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Abstract  —  A novel technique to derive the lossy equivalent 

circuit of waveguide external couplings of narrowband cavity 
filters with arbitrary cavity cross section and arbitrary coupling 
geometry is presented in this contribution. The technique makes 
use of a reduced CAD model to obtain the element values of the 
equivalent lossy circuit. Therefore the contribution of the 
external coupling structures to the total dissipated power and 
total stored energy of the filter can be derived and a clear 
separation between resonators and couplings is established. A 
first degree filter has been designed, simulated, and 
manufactured. Its lossy equivalent circuit has been extracted and 
comparisons with simulation and measurement show excellent 
agreement. Index Terms — Band pass filters, circuit optimization, coupling 
circuits, microwave filters, passive circuits 

I. INTRODUCTION 

Today most demanding applications require microwave 
components capable of supporting more and more power with 
very low loss dissipation.  

Commonly, only canonical shapes such as rectangular and 
circular geometries are used in the design of waveguide filters. 
However, with the advent of the new 3D manufacturing 
techniques and the maturing of the traditional ones novel 
freedom is available at low cost in the choice of the internal 
geometry and to apply geometry optimization techniques to 
reduce loss dissipation. 

However, full-wave geometry optimization of a complete 
waveguide filter is not feasible due to the extreme complex 
geometries expected to be obtained and the very long 
simulation time entailed to it. Instead, cavities and coupling 
structures can be individually optimized and then combined to 
yield a final improved filter RF response. To that end, a 
suitable segmentation to find the loss and energy storage 
contributions of the different cavities and coupling structures 
in a filter is needed. 

This paper is focused on the derivation of a lossy equivalent 
circuit of external waveguide couplings for the 
characterisation of the loss contribution in the coupling 
apertures to the overall dissipation losses. 

Previous publications [1]-[3] centered their work in the 
characterization of the external coupling with the goal to 
derive the unloaded Q factor of the associated cavity. In [1] 
and [2] a lossy equivalent circuit is proposed of an external 
coupling, but the loading of cavity due to the coupling 
structure was not considered. Thus, the coupling aperture 
needed to be small so frequency and unloaded Q of the cavity 

were not strongly affected. Other workers [3] overcome this 
limitation, but the coupling aperture is assumed to be lossless. 
On the other hand, Miraftab and Yu [4] have proposed an 
equivalent circuit of lossy couplings based on [5]. However, 
the paper is centered on advanced synthesis techniques and 
their goal is to characterize lossy couplings obtained by 
predistortion techniques. Losses due to material finite 
conductivity are neglected. 

The different and novel formulation presented here allows to 
obtain an equivalent circuit of external coupling including 
losses due to material finite conductivity and loading of the 
cavity due to the coupling aperture. The technique described 
here can be applied to any arbitrarily shaped coupling 
structure and waveguide cross section. Therefore, the value of 
the approach presented is that it can be used to optimize the 
shapes of external couplings individually, with the aim at 
reducing the loss contribution of these elements in a given 
filter structure. 

Measured and simulated results of a first degree filter 
confirm the excellent accuracy obtained with the new 
equivalent circuit for the loss prediction of practical 
waveguide external couplings. 

II. EQUIVALENT CIRCUIT MODEL 

The proposed model for the derivation of the equivalent 
circuit of external couplings consists of a single resonator 
coupled to the input feed source and output load as shown in 
Fig. 1 where a symmetry plane SS’ along the direction of 
propagation can be observed. The corresponding equivalent 
circuit is that of Fig. 2, where one half of the circuit has been 
omitted due to the symmetry of the model. 

The quantity EXTl  represents the input line, the coupling is 
defined by the circuit between the planes AA’ to BB’, and RESl  
is the halved resonator by the symmetry plane. = +S S SZ R jX  
and = +P P PZ R jX  are the four unknowns to be found. ,in TLZ , 

inZ  and LZ  are the impedances seen along the circuit whereas 

CZ  and γ C  are the characteristic impedance and propagation 
constant of the line. If canonical shapes such as rectangular or 
circular geometries are used as input line and resonator, CZ  
and γ C  can be analytically calculated as in [5]. However, they 
can be directly extracted from full-wave simulation when no 
analytical expressions are available (for arbitrary cross section 
geometries). The impedance at the symmetry plane can either 
be ' 0SSZ =  or 'SSZ = ∞  depending on whether an electric 



 

(odd mode) or a magnetic (even mode) wall is used, 
respectively. 
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Fig. 1. Complete waveguide external coupling CAD model. 
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Fig. 2. Suggested lossy equivalent circuit of waveguide external 
coupling. 

 
The procedure to find the unknowns of the coupling circuit 

can be divided in three stages: first, the effects of the input line 
must be de-embedded; second, an analytical equation for the 
input impedance from the AA’ plane must be found; and third, 
the input impedance of the model at two frequency points must 
be calculated from full-wave and used as solutions for the 
analytical equation to find the unknowns. 

To de-embed the effects of the feeding line, its length must 
be known. The length given in the waveguide model cannot be 
used due to the loading effects of the waveguide coupling over 
the line. Hence the corrected length of the external line will be 
derived using the phase of the S11 parameter. A signal traveling 
through the circuit in Fig. 2 will have a total phase shift of 
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since the phase shift introduced by the coupling and the halved 
resonator must be π/2 rad and -π/2 rad, respectively, if low 
loss is assumed. ( )'SSϕ  is the phase shift of an electric (180º) 
or a magnetic wall (0º). The length of the external line can 
then be calculated as  
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where 11( )ϕ S  is the unwrapped phase of the reflection 
parameter from the full-wave simulation. 

The analytical input impedance of the circuit in Fig. 2 can 
be calculated as 
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where SR , SX , pR  and pX  are the four unknowns to be 
found, and inz  is a normalized impedance that can be obtained 
by standard transmission line impedance transformations [5] as 
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where ,in TLZ  is the input impedance of the CAD model in Fig. 
1 calculated from full-wave simulation. 

If an electric wall is placed at the symmetry plane SS’, Lz  
can be obtained as in (5), whereas if a magnetic wall is placed 
instead, Lz  is obtained as in (6). 
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To find the equivalent circuit of the coupling, three 
approaches are discussed in this work. The first approach only 
uses the information of the model in Fig. 1 when an electric 
wall is placed at SS’. Likewise, for the second approach, the 
equivalent circuit is obtained only with the information of the 
model in Fig. 1 when a magnetic wall is placed at SS’. Finally, 
the third approach computes the equivalent circuit of the 
external coupling from the model in Fig. 1 when both, an 
electric and a magnetic wall, are used. 

For the first two cases, a system of equations can be 
obtained combining (3) with (5) or (6) depending on whether 
an electric or a magnetic wall is being used in the model, 
respectively. For one frequency point, two equations can be 
obtained from (3): ( )Re inz  and ( )Im inz . Hence, at least two 
frequency points are needed to find the four unknowns. Two 
equations, (10) and (11), will be extracted from the center 
frequency ( 0ω ) and two more equations, (12) and (13), from a 
frequency point ( Sω ) near resonance. 

For the third approach, the input impedance (3) of the 
circuit in Fig. 2 must be obtained when an electric wall and a 
magnetic wall are placed at SS’. Combining these input 
impedances, the impedance parameters of the complete model 
with no symmetry planes are derived as 
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and its input impedance as 
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Again, two equations can be obtained from (1.9): the real 
and the imaginary parts. Therefore, two frequency points are 
also needed in this approach to find the four unknowns. 

In all cases, the second frequency point should be chosen 
near resonance, where the frequency dependence of the 
waveguide coupling model and the equivalent circuit are very 
similar. The nonlinear system of four equations and four 
unknowns can be finally solved numerically. 

In lumped elements circuits, the even and odd mode theory 
for symmetric circuits must be fully applied since information 
about the whole circuit is shared between the modes. However, 
when the even and odd mode theory is applied in a lossy 
transmission line, both modes have information about the 
whole circuit and thus, they can be studied separately. 
However, for this application it is expected that the odd mode 
will not yield the right coupling element values since ' 0SSZ =  
and L Sz Z≫  and therefore, SZ  is hidden in Lz  and the 
system does not converge to the right solution. This is not the 
case for the even mode, where 'SSZ = ∞  and L Sz Z∼  and a 
valid solution is expected to be found. A valid solution is also 
expected if the even and odd mode theory is applied 
completely. 

III. EXPERIMENTAL RESULTS 

A first degree filter shown in Fig. 3 in WR187 waveguide 
with a center frequency of 4.5 GHz and with -10 dB couplings 
has been designed and manufactured to verify the technique. 

 

 
Fig. 3. Manufactured prototype 

 
The material used in the fabrication was a steel alloy with 

unknown electrical properties. The electrical conductivity in 
the simulation was optimized to match the center insertion loss 
of the measured data. The equivalent circuit was then obtained 
using the three outlined procedures. 

Table 1 lists all the information extracted from the full-wave 
simulation where fS = f0 + 10 MHz (fS/f0 = 1.0022) has been 
chosen. The resulting circuit values when only the even mode 
is used are collected in Table 2. 

 
TABLE 1 

EXTERNAL COUPLING PARAMETERS 

Zin,TL,even(ω0) 277.48 + j357.26 Ω 
Zin,TL,even(ωS) 426.81 + j585.17 Ω 
Zin,TL,odd(ω0) 14.57 - j620.65 Ω 
Zin,TL,odd(ωS) 14.20 - j606.60 Ω 
φ(S11,even(ω0)) -258.785º 
φ(S11,odd(ω0)) -80.835054º 
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 TABLE 2 
FINAL EQUIVALENT LOSSY CIRCUIT VALUES FROM EVEN MODE 

Section Parameter Value 
Length λg0/2 m 
Z0(ω0) 1 Ω 
α(ω0) 241·10-3 Nepers/m 

TL 
Resonator 

β(ω0) 67.147 rad/s 
Rs 0.2889 mΩ 
Ls -0.1696 H·rad 
Rp 2.882 mΩ 

Coupling 1 

Lp 0.1634 H·rad 
Fig. 4 and Fig. 5 show the full-wave simulation, the 

measured data and the response from the equivalent circuit 
obtained using the three different approaches. As expected, a 
good convergence is not observed when only an electric wall 
is used to obtain the input impedance of the model under 
study. On the other hand, excellent agreement between the 
full-wave simulation, the response from the equivalent circuit, 
and the measured data is obtained both in magnitude and in 
phase when the other two approaches are used (only even 
mode and full even-odd mode). 
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Fig. 4. Equivalent circuit, simulated and measured RF responses 
in magnitude 
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Fig. 5. Equivalent circuit, simulated and measured RF responses 
in phase 

A study on how the second frequency point affect the 
accuracy of the results has been carried out for the second 
approach (only even mode) and it is summarized in Table 3. 
Good results are obtained when fS ≤ f0 ± 50 MHz (fS/f0 = 1 ± 
.0111). 
 

TABLE 3 
EXTRACTED PARAMETERS FROM SIMULATION , MEASUREMENT AND 

EQUIVALENT CIRCUIT FOR DIFFERENT FS 

Data from 
f0 

(GHz) 
BW 

(MHz) 
IL 

(dB) 
GD 
(ns) 

Simulation 4.4896 103.2 -2.649 3.437 
Mesaurement 4.485 103.75 -2.649 3.493 
EC (fS = f0 + 150 MHz) 4.4904 117.6 -2.655 3.051 
EC (fS = f0 + 50 MHz) 4.4898 108.6 -2.647 3.287 
EC (fS = f0 + 10 MHz) 4.4898 104.4 -2.643 3.395 
EC (fS = f0 + 2 MHz) 4.4898 103.8 -2.643 3.418 
EC (fS = f0 - 2 MHz) 4.4898 103.2 -2.642 3.430 
EC (fS = f0 - 10 MHz) 4.4898 102.6 -2.642 3.453 
EC (fS = f0 - 50 MHz) 4.4898 99 -2.637 3.574 
EC (fS = f0 - 150 MHz) 4.4898 89.4 -2.625 3.924 

VII.  CONCLUSION 

A technique to derive the equivalent circuit of a lossy 
external coupling has been presented. A first degree filter has 
been designed and manufactured. Excellent agreement is 
reported between the simulated full-wave response, its derived 
equivalent circuit response and the measured data. The 
technique was found robust for a wide range of second 
frequency points (fS). The theory is currently being used to 
optimize the shape of external couplings in order to reduce 
losses in waveguide filters. 
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