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Abstract

The incorporation of Artificial Intelligence algorithms in Intelligent Transportation Sys-
tems gives rise to new opportunities for a more sustainable urban mobility. However, one
of the main challenges is to decide when and where these techniques should be applied;
several options appear, such as cloud computing, fog computing, edge computing, or even
edge devices. In this paper, an Internet of Things-based solution for smart traffic manage-
ment is presented. Using the lightweight Random Early Detection for Vehicles Dynamic
mechanism as a basis, we optimize using evolutionary algorithms. Random Early Detec-
tion for Vehicles Dynamic can be applied in signaled intersections to proactively detect
incipient congestion and set the best cycle and phases of traffic lights. Then, the authors
demonstrate that once Random Early Detection for Vehicles Dynamic has been appro-
priately optimised offline, it can be later used in unknown traffic scenarios without the
burden of applying Artificial Intelligence in constrained Internet of Things devices. The
performance of this mechanism is widely tested with the SUMO simulation tool. Results
show that this improved version, called iREDVD, notably reduces the vehicles’ waiting
time, average trip time, fuel consumption, and emission of particles and gaseous pollutants
compared with other proposals.

1 INTRODUCTION

Intelligent Transportation Systems (ITS) are witnessing a
paradigm shift in their modus operandi. Intelligence, under-
stood as the capability of a system to assist, manage, and make
decisions to improve key performance metrics, is entering a new
reality. One of the reasons lies in prompt advances in traffic
data acquisition [1]. This increasing amount of available data
allows better and more responsible use of resources. And the
origin of these data is vast. Still, in general, we can affirm that
either from sensor devices or from Road Side Units (RSU), in-
vehicle communication, Vehicle-to-Vehicle (V2V), Vehicle-to-
Infrastructure (V2I), Vehicle-to-Everything (V2X), etc. is being
transformed thanks to IoT devices. These IoT devices can be
embedded in practically any system or device, offering the abil-
ity to communicate, provide information, or automate tasks.
Besides, these IoT devices have low energy consumption, which
allows them to be integrated into battery-powered devices, thus
extending their useful life.
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Traffic management, as a part of traffic control, represents a
relevant segment of the studies carried out in ITS. The Panel on
Future Directions in Control, Dynamics, and Systems identified
in [2] several challenges for control systems with a straightfor-
ward application in ITS: the notion of operating in a distributed
system and the need for coordination and autonomy. Currently,
ITS are distributed by nature; hence an effort is needed to
visualize the system as such [3]. A distributed system is usu-
ally defined as a set of independent computing elements whose
hardware and software components communicate and coordi-
nate their actions only through passing messages, appearing to
the final user as a whole system (transparency). Among others,
design challenges in distributed systems include performance,
robustness, and reliability, with emphasis on achieving these fea-
tures in the context of communication within ITS. Regarding
coordination and autonomy, Murray et al. explain in [2] that the
study and development of robust control systems require more
elaboration in order to realize higher level decision-making sys-
tems. The benefits of such decisions are enormous: to enhance
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the efficiency of the vehicle transportation system by improv-
ing safety, reducing pollution (particle and noise), decreas-
ing fuel consumption, and increasing service quality (e.g. with
shorter vehicles’ travel and waiting times). For instance, accord-
ing to the National Highway Traffic Safety Administration data
[4], incorrect driver decisions account for 33% of accidents,
being driver recognition the top one reason (41%). These fig-
ures are expected to be significantly reduced with proper pro-
cessing of collected data, and an adequate system-intelligence
applied.

For intelligent and autonomous traffic light control at inter-
sections, researchers have explored a wide range of approaches.
The general methods that have been used to create smart,
autonomous control systems for signaled intersections have
been diverse, such as fuzzy logic [5–7], reservation and market-
based system [8–10], neural networks [11–13], reinforcement
learning [14–18], and swarm intelligence and evolutionary com-
putation [19–21].

The main problem with most of these algorithms is that
they are complex to run in real-time on IoT devices, demand-
ing the resources of cloud computing [22]. But with the rise of
Smart Cities, autonomous cars, 5G, and ITS, using the advan-
tages offered by IoT (integration, embedded, speed, simplic-
ity, etc.) can be a definite advantage for the development of
intelligent traffic light control systems. In this paper, we face
the problem of combining IoT with intelligent algorithms. Ran-
dom Early Detection for Vehicles Dynamic (REDVD) is a very
simple and efficient mechanism that optimizes the phases and
cycles of traffic lights in signaled intersections [23]. However,
REDVD outperforms other mechanisms in a stand-alone inter-
section, it does not behave as expected in more complex sce-
narios. The reason lies in the number of configuration param-
eters that influence its performance. Therefore, we propose to
use an evolutionary algorithm (EA) to obtain the best param-
eter configuration of REDVD. Then, the performance of this
new enhanced version, called improved REDVD (iREDVD), is
tested under complex and previously-unknown traffic scenarios.
The Key Performance Indicators (KPI) used in this study are:
waiting time, trip time, travel speed, emissions (specifically, CO,
CO2, HC, PMx, and NOx), and fuel consumption. In the light
of our outcomes, iREDVD is a light-by-design method that can
be deployed in IoT devices and outperforms not only REDVD
but also other well-known traffic management methods in all
the KPI under study.

The rest of the paper is organised as follows. In Section 2,
we briefly summarise the state of the art. Section 3 describes
our proposal. In Section 4, the optimization process is detailed.
The methodology followed for the performance evaluation is
explained in Section 5. In Section 6, we show and discuss the
obtained results. The paper ends summarising the most impor-
tant outcomes.

2 RELATED WORKS

Within evolutionary computation, there are two main branches.
First, we have those that use genetic algorithms (GAs) to

represent the phases and timing of traffic lights as a set of
chromosomes and perform optimisation directly on these
chromosomes (could also be included within the fuzzy logic).
Second, we have those that use GA as an optimisation algorithm
to optimise a traffic light control system with a large number
of parameters, which is unfeasible to optimise otherwise. The
main advantage of these algorithms is that they are light to
run but require a large computational load for training or for
adjusting their parameters. However, this disadvantage can be
mitigated by working in the cloud during a training phase and
updating the algorithm easily once finished.

Within the first group, it stands out the work carried out by
Sánchez et al. [24], where GA is used to encode a fuzzy logic
controller in the chromosomes and find the optimal parameters
according to the number of cars waiting. Also, similar works
on optimising traffic light timings using GA are presented in
[21], [25]. An approach linking GAs with device communica-
tion (D2D) can be found in [26]. This D2D approach is used to
collect information from sensors and actuators, as well as to try
to reduce the response time.

Concerning the second group, it is within this one that
our work is encompassed, since we use a GA to optimise the
traffic light control algorithm. The advantage of this method
is that it allows us to shift the complexity of the search for the
parameters of the control algorithm to a training scenario. This
allows us to adapt the control algorithm to numerous scenarios
and changes in the environment and act in advance to planned
changes to be able to study the scenario beforehand. Other
works use optimisation algorithms similar to GAs, such as ant
colony optimization (ACO) algorithms. An ACO algorithm is
a probabilistic technique for solving computational problems
that can be reduced to find good paths through graphs. Within
this category, the work done by Abdul Rehman et al. [27] and
Kponyo Jerry et al. [28] stand out, where both solve the traffic
congestion problem applying ACO.

Differing from previous works in the existing literature, our
work focuses on optimising an adaptive traffic light control
algorithm known as REDVD by means of a GA. Our improved
version of this algorithm is called iREDVD. The novelty lies
in the use of GAs for the optimisation process, facilitating the
task of setting the best values for the numerous configuration
parameters that the algorithm has. To the best of our knowledge,
whereas most works from the related literature include GAs in
traffic management procedures themselves, we only use it as an
offline step. Then, we demonstrate that once the parameters are
set, iREDVD works successfully under unknown traffic scenar-
ios keeping its lightness feature and without the burden of AI.
Therefore, it is possible to use it in IoT devices.

3 RANDOM EARLY DETECTION FOR
VEHICLES

As seen in the previous section, there are several approaches to
traffic light controlled intersection control algorithms. In this
section, we will show the basis of the ITS proposed in [23],
namely REDVD, which serves as the basis for this work.
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The operating principle of REDVD is the Random Early
Detection (RED) [29] algorithm, used for congestion control in
communications networks. RED is a congestion control tech-
nique extensively used in packet-switching communication net-
works. It is used to detect and avoid congestion and delay at
an early stage and to improve the throughput rate. RED avoids
congestion by randomly discarding packets, depending on the
number of packets waiting to be processed in the router. These
packets can be dropped if the packet queue to be processed
exceeds a certain threshold; the dropping probability increases
as the queue size increases. By doing so, congestion can be
avoided even before it occurs. For more information about
RED, please refer to [29].

Note that the concept of a queue at a router and a queue
at a traffic light in a signalled intersection are analogous. As
proposed in [23], the analogy with intersections occurs when,
instead of discarding packets, we increase the green-time when
many vehicles are queuing to cross an intersection. With this, we
can get more vehicles crossing the intersection. The first adap-
tation of RED for traffic control in urban scenarios was intro-
duced in [23] and was called RED for Vehicles (REDV). REDV
adapts the RED algorithm to the particularities of vehicles and
signalled intersections. The idea was as follows. In REDV, the
number of vehicles waiting to cross at each intersection branch
is similar to the number of packets queued for processing in a
router. Instead of dropping a packet with a certain probability
that depends on the number of packets to be processed, what
REDV does is to increase or decrease the green time of each
intersection branch with a probability that depends on the num-
ber of cars waiting to cross. Thus, when there are many cars on
a branch, the green time for that branch increases frequently.
Otherwise, when there are too few cars waiting to cross, the
green time is likely reduced. In any case, the total cycle of the
intersection was a fixed value. REDV demonstrated significant
performance as an adaptive control system, managing incipient
congestion at isolated intersections proactively.

To deal with changes in the traffic flow rate i.e. in the number
of vehicles crossing the intersection per unit of time, it was
necessary to adapt the total cycle. The idea was to provide long
cycles to accommodate a large volume of traffic and short cycles
when the volume of traffic was small. Consequently, the same
authors introduced in [23] a new version called REDV Dynamic
(REDVD). Although the performance in terms of traffic met-
rics was improved, this adaptation added new adjustable
parameters to the configuration, parameters that need to be
appropriately tuned for the algorithm’s optimal performance.
Table 1 includes all the configuration parameters of REDVD.

These new parameters contribute to higher flexibility in
traffic control, being adaptive to continuously changing traffic
conditions. However, the process of optimising this large set
of parameters is not trivial. Indeed, the values used in [23]
for configuring REDVD were obtained empirically. For this
reason, one of the goals of this work is to find out the optimal
configuration able to offer the best performance in terms of
the average waiting time per intersection for each vehicle. This
optimisation will be carried out using an EA, more specifically,
employing a GA, which is the most popular type of EA. This

TABLE 1 REDVD parameters

Parameter Description

minth The minimum threshold of vehicles to increase the
green-time phases probabilistically.

maxth The maximum threshold of vehicles to increase the
green-time phases probabilistically.

delta The increase/decrease of the green-time phase, either
because it is above/below the maxth/minth

thresholds, respectively or because of a probabilistic
increase when it is between these thresholds.

min_greentime The minimum time for a green-time phase.

max_greentime The maximum time for a green-time phase.

liminc Number of consecutive times the green-time phase
must be increased, taking into account both arteries
to increase the cycle for all phases.

limdec Number of consecutive times the green-time phase
must be decreased, taking into account both arteries
to decrease the cycle for all phases.

delta_cycle The increase/decrease of the cycle for all phases.

min_cycle The minimum cycle for all phases.

max_cycle The maximum cycle for all phases.

wq Factor that determines the weight of the historical
value versus the current value in the queue length.

maxp Factor used in RED algorithm.

version optimised by means of a GA is called iREDVD. The
entire optimisation process is described in the following section.

4 OPTIMISATION PROCESS

A GA consists of a series of mechanisms inspired by the theory
of evolution to optimise a set of parameters within a problem. It
allows us to optimise that problem, a priori complicated, using
a set of light procedures with a low computation load, which
derives in a fast parameter optimisation [30], [31].

The general procedure consists of four phases: initialize pop-
ulation, fitness calculation, selection, and crossover, which form
a generation. The overall optimisation process will take as many
generations as needed. A population is a set of individuals. The
number of genes that each individual contains is determined
by the number of parameters to be optimized. In our case, the
parameters are included in Table 1. And each gene contains the
coded information of each parameter; e.g. in our case, the maxp

parameter will be a float number between 0 and 1. As an exam-
ple, in a problem with six binary parameters to optimise (such as
the knapsack problem [32]), an example of population would be
the one shown in Figure 1. In this figure, it can be seen a popu-
lation of four individuals (I1 to I4), each one with six parameters
to optimise (P1 to P6), and each of these parameters is coded in
binary (0 or 1) in each gene.

For each generation, the best-adapted individuals to the envi-
ronment are selected so that the next generation individuals
contain their genes. The meaning of “better adapted to the
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FIGURE 1 Example of a population of a GA, which consists of four indi-
viduals and six binary parameters to be optimised

Initialize Population

Fitness Calculation

Convergence
condition

Results

Selection

Crossover

Mutation

Yes

No

FIGURE 2 A general GA procedure. The convergence condition can be
different, either several entire generations or a fitness value improvement after
a few generations

environment” is given by the fitness function, which numeri-
cally measures how well an individual can adjust to the prob-
lem being optimised. For example, in tasks of humanoid robots
learning to walk where genes encode the movement of joints
and muscles, the fitness function will be the distance travelled,
and those individuals who have gone the furthest will be most
likely to be selected. Next, we describe the four phases of the
general optimisation procedure in detail (see Figure 2).

4.1 Initialize population

The procedure starts by initialising the population of individu-
als with random genes (although other approaches can be fol-
lowed in order to reduce the convergence time [33], [34]). The
population’s size is a crucial factor for the correct convergence
of the GA because it causes more diversity in the population
and ensures that a large amount of the parameter space is being
explored.

Nevertheless, there is an important trade-off between the
population’s size, genetic diversity, and convergence speed. If

the population size is considerable, then we have great genetic
diversity by exploring a wide range of the parameter space at
random. Still, it will take a long time to get the fitness of all
the individuals in the population. The size of the population
depends strongly on the problem studied as to cover a consid-
erable range of the parameters, it is necessary to increase the
population’s size exponentially. A basic (minimum) recommen-
dation is to have twice more individuals than the parameters
studied. Typical population sizes can be between 20 and 100
individuals [30], [35], [36].

4.2 Fitness calculation

Each individual in the population is evaluated, and its level of
fitness is obtained with its parameter settings. For instance, if
we are designing a robot that is able to walk, the fitness of each
individual would be how far it can walk [37], or in the knapsack
problem [32] the adjustment would be the benefit obtained by
the objects inside the knapsack that minimize the weight. In our
case, it will be the average waiting time per intersection for each
vehicle.

4.3 Selection

Once all the individuals in the population have been evaluated,
the next step is to select the subset of individuals that are best-
adapted to the environment. There are various mechanisms for
selecting the best individuals [38–40] e.g. roulette wheel selec-
tion, Boltzmann selection, tournament selection, rank selection,
steady-state selection, or Elitism selection, among others. One
of the simplest and most effective methods is to select the per-
centage of individuals who have the highest level of fitness. With
this mechanism, the subset of best-adapted individuals to the
environment will be obtained in the current generation. These
selected individuals are known as parents and will be the ones
from whom the children are generated.

The percentage of individuals selected is crucial for the cor-
rect functioning of the GA. A very high value will prevent rapid
convergence, but a very low value will nevertheless lead to low
genetic diversity and a high possibility of converging towards
a local minimum. Typical values are between 5% and 10%,
depending on the population size [30], [35], [36]. The remain-
ing individuals (children) will be generated from these parents
to obtain the total population employing crossover and muta-
tion mechanisms.

Although there are very sophisticated methods for the selec-
tion mechanism, it is recommended [41] to use rank selection in
the first generations to quickly obtain preliminary results. More
sophisticated techniques can be found in [40].

4.4 Crossover

Crossover is a mechanism by which new individuals (children)
are generated from two or more parents’ direct mating. This
mechanism is done to obtain children with the genes of those
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parents with a good fitness value. The basic operation of this
mechanism consists of randomly selecting genes from different
parents to generate new children. There are various crossover
mechanisms, such as the selection of a single crossover point,
the selection of multiple crossover points, or the gene-by-gene
combination [42–45]. The mechanism used in this work is the
single crossover point due to its simplicity and good results [44].
In this mechanism, a crossing point is selected. Then, from the
beginning of the genes to the crossing point is transferred from
one parent and the rest is transferred from the second parent.

The crossover rate indicates how often parents are crossed
over to get new children, so it controls what percentage of
the children are exact copies of the parents and which ones
are crossed over. That is, if the crossover rate is 100%, all the
children are obtained by crossing the parents. However, if the
crossover rate is 0%, all the children are exact copies of the
parents. This 0% does not mean that the new generation will
be identical to the parents since, after the crossover, the genes
of these created children can be mutated. The crossover rate
should generally be high, between 80% and 95% [30], [35], [36].

4.5 Mutation

In order to obtain a high genetic diversity, mutation mechanisms
can be applied to a small percentage of genes in the population.
This mutation means that the value of each gene can vary
randomly with a small probability. The mutation prevents the
GA from converging to a local optimum, as it allows other
combinations of genes that can achieve better fitness levels
to be explored at random [46], [47]. However, this mutation
should not occur very often, since then it would become a
random search.

The mutation rate indicates how often an individual’s gene
will be mutated. If the mutation rate is 0%, the population cre-
ated after the crossover does not mutate. However, if the muta-
tion rate is 100%, all the offspring’s genes are changed randomly,
within a range of change, which depends on the scenario. This
margin of change should be less than 20% of the allowed range
for each gene [47]. In turn, the mutation rate should remain
around 0.1% and 1%, to enable the exploration of a wider space
of parameters, obtaining genetic diversity, but without falling
into exploring the entire parameter space at random [48], [49].
In addition, it is advisable to decrease the mutation rate, as well
as the margin of change of the parameters, as the generations go
by, in order to obtain a rapid convergence [30], [35], [36]. Fig-
ure 2 shows the general procedure followed by the GA until the
convergence condition is satisfied.

For iREDVD, we choose a population size of 256 individuals,
16 selected parents, a crossover rate of 80%, a mutation rate of
0.1%, and up to 20 generations.

5 MATERIALS, SCENARIOS, AND
METHODS

The algorithms under study have been evaluated via computer
simulations. All methods were programmed in Python v3.7. To

TABLE 2 Characteristics of the training and the testing scenarios

Scenario

Number of

intersections

Intersection

layout

Distance

between

intersections

Simulation

duration

Train 16 4×4 300m 10h

Test1 5 1×5 200m 12h

Test2 100 10×10 250m 12h

North (N)

South (S)

Ea
st

 (E
)

W
 tse
(W

)

#1 #2 #3 #4

#5 #6 #7 #8

#9 #10 #11 #12

#13 #14 #15 #16

300m

FIGURE 3 Simulated topology for the training scenario: Manhattan 4×4
network with 300 m between each intersection

compare the different proposals, these scripts were coupled to
the microscopic traffic simulator SUMO [50] v1.0.1 with TraCI
(Traffic Control Interface). SUMO is a valuable tool as it allows
flexible simulations in customizable scenarios and editable traf-
fic patterns. The CPU used was an Intel Xeon 16 cores @
2.6GHz. Three scenarios were used in this work, one for train-
ing and two for testing. The details of each scenario can be seen
in Table 2. These three scenarios share some characteristics and
differ in others, which are described in the next subsections.

On the one hand, the training scenario consists of a grid
of 4×4 intersections (in total 16 intersections) with 2 lanes
for each direction, and a distance between intersections of
300m (see Figure 3). The vehicle flow rate fluctuated over
time, remaining constant for one hour and following the
pattern shown in Figure 4 afterward. The low flow rate
was 600 vehicles/hour/branch, the medium flow rate 1200
vehicles/hour/branch, and the high flow rate 1600 vehi-
cles/hour/branch. The north (N) and south (S) branches had
identical flow rates, and the same applies to the east (E) and
west (W) branches. As shown in Figure 4, there are times when
the flow rate is symmetric (e.g. hours 0, 1, and 2) and others
when is asymmetric (e.g. hours 3, 4, and 5).

On the other hand, the testing scenarios are used to evaluate
the performance in new conditions i.e. situations the algorithm
has not been trained for. Simulations run in the testing scenarios
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FIGURE 4 Vehicle flow rate per branch used in the training scenario

(a) Test Scenario 1 

(b) Test Scenario 2 

North (N)

South (S)

South (S)

Ea
st

 (E
)

W
 t se
(W

)

#1 #2 #3 #4 #5

200m

North (N)

Ea
st

 (E
)

W
 t se
(W

)

#1 #2 #3 #4

#11 #12 #13 #14

#21 #22 #23 #24

#31 #32 #33 #34

250m

#5 #6 #7

#15 #16 #17

#25 #26 #27

#35 #36 #37

#8 #9 #10

#18 #19 #20

#28 #29 #30

#38 #39 #40

#41 #42 #45 #44

#51 #52 #53 #54

#61 #62 #63 #64

#71 #72 #73 #74

#45 #46 #47

#55 #56 #57

#65 #66 #67

#75 #76 #77

#48 #49 #50

#58 #59 #60

#68 #69 #70

#78 #79 #80

#81 #82 #83 #84

#91 #92 #93 #94

#85 #86 #87

#95 #96 #97

#88 #89 #90

#98 #99 #100

FIGURE 5 Simulated topology for the testing scenarios: (a) 1×5 network
with 200m between each intersection; (b) Manhattan 10×10 network with 250m
between each intersection

use the optimal parameters obtained previously in the training.
The test scenario 1 consists of a large avenue of 5 intersections
(1×5) separated by 200 m between each intersection, as shown
in Figure 5(a). The test scenario 2 consists on a 10×10 Man-
hattan grid, with a total of 100 intersections, as can be seen in
Figure 5(b).

Both test scenarios have the same vehicle flow rate, depicted
in Figure 6. The vehicle flow rate is more chaotic than in the

etar 
wolF

FIGURE 6 Vehicle flow rate per branch used in the testing scenarios

TABLE 3 Type of vehicles

Vehicle Percentage Fuel

Car 30% Gasoline

Car 40% Diesel

Motorcycle 10% Gasoline

Moped 10% Gasoline

Van 5% Diesel

Bus 5% Average of all fuel types

training scenario, hence, stressing the different algorithms under
study. As depicted in Figure 6, the constant vehicle flow rate
stretches are maintained for 15 min, and the low, medium, and
high flow rates are 700, 1000, and 1800 vehicles/hour/branch,
respectively. With these test scenarios, we check that iREDVD
algorithm is not overfitted to the training scenario.

In all scenarios, the selected vehicle distribution was based on
the fleet of vehicles of the city of Madrid (Spain) [51]. This distri-
bution can be seen in Table 3. Also, in order to obtain both fuel
consumption and pollutant emissions from vehicles, the pollu-
tion model used was the HBEFA [52]. HBEFA is an emission
factor database for road vehicles and provides emission factors
(hot start, cold start, evaporation) for all regulated and impor-
tant unregulated air pollutants as well as for fuel consumption.

Similarly, each intersection had four traffic lights that control
each branch of the intersection (North, South, East, West) in all
scenarios. Each intersection had two lanes on each branch. An
example of an intersection is depicted in Figure 7. For simplic-
ity, only the straight forward and the right-turn movements were
allowed (see Figure 7). This constrain can be found in numer-
ous articles [53–57]. Mainly, it allows a quickly/simple imple-
mentation of a new concept to study the advantages and disad-
vantages it can offer. When adding the left turn, only one new
phase needs to be incorporated in the whole cycle, thus allow-
ing the vehicles to turn left. Therefore, we consider that the
selected configuration is appropriate to show the benefits of the
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North (N)

South (S)

East (E)

West (W)

FIGURE 7 An example of a four-way signaled intersection, as used in this
study

 

 

N

S

W

E

Green Yellow Red
Cycle Lenght

FIGURE 8 Example of a cycle in a traffic light. N≡North; S≡South;
W≡West; E≡East

optimization process using the GA and the robust performance
of iREDVD. The phases of the traffic lights were coupled
(North with South and East with West) and were opposite
(North and South vs. East with West) between each couple. In
other words, if the traffic lights in the North and South branches
were green, it means that East and West branches were red. Fig-
ure 8 illustrates an example of a cycle. The yellow-time interval
of the traffic lights was set to 3 seconds and the all-red time
to 2 seconds, for safety and realism. The safety distance used
between cars was 1.5 m. A Poisson distribution was used to gen-
erate the traffic flows.

In order to compare the performance of iREDVD with other
algorithms for traffic control, we also implement and evaluate
the performance of a system with fixed cycle (FX) time and
with pre-set offsets between consecutive intersections, known
as Green Wave (GW). This offset is obtained as the time that a
vehicle needs to move between two intersections once the green
phase starts (i.e. in a coordinated manner like a green wave).
Three different versions were studied for the FX and GW algo-
rithms, which also modify the total cycle time. The cycle times of
30, 45, and 60 seconds were studied. The nomenclature used for
each algorithm is expressed as the algorithm used and the cycle
time; so, for example, FX45 corresponds to the fixed algorithm
with a cycle time of 45 seconds, equally divided between the

FIGURE 9 Optimization process. “Best fitness” is the individual with the
lowest normalised waiting time and “Average fitness” is the average normalised
waiting time of all population. X-Axis represents the generations

branches. In all cases, 10 experiments were run for each algo-
rithm under study in each scenario, obtaining the mean value
and its standard deviation.

Finally, the optimised metric was the normalised waiting time
(the waiting time per intersection), although trip time, average
speed, CO, CO2, HC, PMx and NOx emissions, and fuel con-
sumption were also studied. The normalised waiting time elim-
inates the influence of the number of intersections crossed by
vehicles in each flow. Therefore, we obtain for each vehicle the
ratio between the total waiting time and the number of intersec-
tions crossed during the travel.

6 PERFORMANCE EVALUATION
RESULTS

6.1 Training scenario

Figure 9 illustrates the value of the normalised waiting time of
the vehicles per intersection during the optimisation process
carried out by the GA in the training phase. As it is shown,
after about five generations, the GA achieves promising val-
ues for most of the simulated individuals. Although the sim-
ulation could have been stopped at that time, we left it more
to find a robust set of parameters, which over time are able to
demonstrate their superiority over the rest. The time required
for each of the simulations in the optimisation process for the
test scenario was approximately 1 min. This means that simu-
lating the 256 individuals for 21 generations (the initial one plus
the next 20 generations) on a server with 16 processing cores
(i.e. 16 simulations were simulated in parallel) required approxi-
mately 48 hours. Each simulation was repeated 10 times, and the
mean value and standard deviation of each variable under study
were obtained. Once the best parameter configuration has been
obtained, the execution of the traffic light control algorithm is
almost instantaneous since it no longer requires any artificial
intelligence algorithm since it is based on a light, fast, and quick
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TABLE 4 Optimised parameters and values

Parameter Optimal value

minth 10

maxth 25

min_greentime 15

max_greentime 60

min_cycle 45

max_cycle 130

delta 10

delta_cycle 15

maxp 0.85

wq 0.7

limin 5

limdec 1

method that can be rapidly executed by low power IoT devices.
Further information can be found in [23].

The values of the optimised parameters after training are
shown in Table 4. The optimisation process shows very interest-
ing values. The parameter limdec indicates how many times the
green time of the traffic lights is reduced so that the total cycle of
the intersection is reduced. The fact that limdec is 1, means that
if a reduction in traffic is detected, even a slight one, it is worth-
while to shorten the total cycle time (and therefore the green
time) quickly. However, the opposite is true for the increase in
total cycle time. The parameter liminc controls the increase in the
total cycle time of the traffic lights when traffic increases. With
a high value of 5, it means that iREDVD should be very sure
before increasing the total cycle time.

The results obtained in the training scenario (see Table 5)
corroborate that iREDVD has an improvement of more than
50% (reduction in almost 25 seconds) in the average waiting
time of the vehicles per intersection when compared to the tra-
ditional algorithms (Fixed 30, Fixed 45, Fixed 60, GreenWave
30, GreenWave 45, and GreenWave 60).

Compared with the original REDV algorithm proposed in
[23], our improvement is still visible. This reinforces the fact that
adjusting the parameters is necessary for the proper function-
ing of the algorithm. Finally, compared to the original REDVD
variant also presented in [23], there is an improvement of 27%,
which means a reduction of more than 8 seconds in the aver-
age normalised waiting time. Regarding other key performance
metrics, such as average travel time, average speed, average CO,
CO2, HC, PMx and NOx emissions, and average fuel consump-
tion, we can see that the iREDVD improves in all of these KPI
in the range of 7%–45%; most notably an increase in speed of
16%–26%, a decrease in average CO emissions of 13%–46%,
and a decrease in average fuel consumption of 7%–18%, com-
pared to traditional algorithms.

6.2 Testing scenarios

After the training, we stressed the algorithm in the testing
scenarios using the optimised values for the configuration

parameters. It can be seen from the results shown in Tables 6
and 7 that improvements are very similar to those obtained in
the training scenario. This corroborates that iREDVD is able to
adjust to unknown conditions (scenarios that it was not trained
for), showing its robustness to be applied in real deployments.

For example, iREDVD achieves a reduction in average nor-
malised waiting time of 34%–49% in Test 1 and 78%–82%
in Test 2, compared to other control techniques, which is
equivalent to reducing the average waiting time of vehicles at
each intersection crossed by more than 6–100 seconds. This
improvement is also reflected in other metrics, such as the
reduction of average CO emissions by around 25% or a reduc-
tion in average fuel between 6%–17%.

6.3 Final remarks

The excellent performance of the optimised iREDVD is due
to the ability to adapt to road conditions. In Figure 10(a) and
Figure 10(b), it can be observed how iREDVD proactively
adapts the cycle time according to the simulated traffic flow
rate, not only in training Figure 10(a), but also under unknown
conditions in the testing Figure 10(b). The cycle increases
when the flow rate of vehicles passing through the intersection
increases, and vice versa. In addition, we can see in Figure 10(a)
and Figure 10(b) that the time assigned to each branch is inde-
pendent, since when the traffic is asymmetric [see Figure 10(b)
hour 4] iREDVD obtains a time for each branch that is differ-
ent, self-adjusting to the traffic conditions. This independence
allows iREDVD a better time distribution and a reduction of
waiting time.

7 CONCLUSION

With the growing number of vehicles, the massification of large
cities, and the rise of the IoT, there is a growing need for orches-
tration for smart cities. The use of ITS allows for efficient traf-
fic control when applied to traffic-light managed intersections,
improving traffic flow, and diminishing pollution and fuel use.
In this work, we have presented the optimisation and perfor-
mance of the iREDVD ITS method using an EA as the opti-
misation tool. iREDVD is a lightweight, optimised, and fast
algorithm capable of being executed in IoT devices with lim-
ited requirements, whereas controls signaled intersections in a
very efficient way. We have shown that iREDVD outperforms
traditional traffic light control techniques, as well as its different
previous versions. Compared to traditional control techniques,
it showed reductions between 24 to 100 seconds in the waiting
time of vehicles per intersection travelled through, equivalent to
between 50% and 80% reduction in the waiting time of vehicles
at traffic lights. Compared to the original REDVD, iREDVD
reduces the waiting time at each intersection by more than 27%.
Besides, iREDVD reduces both the pollutant emissions and fuel
consumption between 7%–38% and between 7%–14%, respec-
tively.

In conclusion, the use of these ITS will allow future smart
cities to orchestrate the different actors better, allowing for
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(a) Train scenario 

(b) Test scenario 

etar 
wolF

etar  
w ol F

FIGURE 10 Vehicular flow rate simulated, time for each branch, and total
cycle for intersection 1 vs. simulation time: (a) train scenario; (b) test scenario

increased safety, reduced pollution, and optimised transporta-
tion systems. As future work, research is being carried out on
the integration of ITS with 5G technology, to obtain a fully con-
nected traffic management ecosystem.
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