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Abstract. Knowing how many people there are in a given scenario offers new possibilities for the 
development of intelligent services. With this goal in mind, the use of sensors and Radio Frequency (RF) 
signals is becoming an interesting alternative to other classic methods such as image processing for counting 
people. In this paper we present a novel method for counting, characterizing, and localizing pedestrians in 
outdoor environments, called iPCW (intelligent Pedestrian Characterization using WiFi). iPCW is a passive, 
device-based sensor system that incorporates artificial intelligence techniques, more specifically, machine 
learning techniques. Performance evaluation using intensive computer simulations shows that iPCW 
achieves excellent results, with moving and static pedestrian detection accuracy above 98% and positioning 
accuracy above 92%. 

Keywords: artificial intelligence, intelligent transportation systems, people counting, sensor systems, smart cities, 
WiFi; 

1. Introduction 

Known by different names, such as footfall counter or customer counter among others, the goal of 
people-counting systems is mostly the same: to obtain an estimation of the number of people in a given 
location with a certain degree of accuracy. Additional features such as people profiling, e.g., age, mood, 
behavior, etc., could also be useful depending on the final purpose desired. People-counting systems have 
countless applications, as summarized in Table 1: security, marketing and retail, transportation, urban 
planning, tourism, etc. Note that these applications are not used for people/crowd localization, although 
some share the same technology. 

So far, people counting has mostly been based on image processing [1], on the use of sensors [2], [3] 
or on the use of historical and predictive models [4]. Regarding sensor methods, open environments are 
not always suited for sensor deployment, as dependency on specific gateways or checkpoints with an 
exact sensor location limits accuracy [5]. Considering image processing, most literature on people 
counting falls within this category. Indeed, a great deal of work has been carried out on human detection. 
Focusing on scientific proposals aimed at counting people and not only at detecting them, the 
identification of objects as human beings in an image is generally possible in two different ways: human 
shape detection or head/face detection. Whereas the former can only be applied in low density scenarios, 
the latter can be used in crowded situations. This is because, in a crowded scenario, heads are the clearest 
and most visible. Proposals based on human shape detection usually employ a pre-defined human 
template. This is normally a Gaussian or trapezoidal form representing the width, height, and size of a 
person. Common image processing techniques are: background subtraction to extract humans from 
backgrounds, quantized gradient orientation to locate interest points, regression-based techniques such as 
AdaBoost (Adaptive Boosting), or convolutional neural network (CNN) classifiers to indicate the type of 
object (e.g., a person) based on a huge dataset to allow each object to be detected [6], as well as Region-
based CNN, R-CNN (Fast R-CNN [7] or Mask R-CNN [8]) to segment the image before classifying 
existing objects with a CNN. Despite the accuracy that these approaches can achieve, they also exhibit 
significant limitations. For instance, problems can arise if the people are similar to the background, and 
thus the background should be simple for better accuracy. 



Also, it could be that the area the people occupy is too small to be recognized, or the distance between 
people and the camera is too large. Another drawback can arise if the people overlap is so much that those 
in the back and front are mistaken for one person. Finally, we can mention problems related to limited 
viewing angles (hidden or blind areas), changes in illumination, changes in weather conditions, privacy 
concerns, higher deployment costs, huge datasets, or higher computational needs of both CPU and 
multiple GPUs to train these algorithms, among others. On the other hand, many predictive models base 
their operation on a new wave of people-counting techniques; the use of radio frequency (RF) signals. In 
communications, the main problems with RF signals are their complex fluctuations and the multipath 
effect. However, what may seem to be a disadvantage in terms of effective transmission can become an 
asset for other services, such as crowd estimation and people counting. Recently, techniques based on the 
identification of RF signals and their corresponding estimation models have gained relevance. Among 
the advantages of these techniques is the fact that they are able to operate in longer ranges at a lower cost, 
and they have the ability to work through non-conducting walls and obstacles [9]. We include approaches 
that employ wireless sensor networks [10], [11], Bluetooth [12], [13], WiFi, cellular [14], or any other 
wireless technology in this category. RF-based mechanisms can use physical layer information such as 
Received Signal Strength Indicator (RSSI), Channel State Information (CSI), Channel Quality Indicator 
(CQI), or Channel Frequency Response (CFR) (see Table 2). Many of these indicators have been widely 
and successfully used in wireless indoor localization.  

In turn, the RF-based category can be divided into two subcategories: device-free (see Figure 1) or 
device-based (see Figure 2). In the former, device-free approaches, the proposed techniques rely on the 
fact that people leave a signature, also called a fingerprint, in transmitted signals. The human body absorbs 
part of the signal. It becomes an obstacle and an antenna at the same time, affecting the LOS and 
increasing the multipath effect. 

Table 1.  
Applications for crowd estimation and people counting tools. 

Area Example 

Energy efficiency 
Adjusting the air conditioning of an indoor space (supermarkets, offices, etc.) 

depending on the estimated people in it, etc. 
Urban planning and transportation Pedestrian patterns, tourist flows, on-demand transport planning, etc. 

Security 
Crowd control (concerts, sporting events, street events, etc.), surveillance, 

search, and rescue, etc. 

Better user satisfaction (QoS, QoE, UX) 
Better planning of offered services in public areas such as airports, hospitals, 

amusement parks, public parks, museums, libraries, etc. 

Marketing and retail 
Movement patterns within a store (people tracking) or shopping center (crowd 

tracking), on-demand number of cashiers, etc. 
 

Table 2. 
Physical Layer Information. 

Acronym Parameter Description 

RSS Received Signal Strength The received signal strength in dBm of a received data frame or of a beacon 
measured at the receiver’s antenna. 

CSI Channel State Indicator Channel measurements depicting the amplitudes (signal strength) and phases 
of every subcarrier. 

CQI Channel Quality Indicator Current communication channel quality as measured by user equipment in 
cellular technologies. 

CIR Channel Impulse Response Temporal linear filter that models the wireless propagation channel. 
CFR Channel Frequency Response Discrete Fourier Transformation (DFT) of the Channel Impulse Response. 

A complete survey of device-free activity-recognition proposals can be found in [15]. In the latter, 
device-based algorithms, the proposals focus on capturing/measuring information from the received 
signals generated by users’ devices. Despite the promising results shown in related scientific literature, it 
is important to note that the percentage of people who carry these signals in active mode is unknown, 
since users often voluntarily disconnect them in order to save energy or minimize exposure to security 
threads. We should therefore be aware that mobile adoption will have an impact on results in terms of 
accuracy (e.g., children or the elderly not carrying mobile equipment). Nevertheless, the fact is that the 



mobile phone is a unique device that permanently accompanies us and from which we can extract 
countless data on human activity [16], [17]. 

Under these circumstances, we present the following contributions in this paper: 
1) An original passive device-based method using WiFi technology to characterize pedestrians in 

outdoor environments is proposed, namely iPCW (intelligent Pedestrian Characterization using 
WiFi). iPCW is able to differentiate between moving and static pedestrians using Machine 
Learning (ML) techniques, as well as the density estimation of static pedestrians, by analyzing their 
temporal behavior. 

2)  The incorporation of several ML techniques in the performance of iPCW is evaluated for 
comparison purposes. Particularly, we compare Logistic Regression, Gaussian Naïve Bayes, 
Support Vector Machine, k-Nearest Neighbor, and Random Forest. All these methods are tested 
with the goal of classifying pedestrians as moving or static at an intersection. The use of these ML 
techniques for differentiation provides excellent results and high performance, as well as great 
robustness against the characteristic noise present in outdoor RF environments. 

3)  iPCW optimization process is thoroughly described, achieving a notable performance in the 
defined goals of the algorithm. 

The rest of the paper is organized as follows. In section 2, we review related works that deal with 
estimating or counting people based on WiFi technology. In section 3, we explain our proposal the ML 
methods tested, and the results are shown. Finally, the conclusions are reported in the last section. 

 

 
Fig 1.  A general topology of the device-free category. At least one WiFi Tx and one WiFi Rx are needed; then the effect of 

people on the received signal is processed and associated to the number of people in the indoor area. 
 

 
Fig 2.  A general topology of the device-based category. Each person must carry at least one WiFi device from which 

messages will be captured and at least one WiFi Rx is needed. 

2. Related Works 

In this section we present a comprehensive review of the works carried out to estimate or count people 
based on WiFi technology.  

If we focus on the proposed work, regarding the device-free approach, RSS measurements are easily 
available in commercial off-the-shelf WiFi cards. However, RSS variability is a well-known limitation 
that leads to inaccuracy in indoor scenarios [9], [15], [18]–[25]. For instance, the AP power adjustment 
will have an effect on RSS measurements [12]. It has also been proven that the higher the frequency the 
more the impact on the RSS due to human interference in the LOS [26]. As a consequence, higher 
frequencies are more accurate when counting people. Nevertheless, values that are too high (e.g., 
millimeter waves) are not expected to work as well for these applications because they often employ 
directional antennas and are therefore less suitable for NLOS operation. 

On the other hand, channel response provides more granularity since multipath components can be 
differentiated [27], whereas this is not possible with RSS. In addition, we should be aware of possible 



limitations regarding CSI across several frequency sub-bands with current commercial WiFi cards [28], 
[29]. Some advantages of using the information included in the captured beacon frames (sent by the AP) 
are: no need to connect to the AP, i.e., an association process is not required, no authentication is needed 
(it could be more useful for open environments). For applications that go beyond pure crowd estimation 
or people counting, bear in mind that beacons are sent by default every 100 ms in an 802.11 network. 
This could limit system performance in the case of movements that are too slow or too fast. The speed of 
most human gestures is below 10 m/s and, as explained in [30], “Assuming a space resolution of 20 cm, 
the human gesture should be sampled at 50 Hz. By using beacons, it is possible to sample each movement 
with a maximum frequency of 10 Hz (10 beacon messages per second). However, this sampling rate is 
enough for activity recognition/crowd counting.” 
In the device-based approach [5], [12], [24], [28], [29], [31], the active methods (those that force devices 
to send data) are less scalable and unlikely to be deployed in outdoor scenarios. Passive methods (those 
that simply capture messages sent by devices without forcing them) are more promising, although further 
work is needed, for instance, to solve the MAC randomization problem. Indeed, making these systems 
robust in the presence of a large number of people is still challenging. 

3. iPCW: intelligent Pedestrian Characterization Using Wifi 

Pedestrians should play an important role in traffic control systems, which usually focus only on 
vehicles and forget about the pedestrians’ role. In this section, we present a passive device-based method 
using WiFi technology to characterize pedestrians in outdoor environments, namely, iPWC (intelligent 
Pedestrian Characterization using WiFi). This method aims to classifying pedestrians as moving or static, 
and for those that are static, provide their location. This information is expected to serve as input for an 
intelligent traffic management system.  

3.1. Scenario description 

The approach we follow to estimate the number of pedestrians involves capturing the probe request 
messages sent by the mobiles carried by pedestrians. These probe request messages are sent by mobile 
devices to discover available WiFi networks to connect to. Therefore, our proposal is within the device-
based category. Because this method does not use any active mechanism to send these messages, and 
neither exploits any vulnerability to increase the rate of sending these messages, nor requires the 
pedestrian to connect to the AP, our method belongs to the WiFi-passive method. The capture of probe 
request messages will be carried out at short-time intervals; for a worst-case scenario; the minimum time 
that a traffic light is red (approximately 30 s). Therefore, we will be able to know the state of the scenario 
in terms of pedestrians in real time. 

One of the first challenges that we must face is to differentiate pedestrians who are moving through 
the urban environment from other pedestrians who are static and waiting to cross at a pedestrian crossing. 
We will first implement a discriminator that enables us to make this classification. The behavior of the 
power of the probe request messages, captured from pedestrians throughout the capture interval, will be 
provided as the input parameter to this discriminator. Next, pedestrians classified as static will be 
positioned within the intersection at which they have been detected by means of the average power 
measured throughout the capture interval. 

We model the behavior of pedestrians making the following assumptions: i) all pedestrians carry a 
mobile device that sends probe request messages, ii) pedestrians are either walking on the sidewalks or 
they are static, waiting to cross at a pedestrian crossing (pedestrian crossings are marked as ①, ②, ..., 
⑧ in Figure 3), and iii) traffic lights at each intersection of the simulation scenario are synchronized and 
are complementary between branches; that is, if the traffic lights that control the north and south branches 
of an intersection i are green, the traffic lights that control the east and west branches are red. This implies 
that pedestrians from any pedestrian crossing will not be waiting to cross in two possible directions, since 
they will always have one red traffic light and one green traffic light available. 

A set of simulations is carried out to obtain the widest variety of pedestrian behaviors. The simulated 
scenario is composed of the two intersections shown in Figure. 3. In the simulations, multiple groups of 



pedestrians follow different movement patterns. Basically, pedestrians are either waiting to cross (static) 
at any corner of any intersection or crossing an intersection at the corresponding pedestrian crossing 
(moving), or walking on a sidewalk. In addition to these basic cases, variations include pedestrians 
moving from one intersection to another, turning at the same intersection, and pedestrians moving towards 
a pedestrian crossing and waiting for it within the same interval of capture, this being the special case of 
a static pedestrian waiting to cross, who has previously moved to the intersection. 

 
Fig.3.  Scenario for the simulation analysis. 

We assume there is a device in charge of the discrimination and positioning of pedestrians called 
Data Acquisition Unit (DAUij, where i denotes the intersection and j denotes the corner of the intersection 
i). This device is placed at each corner of the intersection (4 per intersection, 8 in this simulation scenario). 
The DAU acts as an access point (AP), capturing probe request messages from pedestrian’s mobile 
phones. 12 groups of pedestrians with different movement patterns are simulated, moving around all the 
intersections. Each group is formed of 64 pedestrians, representing a total of 768 pedestrians. We simulate 
6 capture intervals of 30 seconds each, with a total simulation time of 180 s. These twelve groups of 
pedestrians are denoted according to their direction as: 

1) From left (l) to right (r) on the upper (u) sidewalk, crossing the two intersections is called Dlru. 
Also, from right to left on the upper sidewalk, crossing them, is called Drlu. 

2) From left to right on the lower (l) sidewalk, crossing both intersections is called Dlrl. Likewise, 
from right to left on the lower sidewalk, crossing through them, is called Drll. 

3) From top (t) to bottom (b) along the left sidewalk at the intersection i = 1 is called Dtbl1. Similarly, 
from bottom to top on the left sidewalk at the intersection i = 1 is called Dbtl1. 

4) From top to bottom on the right sidewalk at the intersection i = 1 is called Dtbr1. Similarly, from 
bottom to top on the right sidewalk at the intersection i = 1 is called Dbtr1. 

5) Like the previous two, but this time, at the intersection i = 2, from top to bottom on the left 
sidewalk is called Dtbl2. Likewise, from bottom to top on the left sidewalk is called Dbtl2. 

6) Finally, from top to bottom, crossing the intersection i = 2 on the right sidewalk is called Dtbr2. 
Likewise, from bottom to top, crossing the intersection i = 2 on the right sidewalk, is called Dbtr2. 

As can be seen, by taking advantage of the symmetry of the simulation scenario, we can simplify the 
movements of pedestrians, being able to group them into horizontal movements and vertical movements. 
These two movements, despite there being slight variations within each movement, follow the patterns 
of movement separated by temporary marks as shown below in Table 3. All the sets of simulations are 
carried out using the OMNeT++ [32] simulator, with the INET framework [33]. Mobiles were modeled 
in OMNeT ++ using the AdhocHost device and DAUs with WirelessAPWithSink. Other important 
parameters of the simulator and the simulated scenario are included in Table 4. Finally, it must be noted 
that the proposed method has no memory, that is, we do not keep any history of the captured mobile 
devices and we simply classify, obtain an estimate of the number of static pedestrians, and position 
pedestrians in each capture interval, without taking into account the status of pedestrians captured in the 
previous interval. 
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Table 3. 
Timestamps of different movements and their behavior. 

Movement Example Time Interval Timestamp Behavior 

Horizontal Dlrt 

0s-30s T1 Static in ① 
30s-60s T2 Moving - ① to ② 
60s-90s T3 Moving - ② to ⑤ 

90s-120s T4 Static in ⑤ 
120s-150s T5 Moving - ⑤ to ⑥ 
150s-180s T6 Static in ⑥ 

Vertical Dtdl1 

0s-30s T1 Static in ① 
30s-60s T2 Moving - ① to ④ 
60s-90s T3 Moving - ④ to ③ 

90s-120s T4 Static in ③ 
120s-150s T5 Moving - ③ to ④ 
150s-180s T6 Static in ④ 

Table 4. 
Simulator Parameters and their Value. 

Parameters Value 
Simulation tool / Framework OMNetT++ / INET 

Version 5.2.1 / 4.0 
Ground type Flatground 
Obstacle loss Dielectric Obstacle Loss 

Propagation loss Rayleigh Fading 
DAU location in height 6 m 

Mobile devices location in height 1.5 m 
Mobile devices motion speed 1.39 m/s 

Number of mobile nodes 768 
Probe Request period 2 s 

Probe Request variance 0.5 s 
Transmission power 13 dBm 
Reception sensitivity -120 dBm 

Probability distribution to send Probe Request frames Normal distribution with variable mean and variances 

3.2. Our proposal 

In this section we will describe the procedure of iPCW to, first, discriminate between moving 
pedestrians and static pedestrians, and then to obtain the position of the latter. The procedure is as follows: 

1) After the capture interval, each DAUij sends the captured messages, together with the identifier ij 
to a pre-established DAU, called DAU_main. There is one DAU_main at each intersection. After 
grouping all the messages, the DAU_main is responsible for continuing with the entire procedure 

2) Pedestrians’ mobile devices are differentiated by the output of applying a hash function to the MAC 
address included in the probe request messages. The resulting hash is called p. 

3) For each pedestrian p, an array of DAUs that have detected the pedestrian p, is created. This array 
is called DAUijp 

4) For each DAU in the DAUijp array, the temporary behavior of the probe request messages of the 
pedestrian p is obtained and their status is classified by means of the discriminator. 

5) If the discriminator classifies the pedestrian p as moving in at least one DAU included in the 
DAUijp array, then the pedestrian p is considered to be moving. In addition, if a DAU has only 
captured a single probe request message from the pedestrian p, this is also considered to be moving. 

6) On the other hand, if p has been classified as static in all the DAUs included in the DAUijp array, 
then pedestrian p is positioned in the DAU with the highest average power received in the entire 
current interval. 



The pseudocode of our proposal is shown in Figure. 4. Also, the flow chart illustrating the operation 
of the developed method can be seen in Figure 5. 

 
 Algorithm 1: iPCW algorithm 
 # The array_of_pedestrians detected by all DAUij is obtained. 
1: for pedestrian 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑝𝑝 do: 
2:  # array_of_DAUijp that have detected the pedestrian p is obtained. 
3:  𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑠𝑠 = 𝑇𝑇𝑎𝑎𝑇𝑇𝑝𝑝 # by default, the pedestrian p is considered as static. 
4:  for 𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜_𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝 do: 
5:   # the 𝑏𝑏𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎 is obtained 
6:   𝑏𝑏𝑝𝑝ℎ = 𝑠𝑠𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑝𝑝𝑎𝑎. 𝑝𝑝𝑎𝑎𝑎𝑎𝑐𝑐𝑇𝑇𝑎𝑎𝑝𝑝𝑝𝑝(𝑏𝑏𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎) # Discriminator. 0 – static; 1 – moving; 
7:   if 𝑏𝑏𝑝𝑝ℎ == 1 then: # classifier considers p as moving. 
8:    𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑠𝑠 = 𝐹𝐹𝑎𝑎𝑐𝑐𝑝𝑝𝑝𝑝 # pedestrian p is considered as moving. 
9:   end if 
10:   if 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑠𝑠 == 𝑇𝑇𝑎𝑎𝑇𝑇𝑝𝑝 then: # this pedestrian p is considered static in all array_of_DAUijp, then, its correct 

                                       location corresponds to the DAUijp that presents a higher power in average. 
11:    𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷_𝑚𝑚𝑎𝑎𝑚𝑚 =  𝑔𝑔𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝𝑔𝑔𝑎𝑎𝑚𝑚𝑔𝑔𝑝𝑝𝑎𝑎𝑖𝑖𝑔𝑔𝑜𝑜𝑔𝑔𝑝𝑝𝑎𝑎(𝑝𝑝) # Obtain the DAUij with max received. power 
12:    𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷_𝑚𝑚𝑎𝑎𝑚𝑚. addPedestrian(𝑝𝑝) # Add the pedestrian. 
13:   end if 
14:  end for 
15: end for 

Fig. 4.  Pseudocode of the proposal algorithm. iPCW. 

 
Fig. 5.  Flow diagram of the proposed method (beh≡behavior; DAU≡Data Acquisition Unit). 

3.3. Machine Learning Techniques for the Discriminator of iPCW 

As shown in the previous section, we propose the use of a discriminator to differentiate between 
moving pedestrians and static pedestrians. This discriminator was implemented with ML techniques. In 
this section we will describe the different ML techniques tested, namely, Logistic Regressor (LR), 
Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Random 
Forest (RF), along with the procedure followed to obtain the classifier that offers the best performance in 
terms of classification and computation time. For a more detailed study of the ML techniques used, see 
[34]. That is, after training and obtaining the precision, recall, F1-score, and the execution time of the 

 



tested ML algorithms, we will select the best algorithm and will try to reduce the number of features used 
as input. Besides eliminating characteristics that can introduce noise, this increases precision and reduces 
execution times. Once the optimum features have been obtained (those that provide more information 
without introducing noise), a new procedure will be performed to obtain the optimal values of the 
hyperparameters of the selected ML algorithm. Finally, with the number of optimal features and the 
optimal values of the hyperparameters of the selected algorithm, we will calculate the precision, the recall, 
the F1-score, and the execution time in the classification of pedestrians. 

3.3.1. Logistic Regressor 

This algorithm is part of the family of linear regression algorithms and focuses on classification. 
Linear regression algorithms obtain a linear equation that most resembles training points (see Figure 6 
(a)). The parameters of this linear equation are obtained by minimizing the mean square error (although 
it may be another parameter) between the regressed line and the training points, by means of a gradient 
descent algorithm (e.g., SGD, adam, rmsprop, etc.). To perform the classification, the logistic regressor 
applies a sigmoid function (also called logistic function) to the linear equation. This sigmoid activation 
function compresses the output data between [0,1], which, together with a decision threshold, allows for 
binary classification. 

3.3.2. Gaussian Naïve Bayes 

This is a simple, efficient, and widely used ML classification algorithm. This classifier is based on 
the Maximum a Posteriori (MAP) decision rule to perform classifications. It makes the "naïve" 
assumption that the characteristics are independent from each other, that they make the same contribution 
to the result, and that each characteristic can be modeled by means of a Gaussian probability distribution. 
These classifiers learn their internal parameters by looking at each feature of each sample separately, 
which allows for simple and quick training, but in certain cases where the characteristics are not 
independent, the accuracy obtained can be low (see Figure 6 (b)). 

3.3.3. Support Vector Machine 

Support Vector Machine (SVM) algorithms are a set of ML algorithms widely used in classification 
and regression tasks, which can solve linear and non-linear problems. The operating principle of the SVM 
is simple: the algorithm obtains a hyperplane (in 2D it is simply a straight line), which separates the 
classes (see Figure 6 (c)). This hyperplane is used as a decision border and is obtained by maximizing the 
margin between it and the samples. The samples closest to the hyperplane are called support vectors. 
Thanks to the use of the trick kernel, non-linear problems can be classified, since the hyperplane used is 
linear by default. 

3.3.4. k-Nearest Neighbor 

k-Nearest Neighbor (kNN) is one of the simplest classification and regression algorithms in ML. 
kNN classifies new samples according to the most common class within their k nearest neighbors (see 
Figure 6 (d). Thanks to this simple operation, kNN is a very simple algorithm, obtaining great precision 
in multiple application scenarios. However, since it must keep all training samples, the algorithm is 
computationally expensive because it is necessary to check the distance to all the training samples for 
each sample to be classified. 

3.3.5. Random Forest 

Random Forest (RF) algorithms are an ensemble method used for both classification and regression. 
The ensemble methods base their operating principle on employing multiple ML methods to obtain better 
prediction results with broader knowledge of the data, reducing the overfitting created by the ML methods 
individually. In this case, random forest algorithms use multiple decision trees to create the classifier (see 
Figure 6 (e)). The decision trees iteratively perform two or more divisions of the training set, maximizing 
the accuracy of the classification as if it were done with the average value of the subgroups in each 
division. 



     
(a) Logistic Regressor. (b) Gaussian Naïve 

Bayes. 
(c) Support Vector 

Machine. 
(d) k-Nearest Neighbor. (e) Random Forest. 

Fig 6.  Working principle of each of the ML algorithms studied. 

3.4. Machine Learning optimization procedure 

After each capture interval, the messages are grouped following the aforementioned process and a 
large number of statistics are obtained for each pedestrian p in each DAUijp. These statistics are shown 
in Table 5. These parameters are obtained from the received power and its temporal behavior in the last 
capture interval. In total, there are 27 features that enable us to train the previously mentioned ML 
classification algorithms. 

To measure the performance of the different ML algorithms, we will use a confusion matrix. In the 
cells of this matrix, the number of predictions (and the percentage) are shown when classifying data of 
different classes (if it is a binary classification: negative and positive), depending on whether the 
classification is correct (true classification) or incorrect (false classification). Each column of this matrix 
represents the predictions of the algorithm for each class, while each row represents the actual class. An 
example of a binary confusion matrix can be seen in Table 6. From a confusion matrix we can see that: 
- TN (True Negative): is an outcome where the model correctly predicts the negative class. 
- TP (True Positive): is an outcome where the model correctly predicts the positive class. 
- FN (False Negative): is an outcome where the model incorrectly predicts the negative class. 
- FP (False Positive): is an outcome where the model incorrectly predicts the positive class. 

From the results obtained in this matrix and the various definitions of the classifications shown, we 
can obtain various metrics offering more in-depth knowledge of the performance of the algorithms in 
classification tasks. The first parameter we can obtain is precision. Precision is defined as the ratio 
between True Positives (TP) and the sum of these and False Positives (FP). The formula for precision can 
be seen in (1). This parameter is very useful for tasks where it is important to control FP. For instance, in 
email spam detection, an FP means that an email that is not spam (negative class) has been classified as 
spam (predicted as positive) and an important email might not be read by the user. 

On the other hand, we have recall. This parameter indicates the ratio between True Positives (TP) 
and the sum of these and False Negatives (FN). This parameter is very important, for example in tasks of 
fraud detection or the diagnosis of diseases. To classify a positive case (of fraud or disease) a negative 
should be penalized and therefore, we will try to maximize the recall. The recall formula is indicated in 
(2). Since there is a compromise between both values (see precision-recall tradeoff [35]), a last parameter 
is defined, which is called F1-score. This parameter is the geometric mean of precision and recall. Using 
this parameter, it is easier to obtain a general idea of the performance of a classification algorithm, since 
the F1-score is useful when a balance between precision and recall is necessary. The formula that follows 
this parameter is shown in equation (3). The metric that indicates the number of occurrences of each class 
to predict is called support. This metric is useful to get an idea of whether it is a problem where there is 
a similar number of occurrences on each class or not. 

𝑔𝑔𝑎𝑎𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 =
𝑇𝑇𝑔𝑔

𝑇𝑇𝑔𝑔 + 𝐹𝐹𝑔𝑔
 (1) 

𝑅𝑅𝑝𝑝𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑔𝑔

𝑇𝑇𝑔𝑔 + 𝐹𝐹𝐹𝐹
 (2) 

𝐹𝐹1 − 𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑝𝑝 =
2 ∗ 𝑔𝑔𝑎𝑎𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 ∗ 𝑅𝑅𝑝𝑝𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐
𝑔𝑔𝑎𝑎𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 + 𝑅𝑅𝑝𝑝𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐
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Table 5. 
Statistics used. 

Statistic 
 Mean power 
 Variance 

From linear regression line 
Slope 

Intercept 
r-value 

From polynomial regression of degree 2 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 

Residuals 

From polynomial regression of degree 3 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 
Coefficient degree 3 

Residuals 

From polynomial regression of degree 4 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 
Coefficient degree 3 
Coefficient degree 4 

Residuals 
 Kurtosis parameter 

Quantile 
25% 
50% 
75% 

 Pearson correlation coefficient 
 Pearson p-value coefficient 
 Skewness parameter 

Table 6. 
Example of Binary Confusion Matrix. 

 Predicted: negative (0) Predicted: positive (1) 
Actual: negative (0) TN FP 
Actual: positive (1) FN TP 

TN = True Negative, FP = False Negative, FN = False Negative, TP = True Positive. 

3.5. Machine Learning optimization results 

In this section we will see and discuss in detail the results obtained in the discrimination process for 
iPCW. The dataset used was made up of the aforementioned simulations, and it consisted of 36,864 
individual samples, each with 27 characteristics. These 36,864 samples come from the behavior of 768 
pedestrians (64 pedestrians / MAC addresses x 12 directions) in 6 capture intervals, in the 8 DAUij 
(768x6x8 = 36,864). Half of it (18,432 samples) corresponds to static pedestrian behavior and the other 
half to moving pedestrians. Of the complete dataset, 65% (23,961) was used for the training set and the 
remaining 35% (12,903) for the test set. For the training set there were 12,722 occurrences for the static 
class and 11,139 for the moving class, and for the test set there were 6,508 occurrences for the static class 
and 6,395 for the moving class. 

The first task was to compare the different aforementioned ML algorithms with all the input features. 
In order to obtain the optimal values of the hyperparameters of the algorithms that maximize the F1-score 
parameter, a cross-validation grid search procedure was performed (gridsearchcv). The optimal values of 



the hyperparameters are shown in Table 7. The confusion matrix is shown in Table 8, and Table 9 shows 
the precision, recall, F1-score, and support. Finally, the execution time of the algorithms is shown in 
Table 10, where the mean time of 100 executions of the classification algorithm and their standard 
deviations, both expressed in milliseconds, are indicated. 

In view of the results, it can be concluded that the algorithm that achieves the best performance is 
the Random Forest classifier, with a reasonable execution time (less than 500 ms) and precision, recall, 
and F1-score higher than 99.6% 

In order to reduce the execution time to a minimum and obtain a light algorithm that can be executed 
in embedded systems, we followed an additional procedure that involved selecting the characteristics that 
provide more information. To do so, a Recursive Feature Elimination mechanism with Cross-Validation 
(RFECV) was used. This recursive procedure ranks the characteristics according to the information they 
provide individually, and then eliminates the feature that provides the least information. After this 
elimination, classification is performed. This procedure is carried out until there is a single characteristic 
or a predefined minimum number. Thanks to this, the variables that are not contributing information or 
that are noise can be eliminated. The different classification metrics and reducing the execution time are 
also improved. 

Table 7. 
Optimal Hyperparameters of all ML algorithms tested. 

 
Hyper- 

parameter 
Optimal value Brief description 

LR
 C 4.25e-4 Inverse of regularization strength. 

penalty l2 Specifies the norm used in the penalization. 
Solver newton-cg Specifies the algorithm to use in the optimization problem. 

SV
M

 C 0.85 Penalty parameter C of the error term. 
gamma 0.01 Kernel coefficient. 
kernel rbf Specifies the kernel type to be used in the algorithm. 

kN
N

 n_neighbors 12 Number of neighbors to classify a new sample. 

weights distance 
Weight function used in prediction. With “distance”, the 

weight between two samples is the inverse of their distance. 

R
F 

n_estimators 26 The number of decision trees in the random forest. 
min samples leaf 2 The minimum number of samples required to be at a leaf node. 

min samples split 4 
The minimum number of samples required to split an internal 

node. 
LR = Linear Regressor, SVM = Support Vector Machine, kNN = k-Nearest Neighbor, RF = Random Forest. 

Table 8. 
Confusion Matrix of all ML algorithms tested. 

  Predicted: Static Predicted: Moving 

LR 
True: Static 4294 / 33.28% 2214 / 17.15% 

True: Moving 2083 / 16.14% 4312 / 33.42% 

GNB 
True: Static 3918 / 30.37% 2590 / 20.07% 

True: Moving 1903 / 14.75% 4492 / 34.81% 

SVM 
True: Static 4907 / 38.03% 1601 / 12.41% 

True: Moving 2042 / 15.83% 4353 / 33.74% 

kNN 
True: Static 6353 / 49.24% 155 / 1.20% 

True: Moving 448 / 3.47% 5947 / 46.09% 

RF 
True: Static 6490 / 50.31% 18 / 0.14% 

True: Moving 20 / 0.15% 6373 / 49.39% 
LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-Nearest Neighbor, RF = Random Forest. 

 



Table 9. 
Classification report of all ML algorithms tested. 

 State Precision Recall F1-score 

LR 
Static 0.6687 0.6599 0.6643 

Moving 0.6655 0.6743 0.6699 
avg/total 0.6671 0.6671 0.6671 

GNB 
Static 0.6684 0.6120 0.6390 

Moving 0.6392 0.7024 0.6693 
avg/total 0.6538 0.6472 0.6542 

SVM 
Static 0.7017 0.7541 0.7299 

Moving 0.7353 0.6806 0.7069 
avg/total 0.7185 0.7174 0.7184 

kNN 
Static 0.9329 0.9762 0.9541 

Moving 0.9752 0.9300 0.9521 
avg/total 0.9540 0.9531 0.9535 

RF 
Static 0.9965 0.9972 0.9968 

Moving 0.9973 0.9965 0.9969 
avg/total 0.9969 0.9969 0.9969 

LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-Nearest Neighbor, RF = Random Forest. 

Table 10. 
Execution Time of all ML algorithms tested. 

 Execution time (mean ± std) (100 runs) 

LR 7.2389 ms ± 0.2451 ms per run 

GNB 108.0081 ms ± 0.1914 ms per run 

SVM 92970.1549 ms ± 5779.2150 ms per run 

kNN 35244.3757 ms ± 2799.9939 ms per run 

RF 311.8065 ms ± 10.1476 ms per run 

LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-Nearest Neighbor, RF = Random Forest. 

The results showed that the best results were obtained with the following 5 characteristics shown in 
Table 11. This can be seen in Figure 7, where the CV-score accuracy is indicated according to the number 
of characteristics that are considered. After this procedure of selecting the characteristics that provide the 
most information, the operation was again carried out to obtain the optimal values of the hyperparameters, 
but this time only for the previously selected Random Forest algorithm. The optimal values of the 
hyperparameters are shown in Table 12.  

The confusion matrix is shown in Table 13. A summary report shows the main performance metrics 
in Table 14. Finally, the average computation time and its standard deviation of 100 executions, both 
expressed in milliseconds, are shown in Table 15. 

Table 11. 
Statistics used after RFECV. 

Statistic 

From polynomial regression of degree 3 
Coefficient degree 0 
Coefficient degree 3 

From polynomial regression of degree 4 
Coefficient degree 0 
Coefficient degree 3 
Coefficient degree 4 



Table 12. 
Optimal Hyperparameters of Random Forest after RFECV. 

 Hyper-parameter Optimal Value Brief description 

RF 

n_estimators 5 The number of decision trees in the random forest. 

min samples leaf 1 
The minimum number of samples required to be at a 

leaf node. 

min samples split 2 
The minimum number of samples required to split an 

internal node. 
RF = Random Forest. 

Table 13. 
Confusion Matrix of all ML algorithms tested. 

  Predicted: Static Predicted: Moving 

RF 
True: Static 6495 / 50.34% 13 / 0.10% 

True: Moving 6 / 0.05% 6389 / 49.52% 
RF = Random Forest. 

Table 14. 
Classification report of all ML algorithms tested. 

 State Precision Recall F1-score Support 

RF 
Static 0.9991 0.9980 0.9985 6508 

Moving 0.9980 0.9991 0.9985 6395 
avg/total 0.9986 0.9986 0.9985 12903 

RF = Random Forest. 

Table 15. 
Execution Time of all ML algorithms tested. 

 Execution time (mean ± std): 
RF 110.7994 ms ± 0.6019 ms per run (100 runs) 

RF = Random Forest. 

 

Figure 7.  RFECV results. The optimal number of features are 5. By increasing the number of characteristics introduced in 
the algorithm, the cross-validation score is reduced. This is because not all the characteristics provide the same information, 
in addition to the possibility that they are contradicting themselves or can add noise in the classification. 



The benefit of selecting the characteristics that provide more information (using the RFECV 
procedure) can clearly be seen in the results obtained (see Figure 8), since the metrics used have increased 
their value, exceeding 99.8% in precision, recall and F1-score, and the execution time has been reduced 
to one third of its original value. 

3.6. Performance of iPCW 

Having seen the algorithm responsible for discrimination between moving pedestrians and static 
pedestrians, we now show how to locate those pedestrians that were classified as static. The static 
pedestrians will simply be placed in the DAUijp that has received more average power in the capture 
interval. The performance of iPCW will be evaluated in terms of discrimination (classification) and 
positioning accuracy, as described in (4) and (5), where: 
- TN (True Negative): is an outcome where the classifier correctly predicts the static state. 
- TP (True Positive): is an outcome where the classifier correctly predicts the moving state. 
- FN (False Negative): is an outcome where the classifier incorrectly predicts the static state. 
- FP (False Positive): is an outcome where the classifier incorrectly predicts the moving state. 
- pedestrians_located_properly: is the number of pedestrians correctly located at the crossing they are 

waiting to cross. 
- pedestrians_detected_as_static: is the number of pedestrians detected as static by the discriminator. 

iPCW is tested in the same scenario previously explained (Figure 3). The results of both the 
classification of pedestrians in the static and moving classes, as well as the positioning, are shown in 
Figure 8. The mechanism proposed for the classification of pedestrians with different behavior in static 
and moving classes, as well as for positioning static pedestrians at intersections, obtains a high degree of 
precision. This accuracy is above 98% in the classification task and above 92% in the positioning task. 
The positioning accuracy only appears in the time intervals where there are static pedestrians (T1, T5 and 
T6). As can be seen in Figure 8, the classification accuracy between static and moving pedestrians is over 
98% in all time intervals. On the other hand, if we look at the positioning accuracy, for the time intervals 
where the pedestrians were static, and therefore can be positioned, this accuracy is higher than 92% in all 
time intervals (T1, T5, and T6). 

𝐷𝐷𝑠𝑠𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠𝑎𝑎𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 =
𝑇𝑇𝑔𝑔 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑔𝑔 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑔𝑔 + 𝐹𝐹𝐹𝐹
 (4) 

𝐷𝐷𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑝𝑝_𝑐𝑐𝑜𝑜𝑠𝑠𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑎𝑎𝑜𝑜𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑎
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝_𝑎𝑎𝑝𝑝_𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑠𝑠

 (5) 

 
Figure 8.  Results of classification accuracy and positioning accuracy. The positioning accuracy only appears in the time 
intervals where there are static pedestrians (T1, T5, and T6). 



As a final note, we have identified some drawbacks and possible countermeasures to using iPCW. 
Regarding MAC randomization, we should measure the likelihood of randomizing a MAC address within 
the measurement interval, i.e., what the likelihood is that a WiFi device changes the MAC during the 
measurement interval. In our case study, measurement intervals are quite short (corresponding to the red 
duration of a traffic light), ranging approximately between 40 s and 100 s, reducing the likelihood of this 
occurring. Another problem could be a mobile device with a low frequency of Probe Request messages. 
To address this point and minimize its impact, we plan to calculate the minimum frequency of sending 
Probe requests, so that our system works with an accuracy greater than a given value. This frequency will 
be a function of the measurement period. Finally, it is correct that iPCW does not count people but WiFi 
devices. However, this is enough to obtain an estimation of people density that, in turn, is highly useful 
to serve as input for an intelligent traffic light system. 

4. Conclusions 

In this paper, we have proposed an original technique to count, characterize, and locate pedestrians 
in urban environments. After reviewing previous works to clearly understand the state of the art, the new 
method has been introduced; specifically, a passive device-based method using WiFi technology called 
iPCW. After comparing the performance of iPCW using different ML algorithms, the best results have 
been achieved using Random Forest for iPCW. All the performance evaluations have been carried out 
with intensive computer simulations in an urban scenario. The results have shown that our proposal obtain 
an excellent performance, with a detection accuracy between moving pedestrians and static pedestrians 
above 98% and with a positioning accuracy higher than 92%. As future work, we plan to implement 
iPCW in real devices and experimentally test its performance. 
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