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Abstract— This letter presents a novel electromagnetic band-

gap (EBG) structure in microstrip technology based on non-
uniform one-dimensional (1-D) Koch fractal patterns whose 
dimensions and period are modulated by a tapering function that 
significantly improves the width of the bandgap. This wide 
bandgap is achieved by maintaining the r/a (radius to period) 
ratio of the Koch fractal patterns larger than 0.5 in the whole 
structure. In the pass-band region, an improved flat response is 
obtained by tapering the dimensions of the Koch fractal patterns 
etched in the ground plane, together with the width of the 
microstrip line, with a Kaiser distribution which also modulates 
the periodicity of the fractals. A major consequence of this 
modulation of the periodicity of the pattern is that this structure 
is much more compact than a uniform conventional one. 
 

Index Terms— Electromagnetic band-gap (EBG), wideband, 
Koch fractal, periodic structures, microstrip structures. 
 

I. INTRODUCTION 
S photonic band-gap materials (PBGs) in Optics [1], 
electromagnetic band-gap structures (EBGs) are periodic 

patterns that exhibit a band of frequencies in which the 
electromagnetic propagation is not allowed in the microwave 
range [2]. EBG structures have a wide range of applications in 
antennas, amplifiers, filters, microwave cavities, etc [3]-[8]. In 
microstrip technology, the EBG structure is obtained by 
creating a one-dimensional (1-D) periodic pattern etched in 
the ground plane with circular, sinusoidal, triangular, square 
or fractal shapes and r/a (radius/period) ratios lower than 0.5 
[9]-[12]. Usually, at least 4-5 periods are needed to provide 
good bandgap characteristics, and therefore a large physical 
space is required for integrating the EBG into a system [3]. 
Often, wide bandgap characteristics together with a compact 
design are desirable, although difficult to achieve. The 
objective of this study is to propose a new fractal structure 
that significantly improves the compatibility of both 
requirements thanks to the appropriate tapering of the 
dimensions and periodicity of the fractals. 

In order to achieve the goals outlined in the previous 
paragraph, a periodic pattern etched in the ground plane with 
r/a ratios higher than 0.5 is considered [13]. It is based on 
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level-1 Koch fractal element geometries [14], [15], which 
have been obtained from a hexagonal shape. The introduction 
of 1-D Koch fractal electromagnetic band-gap (KFEBG) 
microstrip structures with r/a ratios higher than 0.5 increases 
significantly the width of the bandgap, in such a way that 
wide-band structures with forbidden electromagnetic 
propagation in a wide frequency range become possible [13]. 
However, their behavior in the pass-band has been found to be 
not optimal, due to the appearance of ripples in this region. In 
[16], it is shown that it is possible to improve the performance 
of the conventional EBG structures by applying a tapering 
function to the radius of the holes. However, until now this 
technique has not been applied to fractal EBG structures with 
r/a ratios higher than 0.5. 

In this work, we apply for the first time a Kaiser tapering 
function to 1-D KFEBG microstrip structures in order to 
maintain wide-bandgap characteristics and at the same time 
improve the performance in the band-pass frequency region. 
In order to avoid that the decreasing r/a ratio would negatively 
affect the wide bandgap frequency range, we have decreased 
the distance a between periodic patterns in order to maintain 
r/a ratios higher than 0.5 in the whole device. In this way, a 
compact wide-band KFEBG structure is achieved with much 
wider forbidden frequency gap and better band-pass 
performance than the uniform conventional structures.  

 

II. TAPERED KFEBG MICROSTRIP STRUCTURES WITH KAISER 
DISTRIBUTION 

The upper r/a ratio boundary of the conventional 1-D EBG 
microstrip structure can be exceeded by using a new pattern 
based on Koch fractal curves [14]. For this purpose, the first 
Koch fractal iteration with a scale factor of 1/3 is applied to a 
hexagonal shape and two possible cell geometries are obtained 
(Fig. 1). Thus, by combining and etching these level-1 Koch 
fractal hexagonal cells in the ground plane, instead of circular 
holes, it is possible to achieve 1-D Koch fractal 
electromagnetic bandgap (KFEBG) microstrip structures with 
r/a ratios higher than 0.5, as in Fig. 1 [13]. The design 
parameters of the 1-D KFEBG microstrip structure are the 
same as the conventional EBG structure: the distance a 
between the centers of the Koch fractal hexagonal cells, the 
radius r of the circumference in which the fractal shape is 
inscribed (represented by circles in dashed line in Fig. 1), and 
the total number N of etched cells. The central frequency of 
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the rejected band is obtained from λg = 2a, where λg is the 
guided wavelength in the unperturbed microstrip line. These 
level-1 Koch fractal hexagonal cells etched in the ground 
plane allow implementing r/a ratios lower than 0.5, as with 
non-fractal patterns, but also higher than 0.5. 

Following previous works to improve the performance of 
conventional EBG microstrip structures by using tapered 
techniques [16], we have applied a Kaiser function to the 
radius of each level-1 Koch fractal hexagonal cell according 
to its position in the ground plane (Fig. 2). Among different 
tapering functions studied in [16], the Kaiser function 
provides the better compromise between side-lobe reduction 
and stop-band rejection level. The distance a between the 
centers of the Koch fractal hexagonal cells is kept constant. 
The radii distribution follows the next relationship 

 
 ( )  1, 0    ,iL/zTrr maxi ==  (1) 
 
where ir  and maxr  are the i-th and maximum Koch fractal 
hexagonal cell radii, respectively. L/z  is the normalized 
longitudinal position in the circuit ( 0=z  corresponds to the 
central point) and ( )L/zT  is the tapering Kaiser function 
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where L is the length of the microstrip line and 0I  is the first-
class modified Bessel function. 
 However, any change in the level-1 Koch fractal hexagonal 

cell radii (a being constant) affects the r/a ratio and, therefore, 
the frequency response of the device. Thus, we propose a 
second modification in order to maintain a constant r/a ratio. 
Instead of using a fixed period a, we modify it in proportion to 
the radii of the level-1 Koch fractal hexagonal cells so that the 
distance ia  between the centers of adjacent level-1 Koch 
fractal hexagonal cells follows the following function (Fig. 3) 
 
  2 1    1 ,,iC/ra ii == −  (3) 
 
where ir  is computed from (1) ( 0r  corresponds to maxr ) and 
C is a constant equal to the initial r/a ratio value of the non-
tapered 1-D KFEBG microstrip structure (Fig. 1). Similarly, 
the Kaiser function and the varying period are applied to the 
width W of the conductor strip (Fig. 3(a)) in the top plane in 
order to reduce the impedance mismatch. Due to the reduction 
of the distance D between the centers of the two extreme 
Koch fractal cells, the circuit becomes more compact. 

Fig. 4. Photographs of the ground planes of the structures of Figs. 1, 2 and 3.

Fig. 1. 1-D KFEBG microstrip structure with nine level-1 Koch fractal 
hexagon cells etched in the ground plane (bottom plane). In the top plane, the 
width W of the conductor strip is constant along the structure.  

Fig. 2  Ground plane of the Kaiser-tapered 1-D KFEBG microstrip 
structure. In the top plane, the width W of the conductor strip is constant 
along the structure. 

 
(a) 

(b) 
Fig. 3. Double Kaiser-tapered 1-D KFEBG microstrip structure with varying 
period. (a) Top plane. (b) Bottom plane. 
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III. RESULTS 
The 1-D KFEBG microstrip structures considered in Fig. 1 

to Fig. 3 have been simulated and measured with the HFSS 
simulator and the Agilent 5071B vector network analyzer 
(VNA), respectively. The different 1-D KFEBG microstrip 
structures were fabricated by means of the numerical milling 
machine LPKF S62 (Fig. 4). The measurement system was 
calibrated from 300 kHz to 8 GHz. 

The structure of Fig. 1 has been designed with the purpose 
to have an operation frequency of 4.2 GHz with the periodic 
value 114.a =  mm and a radius to period ratio 550.a/r = . 
The number of etched level-1 Koch fractal hexagonal cells has 
been set to N = 9 as in [9], [10] and the length of the 
microstrip line has been fixed to L = 141 mm. Arlon AD1000 

material with a dielectric constant 210.r =ε  ( 00230tg .=δ  at 
10 GHz), substrate thickness h = 0.635 mm, and copper 
thickness t = 17.5 μm has been used as substrate for all 1-D 
KFEBG microstrip structures. The conductor strip has a width 
W = 0.594 mm, corresponding to a 50 Ω conventional 
microstrip line. The structures of Fig. 2 and Fig. 3 are 
conceived from the previous structure (Fig. 1) as described in 
the previous section, and the optimized dimensions are 
summarized in Table I. 

Fig. 5 and Fig. 6 show, respectively, the simulated and 
measured S-parameters for the 1-D KFEBG microstrip 
structures of Fig. 1 to Fig. 3 with the dimensions of Table I. 
The simulations include the metallic and material losses. It can 
be seen that the pass-band that appeared between two 
rejection bands in previously published results with 

50.a/r <  is suppressed [9], [10]. A wide stop-band is 
achieved for 550.a/r = , which can be useful for the design 
of antennas and other devices. Considering the losses in the 
connections, the non-idealities of the fabrication such as in the 
dimensions of the microstrip line and shape of the fractals 
(Fig. 4), and a slight difference of the dielectric constant with 
respect to the given value ( 210.r =ε ), the simulated and 
measured results present a reasonable agreement. In the case 
of the non-tapered structure (Fig. 1), the results in Figs. 5 and 
6 present a high rejection level in the stop-band, but the pass-
band has much ripple. This ripple is reduced by tapering the 

TABLE I 
DIMENSIONS OF THE DIFFERENT 1-D KFEBG MICROSTRIP STRUCTURES 
Dimensions Fig. 1 Fig. 2 Fig. 3 

W 0.594 mm 0.594 mm 0.594 mm 
a  14.1 mm 14.1 mm ⎯ 
r 7.755 mm ⎯ ⎯ 
D 112.8 mm 112.8 mm 89.94 mm 
rmax ⎯ 7.755 mm 7.755 mm 
Wmax ⎯ ⎯ 2 mm 
C ⎯ ⎯ 0.55 
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Fig. 5. Simulated S-parameters for the 1-D KFEBG microstrip structures of 
Fig. 1 to Fig. 3 with the dimensions of Table I. (a) 11S . (b) 21S . 
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Fig. 6. Measured S-parameters for the 1-D KFEBG microstrip structures of 
Fig. 1 to Fig. 3 with the dimensions of Table I. (a) 11S . (b) 21S . 
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Koch fractal dimensions in the periodic pattern with a Kaiser 
function (1), as described for the structure of Fig. 2. However, 
this has a negative side-effect in the rejection level of the stop-
band, which becomes significantly narrower due to the 
decreasing r/a ratio along the periodic pattern. Hence, the 
width of the band-gap of the structure decreases, and the 
advantages of the Koch fractal pattern to obtain a compact 
wide band-gap structure partially disappear. However, the 
curves depicted in Figs. 5 and 6 for the structure of Fig. 3 
show that wide band-gap characteristics can be restored by 
tapering not only the radius of the fractals but also the period 
or separation between them, producing the best results in 
terms of wide-band characteristics and ripple reduction among 
the three types of 1-D KFEBG designs considered in this 
work. Hence, high rejection level in a wide band-gap and low 
ripple in the pass-band are obtained by tapering the microstrip 
width and the Koch fractal dimensions in the top and bottom 
planes, respectively, with a Kaiser function and a varying 
period given by (3) with C = 0.55. 

We have quantified the ripple reduction by evaluating the 
average of the oscillations of the measured 21S  parameter 
from 300 kHz to 2.5 GHz. This average is, respectively, 2.98 
dB, 1.36 dB and 0.81 dB for the structures of Figs. 1, 2 and 3. 
However, it can be seen that a small mismatch remains at low 
frequencies and cannot be completely removed by the 
tapering. This is in agreement with the application of the 
theory of small reflections to the calculation of the reflection 
coefficient to a tapered line [17]. 

In order to gain insight into any undesired effects due to 
coupling of radiated waves, we have analyzed the radiating 
characteristics as a function of frequency according to the 
relationship 2

21
2

111 SS −−  for the three simulated 

structures. The metallic and dielectric losses were considered 
lossless in order to isolate the undesired radiant effects. The 
average value of the radiation losses between 300 kHz and 8 
GHz is 21.9 %, 15.4 % and 4.7 % for the structures of Fig. 1, 
Fig. 2 and Fig. 3, respectively. As it was expected, the 
structure of Fig. 1 is more radiant. The introduction of 
tapering techniques decreases considerably the radiation 
losses, producing the best results for the structure of Fig. 3. In 
addition, this design allows a reduction in size of 
approximately 20 % over the two other possibilities, as 
measured by the parameter D in Table I, giving as a result a 
compact wide-band KFEBG structure.  

 

IV. CONCLUSION 
In this paper, periodic patterns based on Koch fractal 

geometries have been applied to 1-D electromagnetic bandgap 
(EBG) microstrip structures. Moreover, the effects on the 
frequency response of a tapering of the dimensions and 
periodicity of the Koch fractal patterns with a Kaiser function 
are presented. The Koch fractal geometries allow conceiving 
1-D Koch fractal electromagnetic band-gap (KFEBG) 
microstrip structures with r/a ratios higher than 0.5, which is 

the upper limit of the conventional 1-D EBG microstrip 
structure. As a result of exceeding this limit, the 1-D KFEBG 
microstrip structure achieves wide band-gap frequency 
characteristics. The ripple that appears in the pass-band is 
reduced by tapering the Koch fractal dimensions in the 
periodic pattern and the microstrip width with a Kaiser 
function, while the width of the bandgap is increased by 
modulating the fractal period with the same function. As a 
consequence of this, the size of the device is compacted. 
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