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In equation (3). §1 is the domain where a sohution to Lhe problem is sought {the RUW cross
section). ¥ is its boundary and w is a suitable weighting function. Equation {3} can now be

discrelized,using a first order finite eloment method. The discretization of the RUW cross seetion




354 A Alvarez Melcon, R. Molina and M. Guglielmi

was accomplished by using triangular elements. The integrals in eq (3} can now be evaluated in
pach element, and the final value of the integrals are computed by summing the values for all
the elements in the discretization. Lhat is:

M\. z_.d..h&.m.a;,alm Aw:a..ﬂ..m&.mbn + FNMH\ weg-d, =0 4)

— Jo.
In equation (4) {1, is an clement in the discretization of the RCW eross section, and [, is the
side of the boundary of an element al the border of the waveguide.
The nature of the solution obtained in (4) depends on the type of boundary conditions

imposed. For TF modes we have that in a metallic wall

mﬁw 1.... = 5
I =Vip-it=0 (5)

and therefore the first integral of equation (4} becomes zero. For TM modes instead, the scalar
potential must be zero in the border of the waveguide, Lhat is ¢ = 0. This condition will force

the weighting Tunction to be zero in the border and therefore the first integral in (4) will also
be zeto, The discretized basic equation then becomes for both TE and TM maodes

er\ weg-dil, = M Vo .Aw.h@..,m@n {6)
e 3 o 48

which forms the basic system of linear eguations to be solved for the nnknown &. The first
integral to be solved in a generic element € of the mesk is:

i u\ we e dfl, (M)
Q.

y solve this integral we first expand the unknown scalar potential in terins of a set of snitable
shape functions, namely

3
Olz.g) =Y éi- Nia,y) (8)
=1
where &, are the values of the scalar potential in the three nodes of the triangular element ¢ and
N, is the shape function of the element ¢ related to node i. The integral in equation {7) will be
computed through the following average operation

_J& =w- oA, )

where 4 is the average value of the weighting function in the current element, & is the average
value of the scalar potential in the current element, and A, is the area of the current clement.
If we take the weighting function the same as the shape function we can finally write:

@y _ 1 :
N=s 5 420 (10)
v =1

The Jast step in the formulation of the problem is the computation of the second integral in
cquation {4) and in a generic element ¢ of the mesh, namely:

= Frw-Fie-dn, (1)
.
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Taking again as a weighting lanction the same shape function, what is left is the compulation

of
= o IN, Jp  dN, dé
v Foeae.= [ (G002 0000 (12)
. Ja N dr 8@r  dy dy
using the expansion defined in (8) and taking derivatives, we can write
3
Vidkry) =9 o VN (ry) (13
=1
thetefore it is straight forward that
s 3
dé
—= 5y (1-H)
dr m
a W«V (15)
dy o "

so that the only thing which is left is the evaluation of the shape functions derivalives. They
will be computed by first averaging them on the element fovel that is:

i aN;
- I 16}
A ‘\m‘a Jr ‘ (e
1 anN, -
= g, 1
dy  Ae \F iy e

and then applying Green's identity 1o finally obtain

= ! \ s dl, (18}
Ao Jr,

1 r .
HH..\_U .:w.:__w (19)

where n, and ny, are the & and y components of the vector normal 1o the elemoent ¢ in the
discretization. Using these expressions for the integrals, the systemn in (6} can be written in the
following matrix form:

Kool = ap b= [20)

where the matrices A and A{ are huilt from the discretization of the integrals :3 and Nm;.
This last equation can be solved by using the ipverse iteration algorithm [2]. In eq. (20} st
is a vector containing the values of the scalar potential in all the nodes of the mesh for the ju
iteration and ¢! is the corresponding vector in the previous iteration. The inverse iteration
procedare is used with a subsequent Gram-Schmidt orthegenalization Lo force the solution to
be orthagonal with all previous solutions [2], thus obtaining a set of orthogonal scalar mode
functions. The solution is now completed by computing the eigenvalue throngh the following
normalization eperation

(21)

So after a number of jterations J, the vector ¢4 is expected to converge to the sealar poten-
tial distribution of the current TE or TM mode along the RUW cross section, and bM: Lo its
eigenvalue. For the efficient implementation of this numerical mrethod. the system of finear
equalions represerted by (20} was solved using a conjugate gradient algorithm, which eliminates
the problems of storage and is able to speed up considerably the global software.
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Results

s of the ROW obtained with the finite element tech-

We present here the results of the analys
nique. o fig. 3 aud fg. § the scalar potential disteibution for a TE and TN maode can be secn
ina ROW (structure shown in fig. 1a). Farthermore,in Table [ the sigenvalues of eight T and

TAl modes for the ROW

Table 11 shows the offect of a change in penetration of one pair of tuning ridges in the

E

indicated are presented as obtained with the finite otement analysis.

cigenvalues of the first TE degenerate wodes. Finally in Table §1 we prosent the var
the cigenvalues for the deminant degenerate modes w hen the penctration of the filth ridge is
varied (structure shown in fig. 1h)

During the realization of the previous analysis it was noticed that a large numbet of elements
LA

total of fifty TE and TA modes were abtlained using Lhis method, hut some of them counld not be

in the.mosh was needed to get g oond aceuracy., specially when the order of the waode was lig

obtained with high accuracy. 1t was also observed that for some modes the convergeney of the
inverse ileration melhod was very slow resulting in a rolation of the scalar potential with respect
13e»
corers it the RCW eross section: these corners are known to be problematic for the modelization
using Finite Eloments Tecknigues [3). In the present analysis {
mesk wilh a lot af clements (aroand 30,600 triangular elements with approximately 20, (00 nedes
were ased ). hul this solution reduees the efficiency of the software. incres sing the computational

e vertical and horizontad axi

nogative effeets ate probably due to the presence of the

was solved by taking a very fine

thme, Allernatively one can 11y to use an adaptive meshing procedure to increase the refinement

of the mesh nearby the corners while maintaining 1o a _.?u..;o:.w_v o value the total number of

eloments in the discretization of the whole crass section.

Conclusions

A maodal spectrum analvsis of 4 RCW has been accomplished using the FEA approach. The
restlty presented have demonsirated that the FEM technigue can inderd be used for the a i

of the Ridged Cirenlar Wavegnide [ROW)

can he

Some problems of acenracy and convergencey were enconpiered,  These problet

sofntion increase 1he

partially sofved by taking a very fine mesh in the diseretization. hut
computational time of the software. As a consequence, when the complete duab-tmode cavity is
The

CPU time required for the FEA computations therefore is the main absiacle for the development

analvzed. the FER portion of the code becames inevitably the inost Lime conseming pa

of an eflicient code for this particular apphieation.

e elficiency of the algorithm can probably be increased by using an adaplive meshing
procedure to represent with bigh accuracy the corners while maintaining in a relatively small
walue 1he total number of elements in the mesh. Farther development work is in progress both

with the FEM and other numerical approaches.
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Fig. 1 Cross section of ridged circular waveguide. (a) Without coupling ridge. (b} With

coupling ridge. 1.

Fig. 3 Scalar potential distribution for a TE mode in the struclure of fig. la. as obtained
with the finite clement method.
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i 1 Scalar pote El stribution for 1 node i the structise f a, as obtaine d
potentt | dist tion for a M made i Ll Lruc ol hg
| £ §

with the finite clement method.
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1t TE and TM modes of the ridged circular E,u,e.qmcio
h a finite element analysis. The four
the ridged circular

- . . -
Tab. 1 Figenvalues for the first eig 2
as in fig. la. Al data were obtained throug

ridges in fig, ta are 157 wide and 0.2a deep {a is the tadius of

wavegnidel.
! =01
dia=01 | dia=.005 | da=000 4 .sm_
% (%} i ] I L ..
P v SR Y
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Tab. 11 Percentage Variation of the cigenvalues of i,,a. leswest ﬂ_amﬁﬂnﬂwgﬁwm ““cﬂw_” ”ﬂ.m”:oﬂ
ridged circular waveguide in fig. la, as a m.:z..ro: of the peac awq,_szm. o P
Luning ridges. Depth of one pair of «Emm...ﬂ is rvvn.:_.a sanme as in .
of the others is varied. dfais the normalized variation.

_ c/a=0.20 |¢6/3=0.25

| etam0a0 cin=0.15
_ # %) | 1% {%}

4

1.9044 ¢ 31741

i : ate TE
Tab. Ul Percentage vasiation of the Lransverse cigenvaiues of the lowest aomﬂ_..:._“ .
o modes for the ridged cirealar waveguide in fig. :.v when the vm_h.m_.;._m_:mg e
coupling ridge is varied [cfa is the relalive penotration of the coupling ridge).
go s

Luping ridges are kopt as in Table | whereas the coupling ridge is 5° wide.
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Abstract. Example calculations are presented using three different hybrid finite clement for-
mulations. Fach of the kybrid finite element methods is best suited for a different class of
problems.

Formulation

In ¢ section we state the basic equations which lead Lo the various hybrid finite elemoent
formulations. Consider the geometey in Figure 1. The computational demain, 15, is enclosed
by an artificial surface Sy and may contain scattering objects such as homogencous diclectrics
{(V¢) metallic bodies (55) and resistive/impedance sheets (S ). The appropriate weak-form of
the wave equation satisfied by the total fickds within V5 is {1]

1 ]
\‘\.\ rﬁ VxE U xT=lE-T}dr
Vo -

.m.,.H
+L._.?N=\. ?x w_:.?_ x :_.a \L:..:&c \\ mx:.u;?na :v
S Sn

where T denotes the weighting function and Sy encompasses all resistive ar impedance surlaces
enclosed by Sq. The parameter I is equal to the normalized sheet resistivity or the normalized
impedance. I 8 enclosed a plate of varying impedance, then §x must be replaced by the sum
of the upper and lower plate surfaces.

For open-body scatt

is desirable 1o work with the scattered ficlds (B = B — B,

H™ = H - H™), where {E", H™) denote the excitation fields. The appropriate weak form
of the wave cquation is then given by [2]

M 5 «,
JI e xmmv e - geptal a
Va -

f SR 2 ine | o
+ jkoZg \\v AxE :X»H,&.n.f\,\' axE :XH_.\__.,_
K} 5

& I . X
-t ff| fx B Tass \\\ Tq x E™ .U % T - k26, B T d
Ve Litr
+ jhoZ, ,\H\. Pﬁumxmm:ﬁv.glnlc )
R T (2

in which Sy is the aggregate of the surfaces enclosing the diclectrics occupying the volume 1.
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