = [s(t) +j8(®)] * h(t) = s(t) * h(t) + jS(t) * h(¢) (2-63)

The first term is known as it is ( 2.-61 ). Now we are interested in the second term, which is
expressed as

(2.-64)

w0 = 600 = T30 = [ TRt
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Making the variable change x = a — &

e Upperterm: x,, = +©
e lowerterm:: x; = —c0

e Differential term: dx = da

We can rewrite the integral ( 2.-64 )

1 +o0o +o00 +o00
$0(t) == f h(&) f ( ) — - dxdg = h(f)s(t—f)df (2.-65)

According ( 2.-64), we obtain the output S|gnal

Yo(t) = so(t) +j8o(t) (2.-66)

Having the Fourier transform

¥y(w) =¥ (w)H(w) = 2U(w)Sy(w) (2.-67)

2.5.3 Analytic Signal through Analytic Network

Suppose an Analytic Impulse response

z(t) = h(t) + jh(t) (2.-68)

Its Fourier transform is

Z(w) = 2U(w)H(w) (2.-69)

If this analytic network is excited by an analytic signal as shown Fig 2.-8

ANALYTIC FILTER

we)y | z® [ 2@ = @) * z(D)

Fig 2.-8: Analytic Signal across Analytic Network.
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We obtain the next output signal

zo(t) = P(@) x z(t) = P@) * [A(©) + jRDO) = (@) + j[p(©) * R(?)] (2.-70)

We need to calculate the imaginary term

P() * h() = [s() +j8(0)] * h(D) = f [s(€) +j38(O] h(t —§)d¢

+o0 1 +00 h
S IR CGRGTE e 2

o[ OO
- f h(@) [8(t — a) — js(t — a)]da = §o(8) — jso(©)
= —jio(t)

To obtain this last expression we have used the Hilbert transform property ( 2.-22).

Therefore

zo(t) = Yo (t) + j[—jho(D)] = 21ho (L) (2.-72)

The expression ( 2.-72) is exactly twice of ( 2.-66 ). This result is derived from expression ( 2.-69 ),
in which Z(w) is directly related to 2H (w).

Conclusions about analytic signals

We suppose an arbitrary system whose impulse response is h(t) and an arbitrary input s(t).
Its analytic forms in frequency domain, by using ( 2.-17), are

Z(w) = Gr(w — we)elPr (2.-73)

¥ (w) = G(w — wg)elPo (2-74)
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Where Gf(w — wg) and G(w — wy) are the baseband forms shifted to w. If h(t) and s(t) are
bandlimited signals, (2.-73) and (2.-74) are exact.

Therefore, the output signal is

Z(w) = Gr(w — )G (w — wo)e_j[¢f+¢0] (2.-75)

Note that the signal analytic analysis let us work with signal baseband forms, and thereby,
avoiding to consider the carrier information since it does not affect to the magnitude and the
phase terms.
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Chapter 3. Matched Filter and Ambiguity function

In order to interpret and understand pulse compression the study of two important
concepts is necessary. These concepts are: the matched filter and the ambiguity function. Both
concepts are very useful to know about the performance of pulse compression techniques.

3.1. Matched Filter for Nonwhite Noise

For an improvement of the detection of targets, the received signal amplitude larger
than average noise signal amplitude is desired. Consequently, we will show a filter which
maximizes the signal to noise ratio for a time instant in the case of nonwhite noise [Peyton Z.
Peebles Jr, 1998].

Firstly, we start from the sketch depicted by Fig 3.-1 (where h(t) is the impulse response of a
real filter, s,.(t) is arbitrary signal and n,.(t) is a noise signal)

REAL FILTER

Sr (t) + ny (t)_)_ h(t) _,__¢o(t)

Fig 3.-1 Received Signal and Noise Signal across Real Filter.

The output signal can be written, in terms of an analytic signal, as

+00 +oo
Pol) = 50,0+ 20) = 5 [ et do - — [ ) (@) Z@)e M do  (3:4)

Yo (t) is the analytic output signal for any time. Here we define t, as the instant time in which
(3.-1) accomplishes its maximum. Thus

1 (™1 .
Yolt = to) = 5 f S (@) Z(w)e odw (3.2)
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Then, its power is

2

! f+00111/( )Z jotod (3.-3)
) 2 (w) Z(w)e W -

~

Yo =

Below, the output noise power will be calculated. The function n,.(t) is a random process, and
its power spectral density is pyy(w). The average output noise power is

1 [t 2 (™
No=5- | pwn(@ H@Pdo == [ pun(@) IH@Fdo
21 J)_o 2m J,
) e (3.-4)

__-“ 2
= 472n . pyy (@) |Z(w)|*dw

Where equation ( 2.-63 ) has been obtained to write ( 3.-4) as function of Z(w).

According to the preceding result, we define the signal power to average noise power ratio in
the filter output as

~ 111 (4 i z 1 +o j 2

P02 |E . ¥ (w) Z(a))ef‘”toda)| ~ |Ef_oo ¥ (w) Z(w)e!®todw (3.5)
=712 e T2 e '

Yoo go 0 pun(@) Z@)Pdo 22 [ (@) 12 (@) 2do

The next step is maximize ( 3.-5). We will use the Schwarz’s inequality for this purpose, since
the task is more straightforward. Remembering the Schwarz’s inequality

2

+o +00
sf |A(w)|2dwf IB()]2dw (3.-6)

— 00

f " M @)B ) do

Where A(w) and B(w) are a complex functions of a real variable w and A(w) is related to
B(w) as

A(w) = k B*(w) (3.-7)

Where k is a nonzero real constant and -* is the conjugated function, ( 3.-6 ) can be applied if
and only if ( 3.-7) occurs.
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Setting A(w) and B(w) as

1
Alw) = E\/ pnn (@) Z(w)

1 ¥ (w)el®to

B =
@ V2r Vonn (W)

The numerator of the expression (3.-5) can be written in A(w) and B(w) terms as

+00 2

‘%f Y. (w) Z(w)e/®todw

to 1w (w)e’“’t0
\/ d

f Aw) B(a))dw

Now, by applying the Schwarz’s inequality, ( 3.-6 ), thereby we obtain

ﬂ |f+°°A(a)) B(a))dwl < = A(w) Pdw f::)o |B(w)|?*dw
No o 2 1% pn(@) |Z(w)dw % (@) |2(0)dw

1 ¥ (a))ef‘“to

|\/—VPNN((U Z((‘))| dw f 2r m

27 pun (@) 12(0) 2dao
1 ’I’(a))ef‘"to
V2n \/PNN((U
2 )
5= I pn (@) 1Z(@) 2 dw
+o00 1 |@ jwtg 2

— 4 vV PNN (w)

[0 2 puw(@) | Z(@) 2de [*2

Thus, (3.-5) accomplishes its maximum when

Bof [ L hladenf
No max —w 4T V.DNN((‘))
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To finish, it is necessary to verify the equation ( 3.-7), then by substituting (3.-8) and ( 3.-9) into (
3.-7)

1 ( )Z( ) k 1 lpr(w)*e_jwto (3-13)
——VPnNW) L(W) = -
Vo Vo vy (@)
Therefore
Y * ,—jwtg
Zopt(@) = k—r(a)) ¢ (3.-14)

pnn (@)

The above expression is the optimum filter, which achieves the maximum signal to noise ratio.
It can be rewritten, in real signal terms, as

Sy ()it
=~ - (3.-15)
Hope(w) = k pnn (@)

Note that the optimum filter transfer function is directly related to the conjugated input signal
in frequency domain.

3.2. Matched Filter for White Noise

In this section we will particularize the preceding Matched filter for white noise
perturbations. It is well-known that the white noise power spectral density is [Peyton Z.
Peebles Jr, 1998]

o

pny (@) = > Vw (3-16)

By replacing (3.-16) into ( 3.-12) and ( 3.-14)
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Po _f+°° 1 | (w)eioto|” o — f+°° 1 |W(w)e/®]”  E, 26,
Nol =) dm % =) o Ro TR ®, )
Y (w)*e J@to Y. (w) e /@t
Zopt(a)) = er—o = Zer—o (3.-18)
2

Where E, is the energy of the real signal, s,-(t).

Assuming a stationary target, it will provoke a time delay 7,- in the received signal and the
constant a is related to the attenuation which affects the transmitted signal

Y (©) = apy(t—1,) = B (@) = aly(w)eJow (3.-29)

And from (3.-18)

2ka )
Zopt(w) = = e (w)*e~j@lto=r] (3.-20)
0

Now we are going to analyze the matched filter output. In the frequency domain

1 . ka? .
Wo(@) = 5 @ (@)e 9 Zopy(@) = ¥y(@)~— W' (@)e Ik
0 (3.-21)
2
= [P (@)2e /ot
0
Focusing on the (3.-21) second term, we apply the inverse Fourier transform to it
ka? . TF1 ka?
Yo(w) = lPt(w)x_lpt (w)e™ @ — Py (t) = N_thwt(t —to) (3-22)
0 0

The output signal is directly related to the transmitted signal autocorrelation. The
autocorrelation function maximum occurs in t = t;, same instant in which the maximum peak
signal power average noise power ratio is achieved.
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Conclusions

The matched filter response is directly related to the conjugated transmitted signal. Assuming
that the filter is matched to ¥,.(t), we revise the impulse response shaping by using the
Fourier transform properties and illustrated by the next graphical sequence

. TF71
S(w)e™ 1@t — s(t + ty) (3.-23)
TF~1 (3.-24)
§*(w) — s*(=t)

sp ()
Fig 3.-2.1 Original T, . +T

received signal. t
0

Fig 3.-2.2 -t t

Shifting.
0
sr(—t + t())

Fig 3.-2.3 Folding T, —T+1 -7+ 1o

about the origin. v t
0

This fact is consequence of the instant in which the maximum occurs, t,, that is longer than
T, + T, where T is the duration of the transmitted pulse.

to>1,+T (3.-25)

The preceding condition guarantees that the filter is causal, thus it is realizable.

To continue, we will analyse the filter output signal, which can be written as
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1 1 k
lpo(t) = Elpr(t) * Zopt(t) = Eal/)t(t - Tr) * N_al/)t*(to — Ty — t)
0 (3.-26)

1 (* ka
S B LR A R

Starting from Fig 3.-2.1 and Fig 3.-2.3, we will try to reach conclusions. By convolution
definition in time domain; firstly, we replace t = &; secondly, apply ¢ shifting; and finally, we
fold the waveform about the origin

se§ -ttt — 1) se(§— )

-
& shifting

0
Fig 3.-3 Graphical convolution.

The maximum output signal will be achieved when s;(§ — 7, + t; — t) matches exactly with
s¢(§& — 1,.), this will occur when

E_TTZE_TT+t0_t_> t=t0 (3-'27)

The output signal expression in frequency domain is

2 2

ka ) ka .
Yo(w) = ’z”t(w)x—’z”t*(w)e‘f“’to =< |, (w)|2e~I@to (3.-28)
0 0

Note that the output signal spectrum does not depend on signal phase. It only depends on the
modulus of the received signal spectrum, and any phase term is removed.
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3.3. Ambiguity Function

We have studied the matched filter output when a non-moving target is detected. But
in the real applications most of the targets are moving. In this case, the received signal from
the target will be [Peyton Z. Peebles Jr, 1998]

sy(t) = aa(t —1,)cos[(wy + wp)(t —1,.) + 0(t —7,) + Pyl (3.-29)

Which has its analytic form as

U(t) = a a(t — 1,)e I @otwd =) +0(t=tD+¢0l = g (¢ — 7,)e I @alt=T1) (3.30)

Where (1) is the transmitted signal taking its analytic form.

Then, the matched filter output signal is

1t ) k
Yo(t) = Ef ap (A — 1,)e S @A) N—alpf(to — 1, —t+)dA (3.-31)
—0 0

By using the change of variable § =ty — 1, —t+A - A—7, =8 —t;+ ¢

e Upper limit: 1, = +o0
e Lower limit: 4; = —oo
e Differential term: dA = d¢

The integral (3.-31) takes the following form

1+ o (1ern 2ka
Vo©) =5 | =t + et Sy @a

ka? . +oo .
=St [ i) -t + eI
0 —00

(3.-32)

This function depends on time, but also it depends on the Doppler shift. That means that the
matched filter behavior changes.
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Making t =t —t,

ka? . +o .
Po®) = emelet [ (g + et i)
0 ka‘z‘” oo (3.-33)
=S ertwasonr amiont [ i) ot + eseusag
0 —0

Then, we call the term between brackets x(t, w )

+00
x(1,wg) = e~ T®o7 i) P (€ +1)el?adas (3.-34)
Thus
ka? .
Wo(t) = e/ @t (z, 0q) (3.35)
0

Thereby the Doppler shift affects to the matched filter behavior. Note that in (3.-31) the filter is
matched to a non-moving target, but we can redevelop it to match it to a given target moving
at a specific speed.

The functions |x(z,w4)| and |x(z,w4)|? report about the matched filter performance when a
moving target is detected. We can calculate a useful frequency expression from (3.-34)

+00

x(t,wg) = e 0T | (&) Y (§ + D)/t dg

(3.-36)
. 1 [*® .
= e‘f“’orﬁf Y (w) Yi(w—wg)e!*dw

Where ¥, (w) is the Fourier transform of 1, (t). Other useful form is, by using ( 2.-14)
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+00
x(T,wq) = e~ o0t f Yi(E) Yo (€ + Deoatdg
+o0
= e_ijTf gz‘ (E)e_j[w(){:"'d)o] gt(f + T)e—f[wo(f“"f)"'(l)o] ejwdfdf
- (3.-37)

+00
[ Gi©as + 0 st

400
= Ej;oo G (W)G(w — wg) e/ dw

We call |x(t,wy)| uncertainty function and |x(t,w,)|? ambiguity function. Below, we will
revise the uncertainty function properties and the ambiguity function properties.

3.3.1 Properties of Matched Filter Response

e Origin property

%(0,0) = f ¢;<f>¢t<e>df=f e (E)12dE = E,, (3.38)

e Folding about 7 and wy,

+00
x(=7,—wq) = e"“"’ff Pi(§) Y (€ — D)e/0aldg (3.39)

By the change of variables ¢’ = ¢ —17 - é =&+ 1

+00
X(~1,—wq) = 9T [ Pi(E + 1) (e DAL = ety (T,0)  (3-40)

— 00

It indicates that x(t,w,;) is symmetric in first and third quadrants of the complex
plane.

e By the same way, we can show that x(t,wy) is symmetric in second and fourth
quadrant

x(—7, wg) = efoT f Wi (©) o (€ — Deloatdg

L . +oo ) , 3.-41
T oot [ i@ + 1) e (€I e D (3-41)

= e/®aTx* (1, —wy)
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e Cutalongt axe

+00

x(7,0) = €207 | i (9) Yr(§ +1)dE = Ry, (7) (3.-42)

Note that the cut x(z, 0) is the autocorrelation function of 1, (t)

e Cutalong w, axe

+0o

1
x(0,wy) = o Vi (w) Y(w — wg)dw = ERq,tlpt(—a)d) (3.-43)

— 00

Via the equation ( 3.-43 ) we can know how w, affects to the matched filter response
when it is maximum.

3.3.2 Properties of Ambiguity Function

e According to the definition of ambiguity function

+00 2

eSOt | () (€ + D)l et dg

lx(z, 0)|? =

2 (3.-44)
< |x(0,0)|> = E,,* = E;°

+o00

i) Y (€ + 1)el b dg
= 4E*

Where Ey, ,E; and E; are the energies of the analytic signal, complex envelope and
real signal respectively It means that the maximum will be accomplished when the
filter is fully matched.

e The area of ambiguity function is constant independent of the signal waveform [D. A.
Swick, 1969]

+00 400
f f lx (7, wy)|?dTrdwy = 2nEy, = 2nE; = 8nE; (3.-45)
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e In the same way as (3.-39), the symmetry in first and third quadrants of |x(t, wg)|? is
can be demonstrated in the following way

1 [+ . z
(7, ~w)I? = ‘E | v v+ oge oo

, 2
w'=wtwg

(3.-46)

1 [* .
Ef Y (w —wg) Ve(w)e 1“Tdw'

= |x* (7, —wg)|* = |x(7, wg)|?

—00

e To finish, we demonstrate that the ambiguity is symmetric in second and fourth
quadrant by writting

2

Ix(—7, wa)|? =

1 [t )
Ef Vi (w) ¥Y(w—wg)e Tdw

w=w-wg |1 [T% L, 2 (3.-47)
_— Ef PHw' + wg) Pe(w)e /@ FoaTdy'| =
= |x*(r,~wa)|* = |x(r,—wa) |?
3.3.3 Examples
e Square pulse
Let us assume the following transmitted signal
t
s¢(t) = Arect (?) cos[wot + o] (3.-48)
Its complex form is
t\ TF ) wT
gi(t) = a(t) = Arect (?) — G(w) = AT sinc (T) (3.-49)

Thus the matched filter response will result
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2

ka* .
Yo(t) = N—ef(“’d“"o)fx(r, wg) (3.-50)
0

We focus on the uncertain function, x(t, w,),

+o00

x(1,0q) = f 9:(O)ge(E + 1) eJoatag

- (3.-51)

= A? J-_+°° rect (%) rect (f ; T) eJwasgé

Note that the integral term seems a Fourier transform between the variables ¢ and w,. To

understand the behavior of the term rect (;) rect (%), a graphical analysis is carried out.
Let us suppose T = —T + At, where At is an infinitesimal time delay, this case is illustrated by
Fig 3.-4.
At
T 0 T
2 2

Fig 3.-4 Ambiguity Function of Square Pulse, T = —T + At.

Thus, the result of the multiplication is a square pulse whose width is At. If At increases, the
width of the pulse too.
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Now, let us suppose that the two squares are perfectly centered (T = 0).

T 0 T

2 2
Fig 3.-5 Ambiguity Function of Square Pulse, T = 0.

In the same way as in the preceding case, it results a square pulse, but, whose width is T.

Thereby, a 7 shift implies to modify the width of the resulted pulse. By ( 3.-49 ), we can observe
that the width of the pulse affects to the amplitude and scale factor of the spectrum.
Furthermore, the central point of the pulse depends also on 7.

Thus,

r(o ol

lT]\ _jwar @a T
x(t,wg) = A?T|(1——| e’ 2 sinc| ————= (3.-52)

T 2
Then we focus on the cuts |x(0, wy)| and |x(z, 0)]. They can be written as
wygT
[x(0, wy)| = |A2T sinc <%>| (3.-53)
|zl T
_ |42 _ENV A (= .

x(z,0)| = |4 T<1 . —A(T) (3.-54)

Where A is the triangle function.
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Fig 3.-6 and 3.-7 illustrate these cuts.

(0, wg)|
AT

10mr 8w 6m 4m 2 0 2n 4 6m 8r  10m wgy

T T T T T T T T T T

Fig 3.-6 Ambiguity Function of Square Pulse. Cut |x(0, w,)|.

|lx(z, 0)]

AT

-T 0 T T

Fig 3.-7 Ambiguity Function of Square Pulse. Cut |x(t, 0)].

The cut |x(0, w,)| is the autocorrelation function for a sinc function; it describes the behavior
of the matched filter facing moving targets. Note that the output signal fluctuates, this fact
supposes a loss of the performance of the matched filter. The cut |x(t,0)| is the
autocorrelation function for a square signal.
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e Hopping frequency pulse

Now let is suppose a pulse which has two different frequencies in two different instants. Its it
complex envelope is

g (t) = Arect (%) el(@1td0U®)t (3.-55)

Where U(t) is the step function. Note that when —g < t < 0 the frequency is w,, and when

o0<t< gthe frequency of the signal is w; + Aw. Thereby, the uncertain function is

x(T, 0q) = f i ©)ge(€ +1) eJoatdg

T

+o0
= AZ ] rect (i) ej(w1+AwU(‘>;))€ rect (E + ) e_j((‘)1+AwU(€+T))(€+T)ejwds;dg
Y T T

il N (3.-56)
= A2 f rect (i) rect (‘f_f) £/ QU -017-B0U G +DE-B0UE+D)T) g jwaf g
- T T

, +oo & E+1\ .
= p2e-iot [ yect (_) rect( _) I8 (UEOF-UE+DE+D) gjwat g
o T T
In the same manner as ( 3.-52 ), the integral term seems a Fourier transform, and also, it
possesses a square function whose width and its central point depend on 7. However, it takes

an exponential term, which produces a delay, §(7), in the signal that depends on t. This fact
provokes that the energy of the signal is concentrated in a time instant as follows.

2 sinc (3.-57)

In the same way as the preceding example, we calculate the cuts of the ambiguity function

T—-46(0

x(0,wy) = A?T sinc (wdT()) (3.-58)
=)

x(1,0) = A%T (1 - g) sinc( Z(T)) (3.-59)
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Chapter 4. Pulse Compression

When a wave propagates through a channel, undesired effects affect to the
transmission. One of these effects is the entering of noise in the receiver system. We can
diminish some of these effects via applying signal processing techniques in order to improve
the detection of the target.

A quality measurement for communications systems is the peak signal power to average noise
.S L . . . S

power ratio, N—° A good detection is achieved when this ratio is large. We can get a large N—O by
0 0

increasing the transmitted energy. This can be done by transmitting along longer time interval.
However, in pulsed systems, increase the time transmission produces many blind ranges since
the transmitted pulse masks nearby targets; thus the performances of the radar are

decreased. Another way to get a good fl—o may be emitting a high peak of energy during a short
0

time instant. This method requires to produce a high stable peak of power during the
transmission, and it is quite difficult since it imposes stringent requirements to the design of
the transmiter and modulator.

. So . . L
The pulse compression gets a N—° improvement by transmitting a long pulse and compressing it
0

in the receiver, so that range resolution is not degraded. There are several forms to compress a
pulse, and this chapter is focused on compression methods which use frequency modulations.

In the beginning of this chapter, we study the basic concept of pulse compression; next, we
focus deeply on usage of FM laws to achieve the compression. Additionally, we study other
techniques to carry out the pulse compression.

4.1. Basic Concepts

Let us suppose the waveform illustrated in Fig 4.-1, [F. Quesada et al., 2010]

Transmitted Sigﬁal
Instantaneous Frequency

/2 /2

|

Fig 4.-1 Transmitted Signal. Pulse Compression Basic Concept.
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The signal is formed by two frequencies, each one being transmitted for % interval.

Next, we assume the block diagram for the receiver system as Fig 4.-2 shows

BPF |>|Detector}» Pelay |
etector
fl

BPF = Detector

f2

=
¥

Fig 4.-2: Block Diagram. Pulse Compression Basic Concept.

As Fig 4.-2 depicts, f; and are splitted by the band pass filters, then f; is delayed z respect
1 2 1 2

f>- This delay provokes the energy in f; transmission period is added to the energy signal in f,
transmission period.

Instead of using two just frequencies and the block diagram illustrated in Fig 4.-2, a matched
filter and either frequency or phase modulation are used in more practical systems.

4.2 Linear FM pulse (CHIRP)

The pulse CHIRP consists of linear frequency modulation, thus it is defined as [Peyton Z.
Peebles Jr, 1998]

t 4
s(t) = Arect (;) cos (a)ot + ¢ + Etz) (4.-1)

Where A, T, wg, and pu are positive constants and ¢, is an arbitrary phase angle. The
parameter u defines the instantaneous frequency slope.

Aw (rad
U=— (—) (4.-2)
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Instantaneous Frequency

Frequency

Time
Fig 4.-3: Instantaneous Frequency for various values of . pq < pu, < usz.

Thus, the instantaneous frequency is calculated as

ae(t) d TR
P — —_ — — = 4--3
w; It dt[w0t+¢0+2t ] wq + ut (4.-3)

In order to study the CHIRP pulse, we do an analytic analysis of ( 4.-1). Therefore, we use the
following signal form by using ( 2.-22).

t\ o .
¥ (t) = Arect (T) o5t pi@ot+o) (4-4)
Thereby, the reflected back to the receiver signal takes the following form

P (t) = ap,(t — 15)e/@alt=mR) (4.-5)

Where a is a constant related to the amplitude of the received signal.

The signal in equation ( 4.-5) is filtered via the following filter response

ka
z(t) = x_l/)t*(to — 7, —t) (4.-6)
0
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Therefore, we obtain in the output of the matched filter

ka? . ~
Yo(t) = N_el(wo+waz)(t ) x(t — tg, wg) (4.-7)
0

Now we focus on the term x(t — ty, wg), it is the uncertain function (section 3.3).By taking
T=1-— to

+0o

x(t,0q) = e [ (&) Y (§ + D)el¥afdg (4-8)

And, by replacing (4.-4) into (4.-9)

. + 00 5 _ -E";z .
x(Tde) = e_]wo‘ff Arect (T) e 125 e j(wos+do)
Arect (ﬂ) ej%(f+r)2ej(wo(f+‘r)+¢0)ejo)d{d€ _ (4.-9)
T

+oo
A2e5T f rect (%) rect (5 ;: T) ej%(zrerfz)ej“’dEdf

Equation ( 4.9 ) seems a Fourier transform. The function into the integral,
rect (%) rect (%) ef“’df, is a square function which has a delay term, and whose width

depends on the variable 7. Additionally, there is a quadratic delay term that depends on 7 and
&. Thus it results

AT 1—ﬂ eI 9aTgine |- 1_ﬂ (ut+wy)| —T<T<T
x(t,wq) = T 2 T |WET Pa ST=s (4-10)

0 elsewhere

Since ( 4.-10) is a complicate function, ( 4.-10) cuts are often used to observe its behaviour. The
most important and useful cuts are

ar (1= e gine (A2 (1| —r <<
x(r,wq = 0) = T )¢ ST T =TS (4.-11)

0 elsewhere
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And
T
x(t = 0,wy) = A%Tsinc [E a)d] (4.-12)
We illustrate these cuts in Fig 4.-4

x(t,0) x(0, wq)

AT? AT?

A N
\/ 0 Vi 0 “d

s 21 12 s | Coonom o oam |

o N M | Bf T T T T

Fig 4.-4: Cuts of Ambiguity Function of CHIRP Pulse.

Also it is interesting to observe the contour of ( 4.-10 ) by normalizing and fixing the signal
amplitude at —3.92 dB, as

Wq
Slope =—p 39748

21T
Aw

Fig 4.-5: Contour of Ambiguity Function of CHIRP Pulse.
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Conclusions:

As (4.-11) equation describes, the function sinc depends on 7, wg4, and u. The u dependency
provokes a slope variation in ( 4.-11 ) contour. Therefore, u is an important design variable.
Note that the maximum of x (7, w,) is accomplished in T = 0 and wy; = 0, and this situation
corresponds with a full matched case. Also the x(t,0) cut shows that the maximum value
produced by the matched filter is situatedint =t —t; =0 — t = ¢, as it was explained in
section 3.2. If we account for the Doppler effect, a maximum value deviation and attenuation
are observed -they are very undesired effects since they will affect the compression
capabilities of the algorithm. The following figure depicts a 3-D representation of x(7, wg;).

|X(T, wd)l

Wy

Fig 4.-6: 3D Ambiguity Function of CHIRP Pulse.

Spectrum of CHIRP pulse

To finish the study of CHIRP pulse, we analyse its spectrum [Peyton Z. Peebles Jr, 1998]. By
taking the complex envelope of (4.-5) we write

t u
g(t) = Arect (?) ejitz (4.-13)

Next, we apply the Fourier transform to it

too t ihe2 . T/2 ile2 ,
G(w) = f Arect (T) elzt eTj0t gt = Af ezt ejwt gt (4.-14)
o -T/2

Next, making the variable change x = \/7% (t - %)
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e S
. Upperlimit:xu:\/% = /MTT(l—Z—

G- 7
e Lower limit: x; = —\/%(%4-%) = _\/r%(l +%)

e Differential term: dx =\/%dt

Thus

N7 Xu @ U Xu @ Xlo@
G(w) = A\[Ee]?"2 f eI dx = A\/Ee]?"2 [f eI7 dx — f el7** dx] (4.-15)
T X1 T 0 0

The integral terms are related to the Fresnel integrals, C(x) and S(x), and they are defined as

X

T
— Z g2 .
C(x)—_f;) cos(zf)df (4.-16)
X T 5
S(x) =f0 sin (Ef )df (4.-17)
Note that
C(—x) =—-C(x) (4.-18)
S(—x) =-S(x) (4.-19)
Both functions are depicted in Fig 4.-7.
;C(x)
sx) 4
0 0‘5 i 1‘5 é 2‘5 é 3‘5 4
X

Fig 4.-7: Fresnell Integral Functions.
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Note that these functions present the next limits

1

lim C(x) == (4.-20)
x—>+00 2
1

lim S(x) == (4.-21)
x—+00 2

Therefore, by using (4.-17) and ( 4.-18 ), we obtain

(4.-22)

G(w) = A\/gej%wz [(C(xu) + C(xl)):/l_zj(S(xu) +S(x)))

There are two important terms in equation ( 4.-22). The first one is a quadratic shift phase

M2
J2%7, and the other one is the complex term inside the brackets. This term (inside the

brackets) depends on the values x,, and x;, which are the upper and lower limits, and these
variables depend on as much to the variable f as to the product AfT. Thereby when AfT
increases, the complex term approaches its asymptotic value. According to the fig 4.-7, the
amplitude of C(x) and S(x) is reduced it AfT increases. This fact provokes a more stable
phase and modulus; Fig 4.-8 and Fig 4.-9 illustrates this behavior. Thus, when AfT — 40

term, e

; j W3T | .
G(w) = A\/Eef%“’2 [ﬂ] = AT z_ne—J;’A—wﬂ% (4.-23)
T V2 AwT

The complex term suffers a % phase shift.

AfT = 23.3

Normalized Frequency !

Af
Fig 4.-8: CHIRP Pulse Spectrum. AfT = 23.3.
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AfT = 1333

1 t t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I—fo
Normalized Frequenc
ol q y Af

Fig 4.-9 CHIRP Pulse Spectrum. AfT = 133.3.

4.3 Sidelobes suppression

One of the matched filtering issues is the sidelobes presence in the output signal.
Thereby, a low scatter target may be masked by a larger scatter target as Fig 4.-10 shows [S. D.
Blunt & K. Gerlach, 2003].

Detected Signal

Target or
sidelobe?

- o

Time
Fig 4.-10: Small target masked by another bigger one.

54



Investigation in Pulse Compression Techniques for Radar systems. Pulse Compression
—

There are several strategies that can be used to decrease the sidelobes level. In this section we
study three of them. They are:

e Mismatched filtering.
e Signal design by using FM laws.
e Adaptive pulse compression algorithms.

The last one is discussed less in detail, and more information can be found in [B. Zrnic et al.,
1998], [S. D. Blunt & K. Gerlach, 2003], [S. D. Blunt & K. Gerlach, 2004] and [S. D. Blunt et al.,
2009].

4.3.1 Mismatched filtering

As it is depicted in Fig 4.-4, where an ambiguity function cuts are shown, it is possible
to observe an undesired effect namely, the sidelobes presence. In order to reduce them, we
can place another filter at the output of the matched filter. Because the filters are connected
in cascade, the overall system is mismatched, thus the second filter is known as mismatched
filter [Peyton Z. Peebles Jr, 1998]. We study several filter transfers functions to achieve the
sidelobes taper.

Dolph-Tchebycheff Filter

The pulse compression sidelobes problem in time domain is analogous to the antennas
sidelobes issue in the spatial or angular domain [Peyton Z. Peebles Jr, 1998]. Thus equivalent
methods can be used in sidelobes reduction. The Dolph-Tchebycheff filter implements an ideal
transfer function. This fact means that it is unrealizable, therefore, it is not a practical filter.
However, there are methods to approximate this filter transfer function with other similar but
more practical transfer functions.

Taylor’s Filter

The Taylor’s filter consists of a practical approximation to the Dolph-Tchebycheff distribution
[Peyton Z. Peebles Jr, 1998]. Taylor’s filter increases the main lobe and decreases the
sidelobes a below specified level. Also the main lobe becomes wider in time.

The normalized transfer function is

_ 2nmw W (4-24)
Hr(w) = Kril+2 E, cos( . ) rect (_w) -
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Where 71 is an integer design parameter. Also

1
K =———— 4.-25
T+ 230 By ()
-1
m2oy?
—1\)ym — =
Fn = =D 1_[{1 [AZ +(n— 0.5)2]} m=123, .. (4.-26)
n=1
0 mz=n
1
A = =cosh™1(1075L/20) (4.-27)
T
=2
0% = " >1 (4.-28)
A? + (1 — 0.5)2
And Aw is the FM modulation index used to build the transmitted CHIRP pulse.
After compressing the received CHIRP signal, the mismatched filter output is
-1
(t)—KAw 2 E,, si (Awt+ ) (4.-29)
s(t) = Kp o , m Sinc > mn -
m=—(n-1)
Where F_,, = F, and Fy = 1.
The —3dB pulse width is
TT = O'TTD (4.-30)
Where
/2
4 10-SLL/20\ 1
™ =5 [cosh‘l(lo‘“”“L/zo)]2 — [cosh‘1 (—\/7 >] (4.-31)

The signal to noise ratio at Taylor’s filter output is related to the matched filter output as
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n-1 SA
1+2 Z szl <N—O> (4.32)
0 Taylor

Where F,, is calculated in equation (4.-26).The bracketed factor represents the signal to noise

ratio loss.

Truncated Taylor’s Filter

If we observe the F,, values, which are tabulated in [Peyton Z. Peebles Jr, 1998], we find that
2

the largest value is F;. We can get a simpler Taylor’s response by truncating the Zf;;ll E,” to
F; [Peyton Z. Peebles Jr, 1998]. Therefore the new normalized transfer function is
1 2w )
Hr(0)|truncated = TZFl{l + 2F; cos (m» rect (E) (4.-33)
Another form of (4.-33) is
, (27w W
Hr (@)l truncatea = {k + (1 — k) cos g jrect (E) (4-34)
Where
1 - 2F1
— (4.-35)
14+ 2F;
A more generalized form of (4.-34) is
2w w
Hr (@) truncatea = {k + (1 — k) cos™ (m)}rect (E) (4.-36)
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4.3.2 Signal Design by using FM laws

Others method to achieve low sidelobes levels exists. One of them is the usage of FM
laws. This method do not need mismatched filters [Peyton Z. Peebles Jr, 1998]. The analysis of
these signals is quiet difficult, but when the AfT product is high, we can use approximations.
The FM laws design is based on the Stationary Phase Principle, which is explained below.

Stationary Phase Principle

Given the following envelope function g(t) = a(t)e/?®, its Fourier transform is defined as

+o00 + 00
G(w) =j a(t)eje(t)e—jwtdtzf a(t)elfO-jotge (4.-37)

—00

Therefore, the phase term of (4.-37) is 8(t) — wt. Given a t, using Taylor approximation, it can
be written

0(0) — t ~ (0) ~ ot + T

d?[6(t) — wt] (t —1)?
+ di2 le=z > +
=60(1) —wt + [9(1) — w](t —-7)+

(4.-38)

6(7)

— -

Where the cubic and higher order terms are neglected; and where f(x) is the first derivate of

f respect x and é(r) is the second derivate. This approximation is valid in the vicinity around
& &

T.T+5>t> T35

Given a @ = A, that meets this condition 8(t) — A = 0 the expression ( 4.-38 ) can be simplified
as

G(t)—/ltze(r)—/lr+?(t—r)2 (4.-39)

Replacing the phase term in the integral expression (4.-37)
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T+ [9(1) /11'+9(T)(t -7 ]
G = f Za@e’
-

2

. Q
dt = a(t)ef["(f)‘“]f et/ 7Pl dt  (4.-40)

_£
)

Next, making the variable change x = / (t ) - (t—1)%= IB?)I X2

|9(T)| (

e Upper limit: x,, =

e Lower limit: x; =

e Differential term: dx =

Thus

T, 2
2

X
a(r)ellf® ’”]f et dx
—x,

T o uo
6 = /|é(r)|
(4.-41)

- | é?ﬂl a(0)el0D=2T1 2[C (x,) + jS (x,)]

Where x,, = lef:)l ( ) and C(x) and S(x) are the Fresnel integrals.

If |é(r)| > 1 is assumed the Fresnel integrals can be replaced by their asymptotic values. This

fact leads to

GA) =

T o-a1 o[ L o 1] / 2m jle@-1r27] )
|é(T)|a(T)ef z[ﬁi]ﬁ] |é(T)|a(T)e 4 (4.-42)

The stationary Phase Principle has been defined in time domain, this procedure is interesting
in the frequency domain too. Starting from arbitrary spectrum G(w) = A(w)ej"’(‘”), applying
inverse Fourier transform

1 [t . . 1 [t , _
git) = %j A(w)el?@eivtgy = %j A(w)ele@+iotg, (4.-43)

Given a fixed frequency A the phase term of (4.-43) is approximated by Taylor as
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dlo(w) + wt]

p(w) + ot = [p(w) + wt]|y=1 + B lw=2(w —2)
d2 - 2
+ [qo(dazz-i_ wt] |w=l (w 2 ) (4-43)
()

=) + At + [¢pQ) + t](w — /1)+—( —21)?

Where w is evaluated in the vicinity of 1 (A +% > > - %) and the terms higher than the

second order have been neglected. Given a t that fulfils this condition (1) + 7 = 0, the
expression ( 4.-44) is simplified as

o)+ wt = pd) + A1 +M( — 1)? (4.-45)

We can substitute the phase term of the integral in equation (4.-43)

[ N
1 M3 P@). 2
g(@) = o f A(d)e’ ((p(A)”H z @A )dw

(4.-46)
A

21

¢
pEL
ej((p(/l)+/1‘r)f z eij—l(p(zw)l(w—/l)zdw

2

Now, making the change of variables y = I(’Esr—w)l(a) -1 - (w—21)?= y

)

1§ (w)l

e Upperlimit: y, = |¢(w)

/N

¢
2

e Lower limit: y, =

~—
I
|
=

e Differential term: dy =

Thus the integral ( 4.-46 ) is rewritten as

Yu i
g(@) = AD) o f et gy

6] .

(4.-47)
1 .

R (p(D)+21) i

= ’n|¢(w)|Au)e“M D [COn) +jSO)]
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Where y,, = M(ﬁ).

T 2

In same way as in time domain, if | (w)| > 1 is assumed the Fresnel integrals can be replaced
by their asymptotic values. This condition leads to

1 , 1 1 1 , T
_ (@()+27) N W)+AT+] .
9@ = ,’I@(w)l A)e”? [ﬁi’ﬁ] = Ian(b(a))l AW ) (aas)

Relation between Stationary Phase Principle in time domain and in frequency domain:

Starting from the preceding expressions and preceding conditions, we can relate the obtained
results

0(r) =2 —>6(T)=fldt=h

(4.-49)
o) =—-1t - Q) = jr diA = -t (4.-50)

Equating the amplitudes of (4.-39) and ( 4.-43 ), we get

6] = AD) = | a()
Bl B |é(r)|a 4 (4.-51)
9] = a(r) = ————AQ)

g =a@®) = —= (4.-52)

21| ¢ ()|

We can find a relationship between the Group Delay and the inverse function of the
instantaneous frequency. Similar relations can also be established between the instantaneous
frequency and the inverse function of the Group Delay too

wi(®) =1 =T;' (1) (4.-53) T,(A) = -1 =w (1) (4.-54)

These two couples of equations are the most interesting ones for the signal synthesis problem.
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Signal design using Stationary Phase Principle.

This technique starts specifying two of the following functions: a(t), A(1), 6(t) and @(1);
and the preceding results are used to find the other functions. A couple of related options are
not interesting to be selected. For example, 6(t) and @(1); since they are directly related
through equation (4.-49) and (4.-50). The specifications of a(7) and 6(7) or A(1) and @(A) are
not useful, because we could use the Fourier transform and inverse Fourier transform applied
to one pair, respectively, to obtain the other.

The remaining options are [a(t), p(1)], [A(1),8(7)] and [a(tr), A(1)] . Of these combinations
the last one is the most interesting.

Here, we remember that the matched filter output studied or the uncertain function is

+00
— 2 ,—jwgé
X009 = [ a@?e st ag (a.s5)

+o0
x(t,0) = j A(§)%e J%TadE (4.-56)

Thus a(t) and A(A) are designed to establish desired cuts of ambiguity function in both
directions.

As to the signal design, we start from ( 4.-53)

Taking da
mﬂzaﬁﬂﬂ%wﬁﬂzk_ (4.57)
dt

By applying equation ( 4.-51), we obtain

A(2)?
2m

AN = a(t) - a(r)?dr = da (4.-58)

2m
Q]

In the same way as the preceding case, this following expression is produced by differentiation
of (4.-54) and substitution in (4.-52)
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Applying d
o) = —1 dif ferentation 6] = |d_;l'1| (4.-59)

Al A(D)?
a(r) = A - a(r)*dr = “) da (4.-60)

2m| @A) 2m
By indefinite integration of (4.-58) or (4.-60)
T 1 A

f a(é)?dé = Ef A(m)?dn (4.-61)

We call P(t) and Q(A) the term on the left of the equal and the term on the right of the equal,
respectively. Therefore

T 1 A
P = [ a@2as=o- [ am2an=ow (a-62)

If P(t) and Q(A) are evaluated in T = o0 and A = oo, we obtain the Parseval’s Theorem. From
(4.-52)

i 1 A? s
P =52 (4:63)
By using double indefinite integration
. 1 (A)?
|(p(0))| =% Wd/‘l-l_Dl (4.-64)
1 ([AD?
lo(w)] =Eﬂ. a0 dA® + D;A + D, (4.-65)
In the same way, from (4.-51)
2
. a(r
|6(D)] =2nf%dr+€1 (4.-66)
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2
|0(w)| = 21 ff 38))2 dt? + Ci1+ G, (4.-67)

According to these results it is possible to design signals that produce low sidelobes in the
output matched filter. We are going to review some practical cases in the next section.

Example of practical signals:
e Moduli of Same Form

Equating a(t) and A(A), by using equation (4.-52)

a(t) 1
- _ (4.-68)
A |2r|e(D)|
lo(V)| = L _k (4.-69)
pD| = om0 .
We obtain a constant |@(1)], then by double integration of (4.-69)
Ky
(p(/l) =ffK0 dA = 7AZ+C11+C2 (4.-70)
Next, relating | (4)| with |é(r)| and using (4.-51) and (4.-52)
1 _a(n) 0 (‘L’ (4.71)
2| ()| TAQ) | 2
600] = = K
)| =—==K; (4.-72)
lp()]

In the same way as (4.-71), we obtain
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Ky
6(1) =.U- K;dr = 7T2+C3T+C4 (4.-73)

Therefore, we obtain the quadratic functions ¢@(4) and 8(t). According to the preceding
results, they agree with the CHIRP pulse. For fulfil the conditions ( 4.-49 ) and ( 4.-50 ), it is

necessary a larger duty cycle and a small frequency excursion. These two conditions are
undesired because larger bandwidth is required.

e Constant envelope pulse.

Now we revise an example developed by Key et al. in 1961. Assuming the following signal

T
a(t) = Arect (?) (4.-74)
, T
2A [+—
AQQ) = % (4.-75)
1+(55)

Equation ( 4.-74) represents a constant pulse of duration T in time domain. By using ( 4.-52), we
obtain

. 1 (A 2T
lo()| = ig(m) =x 12 (4.-76)
TAw <1 + (M) )

By applying integration in ( 4.-76 ) the time delay results as

: 2T T 22
lo(D] =-T4 = j + di=+—tan™?! (—) +C,

A [1 N (&)2] m Aw (4.-77)

Then, setting the constant to be zero (this condition implies ¢ (0) = 0) and again applying
integration
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(A)—f+Tt ‘1[2'1]d/’1—+AwT 2'1t ‘1(21> 1l 1+ 2'1]2 (4.-78)
P = ) 27 Aol M T E T re 2 \bw) T2 Aw '

Starting from (4.-77), the instantaneous frequency is obtained with the inverse function of the

group delay
inverse
T 21 function Aw T
T =4 _tan-1 (2L -1 — . —FT_C et (4.-79)
T, intan ( >—>Td @O =wil@=7F > tan(TT)
To finish, we apply integration of (4.-79)
_AwT T
6(r) = f w; (1) dt == +7ln(|cosfr|) + K; (4.-80)

Other FM laws

Although we have studied waveforms that fulfil the Stationary Phase Principle, other laws that
do not meet this principle can be used too. Any FM modulation may be used to compress
pulses [Peyton Z. Peebles Jr, 1998]. The following figures depict five FM laws which are
studied in the section 5.4.

fi(®
fi(®) \
Af
Af fo
fo
> _ t
< e >
T . T
Fig 4.-12: Even Quadratic FM law. Fig 4.-11: Odd Quadratic FM law.
fi® fi(®
Af +fo
fo
. . S
¢ - - >t
Fig 4.-14: Even Vee FM law. Fig 4.-13: Odd Vee FM law.
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fi@®

Af
fo

T

Fig 4.-15: Stepped Linear FM law.

67



Investigation in Pulse Compression Techniques for Radar systems. Pulse Compression
— ]

4.3.3 Adaptive Pulse Compression algorithms

Several authors have studied compression techniques based on adaptive algorithms.
They consist of a filter coefficients adjustment. These algorithms are used to evaluate the filter
coefficients to their optimum values according to a criterion. Two main criteria are used [B.
Zrnic et al., 1998]:

e Mean square sidelobe level suppression.
e Peaksidelobe level suppression.

The first approach is useful for uniformly distributed clutter case, and the second one is useful
for non-uniformly distributed clutter scenario. Below, we study the Recursive method of Least
Square (RLS), besides, other iterative approaches exist, such as Iterative Reweighted Least
Squares (IRLS) [A. J. Zejak et al., 1991], [A. J. Zejak et al., 1994]; or Minimum Mean-Square
Error Reiteration (MMSE) [S. D. Blunt & K. Gerlach, 2003], [S. D. Blunt & K. Gerlach, 2004], [S.
D. Blunt et al., 2009].

RLS algorithm

Let’s suppose the following transversal filter structure [B. Zrnic et al., 1998]

S

R
N

€r

1N

RLS

Fig 4.-16: Block Diagram of Adaptive Mismatched Filter.

The adaptive criterion is

ley| = TH (4.-81)
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where TH is the threshold and e, = d; —y,. The coefficients are recalculated if the condition
( 4.-82) is fulfilled. According to the RLS formulation, a modified procedure is used to calculate
the filter coefficients.

Assuming j = 1,2,3, ..., L as iteration subscript, and k = 1,2,3,...,N + M — 1 as the values in
k-th time instant, then we carry out the following steps.

e Step 1: Error estimation

e = dk - W,?uk (4.-82)

e Step 2: Gain vector estimation

Uy

AP, ex| =TH;_
K, = 1 + AW P _quy) lexl -1 (4.-83)

Ky elsewhere

Where 4 is the weigthing factor, u; is the input vector, which consists of N samples of the
input signal, and P, is a matrix, which carries information about the reliability of the
estimation. Moreover (-) denotes the Hermitian transpose.

e Step 3: Coefficients calculation. We increment k. Note that the error function depends
on the filter coefficients of the previous stage (k — 1).

1t K >TH;_
Wy = {Wk 1+ Keer el -1 (4.-84)
Wi_1 elsewhere
e Step 4: P, matrix estimation
P, = A (Pe—1 — Kt Pe—1) el = TH;, (4.85)
P._4 elsewhere

e Step 5: Threshold setting
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erry = ekl (4.-86)
MAX_ERR; = max(err) (4.-87)
TH; = § MAX_ERR, (4.88)

Where max(-) represents the maximum value of the vector, and & is a constant related to the
convergence rate, which is close or equal to 1. Note that the threshold is proportional to the
maximum error committed in all iterations.

The algorithm need to initialize the vector w, the matrix Py, and the threshold value TH. Note
that we perform a new iteration to compute the correction coefficients when the error
exceeds or is equal to TH in a time instant. This method attempts to minimize the maximum
error value (Minimax criterion). These adaptive filter are known as self-clutter suppression
filter.

4.4 Other Pulse Compression techniques

The purpose of this section is to review other techniques used in pulse compression.
The goal is the same one as with the preceding techniques.

4.4.1 Pulse Compression by Costas FM

Varying frequency discretely through the waveform is known as frequency hopping
[Peyton Z. Peebles Jr, 1998]. It is possible to compress a pulse built by discrete frequencies.

Let us suppose a total waveform duration, T, and N fractions of T with the same duration.
Therefore

i=123,..,N (4.-89)
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T; is the time interval in which a discrete frequency is transmitted. Thus, we assume N possible
frequencies

w; = wqg + 2midf i=123..,N (4.-90)

Where §f = Tl According to (4.-91) the maximum frequency is

N
Af:]\/@f:F (4.-91)
i

And the time-bandwidth product of the total pulse is

AfT = N2S5fT; = N? (4.-92)

Thereby, the duration of the compressed pulse is é = %

The overall pulse can be viewed as NxN array [Peyton Z. Peebles Jr, 1998], where the columns
represent the frequency that is transmitted in a given instant T;, and the rows represent the
available frequencies. The next figure, Fig 4.-17, depicts an example

To Ty T, T3 T, Ts T¢ T, Tg To
fil®
f2 @
f3 @
fa @
fs ®
fe ®
f7 @
fe @
fo @
f10 @

Fig 4.-17: Costas FM Matrix. Frequency Hopping.

In this example f; is the first frequency transmitted, f, is the second one, then, w, is
transmitted, fg is the fourth one and so on.
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Several ways exist to decide what frequency is transmitted in a given time instant, but, the
most important is the Costas FM method. This method generates frequency hopping
sequences known as Costas sequences.

The Costas FM pulses produce sidelobes down from the main lobe by % for all regions of delay-

Doppler plane. In other words, the main peak decreases rapidly in the |x(0,w;)|?> and
|x(7,0)|? ambiguity function cuts. This fact is desired in applications where small Doppler
shifts are expected.

If N increases, the sidelobes and the compressed pulse width decrease. However, the Costas
sequences () also decrease, since the Costas sequences must meet the following rule: one
frequency per time slot (columns) and one time slot per frequency (rows) [Peyton Z. Peebles
Jr, 1998].

Thus, it is more difficult to find a good performance sequences (there are N. = 4 Costas

sequences for N = 3, thus % = % = 0.667, in other words, the probability of finding a Costas

sequence is 66,7% when the code length is 3; there are N, = 12 Costas sequences for N = 4,

thus %=%= 0.5; and, there are N, = 7852 Costas sequences for N = 12, thus %=
— 19 _16391075).
119750400

4.4.2 Pulse Compression by Phase Coding

A pulse can be compressed by using phase modulation [Peyton Z. Peebles Jr, 1998].
There are two approaches namely, use either binary codes or M-phase codes to perform the
phase modulation. We discuss the basic concept for the binary codes case.

Basic concept

In the same way as Costas FM, the pulse is divided in N fractions (subpulses), whose duration

%, where T is the total pulse duration [Peyton Z. Peebles Jr, 1998]. Each subpulse
maintains the same carrier frequency, but the phase changes between subpulses. It results a

is T, =

waveform with constant modulus and variable phase over T; codes sequences of discrete
values can describe these phase changes. The basic idea consists of designing a code in order
to achieve low sidelobes.

Let us suppose a binary phase coding; the possible phase values are 0 and m (since they are the
values most separated, in terms of the phase signal). The complex envelope of the pulse is
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N t+ (NTH - n) Tn
gt) = Z Arect
TTL
n=1

e]e‘n

(4.-93)
N t+(N;1—n)Tn
= AZ d, rect
n=1

Tn

+1for6, =0

Where A is a nonzero constant and d,, = {_1 for6, =1
L, =

From (3.-42), and in complex envelope terms, the matched filter output for wg; = 0 is

+00

x(z,0) = g7 (&) g(& +1)d¢ (4.-94)

The preceding expression is the autocorrelation function of g(t). By supposing the following
pulse, with N = 6, as shown in Fig 4.-18

g()

+A4

N
o

N~
I

I

I

Fig 4.-18: Pulse Formed by Phase Coding.

According to the expression (4.-94), for T = 2T,, we obtained the signal shown in Fig 4.-19.
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g€ +2T,)

+A

—A
Fig 4.-19: Phase Code pulse delayed by 2T,,.

Thereby, by the product g(§)g(é + 2T,,), it results into the signal shown in Fig 4.-20.

9(&)g(§ +2Ty)

+A2

—A?

Fig 4.-20: Autocorrelation for T = 2T,,.

The area of this function is 0. Next, when t = 0 the signal shown in Fig 4.-21 is obtained.

g(&)?

+A2

Fig 4.-21: Autocorrelation for T = 0.
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In this case, the area is +6A2Tn. According to the process described above, the matched filter
output is shown in Fig 4.-22.

x(7,0)
+6A2T,
AT, AT,
~T /\ T
NV f
—A%T, —A%T, | —A%T, ~A%T,
—242T, —242T,

Fig 4.-22: Pulse Compressed by using Phase Coding.

Notice that we achieve the goal of compressing the pulse with rather low side lobe levels.
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Chapter 5. Simulation Results

This section provides the results and conclusions obtained in this work. We got these
results by using Matlab Tool. We implemented the necessary functions whose information are
available in the Appendix B. Before discussing the results it is necessary to clarify some aspects
of the simulations carried out.

5.1. Considerations

Burst of Pulses

In preceding sections we studied the matched filter output for either continuous or a single
pulse. The results presented in this chapter were obtained by using various pulse replications.
Below we revise a multiple pulses case to interpret better the results.

Let us suppose that the transmitted signal is composed of various replications of a given pulse,
whose complex envelope is g, (t). Thus we can write complex envelope of the complete signal
as [Peyton Z. Peebles Jr, 1998]

N-1

g(t) = Z 9,(t —nT.) (5-1)
n=0

Where T, is the separation between adjacent pairs of pulses; condition T, > 2T; (where T; is
the duration of a single pulse) is fulfilled in order to avoid overlap replicas as Fig 5.-1 shows.

Transmitted Pulses

Fig 5.-1: Burst of pulses.
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Thus, from equation (3.-34) , we can write the uncertain function of the complete signal as

N-1N-1
x(t,wq) = 2 2 e/n@alry. (t — (m — n)T,, wg) (5-2)
n=0 m=0

Note that (5.-2) is the sum of shifted replicas of x;(t) by (m — n)T,, and weighted by a phase
factor.

By takingk =m —n

0 N-1+k

x(T,wq) = Z Z e/m=BwaTry (1 — kT,, wy)
k=—(N-1) m=0
( N)—1Tx—1—k (5.-3)
+ efm=Kwalry, (7 — kT, wy)
k=1 n=0
Considering the following mathematical identity
M B sin (M)
z eJnB — eJME—’B (5.-4)
n=0 sin (7)
We can rewrite (5.-3) as
N-1
j(N-1)w Ir
(1, wg) = e/ N-DwaF z (N — [kDx,(z
k=—(N-1) (5.-5)

T [sin((N — [kD)T,wq/2)

_ kT —jkwd7
r®a) € OV — KD sin(T,0q/2)

Note that the replicas of x;(t) are centered in kT,-delays for k = +1,+2, ..., £(N — 1), with
amplitudes N — |k]|. Finally

N-1
B sin((N — [kDT,wq/2)
x(r 0ol = kz_;_l)(zv ~ kDG = kT 00| [ e )
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sin((N-|k)Trwga/2) q2m
(N-|k]) sin(Trwq/2) Ty
integer), and then it decreases rapidly. This fact provokes that the signal level increases and
decreases repeatedly.

Therefore, the term accomplishes it maximum in wg = (where q is an

Doppler sign

The criterion used to fix the Doppler sign varies between authors. We assumed that the
Doppler sign is positive when target is moving away, and negative when the target is
approaching the radar.

Pulse detection

All the simulations have been carried out by using a non-coherent detection system to get the
baseband information of the received signal. Thus, there is not negative level of signal of the
detected signals. We used the detection diagram block depicted in Fig 5.-2.

FullWave
T'(t) D|ode |T(t)| LPF rdet(t)
bridge

fc

Fig 5.-2: Detector used for the simulations.
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5.2. Linear FM pulse (CHIRP)

The first set of results were carried out for understanding the compression process.
For this purpose we simulated the compression of a CHIRP pulse in different situations. First,
we started from varying the pulse parameters in the presence of nonmoving target to observe
the spectrum and the compressed pulse behavior. Next, we simulated the CHIRP pulse
compression for moving targets and calculated the ambiguity functions. Finally, we simulated a
pulse compression in the presence of two nearby targets, namely a big scatter target and a
small scatter target.

5.2.1 AfT-product dependency for CHIRP pulse

As it was studied in section 4.2, the AfT-product affects to the quality of the spectrum of a
CHIRP pulse. Thereby it also affects to the compressed pulse. The parameters used to probe
the AfT dependency are shown in Table 5.-1.

Table 5.-1: Simulation 1.
fo =10 [MHZz]
prf = 3 [KHz]

T = 166.667 [us]

Number of pulse =5

We performed a Af variable sweep for values included between 100KHz and 1MHz with a
50KHz step. The figures included in this section are the most important ones.

Fig 5.-3 and Fig 5.-4 have been obtained for Af = 150 [KHz], and the AfT-product is equal to
25. Note that a peak amplitude appears in t = 166.667 [us] approximately. This time instant
corresponds to the end of the transmitted pulse (it means that the target is at zero distance),
and the surrounding level of the signal is much lower that the main lobe. Fig 5.-3 confirms the
functionality of the pulse compression by using CHIRP pulses. By focusing on the spectrum of
compressed signal (Fig 5.-4), we note that the width of the spectrum is equal to 2Af because
of the fact that the instantaneous frequency is defined between f;, and f, + Af (Carson

bandwidth rule), besides the spectrum is symmetric with respect to f;, + Af/z.

If the AfT-product increases, the width of the compressed pulse decreases. We can note this
fact by observing Fig 5.-5, Fig 5.-6 (for Af = 300 [KHz]); Fig 5.-7, Fig 5.-8 (for Af =
600 [KHz]) ; and Fig 5.-9, Fig 5.-10 (for Af = 900 [KHz]). Note that the wider the spectrum of
the CHIRP pulse, the narrower the compressed pulse and the lower the level of the second
lobes. Besides, the spectrum quality increases if AfT-product increases due to the Fresnell
integrals terms (see equation (4.-22) in section 4.2).
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. T T T T T
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Fig 5.-3: Simulation 1, Detected Signal AfT = 25.

Matched Filter AfT=25
1 T T T T

350

0.9r

0.8

0.7r

0.6

0.4

0.3

9 9.5 10 10.5 11
Frequency [MHz]

Fig 5.-4: Simulation 1, Detected Signal AfT = 25.
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x 10% Detected Signal for Af*t=50
25 T T T T T T

1.5_ : 3 =

0.5F .

0 ) ) YaY 2~ 1 )
0 50 100 150 200 250 300 350

Time [usec]

Fig 5.-5: Simulation 1, Detected Signal AfT = 50.

Matched Filter AfT=50
1 T T T T

0.9r

9 9.5 10 10.5 11 11.5 12
Frequency [MHZz]

Fig 5.-6: Simulation 1, Detected Signal AfT = 50.
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50
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Fig 5.-7: Simulation 1, Detected Signal AfT = 100.

Matched Filter AfT=100

300

350

0.9r

0.8r

0.7r
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Fig 5.-8: Simulation 1, Detected Signal AfT = 100.
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Fig 5.-9: Simulation 1, Detected Signal AfT = 150.
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Fig 5.-10: Simulation 1, Spectrum of Transmitted Signal AfT = 150.
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In order to summarize the behavior described above, Fig 5.-11 depicts the secondary lobe level
and evolution of pulse width for all values of AfT used in this experiment. Fig 5.-11 confirms
that the pulse width decreases if the AfT-product increases. Besides when the AfT product is
very large the reduction of the width of the compressed pulse is smoother (it has an
asymptotic behavior). Also the secondary lobes are smoothly decreased by increasing the AfT
product over 50.

Evolution of Secondary lobe level Pulse Width Evolution
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Fig 5.-11: Simulation 1, Secondary Lobe Level and Pulse Width vs AfT-product.
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5.2.2 CHIRP pulse compression for moving targets

We continued with moving target simulations. For these simulations we fixed the parameters

as is shown in Table 5.-2.

Table 5.-2: Simulation 2.

fo = 10 [MHz]
Af = 400 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5

We performed five simulations setting the distance to the target to zero and the next values of
Doppler Effect: f; = —15,5,0,5 and 15[KHz]. The compressed pulses are shown in Fig 5.-12.
Note that the maximum of the compressed pulse appears in different time instants despite the

fact that the range to the target does not change. Besides the amplitude of the compressed

signal varies if the Doppler Shift varies.

Compressed Pulses
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0.5

Detected Signal for Moving targets

||

— -15Khz
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—— 5Khz
—— 15Khz

145 150 155 160 165 170 175 180
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Fig 5.-12: Simulation 2, Detected Signals in presence of Doppler Shift.
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The ambiguity function provides information to observe better the Doppler Effect in the pulse
compression. Thus, we calculated the ambiguity functions for different values of Af and fixing
the other parameters as in the preceding simulation (Table 5.-2). Fig 5.-13, Fig 5.-14, Fig 5.-15
and Fig 5.-16 illustrate the more representative ambiguity functions obtained for different
values of Af (100,300,500 and 1000 [KHz] respectively).

By observing from Fig 5.-13 to Fig 5.-16, we note that the maximum values of the filter output
are shifted along the time axis, if the Doppler frequency varies. This fact produces an error in
the range measurement when a target is moving. The straight lines obtained by connecting
two maximums have different slopes in the different cases. This slope depends on the
modulation index u (see Fig 4.-3 in section 4.2). If u increases, the slope tends to the vertical
axis. In a full matching case (ideal case) the slope is c. Furthermore, the filter output
fluctuates, thus it complicates the detection of the target. As it was commented in section
5.2.1, the larger AfT-product, the wider the pulse.

Ambiguity Function
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Fig 5.-13: Simulation 2, Ambiguity Function AfT = 16.6667.
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Fig 5.-14: Simulation 2, Ambiguity Function AfT = 50.
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Fig 5.-15: Simulation 2, Ambiguity Function AfT = 83.3333.
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Fig 5.-16: Simulation 2, Ambiguity Function AfT = 166.6667.

By analyzing the maximum positions in the preceding results, we notice that the distance
between maximums do not differ for different values of Af; the separation between
maximums depends directly on the transmission instant, in which the transmitted pulse is
active. In the preceding simulations the duty cycle was Tprf = 0.5. Thus for a lesser value of
prf (maintaining the same duty cycle), the maximums are nearer, as it is shown in Fig 5.-17.
This ambiguity function were obtained via fixing the prf to 1.5 [KHz]. However if we reduce
the prf of the transmitted pulse, the blind ranges increase.

The Chapter 6 provides information about a novel method to solve the issues commented
above (maximum values deviation and output signal fluctuations). It consists of identify and
compensate the Doppler shift by using tunable filters.
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Fig 5.-17: Simulation 2, Ambiguity Function AfT = 166.6667 and prf = 1.5 [Khz].

5.2.3 Small Target hidden by a larger target

As we commented in preceding sections, a small scattered target may be masked by a larger
target, this effect is known as overshadowing (the large one overshadows the small one). This
fact is due to the sidelobes presence. We simulated an overshadowing case. For this simulation
the values were fixed as shown in Table 5.-3.

Table 5.-3: Simulation 3.

fo = 10 [MHz]
Af =800 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
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Fig 5.-18 displays a target overshadowed by another bigger target due to the sidelobes. This
fact causes a bad detection of the smaller target. Thus, it is necessary to reduce the sidelobes
to improve the target detection. Additionally, a large level of sidelobes could cause false
alarms.

x 10 Detected Signal

Total Detected Signal

asl | Detected Signal (Small Target)

N
o
T

N

Compressed Pulse
=
[6)]
T

0.5

e —

$ o et 0 | 3 AL LR OO WA e

130 140 150 160 170 180 190 200
Time [ps]

Fig 5.-18: Simulation 3, Overshadowing Target by using CHIRP Pulse.
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5.3. Sidelobes suppression. Mismatching Filtering

This section provides information about the sidelobes suppression by using
mismatched filters. We have implemented two filters, the Taylor Filter and its truncated
version. We start the study with the second one.

5.3.1 Truncated Taylor’s Filter

In this section we observe the result of pulse compression by using a truncated Taylor Filter.
We start from assessing the compression performance varying the AfT-product by entering a
truncated Taylor Filter. Next, we discuss the results obtained by performing a sweep varying
the filter parameters to assess how to they affect to the sidelobes suppression. Also we
observed the filter transfer function. Before, it is necessary to remember the truncated
Taylor’s Filter Transfer Function (see equation (4.-36) in section 4.3.1):

n 2w w
Hr(0)|truncatea = 1k + (1 — k) cos (m rect (H) (5.-7)
Where k = ~—21
1+2F;

Influence of AfT-product

For this simulation we fixed the parameters as Table 5.-4 shows.

Table 5.-4: Simulation 4.
fo =10 [MHZz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
F; = 0.4235

The Fig 5.-19, Fig 5.-20, Fig 5.-21 depict the most important results obtained. Notice that, as
shown in Fig 5.-6, the final filtered compressed pulses are wider than the compressed pulses
without using the mismatched filter. We obtained lower a secondary sidelobe level for some
values of the AfT-product. However, for other values of the AfT-product, we lose the
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performances of the mismatched filtering, because the compressed signal deteriorated. These
facts summarized in Fig 5.-22.

Detected Signal for Af*T=25 MissMatched Transfer Function
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Fig 5.-19: Simulation 4, Detected Signal AfT = 25.
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Fig 5.-20: Simulation 4, Detected Signal AfT = 75.
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Detected Signal for AF*T=150 MissMatched Transfer Function
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Fig 5.-21: Simulation 4, Detected Signal AfT = 75.
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Fig 5.-22: Simulation 4, Secondary Lobe Level and Pulse Width vs AfT-product.

93



Investigation in Pulse Compression Techniques for Radar systems. Simulations Results
- ]

Influence of n parameter

In this section the goal is to assess the influence of the n parameter over the final filtered
compressed pulse (see equation ( 5.-7 )). Table 5.-5 shows the parameters used in these
simulations.

Table 5.-5: Simulation 5.

fo =10 [MHZ]
Af = 900 [KHz]
prf =3 [KHz]

T = 166.667 [us]
Number of pulse =5
F; = 0.4235

We have performed a n variable sweeping from n = 2 to n = 15. The most important results
obtained in this set of simulation are depicted in Fig 5.-23, Fig 5.-24, Fig 5.-25 and Fig 5.-26.
And Fig 5.-27 summarizes all results obtained.

By observing Fig 5.-27, we conclude that: the minimum value for secondary lobe level is
accomplished for n = 4, and for some values of n the signal deteriorates, therefore, some
performance loss is obtained. Also the pulse width tends to increase (with oscillations), if n
increases. Finally, the filter transfer function takes more slope if n increases, due to

cos™ (ZAH—:) factor (see equation (5.-7)). Note that the filter transfer function is narrower in Fig
5.-26 than in Fig 5.-23.
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Fig 5.-23: Simulation 5, Detected Signal n = 4.
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Detected Signal for n=8 I:1=0'4259 MissMatched Transfer Function
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Fig 5.-24: Simulation 5, Detected Signal n = 8.
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Fig 5.-25: Simulation 5, Detected Signal n = 11.
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Detected Signal for n=15 I:1=0'4259 MissMatched Transfer Function
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Fig 5.-26: Simulation 5, Detected Signal n = 15.
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Fig 5.-27: Simulation 5, Secondary Lobe Level and Pulse Width vs n.
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Influence of F; parameter

Now we examine the results obtained by sweeping the F; parameter between 0.3 and 0.8 (see
equation (5.-7)). The parameters for this simulation were fixed as Table 5.-6 shows.

Table 5.-6: Simulation 6.

fo = 10 [MHz]
Af =900 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4

The most important results are shown in Fig 5.-28, Fig 5.-29 and Fig 5.-30. Fig 5.-31 summarizes
the results obtained in terms of secondary lobe level and width of the final filtered pulse.

Notice that the parameter F; affects to the filter transfer function amplitude, due to the k
dependency in the expression (5.-7). Also, by observing Fig 5.-31, we notice that the minimum
value of —3dB secondary lobe level is accomplished for a value close to F; = 0.5 value. Also,
the pulse width increases, if F; increases when F; takes values less than 0.75; for F; > 0.75
the pulse width decreases.
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Fig 5.-28: Simulation 6, Detected Signal F; = 0. 3.

97



3000

2500

2000

1500

1000

500

2500

2000

1500

1000

500

Investigation in Pulse Compression Techniques for Radar systems. Simulations Results
- 1

Detected Signal for n=4 F1=0.5

wis

14

16 1.8
Time

Fig 5.-29: Simulation 6, Detected Signal F; = 0.5.
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Fig 5.-30: Simulation 6, Detected Signal F; = 0.75.
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Pulse Width Evolution
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Fig 5.-31: Simulation 6, Secondary Lobe Level and Pulse Width vs F.
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Influence of Doppler shift

In order to evaluate how the Doppler Effect influences the sidelobes suppression, we calculate
the ambiguity function of the detected pulse by entering a truncated Taylor filter. The
simulations parameters were fixed as Table 5.-7 shows.

Table 5.-7: Simulation 7.

fo =10 [MHZ]
Af = 1000 [KHz]
prf =3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
F; =0.45

We obtained the following ambiguity function:

Ambiguity Function

T T T
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Slope=12122228.5714e3
Af*T=166.6667
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Fig 5.-32: Simulation 7, Ambiguity Function by using Truncated Taylor’s Filter.

Notice that the preceding ambiguity function has smaller sidelobe levels than the one depicted
by Fig 5.-16 (result obtained without mismatched filter). However, the pulse is significantly
wider.
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Discovering a hidden target by using truncated Taylor’s Filter

In section 5.2.3 we evaluated the issue of overshadowing of a small target. We now perform
the same experiment, but including a mismatched filter. The purpose is to verify how a
mismatched filter can help in the detection of overshadowing targets. The signal and filter
parameters were fixed as Table 5.-8 shows.

Table 5.-8: Simulation 8.

fo = 10 [MHz]
Af =800 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
F, =045

Fig 5.-33 illustrates the compressed pulses obtained. We can observe that the hidden target is
not discovered, since the pulses are wider than without using the truncated Taylor’s Filter. This
fact provokes target overshadowing risks. Thus this fact is a drawback.

Detected Signal
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Fig 5.-33: Simulation 8, Overshadowing Target by using Truncated Taylor’s Filter.
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5.3.2 Taylor Filter

In this section we report about the results obtained by using the Taylor Filter to suppress the
sidelobes. The transfer function of the Taylor Filter was presented in section 4.3.1.

Influence of AfT-product

The tendency of the compressed pulse is the same as truncated Taylor Filter case. The
parameters used for this simulation are shown by Table 5.-9.

Table 5.-9: Simulation 9
fo =10 [MHZz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
SLL = —32 [dB]

The pulse width and the secondary sidelobe level are illustrated in Fig 5.-34 to summarize this
behavior. Note that for some values of the AfT-product the sidelobes decrease, but for other
values the final filtered signal deteriorates. Furthermore, the larger the AfT-product, the
narrower the pulse. We concluded that the Taylor Filter performances are better than its
truncated version, since the first one produces narrower filtered pulses for the same
secondary lobe level (Fig 5.-22).

Evolution of Secondary lobe level Pulse Width Evolution
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Fig 5.-34: Simulation 9, Secondary Lobe Level and Pulse Width vs AfT.
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Influence of n parameter

For this experiment we perform a sweep on the variable n (see equation ( 4.-24 ) in section
4.3.1), and the other parameters were fixed as Table 5.-10 shows.

Table 5.-10: Simulation 10.

fo = 10 [MHz]
Af =900 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
SLL = —32 [dB]

Next, we show some detected signals obtained from this experiment in Fig 5.-35, Fig 5.-36 and
Fig 5.-37. Also the secondary lobe level and pulse width evolution is depicted by Fig 5.-38.

By observing from Fig 5.-35 to Fig 5.-37, we note that the Filter Transfer function varies, if n
varies; namely, the larger the variable n, the narrower the transfer function of the Taylor
Filter. According to Fig 5.-38, the second lobe level tends to decrease slowly, if n increases.
However, this tendency saturates for n > 3. Also, notice that the pulse width varies slightly,
although it remains relatively constant for all the values selected for "n".
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Fig 5.-35: Simulation 10, Detected Signal n = 2.
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Detected Signal for n=10 SLL=-32 MissMatched Transfer Function
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Fig 5.-36: Simulation 10, Detected Signal n = 10.
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Fig 5.-37: Simulation 10, Detected Signal n = 15.
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Fig 5.-38: Simulation 10, Secondary Lobe Level and Pulse Width vs n.

Influence of SLL parameter

To continue the Taylor Filter study, we performed an SLL parameter sweep, from —22 to —
50 [dB] with —3 [dB] step size. This parameters represents the desired secondary lobe level
(see equations from ( 4.-24 ) to ( 4.-32 ) in section 4.3.1). The signal parameters were fixed as
Table 5.-11 shows.

Table 5.-11: Simulation 11.

fo = 10 [MHz]
Af =900 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4

The more relevant results are illustrated in Fig 5.-39, Fig 5.-40 and Fig 5.-41. Additionally, Fig
5.-42 summarizes all results obtained in this simulation. The results depicted above shown that
the secondary lobe level decreases if the SLL parameter decreases. As can be seen in Figure
Fig 5.-42, the compressed pulse width increases if SLL parameter decreases.
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Fig 5.-39: Simulation 11, Detected Signal SLL = —25 [dB].
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Fig 5.-40: Simulation 11, Detected Signal SLL = —37 [dB].
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Fig 5.-41: Simulation 11, Detected Signal SLL = —55 [dB].
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Fig 5.-42: Simulation 10, Secondary Lobe Level and Pulse Width vs SLL.
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Influence of Doppler shift

Next, we observe the ambiguity function (Fig 5.-43) calculated by using the Taylor mismatched
filter with the parameters shown if Table 5.-12.

Table 5.-12: Simulation 12.

fo = 10 [MHz]
Af = 1000 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
SLL = —32 [dB]

Notice that the ambiguity function shown in Fig 5.-43 is narrower than the ambiguity function
obtained by using the truncated Taylor’s Filter (Fig 5.-27). Furthermore, the maximums
deviation due to Doppler shift is the same as the preceding simulations, Fig 5.-27 and Fig 5.-12.
Also the separation between maximums is the same. This fact confirms that the distance
between maximums depends only on the PRF, and not on the mismatched filter applied to
reduce sidelobe levels.

Ambiguity Function

15 - |Af=1000(Khz) |
Slope=11999781.8182e3
Af*T=166.6667

10+ -

Doppler Shift [Khz]
o
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-15
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Fig 5.-43: Simulation 12, Ambiguity Function by using Taylor’s Filter.
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Discovering a hidden target by using Taylor’s Filter

To characterize completely this mismatched filter, we repeated the experiment of a small
target masked by another bigger one. The parameters used are shown in Table 5.-13.

Table 5.-13: Simulation 13.

fo = 10 [MHz]
Af = 800 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
n=4
SLL = —32 [dB]

According to Fig 5.-44, the Fig 5.-33 and Fig 5.-18, we conclude that the Taylor’s Filter is better
than its truncated version to unmask a small target. Besides, this last result presents narrower
pulses than in Fig 5.-13. However, the suppression sidelobes is worse than in Fig 5.-28, due to
the parameters selected for the simulation.

Detected Signal
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Fig 5.-44: Simulation 13, Overshadowing Target by using Taylor’s Filter.
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5.4. Sidelobes suppression. FM laws

This section provides information about the simulations of pulse compression by using
FM laws. We have used the five FM laws described in section 4.3.2. To summarize the results,
we review the more relevant graphs. Furthermore, the Appendix B provides more information
about these experiments. All FM laws were analyzed jointly. The FM laws used below are
depicted in the figures from Fig 4.-11 to Fig 4.-15.

5.4.1 AfT-product dependency for FM laws

Firstly, we evaluated the performances of the compressed pulse for several values of AfT-
product by using the different FM laws. The parameters for this experiment were fixed as
shown in Table 5.-14.

Table 5.-14: Simulation 14.
fo =10 [MHZ]
prf =3 [KHz]
T = 166.667 [us]
Number of pulse =5

The Af sweep was set from 100 to 1000 [KHz]. Since for the most of these compressed
waveforms it is quite difficult to measure their secondary lobe level, we changed the
measuring criterion. To measure the performance, in terms of sidelobes suppression, we
calculated the mean level of signal when the amplitude of signal is under —3dB with respect
to its maximum. Thus we can express this criterion with the following mathematical relation

1
MSL (Mean Sidelobes Level) = EZ Sc(O)]s,<-3aB (5.-8)

Where s.(t) is the normalized compressed signal in logarithmic scale, and n is the length of
the summation operator (number of samples that fulfill s, < —3dB).

The figures Fig 5.-45, Fig 5.-46, Fig 5.-47, Fig 5.-48 and Fig 5.-49 illustrate the results obtained
for AfT =900 [KHz] by using the FM Laws studied in section 4.3.2. In addition, Fig 5.-50
summarizes the results obtained for all values of Af and for all FM laws.
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Fig 5.-45: Simulation 14, Detected Signal for AfT = 150 (Even quadratic).
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Fig 5.-46: Simulation 14, Detected Signal for AfT = 150 (Odd quadratic).
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Fig 5.-47: Simulation 14, Detected Signal for AfT = 150 (Even vee).
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Fig 5.-48: Simulation 14, Detected Signal for AfT = 150 (Odd vee).
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Fig 5.-49: Simulation 14, Detected Signal for AfT = 150 (Stepped linear FM).
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Fig 5.-50: Simulation 14, Secondary Lobe Level and Pulse Width vs AfT.

113



Investigation in Pulse Compression Techniques for Radar systems. Simulations Results
- ]

According to Fig 5.-50, which shows the secondary lobe level at —3dB and pulse width
evolution, the Odd vee FM law presents, in terms of suppression of sidelobes, the best
performances for all considered values of AfT-product. Additionally, it also presents a good
pulse width. The Even vee FM law is the best option in terms of pulse width if AfT > 50,
however it presents a same behavior, in terms of suppression sidelobes, as the Odd quadratic
FM law (worse than Odd vee). Odd quadratic FM law has very similar pulse width evolution
than the Even quadratic FM law, which presents the worst performances in sidelobes
suppression terms. Finally, the Stepped linear FM presents the widest compressed pulse, but
in secondary lobe reduction is better than the Even quadratic FM law.

5.4.2 FM laws pulse compression for moving targets

To evaluate the Doppler Effect when we use FM laws, we have computed the ambiguity
functions for the preceding FM laws. For this purpose, the simulation parameters were fixed as
shown in Table 5.-15.

Table 5.-15: Simulation 15.

fo = 10 [MHz]
Af = 1000 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5
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Fig 5.-51: Simulation 15, Ambiguity Function by using Even quadratic FM law.
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Fig 5.-52: Simulation 15, Ambiguity Function by using Odd quadratic FM law.
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Fig 5.-53: Simulation 15, Ambiguity Function by using Even vee FM law.
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Fig 5.-54: Simulation 15, Ambiguity Function by using Odd vee FM law.
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Fig 5.-55: Simulation 15, Ambiguity Function by using Stepped linear FM law.

116



Investigation in Pulse Compression Techniques for Radar systems. Simulations Results
-

First we start analysing the Even quadratic law shown in Fig 5.-51. It can be observed that the
slope (formed by connecting maximums of the Ambiguity Function) is larger than the slope
obtained by using CHIRP pulses. This fact means that the Even quadratic FM law presents
lower sensitivity to Doppler shift. However, for large Doppler Effect (|f;| > 5 [Khz]) the pulse
is wider. In this situation, the pulse is duplicated, and the sidelobes are not totally suppressed.

According to Fig 5.-52 (Odd quadratic law), we can notice that the slope is also stepper than
the slope presented in Fig 5.-16 (CHIRP pulse). Furthermore, its behavior is similar to the Even
quadratic FM law, in terms of sensitivity to Doppler. Also, it can be noticed that its sidelobes
fluctuates more than in the preceding case.

By observing Fig 5.-53 (Even vee law), we conclude that the ambiguity function slope is less
step than the preceding ambiguity functions. Therefore, its sensitivity to Doppler is greater.
Also, it presents the duplicity problem for large Doppler shifts. However, its sidelobes
suppression is more effective.

In the case of Fig 5.-54 (Odd vee law), we notice that it presents a worse sensitivity to Doppler
Effect than the preceding FM laws (slope fewer). Additionally, the signal level fluctuates if
Doppler shift varies, but it does not present the duplicity issue. Finally, we observe a good
sidelobes suppression, but it presents peaks in other time instants.

To finish this study, we present Fig. 5.-55 with the results obtained for the Stepped linear FM
law. Note that the ambiguity function slope is similar to the slope achieved by using pulse
CHIRP. Therefore, this FM law presents the highest sensitivity to Doppler shift of all FM laws
studied. However, it does not present the duplicity problem, although the signal level
fluctuates. Also, it presents the worst sidelobes suppression.

5.4.3 Discovering a hidden target by using FM laws

To finish this set of experiments, we probed to unmask a small target overshadowed by
another bigger one. For this purpose, we set the simulation parameters as it is shown in Table
5.-16.

Table 5.-16: Simulation 16.

fo =10 [MHZ]
Af = 800 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5

The results obtained in this experiment are shown in Fig 5.-56, Fig 5.-57, Fig 5.-58, Fig 5.-59 and
Fig 5.-60.
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Fig 5.-56: Simulation 16, Overshadowing Target by using Even quadratic FM law.
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Fig 5.-57: Simulation 16, Overshadowing Target by using Odd quadratic FM law.
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Fig 5.-58: Simulation 16, Overshadowing Target by using Even vee FM law.
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Fig 5.-59: Simulation 16, Overshadowing Target by using Odd vee FM law.
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Fig 5.-60: Simulation 16, Overshadowing Target by using Stepped linear FM law.

Notice that in the cases of Even quadratic FM law (Fig 5.-56) and Odd quadratic FM law (Fig 5.-
57), the unmasking of the small target was not achieved. In the other three cases (from Fig 5.-
58 to Fig 5.-60), the hidden target was unmasked. However, note that, in the case of Even vee
FM law (Fig 5.-58), Odd vee FM law (Fig 5.-59) and Stepped linear FM law (Fig 5.-60),
overshadowing risk exists due to their sidelobes level. The Even vee FM law (Fig 5.-58) offers
the best performances for unmasking a hidden target.
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5.5. Conclusions

Pulse Compression using CHIRP pulses:

The benefits of pulse compression techniques using CHIRP pulses, as well as their limitations,
have been assessed in section 5.2. According to the results obtained, we conclude that:

e The signal to noise ratio improves without range resolution loss by using CHIRP pulse
compression.

e The Spectrum purity of a CHIRP pulse improves if the AfT-product increases (section
5.2.1). This fact influences the width of the compressed pulse: the larger the Afz-
product the narrower the compressed pulse. Also if AfT increases over 50, the
sidelobes reduce smoothly (see Fig 5.-11).

e When the target is moving (section 5.2.2), the compressed signal suffers undesired
effects: compressed signal attenuation and the compressed signal shifted in time
(wrong range measurements). We confirmed that if 4 = Af /T increases, the second
undesired effect decreases, but it is never mitigated.

e Overshadowing risk exists due to the sidelobes of the compressed signal (section
5.2.3).

Sidelobes supression by using Mismatched Filtering:

In section 5.3 we assessed the functionality of two types of mismatched filters in order to
suppress the sidelobes obtained with plain CHIRP Pulses. According to the results obtained,
the main conclusions are:

e In general, the width of the final filtered pulse is wider by using mismatched filtering
(Truncated Taylor Filter in section 5.3.1; and Taylor Filter 5.3.2). Also, both filters
achieve the goal of decreasing the sidelobes level.

e Comparing the Taylor Filter and the Truncated Taylor Filter, the first one achieves
compressed pulses narrower than the second one.

e The optimal parameters, in terms of sidelobes suppression, of the Truncated Taylor
Filter (see equation 4.) are n = 4 and F; = 0.5. Besides, we found values of n for
which the filtered signal deteriorates.

e For the Taylor Filter (see equation 4.), if n increases, the sidelobes decreases and the
width of the pulse does no change significantly. Also, if SSL decreases the sidelobes
decreases, but the width of the pulse increases.

e The undesired effects due to a moving target are found in the two types of filters
(Truncated Taylor Filter and Taylor Filter).

e Finally, we can conclude that the Taylor Filter offers better performances for
unmasking targets than its truncated version. Although they are not a great solutions
since the masking risks increases due to the increase of the width of the pulse.
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Pulse compression by using FM laws:

In section 5.4 we reviewed the use of FM laws for pulse compression. According to the results
obtained, we conclude that:

e The Odd vee FM law offers the best performances in terms of sidelobes suppression.
Moreover, the Even vee FM law is the best option in terms of the width of
compressed pulse if AfT > 50.

e  We conclude that the Linear Stepped FM law offers the worst performances.

e In general, the undesired effects due to moving target are found in the ambiguity
functions computed. However, some FM laws mitigates the maximum deviations for
low Doppler shifts. However for larger Doppler shifts, the pulse duplicates. Therefore,
some FM laws are a great solution for low Doppler applications.

e The Even vee FM law is the best option for unmasking a target. However, no FM laws
provide a great solution for the overshadowing issue.
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Chapter 6. Doppler Compensation in CHIRP Pulse
Compression

This chapter provides information about a novel method which allows to compensate
the mismatching provoked by moving targets in pulse compression systems.

If we observe the ambiguity functions obtained in section 5.2.2, we note that the filter output
presents two undesired effects when the Doppler Effect is nonzero: the filtered signal
amplitude fluctuates and the maximum peak of the output signal is shifted in timer with
respect to its desired position. Note also that the use of some FM Laws mitigates the
maximums deviation (section 5.4.2), but only for small range of Doppler frequencies.
Therefore very fast targets could be undetectable or provoke wrong range measurements.

Below we study a solution for these issues. We look, firstly, at the basic concept which this
method is based on. Finally, at the results obtained, in terms of ambiguity function and the
error introduced by the proposed Doppler compensation mechanism.

6.1. Basic concept

The basic idea for achieving the Doppler compensation is depicted in Fig 6.-1.

N Tunable
Matched |—=Detectori—
Filter
3

I: Control

ﬁ Signal
Doppler Shift
»ldentification

System

Fig 6.-1: Basic Concept. Block Diagram.

Note that the matched filter is connected to a Shift Doppler Identification System in parallel.
This block is able to acquire the received signal, detect the frequency in which the received
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spectrum is centered and tune the matched filter in order to remove the mismatching due to
target motion. The challenge is how to detect the center frequency.

CHIRP pulse spectrum symmetry

In section 4.2 we studied the CHIRP pulse deeply. Note that the spectrum of a pulse CHIRP, in
complex envelope terms, is

(Cle) + Cxp)) +j(SCGe) +S(x))
V2

(6.-1)

)
G(w) = AJEejfwz
T

Where x,, = /MTT( —%) and x; = — /MTT(l + %) By observing Fig 4.-8 and Fig 4.-9, we

notice that the CHIRP pulse spectrum is symmetric with respect to f, (carrier frequency). This

fact can be exploited to detect the center frequency and compensate the Doppler Shift.

Doppler Shift Identification System

In order to detect the center frequency of a symmetric spectrum, we could use the block
diagram shown in Fig 6.-2.

As Fig 6.-2 depicts, the system consists of a bank of two tunable bandpass filters, which are
used for sweeping the received spectrum in the frequency domain. Thus, by observing the
differential energy between the energies of the signals which cross the filters, we can
determine the frequency shift due to the target speed.

The center frequency of the bandpass filters are

fer =fotAf/2+6X (6.-2)

feo =fo +3Af/2+6X (6.-3)

The bandwidth of the filters are

AB; = AB, = Af (6-4)

And X is a control signal used to perform a frequency sweep. Finally, § is the step used for the

sweep. Note that the transfer functions of the filters are overlapped, in other words, for X =
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0 the spectrum of the first filter starts at f, and ends at f, + Af; whereas the spectrum of the
second Filter stars at f, + Af and ends at f + 2Af). Thus the frequency, in which the transfer
functions of the filters are overlapped, is

+
fct=%=fo+Af+5X (6.-5)

fclf BWl

Tunable Energy o
BPF | | Estimator =

+
- (}) » Decisor —
fCZ! BWZ - |
Tunable Energy
™ BPF []Estimator

Fig 6.-2: Doppler Shift Identification System. Block Diagram.

To understand the Doppler Shift Identification System operation, we illustrate it by supposing
a nonmoving target (f; = 0 Hz). According to the center frequency of the tunable filters (f,;)
we find three situations:

1. Filters are centered in f,; < f,. For the case illustrated in Fig 6.-3, the energy that goes
through the bandwidth of the first filter (BW;) is much larger than the energy that
goes through the bandwidth of the first filter (BW,). Hence the differential energy is
positive.
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Fig 6.-3: Identification System. Basic idea. f.; < fo.

Filters are centered in f,; = f;. In this situation the energy that goes through BW; is
similar to the energy that goes through BW,. Now the differential energy is close to
zero, as Fig 6.-4 shows.
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Fig 6.-4: System Identification System. Basic idea. f.; = f.
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3. Filters are centered in f.; > f,. This case is the opposite to the situation described
before. Thus the amount of energy that goes through BW, is larger than the energy
that does through BW,. Thereby, the differential energy takes negative values as cam
be seen in Fig 6.-5.
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Fig 6.-5: System Identification System. Basic idea. f.; > f.

If we are able to identify the crossing through zero energy, we can measure and compensate
the spectrum deviation due to the Doppler Effect by tuning the matched filter. This concept
has been proved in numerical simulations by using ideal filters (with square transfer functions).
The results obtained are shown in the following section.
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6.2. Results

To evaluate the performance of the Doppler Compensation System, we have
performed various simulations, in which the influence of some parameters are tested. We
have focused on the ambiguity functions resulted and on the error function of the estimation
of the Doppler shift. Before these verifications, we have carried out simple simulations to
confirm the system functionality.

6.2.1 Verification of the Compensation System functionality

For this initial experiment, we observed the Differential Energy curve obtained at the end of
the frequency sweep performed by the tunable bandpass filters. The parameters were fixed as
shown Table 6.-1.

Table 6.-1: Simulation 17 parameters.

fo = 10 [MHz]
Af = 600 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5

We simulated four situations according to the Doppler Effect produced by the moving target:
fa = 50 KHz and f; = £100 KHz. After simulating these situations we obtained the graph
shown in Fig 6.-6.

Notice that, in Fig 6.-6, the zero energy point occurs in different values of f;. This point is
centered near to fy + f; frequencies, or in other words, f.; — fo = f4. Therefore, it confirms
that this idea is valid for identifying the Doppler Shift. In the same way, the Fig 6.-5 depicts the
zero Doppler case.
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Fig 6.-6: Simulation 17, Differential Energy for f; = +50,+100 [KHz].

6.2.2 Compensated Ambiguity Function

In this set of simulations we have evaluated the performance of the purposed system by
calculating the ambiguity function for several values of Af (the frequency index of the linear
FM modulation). We used the parameters shown in Table 6.-2 for numerical tests.

Table 6.-2: Simulation 18 parameters.
fo =10 [MHZ]
prf = 3 [KHz]
T = 166.667 [us]
Number of pulse =5

The results are illustrated in Fig 6.-7, Fig 6.-8, Fig 6.-9, Fig 6.-10, Fig 6.-11, Fig 6.-12, Fig 6.-13,
Fig 6.-14, Fig 6.-15 and Fig 6.-16 for values of Af from 100 to 1000 [KHz] by taking a
100 [KHz] step.
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Note that in all of these simulations the maximum deviations due to Doppler Shifts have been
mitigated. Thereby, the slope formed by connecting the maximums of the output signal tends
to infinite (it tends to the vertical axis). Also the output signal fluctuations have been
decreased, thus, targets that were undetectable in the preceding Chapter (section 5.2.2)
become visible to the radar system. This fact is easy to observe by analyzing the Ambiguity
Function cut |x(t = 0, f;)|?. We compare this cut for a compensated case (Fig 6.-17) to the
non-compensated case (Fig 6.-18) for Af = 400 [KHz].
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Fig 6.-7: Simulation 18, Compensated Ambiguity Function for Af = 100 [KHz].
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Fig 6.-10: Simulation 18, Compensated Ambiguity Function for Af
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Fig 6.-11: Simulation 18, Compensated Ambiguity Function for Af
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Fig 6.-12: Simulation 18, Compensated Ambiguity Function for Af = 600 [KHz].
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Fig 6.-13: Simulation 18, Compensated Ambiguity Function for Af = 700 [KHz].
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Fig 6.-14: Simulation 18, Compensated Ambiguity Function for Af = 800 [KHz].
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Fig 6.-15: Simulation 18, Compensated Ambiguity Function for Af = 900 [KHz].

134



Investigation in Pulse Compression Techniques for Radar systems. Appendix A
e ——— )

Ambiguity Function

15 |Af=1000(Khz) I
Slope=Infe3
Af*T=166.6667

10+ 5

N 5F g

L

it

&

% of .

g

&

] -5- ]
10k 4
15} 4

-30 -20 -10 0 10 20 30

Time (t-to) [usec]

Fig 6.-16: Simulation 18, Compensated Ambiguity Function for Af = 1000 [KHz].
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Fig 6.-17: Simulation 18, Cut of compensated Ambiguity Function t — t, = 0, for Af = 400 [KHz].
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Fig 6.-18: Simulation 18, Cut of non-compensated Ambiguity Function t — t, = 0, for Af = 400 [KHz].

Note that the output signal depicted by Fig 6.-17 never reaches zero value (specifically it
oscillates between 0.55 and 0.95), whereas the output signal illustrated in Fig 6.-18 reaches
null values for several values of f;. The output signal fluctuates because of the error in the
Doppler Shift estimation. Therefore, it is important to observe the error committed. Next we
analyse the error function.

Error function

The error functions were calculated as

e(fas) = fa — fas (6.-6)

Where f, is the real Doppler Shift due to target motion and f, is the Doppler Shift estimation
calculated by the proposed mismatching compensation system. These simulations were
carried out by using the parameters shown in Table 6.-4. The results are depicted from Fig 6.-
19 to Fig 6.-28. These errors could be due to numerical limitations of the simulations. Note
that all error functions calculated exhibit the same repetitive behavior due to the spectrum
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sampling. Notice also that the error function for Af = 700 [KHz] (Fig 6.-25) has a strange
behavior when f; > 0 [KHz]. No explication have been found to understand this fact at this
moment. Besides, the error functions do not seem to have a clear relation with Af.
Nonetheless, the error committed is acceptable since the ambiguity functions improved with
respect to the ambiguity functions obtained in the preceding chapter.
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Fig 6.-19: Simulation 18, Error Function for Af = 100 [KHz].
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Fig 6.-20: Simulation 18, Error Function for Af = 200 [KHz].

Error Function, Af=300Khz

20

N
]
T

-
.
T

0.8

20

-15 -10 -5 0 5 10 15
Doppler Shift [Khz]

Fig 6.-21: Simulation 18, Error Function for Af = 300 [KHz].
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Error Function, Af=400Khz
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Fig 6.-22: Simulation 18, Error Function for Af = 400 [KHz].
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Fig 6.-23: Simulation 18, Error Function for Af = 500 [KHz].
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Fig 6.-24: Simulation 18, Error Function for Af = 600 [KHz].
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Fig 6.-25: Simulation 18, Error Function for Af; = 700 [KHz].

140

20



Estimation Error [Khz]

Estimation Error [Khz]

Investigation in Pulse Compression Techniques for Radar systems. Appendix A

Error Function, Af=800Khz
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Fig 6.-26: Simulation 18, Error Function for Af = 800 [KHz].
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Fig 6.-27: Simulation 18, Error Function for Af = 900 [KHz].

141

20



Investigation in Pulse Compression Techniques for Radar systems. Appendix A

Error Function, Af=1000Khz
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Fig 6.-28: Simulation 18, Error Function for Af = 1000 [KHz].

Additionally, other error sources exist in a real case, such as undesired noise signal. This fact is
assessed in the following section.
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6.2.3 Doppler Compensation in presence of noise

This section provides the results obtained by including a white Gaussian noise source in
Doppler compensation system. The simulations were carried out by varying the power of
noise, and the other parameters were fixed as Table 6.-3 shows.

Table 6.-3: Simulation 19 parameters.

fo =10 [MHZ]
Af =900 [KHz]
prf = 3 [KHz]

T = 166.667 [us]
Number of pulse =5

We observed different situations with various values of noise power, —40, —30, —20,—10 and
0 [dbW]. The transmitted power is 0.25 [W], which corresponds with —6 [dbW]. The
Ambiguity Functions resulted are depicted from Fig 6.-29 to Fig 6.-33. Note that when the
power noise increases, the result is worse. Fig 6.-29, Fig 6.-30 and Fig 6.-31 illustrate a
acceptable compensated ambiguity function.
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Fig 6.-29: Simulation 19, Compensated Ambiguity Function for P,, = —40 [dbW].
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Fig 6.-30: Simulation 19, Compensated Ambiguity Function for P,, = —30 [dbW].
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Fig 6.-31: Simulation 19, Compensated Ambiguity Function for P,, = —20 [dbW].
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Fig 6.-32: Simulation 19, Compensated Ambiguity Function for P,, = —10 [dbW].
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Fig 6.-33: Simulation 19, Compensated Ambiguity Function for P,, = 0 [dbW].
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Error function

The parameters of the simulation were fixed as Table 6.-3 shows. The figures from Fig 6.-34 to
6.-38 illustrate the error committed by considering in the system a noise signal. These figures
show the function error when the power of noise is —40, —30, —20, —10 and 0 [dbW/]
respectively. Note that if the power of noise increases the error also increases, since the
random power of noise, which enters in the tunable filters, affects to the estimation. This fact
is a limitation of the approach studied in this chapter. For power noise of —20 [dbW] (it is
corresponds with SNR = 14 [db]), the error is acceptable.
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Fig 6.-34: Simulation 19, Error Function for P,, = —40 [dbW].
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Fig 6.-35: Simulation 19, Error Function for P,, = —30 [dbW].
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Fig 6.-36: Simulation 19, Error Function for P, = —20 [dbW].
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Error Function, Af=900Khz
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Fig 6.-37: Simulation 19, Error Function for P, = —10 [dbW].
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Fig 6.-388: Simulation 19, Error Function for P,, = 0 [dbW].
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6.3 Conclusions

In this 6 we have proposed a new approach solution to the undesired effects provoked by the
Doppler Effect in pulse compression. After assessing the novel system, we can conclude that:

e The novel approach is valid for identifying and compensating the Doppler Shift due
to a moving target.

e This technique achieves the goal of mitigating the maximum deviations and
decreasing the fluctuations of the final filtered signal due to the Doppler effect of
moving targets.

e If we use proposed system, we commit an error in the estimation of the Doppler Shift.
When a noise signal enters in the system, the error increases considerably. Thus, this
fact is a limitation for the proposed system.
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Chapter 7. Conclusions and Future Work

This chapter provides the main conclusions of the work and lays the foundations for
future work.

7.1. Conclusions

In this work we have studied several techniques of pulse compression. We started studying
some important concepts theoretically in the first three chapters. Then, we reviewed the
theory associated to pulse compression techniques by using frequency modulation in Chapter
4,

Once we understood the principles of the pulse compression, we assessed these principles via
numerical simulations using Matlab. We started from applying compression CHIRP pulses,
observing their limitations and best trade-off for the different parameters of the system. One
of the drawbacks of this technique is that compressed pulses exhibit rather large sidelobe
levels. In order to improve the situation, | reviewed techniques to reduce sidelobe levels.
These techniques included the use of mismatched filters and also the introduction of
alternative FM modulation signals different from the CHIRP signal.

With respect to the use of mismatched filters it was found that the sidelobes were significantly
reduced. However the final filtered signal exhibited a larger width than without using
mismatched filters.

With respect to the use of FM laws it was found that the compressed pulse differed from the
compressed CHIRP pulse. Depending on the specifications of the application, it is interesting to
use some of the waveforms studied.

For performing theses simulations we developed our own code in Matlab. This code has been
used to implement a learning-purpose application, which is able to simulate the scenarios
covered in Chapter 5 (Appendix A provides a brief guide of its usage, including examples).

The preceding studied techniques have similar drawbacks when a moving target is detected:
the temporal shift of the compressed pulse and the fluctuations of the output signal. In order
to reduce these effects we proposed a novel technique in Chapter 6. We tested this technique
to know about its performances and basic operation. We found that the maximum deviation is
mitigated and the fluctuations of the filtered signal are reduced. Also we found that when
noise enters in the system, its performances decrease.
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7.2. Future Work

The future work can be approached in two different lines. The first one is to extend the
theoretical and numerical analysis of the techniques of pulse compression. The second one is
to extend the study of the Doppler compensation technique in order to get more insight about
its performances and its viability. Thus the main future steps to follow are:

Pulse compression techniques:

e The analysis could be extended, including and comparing other pulse compression
techniques described in section 4 (Pulse compression by Costas FM and by Phase
Coding, for example Barker Codes).

e In the same way as the pulse compression techniques, the analysis could be extended
for observing adaptive pulse compression techniques (section 4.3.3).

e Also the preceding techniques could be included in the Pulse Compression Matlab’s
application.

e Finally, it is interesting to implement the methods of pulse compression over hardware
architecture (such as FPGA) to assess their performances in real environments.

Doppler Compensation Technique:

e We could extend the study of the proposed novel approach via replacing the ideal
function transfer of the tunable band pass filters to real filters, such as those found in
FIR filter architecture.

e The analysis of the error functions could be extended to understand better their
behavior.

e We could also test more complex combinations of filters (for example, try using three
filters) and introduce other changes in the compensation algorithm (for example,
establishing stop criteria for the frequency sweep).

e We could check the proposed system in more stressful scenarios, i.e. considering
several target with different speeds.
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Appendix A. Guide: Pulse Compression Matlab’s
Gui

This appendix provides a description of the application designed, whose purpose is to
simulate the pulse compression mainly by using FM modulation. The tool used to carry out this
application was Matlab R2013a. First, we perform a simple example as introduction to user’s
interface, next, we carry out three more complex examples to prove the functionality of the
developed tool.

A.1. Example 1: The user’s interface & A Simple Simulation

First, change the current directory to the directory where the .m files and .fig files are
placeA. Next, tip “guide” in the Matlab’s Command Window and open the “gui.fig” file. Then,
you will view the user’s interface illustrated in Fig A.-1.

9 =8 Kol =
DARABDE N
Load Configuration 1~ hd

Fig A.-1: Example 1. User’s Interface I.

Note that there is only a button (“Load Configuration”), push it.
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The configuration window shown in Fig A.-2 will appear.

B confi =] = =4
Settings
Signal Parameter: Target Parameters.
Carrier Frequen
R 10e6 Target Speeds (m/s) 100
Frequency Excursion 200e3
Target Range (m) 20e3
Pulse Frequency Rep 3e3
SRR 1
Duty Cicle 05
[ Multitarget Simulation
Pulse Number 5
O] FM Law ———— Mismatched Filter Parameaters.
[7] Active Mismatched Filtering
Channel Paramster:
[7] White Gausian Moise (dbW) [ Slowly Changing Clutter

[ Confirm Settings ]

Fig A.-2: Example 1. Configuration window.

This window allows to configure the simulation parameters. Note that there are a button and
four panels: Signal Parameters; Target Parameters; Mismatched Filter Parameters and Channel
Parameters. We will use the default parameters for this first simulation, therefore, push
“Confirm Settings”. Next, note that a new button (“Simulate”) is visible below the “Load
Configuration” button (Fig A.-3).

u gui
f Load Configuration H
[ Simulate ]

Fig A.-3: Example 1. User’s Interface Il.

154



Investigation in Pulse Compression Techniques for Radar systems. Appendix D

To start the simulation push “Simulate”. Now we are able to observe the results as shown Fig
A.-4.

gui ol e =
LR B »
e Transmitted & Recieved Signal (Time) ~
Load Configuration

e

Save Figure

Calculate Amoiguity Function

Vi)

I I — 1 N 1
0 200 400 600 800 1000 1200 1400 1600
Time [us]

Fig A.-4: Example 1. User’s Interface .

Note that, there is a popup menu, which allows to select the observed graph. Also, two new
buttons appear, “Save Figure” and “Calculate Ambiguity Function”. After switching to “Range
Gates (Detection of target)”, we will view the graph shown in A.-5.

B oui ol e =
0E S 9E 2
_ Range Gates (Detection of target) -
Load Configuration | — O O O OO OO OO O O O OO T T T
————— 15000 : : : : - g : X201 b
Simulate | H H Y:1.5582+04
Save Figure ' ‘ ' '
Calculate Ambiguity Function H : H H f
10000 : : ; - 4o ]
2 : : : : .
B H ; H H f
T H | H H i
2 H ; H H f
x i ' i i 0
= H : H H :
5000 : : : -1 L E
s e e e L L [ ‘
25 20 -15 -10 5 0 5 10 15 20
Distance [Km]

Fig A.-5: Example 1. User’s Interface IV.
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Other window emerges by pushing the “Calculate Ambiguity Function” button. This window
allows to fix the sweeping parameters in order to calculate the contour of ambiguity function.
We will use the default settings shown in Fig A.-6.

B AF calc o] B [z
Ambiguity Function Calculation
Doppler Sweep Settings
Start (Hz) 0
Stop (Hz) 30e3
Step (Hz) 50

Fig A.-6: Example 1. Ambiguity Function configuration.

Next, push “Calculate”. Note that, after pushing “Calculate”, the Matlab’s Command Window
shows messages, which give information about the Doppler Shift and Delay applied to the
transmitted signal.

Command Wi

Doppler Shift=7500 -
Delay=0(s)
Doppler Shift=7550
Delay=0(s)
Doppler Shifc=7600
Delay=0(s)
Doppler Shift=7650
Delay=0(s)
Doppler Shift=7700
Delay=0(s)
Doppler Shifc=7750
Delay=0(s)
Doppler Shift=7800
Delay=0(s)
Doppler Shift=7850
Delay=0(s)
Doppler Shifc=7300
Delay=0(s)
Doppler Shift=7350
Delay=0(s)
Doppler Shift=8000
Delay=0(s)
Doppler Shifc=g050
Delay=0(s)
Doppler Shift=8100
Delay=0(s)
Doppler Shift=8150
Delay=0(s)
Doppler Shifc=g200
Delay=0(s)
Doppler Shift=8250
Delay=0(s)
Doppler Shift=8300

m

Fig A.-7: Example 1. Ambiguity Function Calculation messages.

After stopping appearing messages, a figure appears where it depicts the Ambiguity Function
contour (Fig A.-8).
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Fig A.-8: Example 1. Result of Ambiguity Function Calculation.

A.2. Example 2: Pulse Compression in presence of two moving targets

In this example we try simulating a detection of two targets. For this purpose, we will
use the configuration shown in Fig A.-9:

B config =] = =
Settings
Signal Parameter: Target Parameters.
Carrier Frequen
R 1086 Target Speeds (m/s) [100 0]
Frequency Excursion 50023
Target Range (m) [20e3 5e3]
Pulse Frequency Rep 3e3
SRR [10.5]
Duty Cicle 05
Multitarget Simulation
Pulse Number 5
The Target Speeds, Range and SRR fields must be rows.
[ FM Law ——— Mismatched Fiter Parameters
[7] Active Mismatched Filtering
Channel Parameter:
White Gausian Moise (dbW) -30 [ Slowly Changing Clutter
[ Confirm Setiings |

Fig A.-9: Example 2. Setting the Simulation Parameters.

Note that the paremeters are entered as vectors of two elements in the fields “Target Speeds
(m/s)”, “Target Range (m)” and SRR; in addition, the “Multitarget Simulation” and “White
Gaussian Noise (dbW)” boxes are on.
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Then, after pushing “Simulate”, we obtain the graphs illustrated in Fig A.-10 and Fig A.-11.

Transmitted & Recieved Signal (Time) -

Time [us]

Fig A.-10: Example 2. Results I.
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18000 [---------mmmmm o A i HEAE X 20.03
¥:1.857e+04

46000 |- === 3-m oo b
44000 |- - - dmm oo b

12000 === =mmmrfemmmmeesmnohes s

10000 - mmmmm et e

<%
w

=
=4

111 S P e

1 SLETTTTTTI ST SR

AQO0 - e e

D000 [+ mmmmmmmde e e n b

Distance [Km]

Fig A.-11: Example 2. Results Il.

Note that the received signal shown in Fig A.-10 is very hazy, since it is very difficult to differ
the pair of targets. But once the pulse is compressed, we can distinguish the two target
perfectly, as Fig A.-11 shows. Furthermore, the noise signal is suppressed in the pulse
compression process.
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A.3. Example 3: Pulse Compression by using Mismatching Filtering in
presence of Slowly Changing Clutter

In this example we demonstrate how to simulate the pulse compression by using
mismatched filtering. Firstly, we have to fix the simulation parameters; thus, push “Load
Configuration”, and mark the “Active Mismatched Filtering” as Fig A.-12 shows.

Wismatched Filter Parameters

Active Mismatched Filtering

Taylor Fiter 4
Truncated Taylor Filter
m= 2

Fig A.-12: Example 3. Setting the Simulation Configuration I.

The rest of parameters are fixed as Fig A.-13 shows; note that the “Slowly Change Clutter” box
is on.

B config =) = =
Settings
Signal Parameter: Target Parameters.
Carrier Frequency
10e6 Target Speeds (m/s) 100
Frequency Excursion 200e2
Target Range (m) 20e3
Pulse Frequency Rep 283
SRR 1
Duty Cicle 05
[ Muttitarget Simulation
Pulse Number 5
|:| FM Law ————— Mismatched Fitter Parameters.
Active Mismatched Filtering
Taylor Fitter v:
SLL= -33
m= 2
Channel Parameter:
[ White Gausian Noise (dbW) Slowly Changing Clutter

[ Confirm Settings ]

Fig A.-13: Example 3. Setting the Simulation Configuration Il.
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Next, push “Confirm Settings” and later push “Simulate”. We will focus on the results shown in
Fig A.-14 and A.-15.

Transmitted & Recieved Signal (Freq) -

i i | 1540l
R | Pl — — s

] N M e ]  LE:. ——_— .

2000

1500 [ -mesmmmmnnnnnnnesd --------------------------------------- ------------------- —
1000 f------ommmmeoo oo ——————————————————————————————————————— ——————————————————— e
1) EES— --------------------------------------- . -

30 20 10 0 10 20 30

Frequency [Mhz]

Fig A.-14: Example 3. Results I.

Range Gates (Detaction of target) [
10000 F——---- ECEEEEEREr s FECEEEREErE oI EAT R TER

1) A SO B AU S
)] A N Freeeesesnndonnin feeannnnnen
7000 _ ------------ N S
1) A St B SO S
50D [---mnnrenerdeeanneeaas Freeeesesnndonnin feeannnnnen

111 1) S S A

171

LI —— —_—,—————— e

B S A N

Distance [Km]

Fig A.-15: Example 3. Results II.

Note that low frequency information appears in Fig A.-14. However, in Fig A.-15, the clutter
component has been suppresseA. Note to that the compressed pulse is too wide due to the
mismatched filtering.
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A.4. Example 4: Pulse Compression by using Custom FM law

This example is for proving how to compress a pulse by using FM Laws. First push
“Load Configuration”. Next mark the “FM Law” box, then next elements will appear. We are
proving how to enter our own FM Law, thus, select “Custom FM Law” as Fig A.-16 shows.

FM Law Odd Quadratic -

0dd Quadratic
Ewen CQuadratic
Constant envelope

Even vee
Odd vee

Previt stepped Linear FIM

Fig A.-16: Example 4. Setting the Simulation Configuration I.

After selecting “Custom FM Law”, the command window will ask to enter our FM Law, you can

use either one code line or an external variable to enter the FM Law. We are using the FM Law
shown in Fig A.-17.

Command Window

Wrice your FM law:
fx sort(mod(l:lengthitp),10))*REf/10+£0-AE/2

Fig A.-17: Example 4. Setting the Simulation Configuration Il.
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Once the FM Law has been entered correctly, we can observed the FM Law before simulating
by pushing “Preview Fm Law” (Fig A.-18 and A.-19).

FM Law Custom FM Law ]

Uze the Watlab command window to generate your own
FM law. ou must define your baseband FM law by
using the tp variable. lLe.

Write your FM law:
zort{modi(1:length(tp), 25)j*AT25+f0-AF2;

Prewview Fm Law

Fig A.-18: Example 4. Setting the Simulation Configuration Ill.

x10° Instantaneous frequency
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e T e
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09 I R S S
0 } X .

Time x10*

Fig A.-19: Example 4. Stepped Linear FM.

Note that the FM Law entered is a Stepped Linear FM with ten steps. Next push “Confirm
Settings”, and simulate the results. We can observe that the signal spectrum differs from the
preceding cases (Fig A.-20) and that the compressed signal presents several high sidelobes (Fig
A.-21).
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Transmitted & Recieved Signal (Freq) -

0 2 4 6 8 10 12 14 16 18
Frequency [Mhz]

Fig A.-20: Example 4. Results I.

Range Gates (Detection of target) v

Ll

Distance [Km]

Fig A.-21: Example 4. Results Il
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Appendix B. Matlab’s Functions description

This appendix provides information about the implemented functions to perform the
study of pulse compression techniques and to build the Matlab’s GUI. The functions are
describe from Table B.-1 to Table B.-9.

Table B.-1: chirp_lineal.m

Description This function is for building the CHIRP pulse.
fO is the carrier frequency.
dtis the duty cycle. It is closed between 0.1 a 1.
Input Af is the modulation index.
arguments Np is the number of pulse replicas transmitted.
Prf is the pulse repetition frequency.
fs is the sample frequency.
Output 52. is the.pu/se chirp vector.
. tis the time vector.
g fis the frequency vector.
Table B.-2: fm_law.m
Description This function is for building the fm modulated pulse.
fO is the carrier frequency.
dt is the duty cycle. It is closed between 0.1 a 1.
fi'is the instantaneous .
Input . . .
Np is the number of pulse replicas transmitted.
arguments . .
Prf is the pulse repetition frequency.
fs is the sample frequency.
Tp is the time vector where the pulse is defined.
Output ,
utpu s2 is the modulated pulse vector.
arguments
Table B.-3: target.m
Description This function simulates a target effect.
alfa is the radar equation in linear.
R is the range of the target.
Input v IS' the speeq of the target.
arguments fO is the carrier frequency.
s is the signal vector that the effects are applied.
f is the frequency vector.
tis the time vector.
Output .
y is the output vector.
arguments
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Table B.-4: hilbert.m

Description This function calculates the Hilbert transform.
Input X is the signal vector that the transform is applied.
arguments fis the frequency vector.
Output .
y is the output vector.
arguments
Table B.-5: taylor_truncated.m
. . Thi. tion i buildi t ted Taylor’
i is function is for building a truncated Taylor’s
Filter.
f is the frequency vector.
0 is th j .
Input fi I.S e carrier fr?qu?ncy
Af is the modulation index.
arguments . . . .
n is a design parameter (view equation ).
k is a design parameter (view equation ).
Output y is the transfer function vector of the pulse in
arguments frequency domain.
Table B.-6: taylorf.m
Description This function is for building a Taylor’s Filter.
fis the frequency vector.
0 is the carrier frequency.
Input f . f . q . v
Af is the modulation index.
arguments . . . ,
n is a design parameter (view equation ).
SLL is a design parameter (view equation ).
Output y is the transfer function vector of the pulse in
arguments frequency domain.
Table B.-7: detect.m
Description This function is for detecting a pulse.
f is the frequency vector.
fO is the carrier frequency.
Input alfa is the roll of factor.
arguments t s the time vector.
ris the input signal.
flag is for selecting the detection type.
Output , .
P y is the detected signal vector.
arguments
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Table B.-8: ran_gate.m
Description This function implements range gates.
t is the time vector.
Input width is the width of the ranges gates.
arguments T is the duration of a full pulse.
tau is the duration of the transmission time period.

Output

y is @ matrix which stores the range gates.
arguments

Table B.-9: chirp_lineal.m
Description This function is for building the CHIRP pulse.
fO is the carrier frequency.
dtis the duty cicle. It is closed between 0.1 a 1.
Input Af is the modulation index.
arguments Np is the number of pulse replicas transmitted.
Prf is the pulse repetition frequency.
Fs is the sample frequency.
s2 is the pulse chirp vector.
tis the time vector.
fis the frequency vector.

Output
arguments

Other functions are used in the GUIl implementation. These functions are shown in Table B.-10.

Table B.-10: Other functions.

Name Description
uim This function contains the gui window
gul. components.
) This function contains the config window
config.m
components.
This function contains the AF_calc window
AF _calB.m f -
components.

This function loads the simulation parameters
from the config window to variables.
simulation.m  This function performs the simulation.

load_par.m
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