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ABSTRACT: An expression is derived for the maximum proportion of

remaining samples in the sample selection technique for mode-stirred
chamber measurements. The limit is independent of the selection
algorithm used. The limit is verified in simulations as well as

measurement examples. VC 2011 Wiley Periodicals, Inc. Microwave Opt

Technol Lett 53:2608–2610, 2011; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.26336
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1. INTRODUCTION

Mode-stirred chamber (MSC) for antenna measurements is a

well established technique, presented in several publications [1–

4]. Recently, the sample selection technique [5–7] has been

introduced for the purpose of improving the versatility of MSC

measurements. In the sample selection technique, some measure-

ment samples are selected while the rest are discarded, so that

the selected sample set conforms to a predetermined probability

density function (PDF). When applying the sample selection

technique, the number of samples in a sequence decreases, and

sometimes quite drastically. The number of remaining samples

is one of the most critical parameters, and it should be as high

as possible to achieve a good accuracy in the results. This article

investigates the limit for the number of remaining samples in

the sample selection technique.

2. PROPORTION OF REMAINING SAMPLES

The sample selection process will select a certain proportion of

the initial (input) samples, that is, the number of remaining sam-

ples is linearly dependent on the number of initial samples. In

the following, the proportion of remaining samples is studied, to

make the results more general and applicable to initial sample

sets of any length.

A function finitial(x) is used to describe the PDF of the initial

data, and the target PDF after sample selection is defined by ftar-
get(x). Vector notation is used for the argument because multi-

variate distributions can be used, for instance for complex-

valued amplitudes, or in measurements of multiple antennas.

These functions have the usual properties of PDFs, that is, they

are always positive and the integral over all arguments is unity.

The total number of samples before and after sample selection

is denoted as Ninitial and Ntarget, respectively. The number of

samples within a small interval Dx at any x value is

Ninitialfinitial(x)Dx and Ntargetftarget(x)Dx, respectively. Naturally,

the number of samples at any x value can only remain the same

or decrease as a result of the sample selection process. Conse-

quently we have

NtargetftargetðxÞ � NinitialfinitialðxÞ; (1)

where Dx is eliminated on both sides. As ftarget(x) is different

from finitial(x) (the case when they are the same is trivial and not

useful), there will be x values at which ftarget(x) > finitial(x). To
fulfill Eq. (1), Ntarget then has to be smaller than Ninitial. It is the

maximum ratio of ftarget(x)/finitial(x) for any x that dictates the

necessary ratio of Ntarget/Ninitial for the condition in Eq. (1) to be

satisfied. Defining the proportion of remaining samples q as

q ¼ Ntarget

Ninitial

(2)

and substituting this in Eq. (1) gives the condition

q � finitialðxÞ
ftargetðxÞ : (3)

In a specific case, there can be some freedom in choosing

ftarget(x), because PDFs often have one or several parameters

and the requirements on ftarget(x) might not decide all of them.

Remaining parameters should then preferably be set so that q is

optimized. The maximum value of q is thus

qmax ¼ min
finitialðxÞ
ftargetðxÞ
� �

(4)

for all x, and for all ftarget(x) under the given constraints.

Different algorithms exist for the process of selecting sam-

ples [7]. The different algorithms have been reported to result in

different proportions of remaining samples. The limit in Eq. (4)

is arrived at without any assumptions regarding the algorithm

used for selecting samples, so it is valid for any algorithm.

3. APPLICATION EXAMPLES

Two examples are provided in which the presented limit is used.

In the first, it is showed that the so-called single-step algorithm

[7] reaches qmax. In the second, an expression for qmax is

derived for a case of commonly used PDFs.

3.1 Single-Step Algorithm
The single-step algorithm works as follows: to decide whether a

sample should be kept or not, it uses a threshold function D(x),
according to

DðxÞ ¼ C
ftargetðxÞ
finitialðxÞ ; (5)

where C is a constant. For each input sample at a value xk, a
random number, uniformly distributed in the interval [0,

max(D(x))), is generated. If the random number is less than

D(xk), the sample is kept. If it is greater than or equal to D(xk),
the sample is discarded.

The proportion of remaining samples after all input samples

are covered is given by the multiple integral over the n-dimen-

sional space of non-negative real numbers,

q ¼
Z
x2<n

þ

DðxÞfinitialðxÞdx: (6)
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By substituting Eq. (5) into Eq. (6), and using the fact that

the integral of a PDF is unity, it is found that

q ¼ C: (7)

By letting C ¼ qmax, the single-step algorithm is optimal in

terms of the proportion of remaining samples.

Because of the randomness by which the decision of select-

ing/discarding samples is taken, different realizations will result

in different sets of selected samples, and also different numbers

of remaining samples. The proportion of remaining samples in

Eqs. (4) and (6) is exact for infinite length sequences, and accu-

rate in the mean for finite length sequences.

3.2 From Rayleigh to Rice
An expression for qmax is derived for the case of having an ini-

tial data set with Rayleigh distributed amplitude, and a target

PDF which the Rice distribution. In this example, complex-val-

ued data samples, that is, amplitude and phase, are assumed.

Each complex-valued data sample z can be viewed as a two-

dimensional scalar sample (x,y), related as

z ¼ xþ jy: (8)

The bivariate normal distribution PDF [8] can be used for

the initial data,

finitialðx; yÞ ¼ 1

2ps2i
exp � x2 þ y2

2s2i

� �
: (9)

By introducing an offset, it can represent Rice distributed

scalar amplitudes, and it can therefore be used also for the target

data. As phases are relative, and a constant phase offset applied

to all data samples will not change the scalar amplitudes, the

offset can for simplicity be chosen to be real valued. With the

offset at,

ftargetðx; yÞ ¼ 1

2ps2t
exp �ðx� atÞ2 þ y2

2s2t

 !
: (10)

Substituting Eqs. (9) and (10) into Eq. (4) results in the

expression

qmax ¼ min
s2t
s2i
exp

ðx� atÞ2 þ y2

2s2t
� x2 þ y2

2s2i

 ! !
: (11)

To find the minimum, the derivatives of the argument with

respect to x and y are calculated and set to zero. With the opti-

mal values of x and y,

qmax ¼ s2t
s2i
exp � 1

2

a2t
s2i � s2t

� �� �
: (12)

After this, the values of at and st that maximize qmax have to

be chosen. Assume that a certain K-factor is desired in the target

data, defined as

K ¼ a2t
2s2t

: (13)

Using Eq. (13), Eq. (12) can be rewritten, derived with

respect to st, and set to zero to find the optimal value of st.

The result is

st ¼ si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

2

� �2

�1

svuut
: (14)

Substituting this expression into Eq. (12) gives

qmax ¼ 1þK

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK

2

� �2

�1

s0
@

1
Aexp Kþ K

K
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK

2

� �2�1

q
0
B@

1
CA:

(15)

4. VERIFICATION

Numerical simulations in Matlab are used to verify Eq. (15).

Random samples with Rayleigh distributed amplitude and uni-

form phase are generated. A sequence of 20,000 samples is

Figure 1 Proportion of remaining samples with the single-step algorithm

(circles) and upper limit (solid line), when converting Rayleigh to Rice dis-

tribution using sample selection with simulated complex-valued data

Figure 2 Proportion of remaining samples with the single-step

algorithm (circles) and upper limit (solid line), when converting

Rayleigh to Rice distribution using sample selection with measured

complex-valued data
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generated, which is enough to make the statistical fluctuations

due to the randomness of the single-step algorithm negligible.

Sample selection is then applied, with the single-step algorithm,

for a number of desired K-factors between 0.001 and 100. Fig-

ure 1 shows the proportion of remaining samples from the simu-

lations, together with the limit according to Eq. (15).

Measured samples are also used for verification. The single-

step algorithm is here applied to a sequence of 6400 samples,

taken in a large MSC with mechanical mode stirring, at 2.6

GHz. The test object is a single-element antenna with omnidir-

ectional coverage. There is very little unstirred power in the

chamber, making the raw data samples Rayleigh distributed.

These results, together with Eq. (15), are shown in Figure 2.

5. CONCLUSIONS

An expression is derived for the upper limit of the proportion of

remaining samples in the sample selection technique. The limit

is independent of the algorithm used for the selection, and

depends only on the PDFs of the initial and target data sets.

Examples of how the limit can be used are given. The limit is

verified experimentally in both simulations and measurements

for the case of performing sample selection to achieve a Rice

distributed data set from Rayleigh distributed initial data.

Knowledge of the limit in practical situations will help estimat-

ing measurement uncertainty as well as enable assessment of the

efficiency of sample selection algorithms.
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R&D coordinating agency for the Region of Murcia (Spain) under

the 11783/PI/09 and 11610/IV2/09 projects.

REFERENCES

1. P. Corona, G. Latmiral, E. Paolini, and L. Piccioli, Use of a rever-

berating enclosure for measurements of radiated power in the

microwave range, IEEE Trans Electromagn Compat EMC-18

(1976), 54–59.

2. T. Maeda and T. Morooka, Radiation efficiency measurement

method for electrically small antennas using radio wave scatterers,

IEEE AP-S Int Symp 1 (1988), 324–327.

3. J. Krogerus, K. Kiesi, and V. Santomaa, Evaluation of three meth-

ods for measuring total radiated power of handset antennas, In:

IEEE Instrumentation and Measurement Technology Conference,

Budapest, Hungary, May 21–23, 2001, pp. 1005–1010.

4. J.F. Valenzuela-Valdés, A.M. Martı́nez-González, and D.A. Sán-
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ABSTRACT: Adjustable fluidic adaptive lenses have been extensively
studied because of the advantage of changing the geometric shape or
refractive index without any mechanical moving parts. However, the

induced aberrations were rarely discussed before. We address this issue
by first clarifying the aberrations experimentally due to injected fluidic

volumes. Experimental results show that under the injected fluidic
volume of 0.1 ml, the main aberrations come from Z1 (piston), Z2 (tip),
and Z5 (defocus) and Zernike coefficients are 0.97, 0.31, and 1.31 lm,
respectively. In what follows, a series of tests specifically designed to
explore the convex/concave interfaces and refractive-index-mismatch

(RIM). Furthermore, we demonstrate the capability of adaptive optics
(AO) correction on aberrations induced by combinative effects of
multiple layers with convex/concave interfaces and RIM. A microelectro-

mechanical system (MEMS) deformable mirror (DM) with 140 actuators
was used in conjunction with Shack–Hartmann wavefront sensor to

realize the experimentation. In particular, we consider the aberration
introduced by interfaces of RIM between water/oil and glass. After AO
correction, we can improve wavefront with root mean square (RMS) of

2.17–0.17 lm for an interface between water and glass. As for the
interface between oil and glass, we are capable of improving RMS of
0.24–0.10 lm. VC 2011 Wiley Periodicals, Inc. Microwave Opt Technol

Lett 53:2610–2615, 2011; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.26323

Key words: adaptive optics; refractive-index-mismatch (RIM);

deformable mirror (DM); aberrations; Shack–Hartmann wavefront
sensor

1. INTRODUCTION

Adaptive optics (AO) is a widely used concept and technology

in astronomy to compensate the atmospheric turbulence that

confines the performance of ground-based telescope [1–3]. In

addition, the biological potentials such as correction of the ocu-

lar aberration for the improved in vivo imaging of the retina in

vision science and ophthalmic applications are of recent thrust

areas in research [4–9]. In microscopy, AO has also been

applied to nonlinear microscopies such as multiphoton micros-

copy to image several layers of mismatched and inhomogeneous

refractive index [10]. Moreover, the well-pursuit utilization of

high numerical aperture (NA) objectives immersed in a fluid

that is refractive index mismatched will inevitably induce the

spherical aberration in the longitudinal direction [11]. AO-

assisted imaging system shows great capability of compensating

spherical aberration at a certain depth in a specimen with refrac-

tive-index-mismatch (RIM) [12, 13].

Adjustable fluidic adaptive lenses have been studied recently

with one significant advantage such that focal length can be

easily altered by changing the geometric shape or refractive
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