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Abstract 

A new coefficient to characterize the global behaviour of adiabatic compressible flow at 

T-junctions is proposed. The new coefficient is defined according to the conclusions 

derived from the uncertainty propagation analysis of the total pressure loss coefficient 

defined by Miller for compressible flow. The numerical results obtained using the new 

linking between branches coefficient definition, 
∧
K ,  show a logarithmic relationship with 

mass flow rate ratio between branches, q ,  and the extrapolated Mach number in the 

common branch, *
3M , for all flow types studied in a 90 degree T-junction. Reliable and 

practical two parameters or global correlations, )q,M(KK *
3

∧∧
= , have been obtained. 

These correlations can be easily implemented as boundary conditions into 1-D global 

simulation codes.  

 

Keywords: Compressible flow, T-Junctions, Numerical simulation, Loss coefficient 

definition, Linking coefficient definition, Uncertainty propagation 
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Notation 
 

a   Non-dimensional parameter ( ) 21a −= γ  

b   Non-dimensional parameter ( )1b −= γγ  

c   Non-dimensional parameter ( ) 21c += γ  

D   Internal diameter (m) 

Df   Friction factor (dimensionless) FanningD f4f =  

G   Mass flow rate (kg/s) 

0h   Stagnation enthalpy (J/kg)  

h   Static enthalpy (J/kg) 

K   Total pressure loss coefficient defined by Miller [31] (dimensionless) 

∧
K   New linking between branches coefficient definition (dimensionless)  

absk   Absolute material roughness (m) 

D/L   Non-dimensional distance (ratio distance/internal diameter) 

jL   Length of the branch j  (m) 

ln   Natural logarithm 

M   Mach number (dimensionless) 
*M   Extrapolated Mach number up to the junction (dimensionless) 

s,n,m   Parameter in the numerical correlations (of the new coefficient definition 
∧
K )  

0p   Stagnation pressure (Pa) 

p   Static pressure (Pa) 

*p   Extrapolated static pressure up to the junction (after subtracting friction losses) 

(Pa) 
*
0p   Extrapolated stagnation pressure up to the junction (Pa) 

tp   Total pressure (Pa) 2
2
1

t upp ρ+=  

q   Mass flow rate ratio between branches (dimensionless) 32 GGq =  
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'q   Complementary mass flow rate ratio (dimensionless) 31 GGq1'q =−=  

2R   Correlation coefficient (dimensionless) 

Re   Reynolds number (dimensionless) 

gR   Gas constant (m2/s2K) 

0r   Radius of curvature of the internal interface of the branches 

S   Cross-sectional area (m2) 

T   Static temperature (K) 

0T   Stagnation temperature (K) 

*
0T   Extrapolated stagnation temperature up to the junction ( )0

*
0 TT =  in adiabatic 

fluid flow condition (K) 

U   Expanded uncertainty  

u   Standar uncertainty 

cu   Combined standar uncertainty 

τu   Friction velocity (m/s) 

jv   Velocity in a section of the branch j  

x   Distance along each branch (m) 

+y    Sublayer scaled distance (dimensionless) wyuy ντ=+   

 

Greek symbols 

 

ε   Non-dimensional roughness 

jφ   Ratio of extrapolated absolute static pressure (dimensionless) *
3

*
jj pp=φ   

ψ   Generic fluid property  

γ   Ratio of specific heats (dimensionless) vp cc=γ  

µ   Absolute viscosity (Pa.s) 

ρ   Gas density (kg/m3) 

wτ   Wall shear stress (Pa)   2
w uτρτ =  

θ   Angle between branches  (dimensionless) 
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Superscripts 

 

* Extrapolated flow properties to the junction (once friction losses have been subtracted) 

 

Subscripts 

 

2,1  Inlet (combining flows) or outlet (dividing flows) branches 

c,3  Common branch 

C   Combining flow 

D  Dividing flow 

d  Downstream 

i  Test section in each branch   N,......2,1i    =  

j  Branch    3,2,1j   =  

J  Junction section 

M  Measurement section 

u  Upstream 

o  Stagnation magnitude 

CI  Confidence interval 
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1. Introduction 
 

T-junctions are present in many fluid piping systems, such as pneumatic fluid power, 

transport piping, inlet and exhaust in internal combustion engines and compressors, steam 

and gas turbines, ejectors and mixers in chemical plants and secondary air systems in gas 

turbines and rocket engines. Steady and transient compressible internal flow simulation 

models may assist in the analysis and design of these systems. In most global simulation 

codes, one dimensional flow (1-D) is assumed in straight ducts. However, the flow at 

junctions and other components is three-dimensional (3-D) and special care is required at 

such singular elements. 

 

 Different modelling techniques of fluid flow in junctions were compared by 

Basset et al. [1] and they concluded that although the multi-dimensional junction model 

provided better predictions, the pressure loss junction model could predict well if it was 

used properly. So, a wave action 1-D global simulation model combined with a pressure 

loss model as boundary condition at the junctions was generally more efficient, since it 

provides satisfactory results with a lower computational cost. Another alternative is to 

use a multi-code approach based on the simultaneous use of zero, one- and three-
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dimensional models for the different components of the system, Onorati et al [2] Chiatti 

and Chiavola [3] and Kesgin [4], but in this case the computational cost is higher. 

 

 In summary, the 1-D models used in the global simulation of steady and transient 

compressible flow in pipe systems, such as BOOST (AVL) [5], GT-POWER [6], 

GASDYN [7], ENGINE CARD [8] and others require reliable data of pressure loss 

coefficients to characterize the overall behaviour of the flow at junctions. 

 

 There are numerous experimental data on incompressible flow at junctions. The 

most reliable and complete reference data are: Miller [9], 73022 and 73023 ESDU items 

[10][11] and Idelchick [12].  Some recent works, such as Sierra-Espinosa et al. [13][14], 

Adechy and Issa [15], Christian et al. [16], Oka and Ito [17] and Costa et al. [18] 

demonstrate the interest of the topic studied. In these works, different aspects of the flow 

behaviour and methodologies to discount the friction losses, obtain the extrapolated flow 

properties up to the junction and then calculate the loss coefficient have been established. 

Also different definitions of the loss coefficient have been proposed and the results have 

been represented as function of flow rate ratio between branches. Additionally, more 

complex phenomenon have been studied: de Tilly and Sousa [19] described the unsteady 

flow behaviour at low mass flow rate ratios in non-isothermal flows, numerical 

investigations of industrial interest using commercial codes [20] [21], and more recently 

the combined experimental and numerical study about passive scalar transport in Χ -

junction in incompressible flow was accomplished by Vicente et al. [22]. 

 

 The incompressible flow behaviour at junctions has also been studied through 

numerical simulation. The most noticeable works using specific codes correspond to 

Leschziner and Dimitriadis [23] and Zhao and Winterbone [24]. Commercial codes have 

also been used by different authors: Shaw et al. [25] and Gan and Riffat [26]. Finally, 
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some approximate analytical expressions have been obtained assuming steady, 

incompressible and uniform flow hypothesis in Navier-Stokes equation system in integral 

form, Hager [27], Abou-Haidar and Dixon [28], Basset et al. [29] and Winterbone and 

Pearson [30]. 

 

 In compressible flow the available data are scarce. The only reliable data 

published in the open literature are the experimental data obtained for commercial T- and 

Y-junctions by Morimune et al. [31] and the experimental investigations on T-and Y-

junctions with different angles between branches accomplished by Abou-Haidar and 

Dixon [32] . In the first work, a graphical extrapolation procedure was used to subtract 

the friction losses and to obtain the extrapolated flow properties up to the junction 

departing from the measured static pressure at multiple locations in each branch. In the 

second work, Abou-Haidar and Dixon subtracted the frictional losses in straight duct, 

between measurement locations and junction, using a procedure only suitable for 

incompressible flow. In both works, the measurement sections were located close to the 

junction (between 2D and 30D). In this region the fluid flow is not fully developed and 

the static pressure gradient used to calculate the non-dimensional friction coefficient is 

influenced by the junction. Abou-Haidar [33] also studied some combining flow types by 

numerical simulation using a 2-D specific code. In conclusion, the available data should 

be contrasted and a more reliable methodology for discounting the frictional losses in 

compressible flow should be developed.  

 

  A new numerical simulation methodology for obtaining the overall loss 

coefficient at junctions in compressible flow was developed and experimentally validated 

by Perez-Garcia et al. [34]. This methodology consists in carrying out numerical 

simulations of the 3-D compressible fluid flow at T-junctions using the general purpose 

commercial code FLUENTTM [35] and processing the obtained numerical results 



ACCEPTED MANUSCRIPT 

8 

applying the Fanno fluid flow model to subtract friction losses. The numerical results for 

different flow types and mass flow rate ratios between branches were compared with our 

own experimental data and also with the published Abou-Haidar and Dixon data [32]. For 

this purpose the total pressure loss coefficient defined by Miller [36] was used. In 

general, a good agreement was achieved. However, the results show a significant 

dispersion and cannot easily be correlated with the extrapolated Mach number in the 

common branch [37].   
 

 In this work a new linking between branches coefficient is proposed to 

characterize the overall behaviour of compressible flow at junctions. The new coefficient 

is deducted from the findings obtained in the uncertainty propagation analysis of Miller’s 

coefficient definition. The main advantage of this new proposed coefficient is that the 

results show a logarithmic relationship with the extrapolated Mach number and, 

therefore, they can be correlated using simple analytical models. The global correlations 

obtained can easily be implemented as boundary condition in global 1-D simulation 

codes.  

 

 The structure of the paper is the following: In section 2, the results of the 

uncertainty propagation study of the loss coefficient defined by Miller are summarized 

and the uncertainty amplification sources are identified. The new loss coefficient 

definition is introduced in Section 3. Section 4 shows the numerical results and the global 

correlations obtained, as well as their expanded uncertainties and a summary of the main 

advantages of the proposed coefficient. In the final section some conclusions are drawn. 

The results of the dimensional analysis of the problem studied are summarized in 

appendix A. In appendix B, the numerical implementation of the new global correlations 

is detailed. Finally, the uncertainty of the numerical results is reported in appendix C.  
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2. Uncertainty Propagation in the Loss Coefficient Defined by Miller 
 

The total pressure loss coefficient for compressible flow defined by Miller [36], Eq. (1), 

was derived from the traditionally accepted expression for incompressible flow, also 

proposed by the same author [9]. For incompressible flow this definition has the physical 

meaning of quantifying the loss of the stagnation pressure rated with the dynamic 

pressure at the common branch. For compressible flow analogous definition was 

proposed by Miller, although the physical interpretation is not so direct. Eq. (1) must be 

particularized for combining flow types doing cd ≡  and for dividing flow types doing 

cu ≡ , where u, d and c indicate upstream, downstream and common, respectively. 

 

*
c

*
c0

*
d0

*
u0

ud pp
pp

K
−
−= ����������������������������������������������(1) 

 The loss coefficient from Eq. (1) is expressed as a function of stagnation and 

static pressure extrapolated up to the junction. These quantities cannot be accurately 

measured and the flow properties are obtained far away from the junction, where they are 

not perturbed by the junction effect. Later, subtracting the friction losses, the extrapolated 

quantities can be calculated. In Fig. 1, actual and extrapolated (subtracting friction losses) 

stagnation pressure evolution are depicted in a dividing flow type. 

 

Other loss coefficient definitions for compressible flow have also been proposed 

[4][31]. The most significant non-dimensional parameters that must be considered in this 

problem can be obtained through dimensional analysis (Appendix A). The loss 

coefficient must be obtained for different Mach numbers and mass flow rate ratios 

between branches for each flow configuration at T-junctions. In Fig. 2, the notation of the 

new linking coefficient for the studied flow configurations is shown. The loss coefficient 

defined by Miller was represented as a function of extrapolated Mach number in common 
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branch at T-junctions with constant=q  and for different angles between branches by 

Abou-Haidar and Dixon [32] and Abou-Haidar [33]. 

 

 The uncertainty propagation analysis has been carried out for both combining and 

dividing flow types. In dividing flow types, for instance, Eq. (1) can be written as a 

function of the extrapolated Mach numbers according to Eq. (2) and (3)  

 

*
3

*
03

*
01

*
03

31 pp
pp

K
−
−

= �                                                    (2) 

( ) ( )( )
( ) 1aM1

aM1ppaM1
1pp

pppp
K b2*

3

b2*
1

*
3

*
1

b2*
3

*
3

*
03

*
3

*
01

*
3

*
03

31
−+

+−+=
−

−=  �                (3) 

where, 3 is the inlet and common branch, 3uc =≡ , and  1 is the outlet branch, 1d = . To 

calculate the extrapolated quantities it is necessary to obtain, numerically or 

experimentally, mass flow rate, static temperature and absolute static pressure in both 

branches involved. So, the loss coefficient 31K  and its expanded uncertainty can be 

expressed according to Eq. (4) and (5) respectively,  

 
)p,T,G,p,T,G(KK 1113333131 = �                                         (4) 

 
( ))p(u),T(u),G(u),p(u),T(u),G(uU)K(U 11133331 = , �           (5) 

where )(u ψ  is the standard uncertainty associated with the uncorrelated input estimate 

ψ . Previous to determine the combined standard uncertainty of the Miller loss 

coefficient, it is necessary to obtain the absolute sensitivity coefficients associated to each 

variable. Using differential calculus and considering that the standard uncertainties of the 

input magnitudes are uncorrelated, we can derive each branch “1” and “3” separately and 

then combine according to Eq. (6), 
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331

31

131

31

31

31

K
dK

K
dK

K
dK

+=  .                                                   (6) 

 
where, differentiating Eq. (3), 

*
1*

1

31*
1*

1

31
131 dp

p
K

dM
M
K

dK
∂
∂

+
∂
∂

= ,                                      (7) 

*
3*

3

31*
3*

3

31
331 dp

p
K

dM
M
K

dK
∂
∂

+
∂
∂

= ,                                      (8) 

 

organizing terms, Eq. (6) can be written as Eq.(9), 

*
3

*
3

D3*
3

*
3

D3*
1

*
1

D1*
1

*
1

D1
31

31

p
dp

M
dM

p
dp

M
dM

K
dK ΓΛΓΛ +++=  ,                    (9) 

 
where parameters Λ  and Γ  for each branch, assuming adiabatic flow condition 

ttanconsTTT 0
*

03
*

01 === , are given by: 
  

�
�
�

�

�
�
�

�
�
�
�

	




�

�

−
+�

�
�

	




�

�
−=

−

*
3

*
03

*
01

31
*
03

*
1

1b

*
1

*
02*

1D1 pp
p

K
1

1
p
p

T
T

MγΛ ,                             (10) 

�
�

�
�
�

� −
−�

�
�

	




�

�
=

−

31

31
*
3

*
03

*
3

1b

*
3

*
02*

3D3 K
K1

pp

p

T

T
MγΛ  ,                                      (11) 

�
�
�

	




�

�

−
−=

*
3

*
03

*
01

31
D1 pp

p
K
1

1Γ  ,                                             (12) 

( )( )
�
�

�
�
�

� +−
−

=
31

3131
*
3

*
03

*
3

*
03

*
3

D3 K
KK1pp

pp

p
Γ  ,                                     (13) 

 

 

 Now we must take into account the procedure of extrapolation detailed in [34] to 

relate the extrapolated and measured quantities Eq. (16). In this procedure the friction 

coefficient for fully-developed fluid flow region is previously obtained using the Fanno 

model momentum equation in differential form, Eq. (14) 
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( ) i
2
i2

1

2
i

3
i

Di dx
dM

M11

M1

M
D2

f
−+

−
=

γγ
.                                  (14) 

 
 

To discretize 
i

dxdM , by means of finite differences in a non-uniform mesh, the 

expressions from [38] have been used. Doing DdevelopedfullyDiDi fttanconsff =≅=
−

, the 

Eq. (14) can be analytically integrated to obtain Eq. (15) 

 
( )( )

( )( )��
�

�
�

�

−+
−+++��

�

	




�

� −
=

−

−

−

−

−−
2

1i
2
i

2
i

2
1i

2
1i

2
1i

2
i

2
i

1ii
D M12M

M12M
ln

2
1

M

MM

M
1

D
)xx(

f
γ
γ

γ
γ

γ
 .              (15) 

 

This equation links the Mach number with the distance x  along the duct, where iM  and 

1iM −  are the averaged Mach numbers in two locations with i1i xx <− , for any branch and 

where 0x =  is the junction. Eq. (15) is used to obtain the extrapolated Mach number in 

each branch, 3,2,1j   = . Differentiating Eq. (15) at any branch “ j ”, we can obtain a 

relationship between Mach number in the measurement section jM , and the extrapolated 

Mach number *
jM  at the junction, 

 

j

j
jD*

j

*
j

M

dM
F

M

dM
= ,                                                 (16) 

 
where jDF  (dividing flow types) is given by: 

( )

( )2*
j

2*
j

2*
j

2
j

2
j

2
j

jD

aM1

acM
c

M
1

aM1

acM
c

M
1

F

+
+−

+
+−

=   .                                       (17) 

 Taking into account now Eq. (18) and (19) we can relate Mach number and 

stagnation temperature with the fluid properties evaluated in each branch. These 

equations can be applied to the flow properties, in the initial section and to the 

extrapolated quantities up to the junction,  
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j

j

j

j

j

j

j

j

p

dp

G

dG

T

dT

2
1

M

dM
−+=   ,                                          (18) 

j

j

j0

j

j

j

j0

j0

M

dM

T

T
12

T

dT

T

dT
�
�

�

	






�

�
−+=  .                                        (19) 

 
 Substituting now Eq. (16), (18) and (19) for 3,1j =  in (9), we obtain: 
 

3

3
D3p

3

3
D3G

3

3
D3T

1

1
D1p

1

1
D1G

1

1
D1T

31

31

p
dp

G
dG

T
dT

2
1

p
dp

G
dG

T
dT

2
1

K
dK ∆∆∆∆∆∆ −++−+=     (20) 

 

where the sensitivity coefficients are, 
 

D1
0

*
1

0

1
D1 F

T
T

2
T
T

1 �
�
�

	




�

�
−−��

�

	



�

�
−=α  ,                                      (21) 

( )D1D1D1D1D1T 1F αΓΛ∆ ++= ,                                       (22) 
( )D1D1D1D1D1G 1F αΓΛ∆ ++=  ,                                      (23) 

D1D1D1D1D1p F αΓΛ∆ += ,                                           (24) 

D3
0

*
3

0

3
D3 F

T
T

2
T
T

1 �
�
�

	




�

�
−−��

�

	



�

�
−=α ,                                      (25) 

( )D3D3D3D3D3T 1F αΓΛ∆ ++=  ,                                     (26) 
( )D3D3D3D3D3G 1F αΓΛ∆ ++=  ,                                     (27) 

D3D3D3D3D3p F αΓΛ∆ += .                                         (28) 

 
Finally, the combined standard uncertainty )K(u 31c is defined as, 

)K(u)K(u)K(u)K(u)K(u)K(u)K(u 31
2

3p31
2

3G31
2

3T31
2

1p31
2

1G31
2

1T31
2
c +++++= , where, 

for example, for the magnitude 1T , 1
1

31
1

1

31
311T dT

T
K

)T(u
T

K
)K(u

∂
∂

=
∂

∂
= . We have used in 

this step the equivalence in notation between standard uncertainty )(u ψ  and the 

differential ψd  of a generic input magnitude ψ . In consequence, the contribution of the 

1T  uncertainty on the uncertainty of the result, )K( 31  can be easily obtained from Eq. 

(20) considering separately the standard uncertainty )(u ψ  of the rest of input magnitudes 

ψ , 

( ) 1D1T
1

31
3331131311T dT

T
K

2
1

0dpdGdTdpdGdK)K(u ∆=======  



ACCEPTED MANUSCRIPT 

14 

Similarly, all the components of the uncertainty of the result )K(u 31ψ  can be 

obtained from Eq. (20). 

 
 Finally, the expanded uncertainty )K(ku)K(U 31c31 =  referred to the 95% 

confidence interval, in which the coverage factor is 2k = , can be obtained from Eq. (29), 

according to the ISO standard “Guide to the Expression of Uncertainty in Measurement” 

[39],  

 

( ) 21

31
2

3p31
2

3G31
2

3T31
2

1p31
2

1G31
2

1T31 )K(u)K(u)K(u)K(u)K(u)K(uk)K(U +++++=  (29) 

 

 This expression allows us to establish that static pressure uncertainty is amplified 

in the calculation of the Miller loss coefficient, being its contribution to the expanded 

uncertainty one order of magnitude higher than the contribution of the static temperature 

or mass flow rate measurement uncertainties.  

 

The explanation is that this is because Γ and α  parameters in the sensitivity 

coefficients are )10(O=Γ  and )1(O −=α  respectively, in consequence, the 

uncertainty of the static pressure is amplified, Eq. (24) and (28). On the other hand, the 

influence of the Γ  parameters is counterbalanced in the static temperature, Eq. (22) and 

(26), and mass flow rate, Eq. (23) and (27), so, these uncertainties are maintained in the 

same order of magnitude as their initial uncertainties. Finally, in all cases studied the 

parameters Λ  and F  are )1(O=Λ  and )1(OF = which demonstrate that extrapolation 

procedure do not introduce additional uncertainty, Eq. (16).  
 

 Similarly the total uncertainty of loss coefficient 32K , and the coefficients 13K  

and 23K , for the combining flow types, can be calculated.  

 

3. Proposed New Coefficient 
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According to the uncertainty propagation study previously accomplished, it can be 

concluded that the initial uncertainties are not amplified by the extrapolation procedure 

used to subtract the friction losses. In consequence, the static pressure measurement 

uncertainty is amplified only due to the coefficient definition itself. Therefore, it would 

be interesting to define a new coefficient to characterize the flow behaviour at T-

junctions avoiding this uncertainty amplification and the subsequent dispersion and 

irregularity of the results.  

 

 In this section a new definition to the loss coefficient is proposed departing from 

the total pressure loss coefficient defined by Miller. Miller’s coefficient can be expressed 

according to Eq. (30) (in dividing flow types, for instance): 
�

1)M(f

)M(f)M(f

PP

PP
K

*
3

*
j

*
3

*
3

*
03

*
j0

*
03

j3 −

⋅−
=

−

−
=

φ
���� 2 ,1j = �������������������������(30)�

where,�
*

3

*
j

P

P
=φ ∼1 � b2*

j
*
j )aM1()M(f += � and�� b2*

3
*
3 )aM1()M(f += ��

�

Eq. (30) can be rewritten doing, *
3Mx = , *

jMy = , according to Eq. (31): 

)y,x(h)x(g
1

K j3

φ−= �                                              (31) 

�

where, )x(g  and )y,x(h  are defined from Eq. (32) and (33) respectively: 
 

)x(f
1)x(f

)x(g
−= �                                                 (32) 

)y(f
1)x(f

)y,x(h
−

= �                                              (33) 

 In Eq. (31) the influence of the Γ  and Λ  parameters is uncoupled. To avoid the 

uncertainty amplification, only type Λ  parameters will be retained. So, doing partial 
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derivatives in (31) considering φ  constant, the uncertainty of Miller’s coefficient 

definition can be related to the uncertainty of )x(g  and )y,x(h , according to Eq. (34), 
�

h
dh

hKg
dg

gK
1

K

dK

j3j3Ctej3

j3 φ

φ

+−=
=

�                                   (34)�

where, 

( )
( )

( )
( ) x

dx

ax1

ax1abx2
x

dx

1ax1

ax1abx2
g

dg
b2

1b22

b2

1b22

+

+−
−+

+=
−−

�                     (35)�

( )
( )

( )
( ) y

dy

ay1

ay1aby2
x

dx

1ax1

ax1abx2
h

dh
b2

1b22

b2

1b22

+

+−
−+

+=
−−

�                    (36) 

�

 Considering that the uncertainty of the flow properties in each branch is similar, 

ydyxdx ≈ , and the extrapolated Mach number is of equal order of magnitude and also 

varies in the same way, yx ≈ , it can be concluded according to (35) and (36) that the 

uncertainties of )x(g  and )y,x(h  are of the same order of magnitude in all studied 

cases. 

h
dh

g
dg ≈ �                                                       (37) 

Substituting (37) in (34), we obtain 
�

h
dh

h
dh

hg
1

K
1

h
dh

hKg
dg

gK
1

K

dK

j3j3j3Ctej3

j3 −≈��
�

	



�

�
−−≈+−=

=

φφ

φ

�         (38)�

�

 In short, it is important to pointed out that when in Miller’s definition we assume 

φ = constant the uncertainty is not amplified, and that this hypothesis is only a way of 

deducing a more suitable loss coefficient definition, but it is not a realistic assumed 

hypothesis. From Eq. (38) we can conclude that a type function )y,x(h  has a similar 

uncertainty than Miller’s loss coefficient definition when φ = constant is considered. 

Then, if a )y,x(h   type function is formulated as new coefficient definition, the 
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uncertainty will not be amplified. So a new improved coefficient to characterize the 

compressible flow behaviour at T-junctions can be formulated from Eq. (39), 
�

)M(f

1)M(f
K

*
j

*
3

j3
−

=
∧

�                                                 (39)�

 In combining flow types the loss coefficient defined by Miller can be related to 

the new coefficient according to, 
�

1)M(f

)M(f

Kpp

pp
K

*
3

*
3

3j

*
3

*
03

*
03

*
j0

3j −
−=

−

−
=

∧

φ
���������� 2 ,1j = ��������������(40) 

 Both particularized coefficients can be related and defined by a single expression 

for combining and dividing flow types from Eq. (41), which supposes an important 

simplification, 

jj3*
j

*
3

3j KK
)M(f
1)M(f

K
∧∧∧

==−= ��������������������������������������(41)�

 Since the new coefficient has been deduced using a purely mathematical 

procedure, it lacks physical significance although this fact is not a problem when it is 

used to obtain practical correlations implemented later as boundary conditions in 1D 

global simulation codes. The new coefficient must be interpreted as a linking between 

branches coefficient, since it links the extrapolated flow properties of the involved 

branches. In following sections, some additional advantages of the new coefficient will 

be commented on.   

 

4. Results 

In previous works [34] [37], it has been observed that the results obtained using the 

Miller’s loss coefficient for compressible flow do not show a clear trend in most flow 
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types studied. This fact can be observed in both, published data from Abou-Haidar and 

Dixon and numerical and experimental results obtained by the authors. 

 

4.1 New Coefficient Global Correlations  
 

In [34] the authors provided experimental partial correlations for Eq. (1), to fixed mass 

flow rate ratios of 1 and 0.75 0.5, 0.25, ,0q =  in both, combining (C2) and dividing (D2) 

flow types. These correlations can not be adjusted to any simple mathematical expression 

and, therefore, it will be difficult to implement as boundary condition in global 1-D 

simulation codes. To solve this difficulty, we provide in this paper new numerical global 

correlations. The numerical results were obtained using the numerical procedure 

developed and validated in [34] and the new definition of linking  between branches 

coefficient,  Eq.(42) 

( )
( )b

j

b

j

j

j

aM

aM

P

P
P
P

K
2*

2*
3

*

*
0

*
3

*
03

1

11
1

+

−+
=

−
=

∧
,  2,1j = ,                                 (42) 

where  3  is the common branch and 1  and 2  are the inlet or outlet branches . The term 

linking coefficient is used to point out that it does not express directly a loss pressure 

concept, but a relationship between upstream and downstream flow variables. 

 

Numerical results have shown that jK
∧
�can be globally correlated with )q1( +  

and *
3M  , according to, �

( ) ( ) )sln(q1lnnMlnmKq1ln *
3j +++=�

�

�
�
�

� +
∧

, �                       (43) 

where ln  is the natural logarithm and m , n  and s  are parameters obtained by a least 

minimum square fit procedure , that can be written in the equivalent form, 

 

                             ( ) ( ) ( ) 1nm*
3

*
3jj q1Msq,MKK −∧∧

+== ������������������������������(44) 
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With global we mean that only one expression, Eq. (44), is enough to summarize 

and characterize all the local energy losses at the junction as a function of the two 

parameters: q  and *
3M . Partial correlations for q  constant are not necessary. It is also 

important to mention that only one expression is required for both flow types combining 

and dividing. This implies an important simplification in reference to others definitions.  

4.2 Combining and Dividing Flow Types 

In the reference [34] experimental and numerical data were presented for 2C  and 2D  

flow types using the Miller´s coefficient definition, with the aim to validate both 

experimental and numerical developed methodologies. Now numerical and experimental 

results have been compared using the new linking between branches coefficient 

definition. In Figure 3 the experimental results, regression plane and numerical results are 

represented in linear scale. In Figure 3 a) the results for combining flow type C2 are 

compared. Numerical results were obtained for extrapolated Mach number 2.0*
3 >M  

while experimental test were accomplished also in incompressible flow. It can be 

observed a good agreement between experimental data and numerical results for all mass 

flow rate ratios between branches. The results for dividing flow type D2 are compared in 

Figure 3 b). In this flow configuration the interval of extrapolated Mach number 

experimentally tested is lower than numerically, due to limitations in the flow bench 

facility, and the agreement between experimental and numerical results is also excellent 

in all mass flow rate ratios studied.    

 

These numerical simulations have been completed and now original numerical results for 

combining flow 1C  and dividing flow 1D  are included. In Fig. 4a) and 4c) the 

regression planes given by Eq. (44) and the values obtained for the new linking 

coefficient 2K
∧

 at the combining 2C  and dividing 2D  flow types have been represented. 



ACCEPTED MANUSCRIPT 

20 

The numerical results show a very good linear adjustment when logarithmic axes are 

used, as can be observed in the projected view in the Fig. 4 b) and d). In Fig. 5 the 

regression planes for the coefficients 1K
∧

 and 2K
∧

 and the experimental values for 

combining flow type 1C  and dividing flow type 1D  are represented. 

 

Global correlations for both coefficients 1

∧
K and 2K

∧
, and their expanded 

uncertainties (95% confidence interval) obtained according to Coleman and Steele 

procedure detailed in [40], are summarized in Table 1.  

 

The range of applicability of the proposed correlations must be expressed in terms 

of extrapolated Mach number in the common branch and mass flow rate ratio. The 

numerical simulations test have been accomplished in the interval 7.0M15.0 *
3 ≤≤  and 

for mass flow rate ratios of 175.0,5.0,25.0,0q  and =  (observe that M*
3  is the extrapolated 

Mach number at the junction after subtracting the frictional losses, and this interval can 

correspond to a different physical Mach number interval depending on the length of each 

branch, surface roughness, etc). In consequence, the proposed correlations can be 

accurately applied in this interval. However, taking into account the excellent linearity of 

the regression planes, this interval could be reliability extended.      

It is worth to mention that in 2C  and 2D  flow types, only one global correlation 

is required, respectively. In Table 1 the correlations for the coefficient 2K
∧

 are proposed. 

These correlations can be used for the coefficients 1K
∧

 substituting q by )q1(q −=′ .  
�

The regression coefficient R-square denominated coefficient of multiple 

determinations [41] is also reported.  
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 The obtained global correlations constitute a very useful numerical tool, since 

they can be easily implemented as boundary condition in 1D global simulations codes. 

This type of boundary condition provides continuous information calculating the linking 

coefficient between extrapolated flow properties at the junction. Global correlations are 

adequate for each flow configuration and they can also be applied in unsteady 

compressible flows in which the mass flow rate ratio is changing continuously. 

 

The numerical implementation of the numerical correlations is detailed in 

Appendix B,   and finally the uncertainty of the numerical results has been assessed in 

Appendix C, according to the procedure propose in [42]. 

 

4.3 Advantages of the New Coefficient Definition 

The proposed new coefficient has important advantages compared to the loss coefficient 

defined by Miller: 

 

� The new coefficient shows a linear relationship with the extrapolated Mach 

number in the common branch for cteq =  when represented in a double 

logarithmic scale. This fact allows us to obtain reliable and accurate correlations 

with lower computational or experimental effort, since the numerical simulations 

or experimental tests required are greatly reduced.  

� The proposed coefficient is more sensitive in reference to the Mach number. 

� The expanded uncertainty of the linking between branches coefficient is similar to 

the uncertainty of the initial numerical results or experimental measurements, 

since the new definition does not amplify these uncertainties. 

� The new definition is the same for both combining and dividing flow types. 
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� Finally, simple and compact expressions can be obtained to correlate the 
∧
K  with 

the mass flow rate ratio and extrapolated Mach number.  These correlations can 

be easily implemented as boundary conditions in global 1D simulation codes, 

avoiding complex interpolation routines. So, the problem of the database 

discretization can be reduced to the flow configuration level. 

 

 The new coefficient has the disadvantage of its low sensitivity to the mass flow 

rate ratio between branches, although this inconvenience was also observed in the loss 

coefficient defined by Miller, therefore it could be intrinsic to the fluid flow behaviour at 

junctions. Besides, the linking coefficient does not have a clear physical significance as 

energy loss coefficient of the flow, although in terms of its practical utilization as 

boundary condition this inconvenience is not relevant. 

 

Conclusions 

 

A detailed analysis of the uncertainty propagation in the calculation of the loss coefficient 

in compressible flow at T-junctions has been accomplished. It has been detected that 

when Miller’s definition is used, the static pressure measurement uncertainty is 

amplified. The influence of the uncertainties of the rest of the flow properties, such as, 

mass flow rate or static temperature, is less important because their uncertainties are not 

amplified. 

 

 Uncertainty propagation due to the data processing methodology for obtaining the 

extrapolated flow properties up to the junction, according to the Fanno fluid flow model, 

has also been analyzed and it is concluded that no meaningful uncertainties are 

introduced. In consequence, the origin of this uncertainty amplification is the loss 

coefficient definition itself.  
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 In order to minimize the uncertainty propagation in the calculation of loss 

coefficient and to reduce the observed data dispersion when Miller’s loss coefficient is 

used a new coefficient definition is proposed. This new linking between branches 

coefficient links the extrapolated Mach number in both involved branches, and provides 

some interesting advantages, such as, a logarithmic relationship with the extrapolated 

Mach number in common branch. So, the number of required experimental tests or 

numerical simulations to characterize its dependence is greatly reduced. In addition, the 

loss coefficient can be obtained accurately inside a wider Mach number interval by 

extrapolation. The proposed new coefficient is also more sensitive to the Mach number 

variations providing consistent results for different flow configurations and different 

mass flow rate ratios. Finally, it is interesting to emphasize that the same definition is 

valid for combining and dividing flows. 
 

 Finally, the proposed new coefficient allows us to obtain two parameter or global 

correlations, which constitute a powerful tool to characterize the global flow behaviour at 

T-junctions.��he regression global uncertainty for each proposed correlation has also 

been estimated and the higher uncertainty is about %25.6  . 
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Appendix A. Dimensional Analysis 
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The most significant non-dimensional parameters to be considered in this study can be 

obtained through dimensional analysis. The “jump” of extrapolated stagnation pressures 

depends on the indicated flow properties in Eq. (A.1), when the hypothesis of steady, 

compressible and adiabatic internal flow in a constant circular cross-sectional can be 

assumed. In combining flow types with, cd ≡ , 
�

( )abscu0
*
c0gcu

*
c0

*
u0 k,,D,D,r,,T,R,,,G,Gfpp θργµ=− �����������������(A.1) 

 It can be expressed in non-dimensional form according to Eq. (A.2), 
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� �n the other hand, the denominator in Eq. (1) can also be expressed as Eq. (A.3),�
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� Taking into account Eq. (A.2) and (A.3) and simplifying, we obtain: 
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� Equation A.4 can be simplified according to Eq. (A.5) when: geometrical 

similitude between T-junctions is achieved, the effect of the relative roughness is 

negligible, the specific heat is constant in the studied range and the test fluid is air in all 

cases.  

( )*
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*
c*

c
*

c0

*
c0

*
u0 Re,q,M

pp
pp ϕ=

−
−

������������������������������������(A.5) 
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� The extrapolated Reynolds number in common Branch *
cRe  is about 510  in all 

experimental tests and numerical simulations. In this range its influence in the loss 

coefficient is negligible, see for instance [9][10][11][17][28][31].  

Appendix B. Implementation of the new experimental correlations  

In this section, we summarize the algorithm used in the most of 1-D models and the 

introduction of the new correlations as boundary conditions at the junction. For instance, 

we apply the algorithm to dividing flow type 2D  (see Fig. 1) governed by the following 

equation system: 

� 0
4
D

vG
2

111 =− πρ ,�������������������������������������������(B.1) 

� 0
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�

where (B.5) is the momentum equation in each branch, see [34], (B.6) is the continuity 

equation at the junction, (B.8) and (B.9) are 1K
∧

 and 2K
∧

 correlations, respectively, that 

in the case of D2 configuration (symmetrical flow type), s, m and n are the same for both, 

see Table 1. In other non-symmetrical flow types such as C1 and D1 the correlations for 

both coefficients are different. 
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The equation system (B.1)-(B.9) has 11 equations and 15 unknowns, therefore, is 

necessary to impose 4 unknowns that, in the most of the commercial numerical codes, are 

T0, G3, P1 and q. After imposing these 4 values, the equation system can be formally 

written as: 

0)x(F =� ,   ���������������������������������������������(B.10) 

where, [ ]T*
33

*
22

*
111111 qMMMMMMTvGx ′= ρ� , is the unknown vector. 

This equation system is non-linear, therefore, is necessary to use iterative 

techniques. One of the most popular techniques to solve non-linear equation systems is 

the Newton-Raphson method that, basically, can be summarized at each k-iteration as: 

 

[ ] )()( 111 −−−−= kkk xFxJx
���δ ,��������������������������������������������(B.11) 

 
kkk xxx
�δ+= −1 ,��������������������������������������������(B.12) 

 

with, )x(J k� , the Jacobian matrix at the k-iteration, and kx
�δ the correction in each k-

iteration, see [43] for more details about the Newton-Raphson method. Once x�  is 

obtained, all the remains fluid magnitudes can be calculated at the branches 2 and 3. A 

similar methodology can be applied in configurations with multiple junctions. 
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Appendix C. Uncertainty of Numerical Results 
 

Systematic grid refinement studies are the most common approach used in assessing the 

numerical accuracy of a numerical simulation. In this work, the proposed approach by 

Freitas et al. [42] to estimate the numerical results uncertainty has been applied.  
 

 If the formal order of accuracy is not known, then three different grids and their 

results are required to determine the order of the method and the error.  The ratio of grid 

spacing or proportionality ratio between cells may be any real number when the Grid 

Convergence Index (GCI) is calculated to estimate the uncertainty due to discretization 

errors. 
 

 To accomplish the grid dependence study, the Mach number in a fixed location of 

the computational domain has been calculated using three different refined meshes. The 

ratio of grid spacing in the cells adjacent to the wall of the three grids is 2r = . The 

simulations were accomplished for different mass flow ratios at flow type C2 and mass 

flow rate ratio 5.0q =  was maintained constant. In table C.1, the geometrical 

characteristics of the three meshes studied are summarized. In table C.2, the results 

obtained in estimating the numerical uncertainty are shown. The evaluated case is a 

combining flow type C2, 5.0q =  and mass flow rate 0.064 kg/s in each inlet branch. The 
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numerical simulations were carried out for the three grids and different mass flow rates: 

0.016, 0.024, 0.04, 0.056, 0.064, 0.088 and 0.1 kg/s.  
  

 The numerical uncertainty decreases significantly when the numerical results 

obtained with the normal and fine meshes are compared. The calculated values for 

different mass flow rates are similar in both actual p  and 1p = . This parameter p is 

defined in [42] as the apparent order of the method. It can be concluded that the obtained 

results with normal mesh are reliable and the computational cost is lower than when the 

fine mesh is used, in consequence the normal mesh will be used systematically in all 

numerical simulations. 

 Finally, in table C.3 the obtained values of GCI (%) for Mach number in common 

branch at the distance 25.40DL =  from the junction and different mass flow rates 

studied are summarized. It can be observed that numerical uncertainty increases when the 

mass flow rate increases, although the fineGCI values are maintained, in all cases, inside 

% 2.1  accuracy interval. 
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Figure Captions 

 

Figure 1.  Evolution of the stagnation pressures in a T-junction. Extrapolated and 

measured quantities. 

 

 
Figure 2.  Notation of the linking coefficient for different flow configurations:  
a) Combining flow b) Dividing flow   
�
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�

�

Figure 3. Comparison between experimental data, regression plane and numerical results  

a) for combining flow type C2 and b) for dividing flow type D2 

�

�

�

�

Figure 4. Regression plane and numerical results for a) combining flow type C2 and c) 

for dividing flow type D2. Lateral view for C2 and D2 in b) and d), respectively. 
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�

 
Figure 5.  Regression plane and numerical results for a) combining flow type 1C , 

coefficient 1K
∧

, b) combining flow type 1C , coefficient 2K
∧

, c) dividing flow type 1D , 

coefficient 1K
∧

and d) dividing flow type 1D , coefficient 2K
∧

. 
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Table Captions 

�

Table 1.  Global correlations obtained from numerical results.  
�

�

Table C.1.  Geometrical characteristics of the studied meshes at 90 degree 

T-junction. Computational domain reduced due to double symmetry plane 
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in combining flow type C2 q=0.5.  

�

Table C.2.  Estimation of the numerical uncertainty. 128.0G3 =  kg/s. 

 

Table C.3. Obtained values of GCI in % to estimate the numerical uncertainty. 
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Fig.2 
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Fig.3(a) 
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Fig.3(b) 
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Fig.4(a) 
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Fig.4(b) 
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Fig.4(c) 
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Fig.4(d) 
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Fig.5(a) 
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Fig.5(b) 
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Fig.5(c) 
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Fig.5(d) 
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