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Abstract: In this work, a learning architecture based on neural networks has
been employed for modelling the electric field pattern along an axis of a
multimode microwave-heating cavity that contains dielectric materials. The
multilevel configuration of this architecture, based on Radial Basis
Functions (RBF) and polynomial structures, allows the fitting of the
electric field as a function of the dielectric parameters (i.e. e =&’ — je’)
along one axis (x) of the cavity as well as inside the sample. In the learning
stage, different samples have trained the neural architecture, by means of
the mapping between (¢',¢”) and the absolute value of the electric field
pattern, generated with a 2D simulation platform based on the Finite
Elements Method (FEM). The results obtained with conventional samples,
such as polyester, epoxy, silicon crystal or beef steak, show that the
proposed neural model is able to accurately predict the electric field spatial
distribution under appropriate training processes.
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1 Introduction

Microwave heating is a technique that is employed for the processing of a great
variety of industrial materials, such as leather, paper, wood, food, textile, rubber and
resins (Meredith, 1988; Metaxas and Meredith, 1983; Monzo-Cabrera et al., 2002).
In these processes, the knowledge of the electric field distribution within the material
is a basic question, since it indicates the way in which the material will be heated,
showing the so-called ‘hot spots’ and the regions that heat at a lower rate.
Traditionally, the computation of the electric field within microwave heating
applicators has been based on the resolution of Maxwell’s equations and the so-called
wave equation (Chow-Ting-Chan and Reader, 2000). Several numerical methods can
be employed to solve Maxwell’s equations in microwave ovens although the most
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common methods used are Finite Differences in the Time-Domain (FDTD) and the
Finite Elements Method (FEM). Microwave heating applications using these
methods can be found in Kopyt and Celuch-Marcysiak (2003) and Sundberg et al.
(1996), respectively. However, the main drawbacks for these methods are the long
computing times, mainly for three-dimensional (3D) structures and the need of new
simulations when the properties of the material, such as permittivity, size and shape,
change (Chow-Ting-Chan and Reader, 2000). All these aspects are particularly
important in real microwave-heating processes in which the material features may
change during the heating period due to the sample temperature increase and its
internal structure variations.

On the other hand, the models based on learning architectures, such as Artificial
Neural Networks (ANN), are able to deal with the relationship between these
material features and the electric field deposition for a fixed applicator. The use of
ANN implies that, after the training stage, these methods are able to accurately
predict the electric field distribution within the material to be processed without
turning back to the resolution of Maxwell’s equations which drastically reduce
computing times (Kuroda and Kim, 2002; Mittal and Zhang, 2000).

These learning capabilities have led several authors to use ANN for the
resolution of complex electromagnetic problems, such as permittivity measurements
(Eves et al., 2004), microwave structure optimisation (Murphy and Yakovlev, 2003;
Watson and Gupta, 1997), microwave devices modelling (Creech et al., 1997,
Patnaik et al., 1997; Vai et al., 1997) and improvement of the calibration procedures
(Jargon and Gupta, 2001; Jargon et al., 2000a,b). Thus microwave devices can be
modelled from an ANN point of view. An example of an application of this
structure for solving inverse problems in microwave cavities can be found in
Pedreno-Molina et al. (2004).

In this work, the x-axis has been considered as the axis of the magnetron. We
propose an ANN architecture that is able to learn and predict, for any dielectric
material the module of electric field curves as a function of permittivity (dielectric
constant (¢') and the loss factor (¢”)) and distance from the power source, i.e.
E(x,e’,€"). Thus, the learning capabilities of ANN have been applied for modelling
the relationship between the spatial dependence of both the sample and cavity electric
field spatial distribution for a microwave heating applicator along the x-axis. The
analysis of the error has been made as function of several parameters of the neural
networks involved in order to study the sensitivity and robustness of the proposed
neural architecture. When compared with numerical methods for the estimation of
electric field distribution in the described scenario, the proposed architecture avoids
the knowledge of the physical model of the process, since in this case it is rather
complex. In fact, the final structure has been designed by means of a simple
mathematical model, based on matrix products, which can be implemented in
dedicated hardware devices (FPGA or DSP) which have the possibility of real-time
working. Although the proposed architecture has been tested over 2D simulation
platforms, it can be easily extended to predict the electric field pattern in 3D real
applications. An example of the application of this model to a problem which is more
difficult to solve with traditional methods, is the inverse problem in microwave
heating structures described in Pedreno-Molina et al. (2004).
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2 Simulation set-up

Figure 1 illustrates the geometry of the 2D multimode microwave-heating cavity used
in our electric field pattern modelling, in which ideal metallic walls are assumed. In
this scheme, the sample is placed in a fixed position along the x axis and it is centred
with respect to the magnetron and the y-axis cavity length.

Figure 1 Scheme of the partially filled microwave oven
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Complex permittivity of the dielectric load has been varied during the training. For
this purpose, the fundamental TE, mode is excited in a standard WR-340 waveguide
at 2.45GHz and the module of the complex electric field has been calculated along
the x-axis for each simulation. The electromagnetic problem has been solved in the
frequency domain with the aid of the vector wave equation

V’E + w*ueE = 0, (1)

where E is the vector electric field, w is the angular frequency, p is the permeability
and ¢ is the complex relative permittivity of the medium, considering, in this study,
non-magnetic materials.

FEM has been used to solve this equation for each electric field component, by
using the variational formulation as indicated in the Partial Differential Equation
Toolbox (1996). The MATLAB 6.0"™ PDE Toolbox has been used to discretise the
2D domain and to obtain the electric field distribution inside the partially filled
multimode cavity. The PDE Toolbox supplies several tools so that the user can
define a PDE problem (definition of 2D regions, boundary conditions, and PDE
coefficients), numerically discretise and solve the PDE equations, produce an
approximation to the solution and, finally, visualise the results.

3 Two-level neural architecture design

The proposed neural architecture is configured in a novel two-level structure that
combines the accuracy of the neural networks based on radial basis functions (RBF)
(Broomhead and Lowe, 1988) and the algebraic capabilities of polynomial matrix
equations.
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During the learning stage, the proposed neural architecture is trained from
electric field intensity curves, E(x), generated with a 2D simulation platform based
on MATLAB PDETool. Thus, numerical scenarios with different dielectric materials
are randomly generated and characterised by their specific ¢ and &” values. These
materials are considered for obtaining the electric field distribution along the x-axis
and for training the proposed ANN structure.

Previous analyses of the electric patterns’ evolution for different materials have
been performed in this work by using the PDETool. This has allowed the analysis of
the influence of the loss factor (¢”) on the electric field pattern behaviour within the
sample and in the oven. Due to the great sensibility of the E(x) curves versus the ¢”
observed, three different sample categories have been considered during the learning
procedure in order to improve the accuracy of electric field modelling both in the
cavity and inside the sample. Hence, the variation range for &” has been subdivided
nto three intervals: (1.5-20), (0.75-1.5) and (0.3-0.75), corresponding to high (H),
imedium (M) and low (L) losses, respectively, because different behaviours are detected
for E(x) inside the sample. They must be characterised by different learned matrices.

In microwave-assisted drying and heating processes the evolution of the electric
field in any direction of the cavity (E(x) vector in this case), both inside and outside
the sample, is highly dependent on the dielectric characteristics of the material
considered (¢’ and £”) (Chow-Ting-Chan and Reader, 2000). Additionally, E(x) curves
present nonlinear variations which are very dependent on the material permittivity.
In order to overcome the problems associated with the nonlinear behaviour of the
electric field pattern, the sensibility of E(x) inside the sample with respect to £” and the
generation of E(x) from only two parameters, this architecture has been implemented
with two interconnected levels and three sample categories for the learning
procedure. The scheme of the proposed neural architecture is shown in Figure 2.

Figure 2 General scheme of the proposed neural architecture. The RBF neural network in
Level 1 generates the estimated temperature E(x) from ¢ and &”
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A neural network based on RBF has been selected for electric field identification in
Level 1, while a polynomial relationship has been employed in Level 2 for mapping
the RBF neuron weights obtained from each training trial over the input variables &
and &”.

When the final neural weights matrix is generated, the predictive capabilities of
the ANN structure can be applied to polymers such as epoxy, polyester or silicon,
and the results validated by using Maxwell’s equations.

4 Learning and modelling equations

In the first level of the ANN architecture, a solution for the interpolation of the
nonlinear function E(x) for each k pair [¢/, "], involved in the training procedure, is
achieved by learning the Gaussian functions neurons weights of the RBF networks.
Then, in the second level the neuron weight vector for the kth trial, Wy, is correlated
with the input variables’ set [¢',¢"],, which generated Ex(x) at the 2D simulation
platform. By considering all the learning trials, this mapping finally generates the
neuron weights matrix, Wy, which is obtained by a polynomial network whose
coefficients are learned in this level.

Due to the great influence of ¢” on the generation of E(x) and the nonlinear
behaviour of electric field patterns, a segmentation in three categories for the training
interval for ¢” has been made. This implies the generation of three different neuron
weight matrices Wwy, Wwn and Wy, whose intervals for ” are (1.5-20), (0.75-1.5)
and [0.3-0.75), respectively. For ¢/, the training interval has been considered (1-50)
for all the categories.

The function E(x) is considered to be restricted to the one-dimension interval,
x €[0...0.6]. T equally spaced samples have been considered in this interval for the
absolute value of the electric field for the design of the RBF network in Level 1.
RBFs are supervised neural networks (Broomhead and Lowe, 1988) whose structure
provides a solution to the local interpolation of nonlinear functions, such as E(x).
The structure of the RBF requires defining Gaussian functions whose centres are
distributed along the interval of definition for the function to be fit. An appropriate
adjustment for the standard deviation of each Gaussian function is important to
ensure a good interpolation for E(x). Thus, in the first level of the proposed
architecture, the x interval, in which the electric field pattern is defined, is divided
into M intervals. Each M interval is associated with one RBF neuron in order to
project the T points of E(x) onto the M RBF neurons (M < T). In the learning stage
of the RBF neural network, N trials for the training are considered for the three
specified categories.

Consequently, Level 1 provides a solution to the interpolation of each nonlinear
function E(x) along the internal dimension of the sample and the rest of the cavity.
For the k pair (k = [1,..., N], (with N being the number of trials during the learning
stage) of input variables [¢’, "], the estimation of Ei(x) is given by:

R
Ei(x) = Z Wik - e ’ = Z Wik + Gjic(x) (2)
j=1 J=1
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where ¢ (x) is the j Gaussian radial function, p; and o are the centre and the
constant standard deviation of ¢ (x), and wy is the value of the weight associated
with ¢ (x) in the kth trial. The 1; parameters are the M centres equally spaced along
the x axis from 0 to 0.6 m. Rewriting the Equation (2) into a matrix notation, results
in:

Er(x) = Wi - & (x)" (3)

where Wy is the 1 x M dimension vector containing the RBF neuron weights for the
kth trial and ¢ (x) is the vector whose elements are the M Gaussian functions with
uniform distribution of the centres and constant standard deviation. The expression
(3) is computed for all the N trials considered in the three material categories, and
each W; vector is learned by using the Least Mean Squared (LMS) algorithm
(Haykin, 1996) to minimise the error cost function described in the next equation:

T

He=>" (Bi(x) — B(x))”. (4)

x=1

As a conclusion, the application of the RBF neural network to the estimation of
E(x) permits us to obtain the optimal values for wj from functions generated by the
2D model based on FEM and without restrictions for the dielectric properties of the
material. The second level establishes the relationship between Wy and the Vi vector,
for all the M neurons and all the k trials, by means of the matrix Wyw. The V vector
corresponds to the input for the second network, which has been designed by means
of a polynomial relationship between V; and W,. The components of this vector are
dependent on both & and &”, which are the input variables for the heating process.
The dependence of each component of the vector W, with respect to & and £” is
computed by means of a polynomial matrix whose order is established by means of
the V, vector as:

V(E/,&‘”) — {1,€l7€”7€/2,€”2,E/EU,8,375//375/28”,8’5//2}. (5)

In this expression, a third order dependence of each neuron weight with respect to
each variable is represented. Because the Gaussian functions are represented with
negative exponentials, each component of the Wy vector is used for fitting a small
interval for the E(x) function. This is possible, by appropriately adjusting the o
parameter of each basis function. Thus, a polynomial dependence is able to locally
establish the relationship between each neuron weight and the &’ and ¢” variables.

By considering the N learning trials, the mapping between W; and V; generates
the matrix Wy, whose dimension is equal to P x M, with P being the length of the
V vector according to Equation (5). The weights of the Wy matrix are obtained by
minimising the quadratic error between Wy and W) = V- Wyy.

By applying the polynomial network to the RBF neuron weights, E(x) can be
generated, by considering the three described categories for the materials, from the
input variables [¢/, "] by means of the next expression:

E(Xa 617 6”) =W- {’(X, His U)T = V(5/7 6”) - Wwx - {’(X7 His U)T (6)

where Wwx is evaluated as Wwy, Wwym and Wy depending if the material is
considered as a high, medium, or low loss dielectric.
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The components of each Wwx matrix are learned by following the linear
regression algorithm for the matrices shown in the following equations.

ey e
ey &5
= ' (7)
ey ey
wir Wiz - Wim
War W2 - Wop
R = (8)
}VNI WNZ .. )MNM
-1
Ww = (8" x8) xS"xR 9)

where R and S represent the dielectric parameters and the neuron weights for Wy,
respectively.

The analysis of the normalised quadratic error will permit a appropriated
adjustment for the neural architecture in order to decrease the number of neurons
(M x P) in the final matrix Wyy. In this last case, the values for P by considering a
third, second or lineal order are 10, 6 and 3, respectively, while the values for M will
be set to 10, 20 and 60.

5 Results

The scheme of the neural architecture, whose parameters are shown in Figure 2 and
Equations (3)—(11) has been used for learning and predicting electric field patterns
along the x axis, when the dielectric parameters of the sample are known. The
two-level design and the sample loss classification involved in the proposed neural
architecture allow the modelling of the electric field in both the sample
(x €[0.14—0.3]) and the cavity (x € [0—0.14],[0.3—0.6]). During the learning
stage, random values for the input parameters ¢ and ¢” have been generated and
different E(x) curves were obtained by means of the numerical 2D PDETool
simulator. In this learning stage 500, 300 and 300 trials have been carried out for
materials with high, medium and low losses, respectively. A frequency of 2.45 GHz
has been used for all the simulations. The numerically computed E(x) curves have
been obtained by sampling the x axis with 0.0025m slots from 0 to 0.6m. This
implies 7 = 233 patterns for E(x).

For all the Gaussian functions of the RBF neural network, u,=7T-i/M
(i€ [l,M]) and o= T/M have been defined. The performance of the proposed
architecture for the prediction of E(x) from the input parameters (¢’ and ¢”) has been
evaluated for several materials with very different loss factors. In Figures 3-6, the
absolute value of the electric field pattern along the x-axis for epoxy (3.78—0.91),
polyester (4.66—0.4), silicon crystal (3.78—4) and beef steak (40—j12) are shown. The
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dielectric characteristics for these materials have been collected for 2.45 GHz from
the data provided in Metaxas and Meredith (1983). In these figures, the predicted
behaviour of the proposed ANN model is represented as a function of M in
Level 1, by considering three values, namely 10, 20 and 60. In Figures 3-6 a third
order polynomial structure has been used in Level 2. The position of the sample is
represented as a segment in order to distinguish this area from the rest of the
cavity.

Figure 3 ANN electric field prediction: epoxy sample (medium losses)

7000
6000 Theoretical
M = 60 neurons 7
50004 | —————— M= 20 neurons ) A
M = 10 neurons 4 -
Z 4000
=]
£
1% 3000 4
S
0 2000 -
1000
04
Epoxy
T T T T T T T
0,0 0,1 02 03 0.4 05 06 07
X axis (m)

Figure 4 ANN electric field prediction: polyester sample (low losses)
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Figure 5 ANN electric field prediction: silicon sample (high losses)
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Figure 6 ANN electric field prediction: beef steak sample (high losses)
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From Figures 5 and 6, one can conclude that the electric field’s spatial distributions
within the high-loss samples, present a similar uniformity within the sample. Indeed
the electric field is more intense at the sample edges than at the sample centre. For
these cases, the Wwg matrix permits the matching of the electric field along the
whole cavity, including the sample.

However, when the loss factor decreases, the nonlinearity of the electric field
within the sample increases. This is observed in Figures 3 and 4 where the electric
field shows more oscillations than in Figures 5 and 6. Thus, this justifies the learning
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of new matrices for the other materials considered with medium and low losses. The
sensibility of E(x) with respect to ” is observed within the sample, while for the rest
of the x-axis, electric field patterns presents a similar behaviour for all the cases.

From the evolution of the estimated curves with respect to the number of RBF
neurons (M), one can deduce that a higher value for M implies a more accurate
performance for the neural model. Values greater than 60 present very small differences
in the error function but this implies increasing the computation of the Wy matrix.

In order to analyse the behaviour of the neural architecture with respect to the
estimated order for the polynomial structure, different orders from 1 to 3 have been
used for training the polynomial network, being M = 60 in Figures 7-10.
Furthermore, from the good matching of both PDE and ANN curves, one can
conclude that the use of a third degree polynomial model in Level 2 provides
sufficient final precision for the M — 2 projection in each interval.

Figures 7-10 show the estimated electric field pattern obtained for the same
four samples: epoxy, polyester, silicon crystal and beef steak, respectively. The
new dimensions for the Ww matrix are, in this case, 180, 360 and 600, for lineal-,
second- and third-order polynomial structures in Level 2, respectively.

As can be observed in Figures 7-10, a third order for the polynomial network is
good enough to achieve an acceptable matching for E(x). Furthermore, in these
figures the differences between the second- and third-order performance are not very
important for electric field values outside the dielectric sample. The second order for
the polynomial structure supposes a great advantage in order to decrease the number
of neurons in the final neural architecture. However, the performance difference
between orders 2 and 3 can be observed in terms of the electric field evolution inside
the sample. From these data, one can conclude that a third-order polynomial
structure is necessary in Level 2 of the proposed ANN architecture if an acceptable
accuracy is to be obtained, even within the dielectric sample.

Finally, in order to test the accuracy of the proposed architecture with samples in
the three considered categories, several comparisons have been carried out by using
the PDETool for E(x), and its prediction E(x) by means of the neural architecture.
Then, a normalised error mean parameter, calculated inside the sample and in the
whole cavity, has been obtained in order to validate the matching performance. The
error indicators have been defined for the electric field patterns both in the cavity,
Errorc, and in the sample Errorg as follows:

- 2
Errorc = (M> * 100(%) (10)
maximumc
E Esn)\’
Errors = <M> * 100(%) (11)
maximumsg

where the subscripts, C and S, indicate that the estimation is made along the cavity or
the sample, respectively, and the maximum parameter indicates the maximum value
for the electric field provided by the PDE Toolbox in the considered interval for the
cavity or the sample. Table 1 shows the Errorc and Errorg values for different
dielectric samples. From this data one can conclude that the error increases when the
loss factor decreases, because the electric field intensity within the sample grows as
well as the oscillations within the cavity.
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Figure 7 ANN electric field pattern prediction versus the order of the polynomial network:
epoxy sample (medium losses)
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Figure 8 ANN electric field pattern prediction versus the order of the polynomial network:
polyester sample (low losses)
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Figure 9 ANN electric field pattern prediction versus the order of the polynomial network:
silicon crystal (high losses)
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Figure 10  ANN electric field pattern prediction versus the order of the polynomial network:
beef steak sample (high losses)
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Table 1 Errorc and Errorg for samples different from the training set

& —je" 3020 15-j6 25-j9 20—15 9—j1.5 2-j0.9 6-j] 4-0.7 2-j0.6 4-j0.45 1-j0.3

Errorc (%) 0.10 0.09 0.08 0.12 1.17 0.19 057 024 014 090 3.04
Errors (%) 1.60 030 0.62 075 546 1.55 1.54 152 123 214 449
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6 Conclusions

In this paper, a novel architecture based on neural networks has been applied for
modelling electric field patterns in multimode microwave-heating ovens. The design
of a two-level neural architecture is able to predict the evolution of the electric field
along one direction inside the cavity from only two input parameters, namely ¢ and
¢”. This two-level architecture and the inclusion of three different learning categories,
depending on £”, have allowed good matching behaviour without restrictions for the
dielectric characteristics of the samples. The results are obtained by interconnecting
the adaptive characteristics of the RBF with the algebraic tools of polynomial
relationships. Important advantages of the proposed learning-based model with
respect to conventional electromagnetic models, based on differential equations, are
the capabilities for prediction in dynamic environments, the reduction of
computational resources, the generation of a simple mathematical model based on
matrix products, and the lack of need for precise knowledge of the heating process.
Additionally, the adaptive capabilities of neural networks could be used to extend the
excellent performance of the proposed model to other regions of the cavity, in order
to estimate the evolution of the electric field.

The results obtained have been focused on conventional materials such as epoxy,
polyester, silicon crystal or meat, and a good approximation of the electric field both
inside the sample and the cavity has been obtained. Although the direction for the
electric field modelling has been considered in this work the x-axis, it must be pointed
out that the proposed architecture is valid for any direction within the cavity. Thus,
the extension of the learning procedures to other cavity directions could generate the
two-dimensional modelling of the electric field patterns.

As a conclusion, this work provides a general learning structure able to closely
predict the relationship between the electric field function inside the cavity and
dielectric properties of samples and the medium. Additionally, this technique allows
fast computation times, and provides a predictive structure able to adapt its response
to the intrinsic features of the material.
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