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Abstract— In this paper, we propose a novel approach for
the analysis of shielded microstrip circuits, composed of a
number of thin metallic areas with arbitrary shapes and fi-
nite conductivity, embedded in a multilayered lossy medium.
The analysis is based on the solution of an Integral Equation
(IE) obtained by enforcing the proper boundary condition to
the electric field on the metallic areas. The solution of the IE
is obtained by the Method of Moments (MoM) with entire
domain basis functions, which are numerically determined
by the Boundary Integral-Resonant Mode Expansion (BI—
RME) method. The use of the BI-RME method allows for
the efficient calculation of the basis functions independently
on the shape of the domain, thus permitting the analysis
of a wide class of circuits. Two examples demonstrate the
accuracy, rapidity, and flexibility of the proposed method.

Keywords— MMICs, Integral Equations, Moment Method,
Entire Domain Basis Functions, Microstrip Filters.

I. INTRODUCTION

In the last years, a considerable interest has been directed
to the design of boxed multilayered circuits (Fig. 1). This
configuration is typically considered in the design of many
actual Monolithic Microwave Integrated Circuits (MMICs),
both in single-layer [1] and in multilayered configuration
[2,3].

Among the possible numerical methods applied to the
analysis of this type of structures, the Integral Equation
(IE) method is by far one of the most efficient. The IE
method can be formulated either in the spectral [4] or in the
spatial domain [5]. The resulting integral equation is solved
by the Method of Moments (MoM), usually considering
sub—domain basis functions (e.g., roof-tops [6,7] or basis
functions on triangular domains [8,9]).

Recently, the TE/MoM method in the spectral domain
was applied with entire domain basis functions [10]. The
main advantage of using the vector modal functions de-
rived in that work is the dramatic reduction in the order of
the MoM matrix, since few entire domain basis functions
are usually sufficient to represent the unknown currents.
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Fig. 1. A shielded MMIC with arbitrarily shaped metallic areas in
a multilayered lossy medium. The patches can be placed at different
height and they may overlap.

Moreover, the calculation of the MoM matrix is enhanced
because of the rapid decrease of the spectral components to
be added subsequently for the calculation of the matrix ele-
ments. It is noted, however, that the original work derived
in [10] is limited to areas with a rectangular shape, where
the entire domain basis functions are known analytically.

In this paper, we present the extension of the method
proposed in [10] to the case of metallic areas with an arbi-
trary shape (Fig. 1). The entire domain basis functions
are determined numerically by the Boundary Integral-
Resonant Mode Expansion (BI-RME) method [11]. The
use of the BI-RME method has two main advantages. The
first is the possibility of obtaining entire domain basis func-
tions for arbitrary shapes in a short time, and the second is
that the entries of the MoM matrix are practically obtained
as a by—product of the method itself. In fact, the surface
integrals involved in the calculations of the MoM matrix
can be converted into line integrals on the boundary of the
metallic areas, and the quantities required on the boundary
are the basic output of the BI-RME calculation.

A preliminary discussion of the proposed algorithm was
presented in [12]. This paper gives a comprehensive ex-
planation of the MoM/BI-RME method, adding two novel
capabilities: metallic areas including a port may have an
arbitrary shape, and multiply connected metallizations can
be considered.

II. TE/MoM APPROACH

Let us consider the structure shown in Fig. 2, consisting of
a multilayered medium and P metallic areas with arbitrary
shapes Sy, ...,Sp, possibly located at different interfaces.
The circuit is fed at the frequency w at K ports, (K <
P) conventionally defined on the first K areas Sy, ..., Sk.
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Fig. 2. Different metallic areas considered in the analysis: simply
(S1) or multiply connected patches attached to a port (S2), simply
(S3) or multiply connected internal patches (S4). 05} represents the
boundary of the area S, except the possible part corresponding to

a port (denoted by ﬁp). In case of multiply connected areas, 9.,
consists of many lines 852, 65;, e

As usual [5,13,14], the ports are represented as small gaps
between the metallization and the wall of the box (delta—
gap excitations).

In [10] the analysis is based on the solution of a system of
P integral equations, which are obtained by enforcing the
boundary condition to the transverse—to—z electric field at
all the metallic areas:

P .
Z@ﬁ)—}jAGuwwwnmﬁm9=
q=1""4

—Tp Vpo(7, FP”@gﬁp (p=1,....K)
= (1)
0 p=K+1,...,P)

where: the points 7, 7' belongs to S, and Sg, respectively;
05, denotes the part of the boundary of S, that belongs to
the p-th port; 7, is the outward normal; v, is the voltage
applied to the p—th port; Z is the “sheet impedance” of
the metallizations. The choice of Z is problem—dependent.
For instance: in the case of a single-layer microstrip cir-
cuit with a metallization thickness ¢ much larger than the
skin depth 6, we can use the surface impedance of the con-
ductors Z = Z; = (1 + j)p/6 (p is the resistivity of the
metal); in the case of low frequency calculations (¢ < §),
we can use Z = p/t. Moreover, J, is the (unknown) cur-

rent density on Sy, and the Green’s function G is given by
[15]

G (77 Nw) =Y Vin(2. 7 |w) Enley) Enle’ ) (2)

where fm are the transverse electric modal vectors of the
TE and TM modes of the box, with the normalization
s, |Em|?dS = 1. The expressions of &, are

/
& —VIZ/XT" (TM modes) (3)
17
E" = 7% VZ}T" (TE modes) (4)

m

where x/, and x// are the eigenfunctions of the Helmholtz
equation with the Dirichlet or Neumann boundary condi-
tions on Sk, (see Fig. 2), and k/,,, k', are the correspond-
ing eigenvectors. Finally, functions V,,, are determined by
considering the equivalent modal transmission lines for the
layered box [10,16].

Equation (1) is solved by applying the MoM in the
Galerkin version. The unknown current density J; is rep-

resented through a suitable set of N, basis functions é’,gp )

defined on the p—th patch

Np
J,=3 e (p=1,...,P) (5)
r=1

where fﬁp ) are unknown coefficients.

As discussed in [10], the calculation of the MoM matrices
involves frequency—independent coefficients of two types.
The former represents the coupling integral between the r—
th basis function on the p—th metallic area and the m—th
modal vector of the box, and is given by

cq = [ &) Ends Q

Sp

The latter is the projection of the delta—gap excitation of
the p—th port on the r—th basis function (port integral), and
is given by

P = [ e (i) de ™
Jas,

For any frequency, the scattering parameters are calculated

straightforwardly from the coefficients 5,(? ) obtained by the
solution of the MoM system [10].

III. ENTIRE DOMAIN BASIS FUNCTIONS

A key feature of the present approach is the use of a set
of entire domain basis functions, i.e., functions é'r(p ) which
span the entire domain S,.

The advantage of using such functions has been demon-
strated in [10], with reference to the case where all surfaces
Sp are rectangular. More specifically, the electric modal
vectors of rectangular waveguides bounded by magnetic or
mixed—type walls have been used as basis functions. In
this paper the same concept is applied to metallization of
arbitrary shapes, with no restriction on the geometry of
the surfaces S,. In this case, the basis functions must be
determined numerically and the efficiency of the numeri-
cal method used for their calculation is a vital issue. The
BI-RME method discussed in Sec. V permits to determine
very efficiently a lot of basis functions.
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In the case of simply connected surfaces, we have to cal-
culate two classes of basis functions expressed by

1,/ (P)
67’,(1”):—12; % (8)
Ry
. va;A/(P)
grv) = —— (9)

”
where the pairs {w;(p)m;ﬁ(p)} and {w;/(p),/fﬁ(p)} are the
eigensolutions of the homogeneous Helmholtz equation in
the domain S, i.e.,

2
V3 4+ 5P g =0 in S, (10)

2 ,
V3ol 4O =0 ms, (1)

In the case of N—times connected surfaces, the set of ba-
sis functions must be supplemented with N — 1 additional
functions

519(17) = -, X VTq/)g(p) (12)

where 1/)2 2 satisfy the Laplace equation in the domain S,
ie.,

VZyr®) =0 in S, (13)

The boundary conditions are different for metallizations
connected or not connected to ports.

In the case of metallizations not connected to ports (e.g.,
Ss and Sy in Fig. 2), J_;D is tangent to the whole boundary
of S,. The same boundary condition on the basis functions
is satisfied provided that

HP =0 onas, (14)
o™ Jon, =0 on 0S, (15)
1 on the inner contour 85;,
¥ = (16)

0 ondS,—0dS]
In the case of metallizations connected to ports (e.g., Sy

and Sy in Fig. 2), J; is perpendicular to the port segment

%p. In this case, w;(p), wﬁl(p), and w?“”) must satisfy the
mixed boundary conditions

wé(p) =0 on 95,
(17)
81P;(p)/8np =0 ondS,
o™ Jon, =0 on 08,
(18)
1/);*/(1)) =0 on 05,
wo(p) _ 1 on the inner contour BS;;
" 0 on 95, — 05,
(19)

od®) Jon, =0 on 95,

It is worthy noting that, in the case of metallizations con-
nected to ports, 95, denotes the boundary of S, but the
port segment 9.5,,.

IV. CouUPLING AND PORT INTEGRALS

When considering metallic areas with a rectangular shape
the coupling integrals (6) and the port integrals (7) can
be calculated analytically by using the analytical expres-
sions of the basis functions (see [10], for instance). This
possibility is precluded in the case of arbitrary shapes, be-
cause the basis functions are determined numerically. In
this case, the surface integration (6) is a time consuming
task, especially in cases of basis functions determined by a
boundary integral method, since it requires the numerical
evaluation of the basis functions in many points within the
integration domain S,,. However, the coupling integrals (6)
can be transformed from surface to line integrals, thus re-
ducing dramatically the computing time. As shown in the
Appendix, we have

/S ew & ds =0 (20)

p

/1(p) /
Jsp kL (k"= K',) Jos, Mp

[ e as o (22)
SP
. . k” - 8w/(p)
H{(p)' i dS — m / " T dz 23
/Sp T m H;(P)(H;(P)Qi kugn) 85’3,(7” 8np ( )
. 1 1"
/ gl . " 48 = —— /@) NXim e (24)
Sp Kk VRN oS, Ity
0(p)
/ gow) . & gg = 1 n O g0 (o)
Js, " " k. Jas, " Ony

where 0/0t, is the derivative along the boundary, namely
in the direction of t; = U, X ilp.

It is noted that these formulas hold true in both cases of
metallizations connected or not connected to ports.

For the port integrals (7), we easily obtain

[ e -iyae=o (26
/35,
: L[ o
>1(p) (7 — r 9
L et = g [ S
| e - (- de =0 (28)
35,

V. APPLICATION OF THE BI-RME METHOD

In the analysis of circuits of practical interest some tens
of basis functions (8) and (9) are usually needed for each
metallic area. This, in turn, requires the calculation of
some tens of eigensolutions of the Helmoltz equations (10),
(11).

In the past years, some of the authors developed a novel
method (the BI-RME method) for the solution of the Hel-
moltz equation in arbitrary domains [17,18,19]. A compre-
hensive description of the BI-RME method is reported in
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Fig. 3. Geometry for the application of the BI-FRME method: a) an
internal metallic area, b) a metallic area connected to a port.

a book [11]. In this section, we limit ourselves to a brief
outline of the BI-RME method, to higlight its advantages
in the calculation of entire domain basis functions.

The BI-RME method is a modified boundary integral
approach for the evaluation of eigenfunctions. The sur-
face S, (either simply or multiply connected) is considered
as a part of a fictitious enlarged domain 2, with a rect-
angular shape (Fig. 3a). The eigenfunctions to be deter-
mined are defined in €2, and are assumed to vanish outside
Sp. They are expressed as combinations of Boundary In-
tegrals (BI) and a Resonant Mode Expansion (RME), in-
volving the modal potentials of the region €2,,. The bound-

ary integrals involve 8@[1;@ ) /on, and w;/(p ) over the line Op
(see Fig. 3a), which corresponds to the part of 95, not
coincident with the rectangular boundary. Using the BI-
RME representation of the eigenfunctions and imposing
the proper boundary conditions on oy, the eigenvalue prob-
lems (10) and (11) are converted into integral-differential
equations. As in the case of the conventional Boundary
Element Method (BEM), the discretized problem result-
ing from the application of the BI-RME method is much
smaller than in conventional approaches based on differ-
ential equations (FEM, FDFD, ...). Differently from the
conventional BEM, the BI-RME method leads to the deter-
mination of the eigenfunctions by the solution of a linear
matrix eigenvalue problem. In particular, it provides as
eigenvalues K;-(p ) and Ii;-/(p ) up to a prescribed value K4z,
and as eigenfunctions 9. ” /On, and W@ over the line
op and the modal amplitudes of the RME.

The method is very efficient and reliable, also in cases
where a large number of eigenfunctions have to be deter-
mined. Moreover, no spurious modes are found. Further-
more, it is worth noting that the order of the matrix eigen-
value problem to be solved depends on the extension of
the line o, and the surface of the resonator €2,. For this
reason, the efficiency of the BI-RME method highly im-
proves when a large part of the boundary of S, fits with
the rectangular boundary as in the example in Fig. 3a.

The evaluation of coupling integrals (21), (23), and (24)
requires 9 /On, and WP on dS,. On the portion
op, these quantities are directly the solutions of the BI-
RME method. On tho other part of 95,, they are obtained
from the BI-RME representation of the eigenfunctions (see
(5.44) and (5.94) in [11].) Even if a post—processing is re-
quired for obtaining the boundary values on 95, — 0, it is
convenient to let 9.5, coincide with 92, as much as possi-

ble. In fact, this reduces the dimensions of the eigenvalue
problems to be solved, thus increasing the rapidity and ac-
curacy of the solution.

To solve the Helmoltz equation in the case of a metalliza-
tion connected to a port, the exterior domain (2, includes

not only S,, but also its mirror image S,, as shown in
Fig. 3b. The problem is solved by imposing an even or
an odd symmetry condition with respect to the symmetry
plane shown in Fig. 3b. The details on the implementation
of the BIFRME method taking into account the symmetries
are discussed in [11], Sec. 5.2.3.

Finally, for multiply connected surfaces, all the possible

basis functions (12) must be considered, requiring the de-

termination of all the solutions w?“’ ) of the Laplace equa-

tion (13). These basis functions are obtained by solving
(13) through the conventional BEM [17]. Even in this case,
when the patch is connected to a port it is possible to solve
the Laplace equation by creating a mirror image S, of S,
and considering an even symmetry condition on the sym-
metry plane.

VI.

We used the code for the analysis of printed circuits involv-
ing resonators with complex shapes, which fully exploit the
capabilities of the method.

The first example refers to the analysis of a narrow—
band microstrip filter composed of two T—shaped port ele-
ments and two square-loop resonators (Fig. 4), firstly pro-
posed in [20]. The results obtained by the MoM/BI-RME
approach are reported in Fig. 5 and compared with ex-
perimental data and simulations given in [20], showing a
good agreement. The convergence was obtained with 4000
modes of the box and 62 basis functions (8 on each T—
shaped line and 23 on each loop resonator), corresponding
t0 Kmaz = 1.153 mm ™1,

For this example, we report in Fig. 6 the study of the
convergence properties of the MoM/BI-RME method. In
particular, we verified the convergence when varying the
number of basis functions (Fig. 4a), and when varying the
number of modes of the box (Fig. 4b). These graphs show
that the frequency response does not change when con-
sidering more than 62 basis functions or more than 4000
modes of the box.

The calculation of the frequency response of Fig. 4 takes
22 sec for the determination of the basis functions and the
evaluation of the coupling and port integrals, and 0.135 sec
for the MoM solution in each frequency point (on a Pen-
tium [T at 1 GHz). Thus, the total computing time for the
analysis in 100 frequency points is 35.5 sec. It is worthy
observing that taking advantage of the symmetries of the
geometry (which were not exploited in our analysis) should
lead to a dramatic reduction of the total computing time.

The second example refers to the analysis of a narrow—
band microstrip filter composed of two open—loop res-
onators (Fig. 7) [20]. The analysis of this structure (al-
ready presented in [12]) is particularly challenging, since
the lines and the loops are separated by very narrow ca-
pacitive gaps, and the surface current must be accurately

NUMERICAL RESULTS
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represented near these gaps. Consequently, in this case, the
analysis requires more basis functions than in the previous
example. Fig. 8 shows the frequency response of the filter
considering 4000 modes of the box and 158 basis functions
(12 on each port line, 22 on the middle line, and 56 on
each open-loop) corresponding to Kmar = 3.144 mm™1L.
The results are a good agreement with the theoretical and
experimental data taken from [20]. The computing time
(without exploiting the symmetries) is 48 sec for the cal-
culation of the basis functions and of the coupling and port
integrals, and 0.63 sec for the MoM solution in each fre-
quency point (on a Pentium IIT at 1 GHz). Thus, the total
computing time for the analysis in 100 frequency points is
111 sec.

As a final remark, we can observe that the selection of the
basis functions in our approach is performed by a spectral
criterion, including all the entire domain basis functions
up to a prescribed Kpq.. Especially in cases of metalliza-
tions where one of the dimensions is much larger than the
other (e.g., narrow strips), this criterion leads to the adop-
tion of very large values of K4z, in order to include in
the set of basis functions a sufficient number of elements
with significant variation along the narrow dimension. Of
course, it can happen that many basis functions with use-
lessly rapid variation in the larger direction can be included
in the basis. These functions could be discarded, but the
procedure for their recognition is too complicate to be con-
veniently implemented in a general purpose computer code.
Anyway, the numerical experiments presented above per-
mit not to dramatize the problem, because we noted that
it is sufficient to consider basis functions whose variation
in the narrow dimension correspond to one or two sinu-
soidal oscillations. In spite of the roughness of the current
representation the results are very good: this is, probably,
dependent on the variational properties of the admittance
parameters obtained by the Galerkin procedure.

VII. CONCLUSION

We have presented an efficient technique for the accurate
analysis of multilayered shielded printed circuits composed
of arbitrary shaped metallic areas. This technique is based
on an Integral Equation solved by using the Method of Mo-
ments with entire domain basis functions. The basis func-
tions are efficiently evaluated by the Boundary Integral-
Resonant Mode Expansion method. This leads to MoM
matrices of small size, even in the case of complex circuits.
Moreover, the transformation of the coupling integrals from
surface to line integrals permits to use the basic outputs of
the BI-RME method for calculating the MoM matrix .
The analyses of circuits of practical interest have been
reported and compared with both theoretical and experi-
mental data, showing that the approach is indeed feasible
and leads to a software code which is efficient an accurate.

APPENDIX

Following a procedure similar to the one presented in
[21,22], the transformation of the coupling integrals from
surface to line integrals is based on the application of

Dimensions in mm:
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Fig. 4. Printed microstrip filter composed of T—shaped port elements
and loop resonators.
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Green’s identity (see, for instance, [23], Appendix 2,
Eq. 45)

Bii- Adl +
Jas,

/ A-VrBdS =
SP

+/ Bﬁ-A’dz-/ BVy-AdS (A1)
a5, Sp

In the case of internal patches, obviously, the port segment
0S) is not defined and the line integral on 05, vanishes.

Derivation of (20)

The electric modal fields are related to scalar potentials
through (8) and (3), thus resulting

g /(p) ’
/ g . g qs = / @, x VTf/”” VX g
Js, Js, K ki
1
=—— / VP i, x Vrx!, dS  (A.2)
. Sp

K;(P) k’,/n

By applying (A.1) to (A.2) with A=, x VoY, and

w;(p ) , we have

/ g . & 4s =—
JSp

_

kP ke,
L

/{’T(P) k;n

1 L) s o /
T g 47 o e T

| P iy i x VX, de
J8s,

/ WO V(@ x ) dS (A3)
SP
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Fig. 6. Convergence behavior of the MoM/BI-RME method in the
analysis of the circuit shown in Fig. 4: a) as a function of the total
number of basis functions, when considering 4000 modes of the box;
b) as a function of the number of modes of the box, when considering
62 basis functions.

In the r.h.s. of (A.3) the surface integral vanishes because
of

VT . (UZ X VT]:) =0 (A.4)
for any scalar function F (see, for instance, [23], Ap-
pendix 2, Eq. 38), whereas the line integral on 05, van-

ishes since w;(p ) =0on 0S,. Moreover, the line integral on
%p is not defined for internal patches and, in the case of
patches attached to ports, vanishes since i, - @, X VX, =
—0x},/0t, = 0 on 0S,. This proves (20).

Derivation of (21)

From (9) and (3) we have

/ erw . g odas = /
S S,

/ VP .V, dS

Ve Ve, o
//(p) k‘/

,,(p)k/ (A.5)

By applying (A.1) to (A.5) with A = V/,, and B = w”(p),

and using the Helmoltz equation V2.x/, = —k'> /., we
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Fig. 7. Printed microstrip filter composed of two open-loop res-
onators.
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Fig. 8. Comparison between simulated and measured results pre-

sented in [21], and results obtained with the present approach, for
the filter shown in Fig. 7.

have
o = 1
/Sp e;/(p) &, dS = m ¢//(p) NrXe, dl
1
[ g, vTx:n dt

Iﬁ;/(p) k'lm =g p

+ﬁ PI®) (A.6)
A PR ’

By remembering that w”(p ) =0 on %p, the line integral
on 05, in (A.6) vanishes.

Moreover, by applying (A.1) to (A.5) with A= VTdJ;/
and B =/, and taking into account that V3 ¢”(p =

—lﬁ;-/( p)2 w;/(p), we have

- 1

/ é;f’(p) SEdS = — / Xo i - Vsz;/(p) e

Js, Kk UKL Jos,

1 / s 11(p)

+—— Xim Tp - VP dl
Ii;/(p)k:n Jas, P
/(P

5= [ w0, as (A7)
ki S, )

By remembering that (“)w;«/(p ) /on, = 0 on 05, and that

X = 0 on 05, the line integrals in (A.7) vanish. There-

fore, by substituting the surface integral in the r.h.s. of

(A.6) into (A.7), and considering ron )2 £ k2 we finally
obtain (21).
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Derivation of (22)
From (12) and (3) we have

J

. /
W) L& qs = / 7. x Vrypd®) . % a5

P Sp m

.
= / VW - Vrx, x i, dS - (A8)
m Sp

By applying (A.1) to (A.8) with A=V, x @ and
B =42? we have

/ eow) . g 48 = #/ PoP) iy VX, X @, dl
s ki Jos,

L
o PP 7, Ny, X i dl
m 95,
L[ 0w y
_I{ZT ; 1#7‘ VT . (VTXm X Uz) ds (Ag)

In the r.h.s. of (A.9), the surface integral vanishes due
to (A.4). With regards to the line integral on 95,

WP = cost on each contour dS}. In the case of a closed
contour 85;

/ Ty - VX, X U, dl = / VX, -ty dl =0 (A.10)
asi asi

(see [23], Appendix 2, Eq. 55). In the case of an open line
a5, (only for patches attached to ports),

[ o Vi it dt = [ Frhy dl = (P)=X(@)

a5} Jasi
(A.11)
where P and @) are extreme points of the line 85;, which
are located on the box wall OSps, where x,, = 0. Finally,
the line integral on ﬁp vanishes since 7, - Vrx,, X @, =
dX\n/Ot, = 0 on 0S,. This proves (22).

Derivation of (23)
From (8) and (4) we have

1 (P) "
/ gl . g 48 = / iy ¥ VT}” (VX xii, | dS
s ' S, o) ko
) .
SR . / Vgl Vo', dS
S.

/{’T(P) k;;L ,

p

(A.12)

Therefore, the derivation of (23) is similar to the one of
(21), only taking into account the different boundary con-

dition of the scalar potential w;(p ).

Derivation of (24)
From (9) and (4) we have

J

Vo @ Vrxm .
") . W X i, | dS

erw . gnqs = /

- JSy K

= _1 i 11(p) " -
D /s VP Vo, Xt dS - (A-13)

By applying (A.1) to (A.13) with A= Vpy”, x @, and
B = wlr/(p), we have

/ erw . g qs =
. ,

- n(p) = . " —
» kP in Jos, Gy Vi > 0 db

—1 i 1"(p) = " —
Pk, oS, Uiy Ny, x . de
—1 ‘ 11(p) " N
oy /S A (Voxlh x i) dS  (A.14)

In the r.h.s. of (A.14), the surface integral vanishes due to
(A.4). In the case of patches connected to ports, the line
integral on 9, vanishes since v’ ® = 0on 0S,. Moreover,
in the line integral 9, 7i, - VX!, x @, = VX" - t,. This
proves (24).

Derivation of (25)
From (12) and (4) we have

/ eow . g 4s =
J S,

p

. 11
/ (. x Vrpd®) <va—3‘ x ﬁz> ds
Sp m
L
= /S Vryd®) - Vrxl dS (A.15)

By applying (A.1) to (A.15) with j:Vng(p) and
B =x" we have

i ) Ly
/ eow) . g s = o / X iy - V2P de
Sy m Jas,

Xoh T - V2@ e

_|_
e
ST

m  JOS,
1
—r /S X V7®) ds (A.16)

In the r.h.s. of (A.16), the surface integral vanishes because

V2y2) = 0, whereas the line integral on 95, vanishes

since 61#9(”)/8711, =0 on 9S,. This proves (25).
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