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ABSTRACT Worldwide, many companies are working towards safe and innovative control systems for
Autonomous Vehicles (AVs). A key component is Autonomous Intersection Management (AIM) systems,
which operate at the level of traffic intersections and manage the right-of-way for AVs, thereby improving
flow and safety. AIM traditionally uses control policies based on simple rules. However, Deep Reinforcement
Learning (DRL) can provide advanced control policies with the advantage of proactively reacting and
forecasting hazardous situations. Themain drawback of DRL is the training time, which is fast in simple tasks
but not negligible when addressing real-world problems with multiple agents. Learning from Demonstra-
tions (LfD) emerged to solve this problem, significantly speeding up training, and reducing the exploration
problem. The challenge is that LfD requires an expert to extract new demonstrations. Therefore, in this paper,
we propose the use of an agent, previously trained by imitation learning, to act as an expert to leverage LfD.
We named this new agent Oracle, and our new approach was called Learning from Oracle Demonstrations
(LfOD).We implemented this novel method over the DRL TD3 algorithm, incorporating significant changes
to TD3 that allowed the use ofOracle demonstrations. The complete version was called TD3fOD. The results
obtained in the AIM training scenario showed that TD3fOD notably improves the learning process compared
with TD3 and DDPGfD, speeding up learning to 5–6 times, while the policy found offered both significantly
lower variance and better learning ability. The testing scenario also showed a significant improvement in
multiple key performance metrics compared with other vehicle control techniques on AIM, such as reducing
waiting time by more than 90% and significantly decreasing fuel or electricity consumption and emissions,
highlighting the benefits of LfOD.

INDEX TERMS Autonomous intersection management, intelligent transport systems, intersection traffic
management, learning from demonstrations, multi-agent deep reinforcement learning.

I. INTRODUCTION
Deep Reinforcement Learning (DRL) has demonstrated
a remarkable ability to solve several complex real-world
sequential decision-making problems [1]–[6]. However, this
success is currently limited due to the extensive training pro-
cess required by traditional DRL algorithms, which requires
days to months of training and tens or hundreds of graphics
cards in parallel [7], [8].
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Autonomous Vehicles (AVs) control is a field where DRL
has been extensively studied. This field achieves perfect
symbiosis when combined with computer simulators, mak-
ing them an excellent framework for new advanced control
systems. The management of these AVs in cities should be
performed collectively with centralized information to be as
efficient as possible. This centralized control would be an
intelligent system capable of controlling all AVs simultane-
ously, in real-time, and ensures a high degree of security.

The study of Autonomous Intersection Management
(AIM) [9], [10] began a few years ago, even before the
large-scale deployment of the first AVs. However, these AIM
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based their operations on simple rules, unable to achieve
advanced control policies that could obtain truly intelligent
and proactive behavior. This was the scenario until the devel-
opment of RAIM [11], an AIM that is based on DRL along
with other advanced deep learning techniques. However, the
main problemwith this approach is that it requiresmany inter-
actions with the environment to achieve a good performance.

Recently, researchers have been studying new alternatives
that can speed up the training of DRL algorithms, either by
imitating a behavior (Imitation Learning, IL [12]), imitating
some observations (Imitation from Observation, IfO [13]),
or using an initial training phase of supervised learning of
demonstrations (tuples of {state, action, new_state, reward})
offered by an expert to progressively train the pre-trained
policy usingDRL (Learning fromDemonstrations, LfD [14]).
Several previous efforts have demonstrated that LfD can sig-
nificantly accelerate the training of DRL algorithms in envi-
ronments where there are expert demonstrations [14]–[16].
However, although we consider that LfD has the potential
for improvement, there are environments where the demon-
strations offered by an expert cannot be extracted (totally or
partially), such as in traffic simulators used to train new AV
control systems. (e.g., SUMO [17]). In these simulators, each
vehicle has its own internally modeled controller, and it is
not possible to extract demonstrations from each vehicle in a
straightforward manner.

Owing to the above limitations, this work proposed a new
approach within the field of LfD that used an IL-trained agent
to model hidden expert controllers. This agent allowed us to
extract the knowledge of a hidden expert (new experiences)
and to ask about each state, what action the hidden expert
would have taken. In other words, the IL-trained agent could
ask for each state: ‘‘What would my expert say I should do
in this state?’’ In this way, in environments where there is no
expert (or one is hidden) fromwhich to extract the demonstra-
tions, we could train an agent that imitated the hidden expert
behavior and could be considered as such to leverage LfD
to further train another agent via DRL. We called this new
agent Oracle. To enable the use of demonstrations offered by
the Oracle, we proposed several modifications to the DRL
algorithm used, TD3: i) a modification to the error equation
that updates the TD3 actor so that the error produced by
the RL action was gradually considered; ii) the introduction
of several parameters for a smooth and progressive transi-
tion between LfD and RL (τ1 and τ2); and iii) the use of
two replay buffers, one for demonstrations to train Oracle
and the other for TD3, in addition to the use of Prioritized
Experience Replay (PER) to accelerate learning. Following
the nomenclature used in previous works, we called this new
approach Learning fromOracle Demonstrations (LfOD), and
the subsequent DRL algorithmwas called TD3fOD. TD3fOD
was used to train an AIM algorithm previously proposed in an
autonomous vehicle traffic scenario [11]. The results showed
a notable improvement over not using LfD, speeding up by
5–6 times, and noticeably reducing the variance in the policy
obtained. The results compared with DDPGfD showed that

the use of the Oracle allowed to triple the training speed
and considerably reduce the variance in the control behavior
during the training phase. Finally, in a testing scenario, the
AIM algorithm trained with TD3fOD was compared with
other autonomous vehicle control algorithms, and the results
showed an improvement in all the studied metrics, reducing
the waiting time by approximately 95%, among other factors.

Thanks to our proposal, it is possible to extract the hidden
agent (learned by IL by theOracle) in those simulators where
it is not possible (or too complicated), to take advantage of
the benefits offered by LfD (training acceleration and more
robust policies) for the development of new complex control
algorithms.

The primary motivation of this work lies in the develop-
ment of a new algorithm to accelerate agent training using
DRL and LfD, which can be applied to any problem where
there is no agent from which to extract demonstrations. Fur-
thermore, the development of advanced cooperative control
systems for AVs and Multi-Agent DRL-based systems can
be speeded up based on the contributions of this work.

Therefore, the main contributions of this work are:
(i) Propose a new LfD approach that can be used in envi-

ronments where there are no experts from which to extract
demonstrations, taking advantage of hidden agent demonstra-
tions.
(ii) Demonstrate that using the Oracle in LfOD speeds up

the training of DRL algorithms, reducing the training time
and variance in trained policies.
(iii) Development of a new AIM trained with the proposed

algorithm (RAIM with LfOD), capable of improving the
performance of AIM algorithms in a cooperative autonomous
vehicle control scenario.

The rest of the article is organized as follows. Section II
provides the background of DRL, IL, and LfD. A review of
previous related work on both AIM and LfD is discussed in
Section III. Section IV details our proposal, TD3fOD. The
experimental setup, simulation scenarios, and the explanation
of the modifications made to TD3, and AIM are included
in Section V. Section VI shows the results obtained in both
the training and the testing scenarios. Finally, Section VII
concludes the paper.

II. BACKGROUND
This section explains DRL, Multi-Agent DRL (MADRL),
and the algorithm modified in this work, TD3. In addition,
we detail how IL works, and, finally, we explain the basics of
LfD.

A. DEEP REINFORCEMENT LEARNING
Reinforcement Learning (RL) is an area of machine learning
in which an agent learns to complete a task in an environment
where it can take an action and receive a reward for the action.
The agent’s goal is to find a policy that performs actions that
maximize the rewards accumulated during the entire task,
which are known as expected discounted total rewards.
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The environment where the agent is located is usually
modeled by a Markov Decision Process (MDP) because
many RL algorithms employ dynamic programming tech-
niques to solve these MDP. An MDP is defined by the tuple
〈S,A,R,T , γ 〉, where S represents a set of states of an envi-
ronment, A represents the set of actions that the agent can
take, T is the transition function T : S × A× S → [0, 1] that
determines the transition probability from any state s ∈ S to
any state s′ ∈ S when the action a ∈ A is taken.R is the reward
function R : S × A × S → R and γ ∈ [0, 1] represents the
discount factor that adjusts the trade-off between immediate
and future rewards.

Resolving an MDP generates a policy π : S → A, which
maps states s ∈ S to actions a ∈ A. An optimal policy π∗

maximizes the expected total discounted reward for all the
states. This approach to finding the optimal policy can be
formulated using the state-action value function (Q-function):
Qπ (s, a) = Eπ

[∑
∞

t=0 γ
tR (st , at)

]
. This Q-function deter-

mines the expected reward by starting from the state s, taking
the action a, and following the policy π .

If we focus on DRL, the introduction of Neural Net-
works (NN) in traditional RL algorithms has been a great
revolution, considerably speeding up the learning of these
algorithms and allowing them to be applied to tasks that
seemed impossible before, because NNs can act as approx-
imating functions of the policy to be learned.

Within DRL, there are several approaches; however, the
approach that has attracted the most attention in recent years
is based on actor-critics for continuous control problems.
Both the actors (a policy that decides what action to take for
each state) and the critic (given a state and an action, it gets
what expected reward, or Q-value, is obtained, indicating to
the actor whether the action is going to be good or not) are
modeled by NNs.

B. MULTI-AGENT DEEP REINFORCEMENT LEARNING
MADRL [18] is a subset of RL problems in which multiple
agents interact with each other and their environment, each
of which attempts to learn a policy and learn to collabo-
rate/compete, depending on the task.

Within MADRL, there are two different learning
approaches depending on the problem to be solved: cooper-
ative multi-agent learning [19], in which agents cooperate to
maximize the total cumulative reward; and competitivemulti-
agent learning [20], in which agents compete with each other
to obtain the highest possible reward individually (or from
the group they belong to).

To train and execute these algorithms, different techniques
have been developed that take advantage of the benefits
offered by collective learning. One of these is centralized
training and decentralized execution [21]. Training is per-
formed centrally in an environment where each agent sends
its information, and the control policies of each agent are
obtained. Each agent then obtains the policy and executes
it decentralized. Another approach is centralized training
and execution [22]. In this case, agents are trained centrally

and then executed individually. Last, we have decentralized
training and decentralized execution. In this case, agents are
trained in a decentralized manner and execute policies indi-
vidually. The benefit of centralized training is better knowl-
edge of the entire environment, so the policy is found more
quickly and robustly. However, it is not always possible to
centralize knowledge for training because of communication
limitations; thus, decentralized training is required. In decen-
tralized training, each agent only has local knowledge for
training. Thus, each agent updates its policy individually
while sharing its policy with other agents. Finally, decentral-
ized execution means that agents are executed on a decen-
tralized controller individually while considering all agents
simultaneously.

C. TD3
Ourmethod combines demonstrations extracted from anOra-
cle to exploit this knowledge and accelerate the training of a
new control policy using the DRL TD3 algorithm [23]. TD3
is a DRL algorithm whose acronym stands for Twin Delayed
Deep Deterministic Policy Gradient. Therefore, we can get a
new way to develop AIM systems in a fast and easy way.

TD3 is one of the most powerful and advanced off-
policy model-free DRL algorithms used for continuous
tasks. TD3 is an evolution of the Deep Deterministic Pol-
icy Gradient (DDPG [24]) DRL algorithm where several
key improvements are added specifically, Clipped Double-Q
Learning, Target Policy Smoothing, and ‘‘Delayed’’ Policy
Updates [23], [25]. As many works have shown, TD3 offers
fast convergence for complex tasks that require continuous
control [23], [26]. For this reason, we decided to implement
our proposal on TD3 and not on other algorithms such as
SAC [27], PPO [28], or A3C [29].

1) CLIPPED DOUBLE-Q LEARNING
Instead of using only one critic network, TD3 adds a second
critic network that reduces the estimation bias by selecting
the smallest Q-value of the two critic networks, encouraging
underestimation ofQ-values. This underestimation bias is not
a problem since low values will not propagate through the
algorithm, unlike overestimated values. Thus, it provides a
more stable approximation and improves the stability of the
whole algorithm.

2) TARGET POLICY SMOOTHING
To reduce the overfitting produced by high variance target
values when updating the critics, TD3 adds a small noise to
each selected action. In addition, it performs double clipping,
first on the aggregated noise and then on the noisy action.
This reduces the variance of the selected actions and results
in more stable Q-values.

3) DELAYED POLICY UPDATED
TD3 updates the policy and target networks less frequently
than Q-functions, providing more stable and efficient train-
ing. The original paper [23] suggested updating the policy
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and target networks every two updates of the Q-functions.
In addition, the policy network πθ is updated with a gradient
ascent step by simply maximizing Qφ1 as shown in (1).

∇θ
1
|B|

∑
s∈B

Qφ1 (s, πθ (s)) (1)

D. IMITATION LEARNING
IL arises from the need to train an agent more efficiently
than through RL alone. With IL, an agent learns a policy by
‘‘imitating’’ an expert who knows what action to take for each
state. Through Supervised Learning (SL), IL is more effective
than RL when an expert demonstrates the desired behavior
and thus teaches a policy [30]. Besides, the problem of reward
shaping is eliminated, where it is necessary to carefully select
the reward received by the agent or design a hand-coded func-
tion that changes smoothly to achieve a stable and consistent
policy. Within IL, there are several alternatives:

1) BEHAVIORAL CLONING
Behavioral Cloning (BC) [12], [31], [32] is the simplest form
of IL, where a policy is trained based on expert demon-
strations; that is, there is an expert agent who is capable
of producing pairs of state-action demonstrations. These
demonstrations are used in traditional SL and can provide a
policy that achieves a behavior that clones the expert.

BC can work excellently for some applications in which
the entire state-action space is explored. However, BC is
problematic in most cases. The main concern is that SL
assumes that the samples used are i.i.d. (independent and
identically distributed); however, that assumption cannot be
guaranteed due to the nature of the samples’ capturing
process.

Furthermore, when a trained agent takes control, it can
make mistakes in predicting actions that can lead to states
never seen before during the expert-supervised training.
In these states, the agent’s behavior can lead to hazardous
situations known as compounding errors [12], from which
the agent can never recover. An example of compound-
ing errors is depicted in Fig. 1. Several alternatives have
been proposed to obtain more samples online while testing
the trained policies and resolving the problems presented
by BC.

2) DIRECT POLICY LEARNING VIA INTERACTIVE
DEMONSTRATOR
Direct Policy Learning (DPL) is an enhanced version of
BC. This is an iterative process in which expert feedback is
collected during the training loop. The entire process starts
by collecting demonstrations from the expert, who serves to
train the agent. After the first training, the trained policy is
rolled out and the new states that are visited are stored. Then,
the expert is asked what actions it would take in those new
states, collecting new demonstrations. These new demonstra-
tions (feedback) allow us to obtain more data to train the
agent again using SL. This loop continues until converging

FIGURE 1. Compounding errors example.

FIGURE 2. The general direct policy learning (DPL) algorithm.

(see Fig. 2). It is important to store and use all the collected
demonstrations to remember the mistakes made by the agent
in the past.

Within this group of IL, there are several powerful algo-
rithms, most notably: SEARN (Search-based Structured Pre-
diction). [33], SMILe (Stochastic Mixing Iterative Learn-
ing) [30], and DAGGer (Data AGGregation) [12].

However, thesemethods have a significant drawback. They
only use SL to obtain behaviors similar to those of the expert
and do not employ any RL technique to obtain superior
behavior. In addition, they need an online expert from which
to obtain feedback about the states visited during rollout.

E. LEARNING FROM DEMONSTRATION
Learning fromDemonstrations (LfD) was introduced to over-
come the limitations of DPL. LfD appeared in DeepMind’s
Deep Q-Learning from Demonstrations (DQfD) work [14],
elegantly unifying IL and RL.

LfD employs an expert’s experiences (demonstrations,
which can be potentially suboptimal) to pre-train an agent
through SL and then uses RL algorithms to improve the
learned policy. However, using SL in the demonstration data
and applying RL in the pre-trained policy is not ideal. LfD
employs the demonstration data throughout the training pro-
cess. Thus, the agent finds a policy that eventually surpasses
the expert policy. In summary, LfD allows the initialization
(pre-train) of an agent through expert demonstrations and
then uses RL to discover a better policy by interactingwith the
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environment and using the previous expert demonstrations to
not forget the base policy. What differentiates IL from LfD is
that the latter only has expert demonstrations, a sequence of
(st , at , rt , st+1) and not an online expert to obtain feedback,
as well as the training stage via RL to improve the learned
policy.

LfD was presented using Deep Q-Network (DQN) algo-
rithm. DQN is used to control agents in discrete space actions,
and the transition from a discrete space action to a continuous
one is not trivial. A modification of DDPG that allowed the
use of demonstrations for its training was introduced in [15],
namely, DDPGfD.

DDPGfD stores both the demonstrations collected from
the expert and the experiences collected by the agent in a
replay buffer. In addition, it proposes a set of improvements
such as the use of a mix of 1-step and n-step return losses,
learning multiple times per environment step, and L2 regular-
ization losses. However, DQfD and DDPGfD have the main
drawback of misadjusting the internal parameters of the agent
obtained during pre-training when the agent begins to take
control, which can lead to forgetting everything that was pre-
learned.

III. RELATED WORKS
This section summarizes works from the related literature that
address AIM and LfD.

A. AUTONOMOUS INTERSECTION MANAGEMENT
AIM has emerged as an alternative control method for AVs
at traffic-light-regulated intersections. In [34], Dresner and
Stone proposed the first AIM that regulated the crossing
of AVs at intersections using a reservation-based method
following a ‘‘First Come, First Served’’ (FCFS) policy and
eliminating traffic lights. This policy worked as follows:
when a vehicle approached the intersection, it requested to
reserve the space-time the vehicle needed to cross the inter-
section. If the reservation did not conflict with another vehi-
cle’s reservation, the intersection accepted it, and the vehicle
followed the route it had requested. Otherwise, the vehicle
received a reservation denial and slowed down to request
another reservation later in searching for available space-time
slots.

The first results showed that FCFS could outperform traf-
fic light control in terms of flow and delay. Later studies
[35], [36] proposed alternative control protocols that included
non-autonomous vehicles (FCFS-LIGHT) and emergency
vehicles (FCFS-EMERG). The authors also proposed a
mechanism to switch among policies (FCFS, FCFS-LIGHT,
and FCFS-EMERG) depending on intersection conditions,
improving performance by using the policy that best suited
each situation [37]. Their results outperformed traditional
traffic light control.

A more detailed study of the FCFS protocol was proposed
in [38], where it was tested against an optimized traditional
traffic light signal. The results showed that FCFS reduced the
delay against the traditional traffic light signal by more than

90%. An improvement of FCFS also based on reservations
was proposed by Huang et al. [39]. They suggested that when
the intersection sent the denial of reservation, it also sent a
recommended deceleration speed to reach the stop line when
the vehicle stopped. Furthermore, this algorithm separated the
vehicles into three groups according to their current and past
status. The proposed algorithm was compared to a round-
about and a traffic light, but not to the original FCFS. The
results showed a reduction in delay of 85%, and a reduction
in fuel consumption of 50%.

Because FCFS does not consider any mechanism for
grouping (batching) requests that have the same direction,
several enhancements have been proposed [37], [40] where
batching of requests was used to improve the flow of the
intersection, either by having more requests to make smarter
decisions or by allowing vehicles in the same flow to pass in
batches. The results showed an improvement in both FCFS
and traffic light control, doubling the flow and reducing the
delay by 85%.

Other approaches to AVs control use mathematical opti-
mization to obtain right-of-way [41]–[45]. The results
achieved by these proposals were similar to the previously
shown algorithms. However, due to the solving characteris-
tics of these algorithms, the resolution complexity increases
significantly when the number of vehicles increases. Con-
sequently, these algorithms face a sizeable computational
complexity problem, making them unfeasible for the real-
time control of AIM. Using this approach, we can find the
work of Wu et al. [46]. In this work, the authors allowed all
movements in all lanes and developed two modules, one in
charge of deciding the temporal instant at which the vehicle
should enter the intersection and other in charge of deciding
in which entry lane the vehicle should be placed and which
exit lane it should take. This work followed a Mixed-Integer
Linear Programming (MILP) problem approach to solve the
proposed set of equations and constraints. The results showed
the goodness offered by the AIMs; however, due to the
approach followed, there are many open problems. A heuris-
tic approach was followed in [47]. In this case, the authors
used this approach to resolve spatiotemporal conflicts in AVs.
They followed an approach that modeled the conflict points
within the intersection as points of interest. The SUMO tool
was used to simulate vehicle behavior. The results showed
that the proposed system offered a shorter vehicle waiting
time than other IM schemes and traffic light-based systems.
Additionally, there are other novel algorithms motivated by
different fields, such as those inspired by auctions [48], those
that use ant colony-based optimization [49], or those that use
a Monte Carlo tree search to obtain the order of priority to be
assigned to vehicles [50].

Although previous studies showed promising results,
Levin et al. [51] demonstrated that further study of the
proposed algorithms is necessary because, under certain
situations, FCFS may present inappropriate behaviors that
can lead to inappropriate results. Control policies require a
detailed and in-depth study before they become operational
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in real control systems. Furthermore, as can be seen, all the
proposed algorithms are based on simple approaches, which
do not analyze the past or future behavior of the intersection
or consider the consequences of actions taken in future states.
One approach that may be considered for this purpose is the
use of RL for vehicle control.

If we focus on RL, very few works have applied this tech-
nique in AIM, although it has been widely studied to address
traffic light control [52]–[58]. The work proposed by Wu et
al. [59] is interesting. Their proposal calculates the priority
order to be assigned to each vehicle using Multi-Agent RL
(MARL). The results compared with FCFS and with a variant
proposed by the same authors, namely Longest-Queue-First
(LQF), showed that the use ofMARL could obtain a sequence
of decisions that reduced the delay by more than 60%.

An approach based on DRL can be found in [60]. In this
case, the authors employed an ego-centric policy trained by
RL and attention learning mechanisms to develop an inter-
section control system. The results showed that the policy
outperformed other control systems under different traffic
conditions. However, this approach leaves the control to each
vehicle individually, and therefore, it cannot exploit all the
advantages that AIMs can offer, i.e., the benefits of centraliz-
ing the knowledge in a centralized agent of all AVs. Another
work that applied DRL can be found in [61]. In this case,
the proposal models different types of AVs with different
behaviors and through a game model based on cognitive
hierarchy, allows the AVs to adapt to the reactions of the other
AVs. Although these results are promising, it is necessary
to study the performance of the proposed solution in more
complex environmentswithmore lanes and a higher vehicular
flow.

In our humble opinion, it makes perfect sense to use RL to
control AVs at intersections. Using RL, the system can learn
and gain in-depth knowledge of AV control through trial-and-
error. In addition, we expect that RL will provide a safer and
faster solution that helps overcome the limitations of existing
AIM algorithms.

B. LEARNING FROM DEMONSTRATIONS
RL allows solving complex problems and provides advanced
control policies. Although there are many techniques for
agent optimization, one technique called Learning from
Demonstrations (LfD) has generated significant interest in
recent years. This technique allows the pre-training of a
policy quickly utilizing demonstrations of an expert and later
applies RL to find another policy that improves the expert’s
policy, as described in [14]. In that work, the DQN algorithm
was adapted to incorporate expert demonstrations. The results
showed a notable boost in speed up training, allowing to fulfill
the tasks of Atari Games much earlier and finding a better
policy than those offered by human demonstrations.

DDPG from Demonstrations (DDPGfD) was proposed
in [15] to control agents in continuous action spaces by incor-
porating demonstrations. The demonstrations and actions
performed by the agent were stored in a replay buffer for

an unlimited time. The results showed the benefits of LfD:
the obtained policy performed the tasks more efficiently than
demonstrations and solved the tasks between 2-4× steps less
than DDPG.

Another approach proposed over DDPG was presented by
Nair et al. [16], where they used the Hindsight Experience
Replay (HER) as a replay buffer sampling method. They
obtained an order of magnitude improvement in speed up
over RL on simulated robotic tasks. Finally, Jing et al. [62]
investigated the problem of learning with imperfect expert
data. The results of their proposal revealed the rapid learning
of a control policy that improved on other proposed methods.

All of these learning techniques rely on the existence of an
expert agent that can be used to obtain demonstrations (states
and actions). For the design of newAVs control systems, there
are numerous simulators, such as SUMO [17], CARLA [63],
or VISSIM [64]. However, due to the inherent design of these
simulators, there is no trained expert agent from which to
obtain demonstrations. Therefore, we decided to investigate
the opportunity to train an agent that we can ask (Oracle)
while training a controller (through TD3) to control AVs. As a
result, we propose in this paper a new method called TD3
from Oracle Demonstrations (TD3fOD).

IV. TD3 FROM ORACLE DEMONSTRATIONS—TD3FOD
Our method combined TD3 with demonstrations extracted
from an expert (Oracle). The Oracle is trained by BC to
continuously obtain demonstrations, optimizing the extracted
knowledge and improving and speeding up the learning pro-
cess. In this section, we describe our method and evaluate
these insights through our experiments.

Our algorithm presents as a novelty theOracle from which
to obtain new demonstrations. This Oracle is trained using
the collected experiences of the expert and modifies the
parameters of πθ (TD3 actor) using soft_update (soft-copy
of the parameters). This soft_update is inspired by that used
by Mnih et al. [2]. In this case, the weights of πθ network
(θπactor ) are updated as depicted in (2).

θπactor=τ1 · θ
π
oracle+(1−τ1) · θ

π
actor with 0 < τ1 < 1 (2)

By employing soft_update, we force the actor to learnmore
slowly than the Oracle, thereby increasing the stability of the
training. To adjust the importance that the Oracle has on the
actor, we assume that the parameter τ1 decreases smoothly
along the simulations following (3).

τ1 = sigmoid
(
−
sim− th
th/5

)
(3)

The th parameter adjusts the smoothness and the number
of simulations from which we consider that the learning
through RL has more importance than the learning done by
the soft_update of the Oracle.
As can be seen in (3), at the beginning of the training

(sim ∈ 1, 2, . . . ,Nsimulations), the parameters of πθ will be
very similar to Oracle (being τ1 practically 1). However,
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FIGURE 3. Evolution of τ1 and τ2 in function of th parameter.

the importance that Oracle has in the changes to πθ is pro-
gressively reduced until the number of simulations (sim) �
th, where τ1 is practically equivalent to 0 and cancels the
first term of (3), canceling the changes in πθ due to Oracle
soft_update. This evolution is illustrated in Fig. 3.

In addition, our algorithm improves TD3 in several aspects:

1) The error equation is modified so that the importance of
the error produced by the RL actions increases progres-
sively. More specifically, we modified (1) (which was
used to update πθ ), and the new form is shown in (4),
where the factor τ2 controls the relevance of Qφ1 (Q-
values of critic Q1) over the update of πθ . τ2 is given
by (5). The evolution of both τ1 and τ2 throughout the
simulations are shown in Fig. 3.

∇θ
1
B

∑
s∈B

τ2Qφ1 (s, πθ (s)) (4)

τ2 = 1− τ1 (5)

2) Incorporation of two replay buffers: one for Imitation
(Oracle training) and one for RL. Moreover, these
buffers use PER to speed up training by using the
experiences from which each network can learn more
information. Although PER is a technique used for RL,
the original PER paper [65] suggests that it can also be
employed in supervised learning.

3) The Oracle has been added to provide an expert agent
to obtain new demonstrations because the simulator
does not have this feature. This Oracle was trained
using BC from the experiences extracted from the
simulator. These experiences are stored in the Imita-
tion replay buffer (with a fixed size). New experiences
replace older ones when the buffer is full.

4) Finally, we add an exponential increase factor (β) that
allows πθ to control the vehicles spontaneously and in
an incremental way; meaning that for each timestep,
there is a probability that πθ carries out the control
of the vehicles instead of the simulator (expert). This
probability increases smoothly over time until a sim-
ulation where πθ always controls all vehicles. This
operation offers more stability at the beginning of train-
ing and a gradual and smooth transition from BC to
RL. Furthermore, because there is a small probability
that the action will be taken by πθ and not by the

Algorithm 1 : TD3fOD
Input: env Environment; θπactor initial actor policy
parameters; θπ

′

actor initial actor policy target parameters.
Input:φQ1 initial Q1-function parameters;φQ

′

1 initial Q1-function
target parameters.
Input:φQ2 initial Q2-function parameters;φQ

′

2 initial Q2-function
target parameters.
Input: θπoracle initial Oracle policy parameters; Dimitation Imita-
tion replay buffer; Dreinforcement Reinforcement
replay buffer; p coeff to expert decay;
warmup_simulations number of simulations to pre-train
actor, Q-functions, and Oracle; imitation_learn_every
every each timestep run imitation_module;
reinforcement_learn_every each timestep
run reinforcement_module;

1 for simulation sim ∈ {1, . . . ,Nsimulations} do:
2 # run simulation(sim):
3 β = psim−warmup_simulations

4 for timestep t ∈ {1, . . . ,Maxepisodie} do:
5 expert_control = True if random (0, 1) < β else False
6 obtain state st ∀ agent
7 if expert_control then:
8 # Expert1 selects the actions at ∀ agent
9 else:
10 # Actor selects the actions at ∀ agent
11 at = πθ (st )
12 env.actions(at )
13 end if
14 # Get next state and reward ∀ agent
15 rt , dt , st+1 ← env.step()
16 if expert_control then:
17 # Obtain at comparing st and st+1 ∀ agent
18 # Store (st , at ) in Dimitation

19 end if
20 # Store transition

(
st , at , rt , st+1, dt

)
in Dreinforcement

21 if t mod imitation_learn_every = 0 then:
22 run imitation_module(sim)
23 end if
24 if t mod reinforcement_learn_every = 0 then:
25 run reinforcement_module(sim)
26 end if
27 end for
28 end for

expert (being able to consider a kind of ‘‘sticky actions’’
or noise actions), the proposed procedure allows the
Oracle to explore a large set of states at the start of the
training, with all of the benefits that this can offer and
reduce the compounding errors.

The complete TD3fOD algorithm is divided into Algo-
rithms 1, 2, and 3.

V. EXPERIMENTAL SETUP
Our algorithm focuses on simulators or environments in
which there is no expert to ask or obtain feedback about past
experiences (although it is possible to obtain new demonstra-
tions).

1We can’t ask to an expert to obtain the actions.

VOLUME 10, 2022 53607



A. Guillen-Perez, M.-D. Cano: LfOD—New Approach to Develop AIM Control Algorithms Based on Multiagent DRL

Algorithm 2 : Imitation Module
# Run imitation module (sim):

1 for epoch e ∈ {1, . . . ,Nimitation_epochs} do:
2 for mini_batches B in Dimitation do:
3 actions, states = unzip(B)
4 actions_pred = πoracle(states)
5 # Update Oracle params (θπoracle) with one step of

gradient descent.
6 end for
7 end for
8 # soft_update(πoracle, πθ , τ1):
9 θπactor = τ1 · θ

π
actor + (1− τ1) · θ

π
oracle

Algorithm 3 : TD3 Reinforcement Module
# Run reinforcement module (sim):

1 for epoch e ∈ {1, . . . ,Nreinforcement_epochs} do:
2 # Sample a mini_batch B from in Dreinforcement

3 st , at , rt , st+1, dt = unzip(B)
4 a′t =

(
π ′θ (st )+ ε

)
.clamp(amin, amax )

5 # Update Q-functions parameters φQ1 and φQ2 as in TD3
6 if e mod update_actor_every = 0 then:
7 τ2 = 1− τ1
8 # Update actor policy with one step of gradient ascent

with equation 4 and using τ2
9 # Update target networks as in TD3 and using τ3
10 # soft_update(φQ1 , φ

Q′

1 , τ3)

11 # soft_update(φQ2 , φ
Q′

2 , τ3)
12 # soft_update(πθ , π

′
θ , τ2)

13 end if
14 end for

However, because the controller is internally modeled and
cannot be accessed due to the nature of the simulator (lack
of an API and/or closed-source software licensing), our algo-
rithm exploits new demonstrations to build an expert to ask
(Oracle) and then train a new control system by RL via LfD.
By taking advantage of the benefits offered by LfD, training
can be greatly accelerated and improved. For example, a sim-
ulator with these characteristics is SUMO [17]. SUMO is a
microscopic traffic simulator where each vehicle is explicitly
simulated and is widely used by the scientific community and
urban planners to obtain better traffic controllers or optimize
existing ones. Therefore, we decided to use this simulator
in this study. TD3fOD was programmed in Python 3.7 and
Pytorch 1.5.0. A 16-core processor was used as the CPU,
together with an NVIDIA 2080TI GPU.

A. RAIM OVER TD3FOD (RAIMFOD)
TD3fOD was used to train RAIM [11], an algorithm devel-
oped for AIM systems. RAIM can control the speed of
AVs in the surroundings of intersections so that the flow
and safety of these vehicles can be notably increased, sig-
nificantly reducing waiting time, pollutant emissions, and
consumption of both fuel and power electricity. RAIM lever-
ages the advantages provided by MADRL, to find a policy
to control vehicles intelligently, collectively, and collabora-
tively. RAIM belongs to MADRL’s centralized trained and

FIGURE 4. Representation of simulated intersection with 4 approaches
and 3 lanes/approach, where the movements go straight, turn right, and
turn left are allowed.

centralized execution cooperative approach, where vehicles
send their states to the AIM. The AIM obtains the action for
each AV (centralized training and execution in the AIM) with
a common goal [19].

In the original study, RAIM was trained through
curriculum-based learning, increasing the simulated vehicle
flow when some stability in the results was achieved. The
proposed solution optimized the system but required a large
number of simulations and a considerable training time.
Using TD3fOD, we aim to accelerate learning and reduce
the number of simulations without using curriculum-based
learning. This new approach is called RAIM from Oracle
Demonstrations (RAIMfOD). The network architecture for
both actors and critics consisted of four fully connected layers
(448, 128, 50, and 1 neuron for each layer). The input of
the network includes the characteristics of the vehicles to
be controlled (e.g., position, speed, route, lane, etc.), and the
output indicates the speed at which the vehicle should drive
during the next time interval. These features, as well as the
inner workings of RAIM, can be seen in more detail in the
original RAIM article [66].

B. TRAINING SCENARIO
The training scenario was used to optimize TD3fOD/RAIM
fOD. This scenario consisted of an intersection of four
branches and three lanes for each branch, where it was
allowed to turn left, turn right, and go straight with one
movement for each lane. A representation of the simulated
intersection is shown in Fig. 4.

As a reward signal, the following sparse reward was
designed. Each agent (vehicle) received each timestep:
+10 (strong positive reward) when the vehicle crossed the
intersection, −10 (strong negative reward) when the vehi-
cle collided with another vehicle, and -timestep otherwise
to promote crossing the intersection as quickly as pos-
sible. Table 1 includes the hyperparameter values. These
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TABLE 1. Parameters used.

hyperparameters and the reward values were selected empir-
ically, offering notable performance and a stable training
process.

C. TESTING SCENARIO
A testing scenario was incorporated to test the ability of our
algorithm to address never-before-seen scenarios. For this
purpose, a scenario with a traffic distribution that presents
multiple variations was proposed, with low (500 veh/h),
medium (1000 veh/h), and high (2000 veh/h) flows. In addi-
tion, it presented asymmetric and symmetric traffic regarding
the branches of origin, North/South (N/S) and West/East
(W/E). The intersection was the same as in the previous
scenario, with three lanes, where left, right, and straight turns
were allowed. Fig. 5 shows the time distribution of the simu-
lated flow. The algorithms used to compare the performance
of RAIMfOD were: no control, a stop signal, a fixed-time
traffic light algorithm with total cycles of 30, 60, and 90 s,
iREDVD [67] (a traffic light algorithm based on queueing
theory), the previous RAIM algorithm and the direct imple-
mentation of RAIM with DDPGfD [15].

The following key performance metrics were used to com-
pare the different algorithms: travel time, waiting time, time
loss due to congestion, and pollution and consumption met-
rics (CO, CO2, HC, PMx, NOx, and fuel and electricity). The
vehicle distribution used was 35% diesel cars, 35% gasoline
cars, and 30% electric cars, with zero emissions.

VI. RESULTS
This section shows the results obtained in both the training
and testing scenarios.

FIGURE 5. Flow test scenario distribution.

FIGURE 6. Training results. (a) Episode reward evolution (b) Time Loss
evolution. RAIM with TD3fOD was able to learn a robust policy faster
than the original RAIM. We plot the smoothed mean with an exponential
moving average and a 90% confidence interval across 3 seeds.

A. TRAINING SCENARIO
Fig. 6 depicts the reward of each episode throughout the sim-
ulations and the average time loss for each vehicle in the
training scenario. The time loss is due to driving below the
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TABLE 2. Results in the testing scenario.

ideal speed and is defined as follows: total_duration ∗ (1 -
speed/ideal_speed). The results showed significant improve-
ments in several aspects.

The main improvement is the increase in training speed,
which reduced by 5 to 6 times the number of simulations
required to achieve even better performance than the original
DRL TD3 (RAIM), with a reduced variance of the results
and a much more stable and robust policy. Compared to
DDPGfD, it can be seen that the use of the Oracle to extract
feedback and the improvements proposed in TD3 allow a
threefold increase in speedup and considerably reduce the
variance in the control behavior of the trained RAIM policy.
As shown in Fig. 6b, RAIM with TD3fOD (RAIMfOD) can
reduce the time loss to less than 20 s over 200 simulations.
Comparatively, the original RAIM must train more than
1500 simulations to obtain a policy that reduces time loss by
20 s. Fig. 6b depicts the reward metric. As it can be seen,
it reduces the number of simulations by more than x6, accel-
erating the training of new advanced control systems. Finally,
a comparison of the training results with those obtained using
traditional control techniques shows that themetrics aremuch
better with RAIM and RAIMfOD.

In Fig. 6a and 6b, there are three different phases of RAIM-
fOD training. The pre-training began between simulations
0 and 100, filling the Imitation and RL replay buffers. The

pre-training ended from simulation 100 to simulation 250,
and RAIMfOD started. This situation can be seen in the shift
in the metrics’ trend over 100 iterations. In this range of simu-
lations, the transition between learning by ‘‘soft-copying’’ the
Oracle and the RL of TD3 begins, with the simulator taking
more actions and the actor in TD3 acting as a ‘‘sticky action.’’
From simulation 250 onwards, the τ1 and τ2 curves cross each
other, andmost of the actions are carried out by the TD3 actor,
allowing us to find a better control policy to further optimize
the results. This highlights the notable performance of LfOD,
allowing the achievement of a policy that outperforms that
offered by the expert through a smoothed step from a pre-
trained policy made by the Oracle to the policy learned by
RL.

B. TESTING SCENARIO
We demonstrate the ability of our algorithm to generalize and
adapt to new situations in the testing scenario. This illustrates
the benefits offered by MADRL and LfOD. The results are
presented in Table 2. In this table, it can be seen that RAIM
with TD3fOD and original RAIM obtain very similar results,
demonstrating that both algorithms find solutions with very
notable performance, but RAIMfOD finds a policy much
earlier and with a much lower variance because of LfOD,
as can be seen in Fig. 6.
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From the results included in Table 2, we confirm a reduc-
tion in the time loss between 95% and 86%, and a reduction
in waiting time between 97% and 93%. This represents a
reduction in travel time of between 72% and 53%. Regarding
the emission of pollutant gases, we see that a significant
improvement has been achieved in all metrics, decreasing all
studied variables by over 50%. Finally, in terms of vehicle
fuel and electricity consumption, a reduction of between 29%
and 5% is achieved for combustion vehicles, and between
34% and 24% for electric vehicles. These results indicate the
potential of LfOD and MADRL systems for the control of
AVs using a centralized approach.

C. DISCUSSION
The results obtained in this work demonstrate the benefits
of using MADRL with TD3fOD to solve different real prob-
lems. This solution has the potential to solve these problems
in real-time, decreasing the time needed to train new sys-
tems, and improving the performance of existing ones. The
TD3fODmethod can find a policy that significantly improves
the results obtained by traditional training techniques, result-
ing in more stable and robust policies.

When comparing the performance of RAIMwith TD3fOD
(RAIMfOD) with the performance of the original RAIM,
we observe that the learning performance of RAIMfOD is
between ×5 and ×6 faster, and the variance of the results
is substantially smaller. Moreover, when compared to RAIM
with DDPGfD, we can see that thanks to the advantages
offered by TD3, as well as the use of the Oracle, we can
reduce the number of simulations by up to ×3, also signif-
icantly reducing the variance of the policy during training.
Finally, if we look at the testing scenario, we see that the
analyzed metrics outperform the original RAIM, showing the
robustness of the proposed algorithm in scenarios never seen
before, obtaining an improvement of between 72% and 53%
in travel time and a reduction in waiting time of between 97%
and 93%. In addition, in most cases, emissions of polluting
gases are reduced by more than 50% and energy or fuel
consumption by almost 30%.

VII. CONCLUSION
The success of AVs depends on advances in various driving
and control system components, and the understanding and
handling of unpredictable situations that can arise in complex
driving environments. The application of MADRL allows
the development of dynamic systems capable of adapting to
many conditions, acting collectively and proactively, antici-
pating dangerous situations and ultimately preventing acci-
dents and increasing flow. LfD can provide a simple way
to find adaptive control policies capable of solving highly
complex tasks in different fields of work, such as teach-
ing robots how to walk, navigate through dangerous traf-
fic, manage the presence of obstacles, avoid collisions with
other road users, and perform safe and efficient maneuvers at
intersections.

To enable the use of an expert’s demonstrations in environ-
ments where the expert is not accessible, we propose in this
work the use of an Oracle in LfD, obtaining LfOD. The Ora-
cle is trained by Imitation Learning; thus, it can be employed
to teach from demonstration an agent using RL. This original
approach facilitates the use of LfD in environments where no
expert is available to obtain feedback. In this way, an agent
can be trained much more quickly, achieving a better policy
than the expert can offer and presenting a lower variance in
the results.

TD3 was the algorithm modified to use the demonstrations
offered by Oracle. Following the nomenclature used in the
algorithms developed for LfD, we called the new proposal
TD3 from Oracle Demonstrations (TD3fOD). The modifi-
cations made to TD3 were: i) incorporation of an Oracle
trained by Imitation Learning from the states extracted from
the simulator; ii) inclusion of several parameters for a smooth
and progressive transition between LfOD and RL; and iii)
use of two replay buffers, one for demonstrations to train
Oracle and the other for RL, in addition to the use of PER
to speed up learning. TD3fOD was applied to the SUMO
traffic simulator to speed up the learning of an AIM system.
The only AIM to date that used RL was RAIM, and for
this reason, this algorithm was used above TD3fOD (RAIM
over TD3fOD). The results obtained in the training scenario
demonstrated that TD3fOD achieved more efficient learning
than TD3, finding a faster control policy and speeding up the
training by 5–6 times. In addition, the policy found offers
significantly lower variance, providing more robust results.
Furthermore, it outperforms the policy shown by the expert.
TD3fOD also achieved good results in the testing scenario,
improving those obtained by RAIM in all studied metrics and
with a lower variance. These results highlight the benefits of
using LfOD. RAIM over TD3fOD reduces the waiting time
between 97% and 93%, resulting in a reduction of up to 50%
in the emission of contaminating gases compared to other
traditional vehicle control techniques, such as traffic lights,
and other advanced techniques, such as iREDVD. Finally,
in terms of consumption, combustion vehicles reduce their
fuel consumption by up to 29% and electric vehicles by
34%. Moreover, if we compare TD3fOD with another LfD
algorithm, such as DDPGfD, we show that the use of the
proposed LfOD approach allows to speed up the training,
reducing the number of interactions with the simulator by up
to ×3.

Based on our proposal, it is possible to extract the hid-
den agent (learned by imitation with an Oracle) in those
simulators where it is not possible (or too complicated),
to take advantage of the benefits offered by LfD (training
acceleration and more robust policies) for the development
of new complex control algorithms. The proposed approach
for LfOD is applicable to different RL algorithms. One of
the main contributions of this work is the development of
an expert agent (Oracle) in environments where it does not
exist to take advantage of LfD, as well as the incorporation
of this approach in the TD3 DRL algorithm, making severe
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modifications in TD3 to adapt the training process to the
presence of Oracle.
As future work, we plan to include multiple hierarchical

systems that enable level-based control of different actors in
a complete network of traffic intersections and explore the
development of new algorithms that can use LfOD in other
domains.
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