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Abstract The absence of universally accepted solu-
tions for the design of reinforcement in plates and
shells in the structural concrete codes, and the constant
development of computers combined with powerful
numerical methods, reveal the need for a standard pro-
cedure to calculate the required reinforcement in thin
elements subject to membrane and flexural forces. In
the present study, the amount of reinforcement is opti-
mized locally for each finite element of the mesh that
models the geometry of the problem. Some numerical
examples are given and compared to the results pro-
vided by other authors, achieving significant savings
in reinforcement.

Keywords Reinforcement · Concrete · Shell
elements · Optimization · Co-planar shell structures

1 Introduction

Traditionally, the failure conditions of the materials
in concrete shells have been applied to the stresses at
some structure points. Even though most researchers
have adopted this checking methodology, the basic hy-
potheses and methods to solve the problem are still
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open to debate. As proof of this, references in the de-
sign codes relating to the design of plates and shells
are quite scarce and, in the majority of cases, these
are dealt with rather superficially. Eurocode 2 [1] does
not include any reference to shells, and only refers to
plates that are loaded on their plane. The ACI 318 [2]
code considers any design method that assures suffi-
cient strength with equilibrium to be applicable. In the
Model Code CEB-FIP 1990 (MC90) [3] these are dealt
with in greater depth, given that design hypotheses are
included which are based on the use of layer models,
such as those developed by Marti [4], which resist the
external membrane forces and the internal shear force.
References in the technical literature are also scarce
and normally focus on analysis methods (e.g. [5–9]
among others) or on the design of particular structures
(e.g. [10–13]) but not on design methods in concrete
plates and shells.

Nevertheless, there are design methods that use
plate or shell elements as dimensioning units resist-
ing their nodal forces. The objective is to reach the
equilibrium between the external and internal forces
due to the contributions of the reinforcement and the
concrete. To this end, calculus algorithms are used to
provide the quantity of reinforcement at the outer lay-
ers of the element in two orthogonal directions [14].
Some strategies were developed to obtain more ratio-
nal reinforcement distributions, with less weight in the
complete concrete plate or shell [15].

The development of optimization techniques has
been strongly boosted by the tremendous increase in
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computational and graphical capacities. These tech-
niques represent an effective means of obtaining al-
ternative reinforcement distributions which comply
with the design conditions (stress constraints, con-
struction prescriptions, etc.) in an optimal way (min-
imum weight, minimum stress level, etc.). They could
become a standard procedure for designing elements
subject to membrane and flexural forces [16]. How-
ever, it is convenient to bear in mind that this de-
sign process may result in a reduction of the residual
strength of the element, which may arise from unex-
pected increases in the loading (such as due to heavier
loads: locomotives, lorries, new industrial machinery,
etc.).

Tomás and Martí [17] optimized the amount of
reinforcement locally for each finite element of the
mesh that models the geometry of the problem. Start-
ing from the equilibrium between applied and inter-
nal forces, it leads to an indeterminate system of non-
linear equations solved using optimization techniques.
The formulation of the method includes the biaxial be-
haviour of the concrete and the different lever arms
of the reinforcement, assuming ideal plastic behav-
iour for both materials. The ANSYS finite element
program was used to analyse the structure and to ob-
tain the forces in the shell elements. Furthermore, the
formulation was implemented by means of user rou-
tines within the optimization module of the program.
The objective function is the summation of the tensile
forces in the reinforcement. A numerical example was
given and compared to the results provided by other
authors.

In the present study, extensive use of the aforemen-
tioned formulation is provided, namely:

(i) details of all the parameters are included for the
different cases according to the necessity for re-
inforcement;

(ii) the influence of variations of some of the assump-
tions for the analysis is commented; and

(iii) more extensive application to case studies has
been achieved by adding a second example of a
three-span continuous deep beam reinforcement
computation.

2 Formulation and solution of the optimal
structural design problem

The aim of the optimal structural design is to obtain a
design, a set of values for the design variables, which

minimizes an objective function and complies with the
constraints that depend on the variables.

The design variables of a structure can be proper-
ties of the cross-section of the elements (surface areas,
thicknesses, inertia moments, etc.); structural geom-
etry parameters; structural topology parameters (ele-
ment densities in the range from 0 to 1) [18]; and prop-
erties of the material of the structure. The type of op-
timization carried out depends on the type of variables
being considered. Traditionally, the design of mini-
mum weight structures has been sought, which has led
to the fact that the most common objective function is
the weight of the structure. Nevertheless, the weight
is not the determining factor in other applications, and
other objective functions are used, such as cost, relia-
bility, stiffness, etc. The constraints are the conditions
that the design must comply with in order to be re-
garded as valid.

The optimum design problem was formulated as
follows

To find the variable vector of design x which

minimizes f (x)

subject to hj (x) = 0 j = 1,2, . . . ,mi

gk(x) ≥ 0 k = 1,2, . . . ,md

xL
i ≤ xi ≤ xU

i i = 1,2, . . . , n

(1)

where x is the n-dimensional vector of the design vari-
ables; f (x) is the objective function; hj (x) is the j th
equality design constraint; gk(x) is the kth inequality
design constraint; mi is the number of equality con-
straints; md is the number of inequality constraints; n

is the number of variables; and xL
i (xU

i ) is the lower
limit (upper limit) of the variable i (e.g. [19] among
others).

This problem was solved by mathematical pro-
gramming using the optimization module in ANSYS
[20], which has a conventional first-order method
using the first derivatives of the objective function
and constraints with respect to the design variables.
The module converts the optimization problem with
constraints into an unconstrained problem by adding
penalty functions to the objective function. For each it-
eration, gradient calculations, which employ a steepest
descent or conjugate direction method, are performed
to determine a search direction. A line search strategy
is adopted to minimize the objective function of the
unconstrained optimization problem.
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3 Formulation of the optimal design of
reinforcement in shell elements

3.1 Description of the material

Concrete is a complex material that requires a large
number of parameters in order to provide a complete
description of its constitutive equations. In fact, con-
crete should be viewed as a quasi-brittle material hav-
ing a size-dependent behaviour [21]. Nevertheless, in
the adopted design model [22] concrete is considered
to be a rigid-plastic material, which is characterized
by a single parameter, fc, the uniaxial concrete com-
pressive strength measured on cylinders. This mate-
rial consideration is sufficient to meet the proposed
aim. With respect to the general case of the design,
the choice of fc is a delicate matter, so the values sug-
gested in MC90 [3] for the design strength of concrete
were adopted:

Non-cracked zones are given by

fcd1 = 0.85

[
1 − fck

250

]
fcd (2)

Cracked zones, where the compressive strength
may be reduced by the effect of transverse tension
from the reinforcement and by the need to transmit
force through the cracks, are given by

fcd2 = 0.60

[
1 − fck

250

]
fcd (3)

where fck is the characteristic cylinder compressive
strength of the concrete, fcd is the design cylinder
compressive strength of the concrete, and fcd1 and
fcd2 are the design strength of concrete for noncracked
zones and for cracked zones, respectively, the units are
MPa.

The strength for concrete that is subject to biax-
ial compression state increases: it is possible to reach
an increase of approximately 16% under a stress state
of the same intensity in both directions [23]. This in-
crease, due to the confinement effect, can be formu-
lated by multiplying the compressive strength by a co-
efficient K

K = 1 + 3.65α

(1 + α)2
, α = σ2

σ1
, 0 ≤ α ≤ 1 (4)

where σ1 and σ2 are the stresses referring to the prin-
cipal directions.

As is normal when dealing with the design of con-
crete structures, neither concrete tensile strength nor
aggregate interlocking phenomena are taken into ac-
count. The tensile strength is a small fraction, less than
10%, of the compressive strength. If it is considered
in the optimization process, a slightly better optimum
design of the reinforcement would be obtained. How-
ever, there are two disadvantages: (i) the code imple-
mentation is complex and the reinforcement savings
are minimal; and (ii) the optimization may result in
further reductions in the residual strength.

A rigid-plastic behaviour was considered for rein-
forcement steel, with a maximum stress equal to the
yield limit. The reinforcement only resists uniaxial
forces, and the dowel action of the bars is not taken
into account. The contribution of the reinforcement in
compression resistance was discarded due to its negli-
gible effect in comparison to the surrounding concrete.
Therefore, the reinforcement is designed solely to re-
sist tensile forces. The effects related to the adhesion
and to the anchoring of the bars were not taken into
account. The orthogonal distribution of the reinforce-
ment was considered.

3.2 General approach

The proposed design method is based on the lower-
bound theorem of the theory of plasticity [24]. The
flexural and membrane forces, which act on the sides
of a shell element (Fig. 1), must be in equilibrium
with the internal compression forces in the concrete
and the tensile forces in the reinforcement. In gen-
eral, the principal directions of the membrane and flex-
ural forces do not coincide. Applying this theorem, it
may be assumed that the solution obtained is suffi-
ciently safe, although a deformation verification must
be carried out later to guarantee that the performance
is within the serviceability limit state.

Figure 2 shows the model used for a shell element,
the reinforcement set parallel to the x- and y-axes, and
the acting internal forces. The tensile forces of the re-
inforcement are identified as Nsxt , Nsyt , Nsxb , Nsyb

with the subscripts x and y referring to the axes, and
the subscripts t and b referring to the top and bottom
layers, respectively. Different lever arms of the rein-
forcement (Fig. 2a) were included in the formulation
(hyt , hyb, hxt , hxb). A vertical failure plane parallel to
the direction of the cracks on the top layer is assumed,
the normal vector of which forms an angle θt , with the
x-axis and is contained in the xy-plane.
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Fig. 1 Flexural and membrane forces acting on a shell element (per unit length)

Fig. 2 Model of a shell element

The thickness of the compressed top layer is repre-
sented by at . Uniform stress distribution (rectangular
stress block represented by the dashed line) is assumed
within this layer, Nct with its resultant force being par-
allel to that normal vector. In the same way, with re-
spect to the bottom layer, θb refers to the normal vector
of the failure plane, ab to the thickness of the uniform
stress distribution, and Ncb to its resultant force. The
stresses within the concrete layers can be assumed to
have other distributions (triangular, trapezoidal, par-
abolic, etc.) although the differences between the rein-
forcements obtained for each distribution are minimal,
all the more so if the thickness of the layers is small.

This type of formulation was originally developed
by Nielsen [25] for plates and slabs subject to the
membrane state with symmetrical reinforcement in
two directions. Later, the method was extended for or-
thogonal reinforcement [26] and generalized for ran-
dom directions [27]. Subsequently, the membrane re-
inforcement of plates was extended to shells [28, 29]
and Gupta [30] discussed the case of reinforcement

necessary in the top and bottom layers of a shell. Fi-
nally, this formulation was widened to cover three fur-
ther cases: reinforcement necessary only in the bottom
layer; reinforcement necessary only in the top layer;
and reinforcement not necessary [14, 22].

Even though the phenomenon described is rela-
tively simple, this is not the case with the mathematical
solution. The formulation required leads to an indeter-
minate system of nonlinear equations for each case.
The equilibrium equations used come from [14], [22]
and [30] and are listed below in the appropriate form
for use in this work.

3.2.1 Reinforcement necessary in top and bottom
layers

The sum of reinforcement forces in x and y directions
and the moments are

Nsx = Nsxt + Nsxb; Nsy = Nsyt + Nsyb (5)

Msx = −Nsxthxt + Nsxbhxb;
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(6)
Msy = −Nsythyt + Nsybhyb

Forces and moments in the concrete are

Nct = −atfcd2; Ncb = −abfcd2 (7)

Mct = −1

2
(h − at )Nct ; Mcb = 1

2
(h − ab)Ncb (8)

Equations (5) to (8) express the internal forces and
moments in terms of the defined parameters and must
be in equilibrium with the external membrane/bending
forces. The system of equations is

Nx = Nsx + Nct sin2 θt + Ncb sin2 θb (9)

Ny = Nsy + Nct cos2 θt + Ncb cos2 θb (10)

Nxy = −Nct sin θt cos θt − Ncb sin θb cos θb (11)

Mx = Msx + Mct sin2 θt + Mcb sin2 θb (12)

My = Msy + Mct cos2 θt + Mcb cos2 θb (13)

Mxy = −Mct sin θt cos θt − Ncb sin θb cos θb (14)

Combining (5) to (14) produces a system of six
equilibrium equations with eight unknowns (Nsxt ,
Nsxb , Nsyt , Nsyb , at , ab, θt and θb). In order to solve
the system two of these must be set as design variables.

3.2.2 Reinforcement necessary in the bottom layer

Ncxt , Ncyt are the forces in directions x, y, and Ncxyt

is the transverse shear, all in the top layer of concrete.
This layer is under biaxial compression while rein-
forcement is necessary in the bottom layer. The inter-
nal forces are

Nsx = Nsxb; Nsy = Nsyb (15)

Msx = Nsxbhxb; Msy = Nsybhyb (16)

Ncb = −abfcd2; Mcb = 1

2
(h − ab)Ncb (17)

The equilibrium equations are

Nx = Nsx + Ncxt + Ncb sin2 θb (18)

Ny = Nsy + Ncyt + Ncb cos2 θb (19)

Nxy = Ncxyt − Ncb sin θb cos θb (20)

Mx = Msx + Mcxt + Mcb sin2 θb (21)

My = Msy + Mcyt + Mcb cos2 θb (22)

Mxy = Mcxyt − Mcb sin θb cos θb (23)

where

Mcxt = −1

2
(h − at )Ncxt ;

Mcyt = −1

2
(h − at )Ncyt ; (24)

Mcxyt = −1

2
(h − at )Ncxyt

The compressive top layer thickness is

at = Nct,max

Kfcd1
(25)

where K is obtained by (4), with the principal stresses
(forces per unit length, in this case) being

Nc1,c2,t = Ncxt + Ncyt

2

±
√(

Ncxt − Ncyt

2

)2

+ N2
cxyt (26)

Combining (15) to (23) and (25) produces a sys-
tem of six equilibrium equations with seven unknowns
(Nsxb , Nsyb , ab , θb, Ncxt , Ncyt and Ncxyt ). In order to
solve the system one of them must be set as a design
variable.

3.2.3 Reinforcement necessary in the top layer

The equations for this case are the same as those for
the previous case except that all “b” subscripts are re-
placed by “t” and vice versa.

3.2.4 Reinforcement not necessary

In this case, both layers are under biaxial compression
and there is no need for reinforcement. Unknowns are
the concrete forces, these being Ncxt , Ncyt , Ncxyt for
the top layer and Ncxb , Ncyb , Ncxyb for the bottom
layer.

The equilibrium equations are

Nx = Ncxt + Ncxb (27)

Ny = Ncyt + Ncyb (28)

Nxy = Ncxyt + Ncxyb (29)

Mx = Mcxt + Mcxb (30)

My = Mcyt + Mcyb (31)

Mxy = Mcxyt + Mcxyb (32)
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where

Mcxt = −1

2
(h − at )Ncxt ;

(33)
Mcxb = −1

2
(h − ab)Ncxb

Mcyt = −1

2
(h − at )Ncyt ;

(34)
Mcyb = 1

2
(h − ab)Ncyb

Mcxyt = −1

2
(h − at )Ncxyt ;

(35)
Mcxyb = 1

2
(h − ab)Ncxyb

In addition, it is necessary to add the layers’ thick-
nesses equations for the concrete

Nc1,c2,t = Ncxt + Ncyt

2

±
√(

Ncxt − Ncyt

2

)2

+ N2
cxyt (36)

Nc1,c2,b = Ncxb + Ncyb

2

±
√(

Ncxb − Ncyb

2

)2

+ N2
cxyb (37)

αt = Nc2t

Nc1t

; αb = Nc2b

Nc1b

(38)

Kt = 1 + 3.65αt

(1 + αt )2
; Kb = 1 + 3.65αb

(1 + αb)2
(39)

at = Nct,max

Ktfcd1
; ab = Ncb,max

Kbfcd1
(40)

Combining (27) to (32) and (36) to (40) produces
a system of eight equilibrium equations with eight un-
knowns, thus only one solution exists.

3.3 Objective function

The objective function is the sum of the tensile forces
of the reinforcement. This expression depends on the
case being optimized. The four equations are then

(1) reinforcement necessary in top and bottom layers

Ntot = Nsxt + Nsyt + Nsxb + Nsyb (41)

(2) reinforcement necessary only in the bottom layer

Ntot = Nsxb + Nsyb (42)

(3) reinforcement necessary only in the top layer

Ntot = Nsxt + Nsyt (43)

(4) reinforcement not necessary.

On optimizing the sum of the tensile forces, the re-
inforcement cross-section area is also optimized, given
its relationship to the steel design strength fyd , and
therefore, to the weight of the steel.

The objective function was normalized by divid-
ing it by the initial value adopted in the optimiza-
tion process (obtained by means of adopting any initial
value for at , ab between 0 and h and solving the sys-
tem of equations). Thus, it takes on values approaching
unity, having a similar range of values to those of the
design variables that are stated in Sect. 3.4 (but in radi-
ans instead of degrees). This technique provides good
results when nonlinear mathematical programming is
used in order to solve the optimum design problem.

A tolerance value of 10−4 was used in order for the
optimization process to be stopped in either of the fol-
lowing two cases: (a) whenever the variation in the ob-
jective function in two consecutive iterations is lower
than the tolerance; or (b) whenever the variation in the
objective function between this iteration and the min-
imum value obtained in the previous iteration is less
than the tolerance.

3.4 Design variables

3.4.1 Reinforcement necessary in top and bottom
layers

The difficulty of the problem lies in trying to solve
the equilibrium equation system. Even though the un-
knowns that we are interested in are the tensile forces
of the reinforcement (Nsxt , Nsyt , Nsxb and Nsyb),
there are a further four unknowns (at , ab , θt and θb).
Thus, there is a system of six equilibrium equations
with eight unknowns. This requires searching for θt

and θb values in order for the total amount of rein-
forcement to be minimal, thus satisfying the equilib-
rium equations. Therefore, the θt and θb angles were
used as the design variables.

The MC90 states that by adopting 45◦ for the com-
pressed truss of the concrete, a minimum of the lo-
cal reinforcement is obtained. Therefore, the values
θt = θb = ±45◦ (phase shifted by 360◦) were used as
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the initial values for the design variables in the vali-
dation examples of the procedure, with satisfactory re-
sults being obtained. The phase shift is used as a strat-
egy to avoid negative or zero values in the design vari-
ables, since the ANSYS program does not allow for
their use in its optimization module [20]. In this way,
the variation ranges are

270◦ ≤ θb ≤ 360◦ (44)

360◦ ≤ θt ≤ 450◦ (45)

The design variables are forced to adopt the ex-
treme values of the variation intervals when they are
too close to them (an angle of 10–15◦). This is done
for two basic reasons. The first is concerned with tak-
ing into consideration the recommendation in MC90
that the tensile and compression forces must be sep-
arated by at least 15◦. For two very near directions,
the tension in the reinforcement and the compression
in the concrete could conflict, and this would infringe
upon the displacement compatibility condition. The
second reason is to ensure the convergence of the op-
timization process in the solution of a nonlinear equa-
tion system. We can assume that for θt and θb values
which are close to 0 or ±90◦, the direction of the com-
pression force in the concrete tends to be parallel to
any of the reinforcement directions, leading to a com-
pression force in the reinforcement. This is unaccept-
able according to the proposed formulation, and so the
fact implies that this reinforcement is not needed, thus
enabling convergence to be achieved.

The design variables were normalized by divid-
ing them by the initial values chosen in the optimiza-
tion process. These normalized values of the design
variables are used by the optimization algorithm, for
which reason we also refer to them as optimization
variables.

Finally, a tolerance value of 10−6 was used in order
for the optimization process to come to a halt when
the variation in the design variables in two consecutive
iterations is below this value.

3.4.2 Reinforcement necessary only in the bottom
layer

In this case, the necessary unknowns are the tensile
forces of the reinforcements Nsxb and Nsyb . Never-
theless, there are another six unknowns, such as at ,
ab , θb, Ncxt , Ncyt and Ncxyt , so there is a system of

seven equations (the six equilibrium equations and a
check equation of the maximum compressive stress in
the top layer) with eight unknowns. This implies look-
ing for the θb values in order for the total amount of
reinforcement to be minimal and to satisfy the seven-
equation system. Therefore, the θb angle was used as
an optimization variable.

θb = 315◦ is adopted as the initial value of the de-
sign variable, i.e. −45◦ phase shifted by 360◦ for the
reasons given in the previous section. The range of
variation is that adopted in (44). In the same way, for
values of θb close to 270◦ or 360◦, the direction of the
compressive force in the concrete is very close to the
direction of the reinforcement, and it thus becomes un-
necessary. The variation tolerance of the design value
takes the value 10−6.

3.4.3 Reinforcement necessary only in the top layer

This case is similar to the previous one for the bot-
tom layer. Now the angle θt was used as an optimiza-
tion variable, and θt = 405◦ was adopted as the initial
value of the design variable, i.e. 45◦ phase shifted by
360◦. The variation range is the same as that adopted
in (45). In the same way, θt values that are close to
360◦ or 450◦ mean that the reinforcement is not nec-
essary. Once again, the tolerance adopted is 10−6.

3.5 Constraints

As with the objective function and the design vari-
ables, the constraints were normalized so they adopt
similar values which are close to 1, thus making the
mathematical programming algorithm evolve satisfac-
torily [31]. A tolerance value of 10−6 was used, for
which the optimization process comes to a halt when-
ever it finds a lower variation in the constraints be-
tween two consecutive iterations.

Equality constraints. The equilibrium equations be-
tween applied forces and internal design-strength-of-
materials forces and the thicknesses of the top and bot-
tom layers were used as equality constraints. These
thicknesses must comply with the expressions sug-
gested in MC90, (aj,N ), to be able to resist the com-
pressive force in the layer

aj,N = − Ncj

Kfcd1
(46)
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Then, the constraint can be formulated as follows

ha
j = aj − aj,N = 0 (47)

and be normalized as

ha
j = aj − aj,N

Da,max
= 0 (48)

where j is t or b, and Da,max refers to the greatest
difference between the initial aj and aj,N values.

Strictly speaking, the constraint on the thickness is
not an equality constraint. The convergence of aj to-
wards the value aj,N is considered to be reached when
a certain tolerance T , set by the designer, is satisfied.
This tolerance also has a bearing on the decreasing of
the values achieved for the objective function. There-
fore, the equality constraints can be formulated as fol-
lows

0 ≤ ha
j ≤ T (49)

It is also necessary to normalize the tolerance by
dividing it by Da,max. To adopt a hundred-thousandth
part of the thickness h of the element, T = 10−5h is
deemed acceptable.

Inequality constraints. To be consistent in terms of
the behaviour of the materials and for the different
cases of reinforcement considered, the inequality con-
straints used consist in limiting the tensile forces of
the reinforcement (Nsxt , Nsyt , Nsxb and Nsyb) so that
they do not take on negative values. That would imply
unacceptable compressive forces in the reinforcement,
according to the formulation proposed. Thus, the con-
straints are

Nsij ≥ 0 (50)

where Nsij is the tensile force of the reinforcement in
the i (x or y) direction in the j (t top or b bottom)
layer. These constraints can be normalized as follows

gN
ij = Nsij

Nsij,max
≥ 0 (51)

where Nsij,max refers to the greater initial tensile force.

3.6 Description of the finite element

A reliable analysis method is crucial for accuracy of
the optimum. Locking phenomena leads to an error in
the optimization process, which is difficult to detect,

and may have consequences for the case of stress and
displacement constraints [32]. In these cases, it is pos-
sible that the optimal design obtained is not even in
the ‘real’ feasible domain, that is to say that the con-
sidered displacement or stress violates the given con-
straint. Consequently, the solution obtained from the
optimization procedure is not even within the group of
admissible solutions. Therefore, it is necessary to use
elements in the model with a formulation prepared to
avoid locking.

The finite element used in this research is the
Shell93 in ANSYS program. The element has six de-
grees of freedom at each node: translations in the
nodal x, y, and z directions and rotations about the
nodal x, y, and z-axes. The deformation shapes are
quadratic in both in-plane directions. The element has
plasticity, stress stiffening, large deflection, and large
strain capabilities. The material property matrix for the
element includes a formulation to avoid shear lock-
ing [33].

4 Examples

Two examples were carried out: the simply supported
slab; and the deep beam.

4.1 Simply supported slab

The concrete plate used by Lourenço and Figueiras
[22] was used as the example to compare their re-
sults with those obtained using the method stated in
the present study. It is a rectangular plate simply sup-
ported at the four edges, 0.15 m thick and has a span
of 5.0 × 6.0 m. It is subject to a vertical load p of
15.0 kN/m2 distributed uniformly, including its own
weight. It is also subject to a membrane uniform load
q around the edges of the plate (Fig. 3).

Three q values were used in our study, supposing a
simple flexural state in the plate (q = 0 kN/m) [34, 35]
and supposing a compressive and flexural state with q

adopting a value of 150 kN/m and 250 kN/m. The
materials are 20 MPa compressive strength concrete
and 400 MPa tensile strength steel. The distance from
the centre of gravity of the reinforcements to the exte-
rior plate fibers is 0.025 m.

The finite element model of the plate is shown in
Fig. 4. A convergence study using four mesh sizes
((1) 5×6 = 30; (2) 11×13 = 143; (3) 21×25 = 525;
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Fig. 3 Geometry and loads for the simply supported plate

Fig. 4 Finite element model of the plate

(4) 41 × 49 = 2009 elements) was carried out to deter-
mine the mesh to use for this example [36]. The most
appropriate mesh, combining solution time and accu-

Fig. 5 Density reinforcement surfaces (q = 0 kN/m)
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Fig. 6 Total y-reinforcement in a cross-section parallel to x-axis (q = 0 kN/m)

Fig. 7 Total y-reinforcement in a cross-section parallel to x-axis (q = 150 kN/m)

racy, was mesh 3, which was therefore employed in
this study.

The density reinforcement surfaces in both direc-
tions for each layer are shown in Fig. 5, for the simple
flexural state. The units are expressed in mm2/m.

Figure 5 reveals how the reinforcement densities
are grouped following the principal stress directions.
They are nonexistent for most of the top layer be-
cause the fitting is not needed. The quantities in the
reinforcement according to the x-axis are greater than
those with respect to the y-axis, because of the differ-
ence in the length of their sides. Comparisons between
the total reinforcement values are given in Figs. 6–8.
The values obtained in [22] resolve a nonlinear equa-
tion system and the optimum reinforcement is in ac-

cordance with the method being proposed for the three
cases, with differing values of q .

For the simple flexural state (Fig. 6) the average re-
inforcement savings are 18% in the section close to the
supports of the plate and 3% in the section at mid-span.

For the compressive and flexural state with q =
150 kN/m (Fig. 7), a percentage of 66% less rein-
forcement is a higher average than that obtained in the
section adjacent to the supports and there is practically
no difference in the central section.

Finally, for the case of high membrane load (Fig. 8),
there is no need for reinforcement at the section close
to the supports, with the proposed method. However,
according to the results provided by Lourenço and
Figueiras [22], there is some need for reinforcement.
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Fig. 8 Total y-reinforcement in a cross-section parallel to x-axis (q = 250 kN/m)

The average loss of reinforcement in the section at
mid-span is 19%. In general, the lesser need for rein-
forcement is quite logical in elements subject to a com-
pressive and flexural stress state compared to those
subject to simple bending.

4.2 Deep beam

This example consists of a three-span continuous deep
beam used in reference [14] and validated in reference
[37]. The geometry of the structure and the loads are
shown in Fig. 9. The two cantilevered spans have a
cavity. The beam has four vertical loads applied to the
four loading columns.

The values are of 800 kN and 1000 kN as shown in
Fig. 9, but in the finite element model they are applied
as distributed loads (Fig. 10). The dimension of the
cross-section of the four columns is 0.30 × 0.25 m.
The beam is supported on two columns with a cross-
section dimension of 0.4 × 0.4 m. The concrete has a
compressive strength of 20 MPa.

A convergence study was carried out to determine
the mesh to use for this example [36]. The most ap-
propriate mesh, combining solution time and accuracy,
was a mesh of 3360 elements, which was therefore
employed in this study (Fig. 10).

The reinforcement density is shown in Fig. 11. The
results show that reinforcement is required in the re-
gion of maximum bending and around the cavities
where the greatest tensile stresses appear. These re-
sults are similar to those obtained by [14].

Fig. 9 Geometry and loads for the deep beam

5 Conclusions

Traditionally, computers have been used to analyse the
response of a user-defined structure and to check its
safety for given applied loads. The use of optimization
techniques in the design of structures widens the ap-
plication of computers and allows the user to obtain
optimum designs for stated design conditions.

This paper presents an optimal reinforcement de-
sign formulation for concrete shell elements. A finite
element program was used and the formulation was
implemented by means of user routines within the pro-
gram optimization module. Based on the results ob-
tained, it may be concluded that the differences ob-
served between the amount of reinforcement obtained
by using optimization techniques and by means of tra-
ditional methods, may be considerable. It is possible
to achieve average values in the savings of reinforce-
ment for the simply supported slab of approximately
12% (for flexural and small membrane forces), 24%
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Fig. 10 Finite element model of the deep beam

Fig. 11 Reinforcement density [mm2/m]

(for flexural and medium membrane forces) and 44%
(for flexural and large membrane forces).
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