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Abstract The micro-geometry of the tooth surfaces of spiral bevel and hypoid pinions has to be fine-
adjusted to obtain enhanced meshing and contact characteristics during the meshing process with their
corresponding mating gears. In this paper, a new methodology is proposed to design face-milled spiral
bevel gear drives to, firstly, derive favorable orientation and dimensions of the contact pattern between
the mating surfaces of the gears and, secondly, obtain a predesigned parabolic function of negative
transmission errors with limited magnitude of maximum transmission errors. The proposed approach
is based on the definition of the desired topography for the active surfaces of the pinion followed by a
numerical derivation of their finishing machine-tool settings through a bound-constrained optimization
algorithm. Increasing mechanical strength and reducing the levels of noise and vibration of face-milled
spiral bevel gear drives constitute the main objectives of the proposed design process. A numerical
example is provided to illustrate the applicability of the developed theory.

Keywords Gear geometry, face-milled spiral bevel gears, finishing-cutting, gear surface topography,
bound-constrained optimization

1 Introduction

Spiral bevel gear drives are applied in a wide field of applications for power transmission between
intersected axes, basically due to its uniform and quiet performance together with high load carrying
capacity [1–4]. Gear industry is demanding new design methodologies of this type of gear drives to
increase the load carrying capacity and power-to-weight ratio, reduce levels of noise and vibration,
absorb gear misalignments and increase durability and mechanical efficiency.

Derivation of machine-tool settings involved in finishing operations of mating members of both
spiral bevel and hypoid gear drives has been the main objective of many research works during the
last two decades. Local synthesis was probably the first proposed technique to be part of an integrated
computerized approach for optimal design of low-noise adjusted bearing contact face-milled spiral bevel
gear drives. It lets derive the pinion finishing machine-tool settings providing predesigned contact
characteristics at a chosen contact point belonging to the driven active surface of the gear member
of the gear set [2,3,5]. In [6], the introduction of a modified radial motion (MRM) as supplemental
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flank correction motion to improve the adjustability of contact pattern in face-milled spiral bevel gear
drives was proposed. Some approaches based on the definition of a predesigned ease-off topography
were presented in [7–9]. In [10–13], mathematical nonlinear optimization algorithms were used with
the aim of identifying finishing machine-tool settings for the manufacturing of spiral bevel and hypoid
pinions provided with enhanced mechanical properties: optimal contact pattern, minimum level of
peak-to-peak transmission errors and maximum mechanical efficiency. In [14,15], analytical procedures
of derivation of finishing machine-tool settings corresponding to face-milled or face-hobbed spiral and
hypoid bevel gears from their blank geometries were proposed.

Different methods of correction of finishing machine-tool settings corresponding to both spiral bevel
and hypoid gears have been also proposed. In [2,16–19], the aforementioned methods were based on
the information provided by a coordinate measuring machine (CMM), and took into account the tooth
surface errors originated from machining dynamic behavior and machine-tool tolerances.

In this work, a computational approach for the numerical determination of finishing machine-tool
settings corresponding to the pinion member of fixed-settings face-milled spiral bevel gear drives is
proposed. It is based on the definition of an objective geometry that takes into account a predesigned
function of transmission errors and the desired contact pattern, therefore following predesigned to-
pographies of the objective surfaces. A numerical example will show the effectiveness of the proposed
procedure of design of face-milled spiral bevel gears.

2 Basic ideas of the developed approach

The developed approach is based on the following ideas:

– The gear member of the spiral bevel gear set is considered as given. The machine-tool settings
for the gear can be obtained from an existing summary of machine-tool settings or theoretically
obtained by the approach presented in [14,15]. For that, the blank data can be obtained by following
the procedure presented in ANSI/AGMA 2005-D03 [20] and ANSI/AGMA ISO 23509-A08 [21].

– The pinion member will be obtained considering the mating gear as generating tool. In the process
of generation of the pinion, a predesigned function of transmission errors of a limited maximum
value will be considered to meet the conditions of a low noise and vibration gear drive.

– The potential contact lines between the pinion and gear will be determined. Those potential
contact lines will be modified to provide a localized contact pattern in the desired direction.
By considering the deviations obtained during the process of modification of the potential contact
lines, an objective topography for the contacting surfaces of the pinion is obtained.

– Finally, by using a bound-constrained optimization algorithm, the machine-tool settings corre-
sponding to the closest manufacturable pinion tooth surfaces are obtained.

Each of the previous items is a step in the proposed procedure of design and will be further
described in the following sections.

3 Geometry of the spiral bevel gear

As mentioned above, the geometry of the gear member of the gear set is considered as given. Essentially,
the gear tooth surfaces are generated computationally as the envelope to the family of positions
of a spread-blade face-milling cutter represented in coordinate system Sg (xg, yg, zg), fixed to the
spiral bevel gear. Consequently, these surfaces are expressed mathematically by means of a system
of nonlinear equations given by Equation (1), which is comprised of a vectorial equation (family of
generating surfaces in coordinate system Sg (xg, yg, zg)) and a scalar equation (equation of meshing).
In Equation (1), variables s and θ constitute the two surface parametric coordinates associated to
any point P belonging to the spread-blade face-milling cutter generating surfaces, ψg represents the
generalized parameter of rotation associated to the generation process of the gear and matrix Mgt (ψg)
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represents the coordinate transformation from coordinate system St (xt, yt, zt), fixed to the cutter, to
coordinate system Sg (xg, yg, zg), fixed to the being-generated gear.

rg(s, θ) ≡

{

rg (s, θ, ψg) = Mgt(ψg)rt(s, θ)

fg (s, θ, ψg) =
(

∂rg(s,θ,ψg)
∂s

×
∂rg(s,θ,ψg)

∂θ

)

·
∂rg(s,θ,ψg)

∂ψg
= 0

(1)

A detailed description of the computerized generation of face-milled spiral bevel gear drives can
be found in [2,3,5].

4 Generation of the pinion by its mating gear

The second stage of the proposed approach consists on the computational generation of the pinion.
The active tooth surfaces of the pinion are derived analytically using the active tooth surfaces of the
gear as generating surfaces under a predefined rolling condition to achieve a predesigned function of
transmission errors.

4.1 Applied coordinate systems

Figure 1 shows the applied coordinate systems for generation of the pinion, as well as simulation of
meshing and tooth contact analysis (TCA). A brief description of the coordinate systems is as follows:
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Fig. 1 Applied coordinate systems applied for generation of the pinion.

– Sf (xf , yf , zf ). This is the fixed coordinate system, and it is rigidly connected to the frame.
– Sp (xp, yp, zp). This movable coordinate system is attached to the pinion. The pinion rotation axis

coincides with the axis zp, which is collinear with axis zf , and its origin Op is located on the pinion
pitch cone apex.

– Sg (xg, yg, zg). This movable coordinate system is attached to the gear. The gear rotation axis
coincides with the axis zg, and its origin Og is located on the gear pitch cone apex.
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– Sbg
(

xbg , ybg , zbg
)

. This auxiliary coordinate system is rigidly connected to fixed coordinate system
Sf , and it lets to simulate the shaft angle Σ.

Angles φP and φG are the rotation angles of pinion and gear, respectively.

4.2 Geometry of the pinion tooth surfaces

The parametric representation of the family of the gear generating surfaces in coordinate system
Sp (xp, yp, zp) generated by the mating gear active surface rg(s, θ) (Eq. (1)) is given by

rp (s, θ, φP , φG) = Mpg (φP , φG) rg (s, θ) (2)

with matrix Mpg(φP , φG) being the coordinate transformation from coordinate system Sg(xg, yg, zg),
fixed to the spiral bevel gear, to coordinate system Sp(xp, yp, zp), fixed to the spiral bevel pinion, and
given by (see Figure 1)

Mpg (φP , φG) = Mpf (φP )MfbgMbgg (φG) (3)

Here,

Mpf (φP ) =









cosφP − sinφP 0 0
sinφP cosφP 0 0

0 0 1 0
0 0 0 1









(4)

Mfbg =









1 0 0 0
0 cosΣ sinΣ 0
0 − sinΣ cosΣ 0
0 0 0 1









(5)

Mbgg (φG) =









cosφG − sinφG 0 0
sinφG cosφG 0 0

0 0 1 0
0 0 0 1









(6)

Figure 2 shows the theoretical process of generation of a spiral bevel pinion by its mating spiral bevel
gear.

The equation of meshing for generation of the spiral bevel pinion by its mating gear allows the
envelope to the family of generating gear tooth surfaces to be obtained and it is expressed in differential
geometry [2] by

fp (s, θ, φP , φG) =

(

∂rP (s, θ, φP , φG)

∂s
×
∂rP (s, θ, φP , φG)

∂θ

)

·
∂rP (s, θ, φP , φG)

∂φP
= 0 (7)

The angle of rotation of the pinion, φP , is considered the generalized parameter of rotation associated
to the generating process.

4.3 Predesigning a parabolic function of transmission errors

According to the second stage of the proposed approach, the angles of rotation of pinion and gear,
given by parameters φP and φG in Eq. (7), will follow a modified roll polynomial function to provide
the gear set with a predesigned parabolic function of transmission errors. The use of polynomial
functions as motion curves provides several advantages in both hypoid and spiral bevel gear drives
to reduce noise and vibration by absorbing the almost-linear discontinuous functions of transmissions
errors caused by misalignments and reducing tooth mesh impacts during the process of load transfer
between consecutive pairs of contacting teeth [2,7,22]. Figure 3 shows the objective parabolic function
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Fig. 2 Theoretical generation of a spiral bevel pinion by its mating spiral bevel gear.
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Fig. 3 Predesigned parabolic function of transmission errors.

of transmission errors, with parameter ∆Φ representing the preset maximum level of transmission
errors. The angle of rotation of the generating gear φG as a function of the angle of rotation of the
pinion φP that provides the objective parabolic function of transmission errors as shown in Figure 3
is given by

φG(φP ) = m21φP −∆Φ

(

NP
π

)2
(

φP − φ
(M)
P

)2

(8)

where m21 is the inverse of the gear ratio of the gear set, determined as

m21 =
NP
NG

(9)

with NP and NG being the number of teeth of the pinion and gear, respectively. Angle φ
(M)
P in Eq.

(8) denotes the angle of rotation of the pinion during the generation of a point on the pinion tooth
surface by the mean contact point M defined on the generating gear tooth surface. Because φG is a
function of φP , the derivative ∂rP (s, θ, φP , φG)/∂φP in Eq. (7) has to take into account the derivative
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of φG with respect to φP , that is obtained as

dφG
dφP

= m21 − 2∆Φ

(

NP
π

)2
(

φP − φ
(M)
P

)

(10)

By considering the modified roll function given by Eq. (8), the generated surface of the pinion will
yield a negative parabolic function of transmission errors of the considered maximum level ∆Φ (Figure
3) during the meshing with the mating gear.

Simultaneous consideration of Equations (2), (7) and (8) allows the active surfaces of the spiral
bevel pinion to be determined and represented in coordinate system Sp (xp, yp, zp), by

rp(s, θ) ≡















rp (s, θ, φP , φG) = Mpg (φP , φG) rg(s, θ)

fp (s, θ, φP , φG) = 0

φG(φP ) = m21φP −∆Φ
(

NP

π

)2
(

φP − φ
(M)
P

)2
(11)

5 Determination and modification of potential contact lines

After application of Stage 2 of the proposed procedure, pinion and gear are in line contact and yield
a parabolic function of transmission errors when in mesh. Figure 4 shows the results of tooth contact
analysis of a pinion generated following a modified roll function as presented above and its mating
gear. The contact lines cover the whole surface of pinion and gear and the function of transmission
errors follows the predesigned shape and yield the maximum considered value ∆Φ. The results of tooth
contact analysis represented in Figure 4 were obtained considering only one pair of teeth in contact
and a rotation of the pinion corresponding to two cycles of meshing. If the angle of rotation of the
pinion is extended, the successive instantaneous contact lines will cover entirely the surfaces of the
pinion and wheel.
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Fig. 4 Results of tooth contact analysis of a pinion with its generating mating gear wherein modified roll was applied:
(a) contact lines on the pinion tooth surfaces, (b) contact lines on the gear tooth surfaces, and (c) predesigned function
of transmission errors.



Computational approach to design face-milled spiral bevel gear drives 7

The pinion tooth surfaces are in line contact with its mating gear that is also its theoretical
generating tool. In order to localize the contact and provide point contact (that will be extended into
an elliptical contact area with the elastic deformation of pinion and gear tooth surfaces), the approach
proposed in [8,9] is applied.

5.1 Orientation, positioning and sizing of the contact pattern

The desired contact path is defined on the radial projection of the pinion tooth surfaces (Figure
5). The contact path can assume any arbitrary geometrical curve although in this work, a line-type
contact path will be considered. Let M be the mean contact point on the pinion active tooth surface.
A coordinate system Or(ξ, ρ) with origin in point M is defined in the radial projection of the pinion
tooth surface, as shown in Figure 5, with axis ξ oriented along the axis z of the pinion and axis ρ
oriented in radial direction. Therefore,

ξ = zp, ρ =
√

x2p + y2p (12)

with xp, yp, and zp being the coordinates of any point of the pinion tooth surfaces in coordinate
system Sp fixed to the pinion. The desired contact path can be defined in coordinate system Or(ξ, ρ)
by angle µ that will take into account the bias of the contact path. The following equation gives any
point on the desired path by means of its coordinates ξ and ρ

ρ− ρM = − tan(µ)(ξ − ξM ) (13)

Desired contact path

ρ

ξΜ

Or

γ
µ

ν

p

Pinion pitch line

Fig. 5 Definition of the desired direction of the contact path on the radial projection of the pinion tooth surfaces.

Angle µ is given by

µ = γp − ν (14)

being ν the bias with respect to the longitudinal direction of the contact path, defined along the pitch
cone of the pinion. Angle γp is the pitch angle of the pinion.

A grid is now defined on the radial projection of the pinion tooth, as shown in Figure 6, with N
points in profile direction andM points in longitudinal direction. Deviations on the radial projection to
yield the desired dimensions of the instantaneous contact ellipses has to be computed by determining
the distances from each node of the radial grid to the contact path along the potential contact lines
passing through the considered node of the radial grid.
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If a point P on the radial grid is located at a distance a from the desired contact path, being 2a
the chosen length of the major axis of the instantaneous contact ellipses, the deviation of the objective
surface should be equal to the virtual marking compound thickness, commonly considered equal to
0.0065 millimeters. By considering a quadratic dependence of the deviation δ on the distance d along
the potential contact line, δ will be given in millimeters by

δ =
0.0065

a2
d2 (15)

Let us consider now a generic point P on a node of the radial grid, which will be defined by its
radial projection coordinates ξP and ρP , and a generalized parameter of rotation of the pinion φP . The
point of intersection Pcp of the potential contact line passing through point P and the contact path
has to be determined, knowing that the generalized parameter of rotation of the pinion for generation
of point Pcp is equal to φP . The condition that point Pcp lies on the desired contact path, given by
the following equation, has to be observed:

ρPcp
− ρM = − tan(µ)(ξPcp

− ξM ) (16)

Distance between points P and Pcp can be approximated to be lineal along the potential contact
line, and therefore the determination of the distance d will be obtained as

d =
√

(ρP − ρPcp
)2 + (ξP − ξPcp

)2 (17)

ρ

ξΜ
Or

P

cpP

Fig. 6 Towards determination of distance between generic point P and point Pcp located on the desired contact path
and same potential contact line.

Repeating the described procedure for all points of the radial grid, the deviations corresponding
to the objective geometry of the pinion active tooth surfaces are obtained at all points of the radial
grid defined on the pinion tooth surfaces. The computed deviations have to be added to the geometry
of the pinion that considers the modified roll for the predesigned function of transmission errors along
the normal to the surface on all points of the radial grid and in this way, the objective geometry is
obtained.
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6 Determination of the closest manufacturable pinion tooth surfaces

At this point, the ideal surfaces for the pinion teeth have been designed, yielding the desired contact
pattern, contact path direction, and predesigned function of transmission errors. However, those sur-
faces have to be manufactured and for that, the machine-tool settings corresponding to the closest
manufacturable tooth surfaces of the spiral bevel pinion have to be determined.

The algorithm of Levenberg-Marquardt (LM) with a trust-region strategy has been applied to
minimize the deviations between the objective and the manufacturable pinion tooth contact sur-
faces. It consists of an iterative algorithm used in nonlinearly bound-constrained and unconstrained
optimization problems in which the objective function is formulated in terms of least-squares. The
LM algorithm belongs to the family of second derivative unconstrained methods, and constitutes an
improvement of the Newton’s method for nonlinear least-squares problems [23–27].

6.1 Definition of the optimization problem

In this optimization problem, the objective surface constitutes the spiral bevel pinion member active
surface given by the final desired topography.
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np

Sp,CC

Sp,CC

Pp,CV
Pp,CV

np

Sp,CV

Sp,CV

(a) (b)

*

*

*

*

Heel

Toe Heel

Toe

Objective surface

Manufacturable 

surface Manufacturable 

surface

Objective surface

Fig. 7 Schematic representation of manufacturable surfaces and objective surfaces for the fixed-settings face-milled
spiral bevel pinion: (a) tooth concave active surface; (b) tooth convex active surface.

Figure 7 shows a representation of the problem approach. Both objective tooth active surfaces
have been discretized into regular numerical grids comprised of N points in profile direction and M
points in lengthwise direction. The objective active surface Σ∗

p , as obtained in the previous section,
will be expressed in coordinate system Sp (xp, yp, zp) by r∗p. Additionally, the active surface Σp finished
through the face-milling fixed-settings cutter can be depicted in the same coordinate system by rp(s, θ),
and it can be generated through the following system of nonlinear equations, similar to Equation (1):

rp(s, θ) ≡

{

r
(P )
p (s, θ, ψp) = Mpt(ψp)rt(s, θ)

fp(s, θ, ψp) =
(

∂rp(s,θ,ψp)
∂s

×
∂rp(s,θ,ψp)

∂θ

)

·
∂rp(s,θ,ψp)

∂ψp
= 0

(18)

The normal deviations between both, the objective tooth active surface and the manufacturable
active surface, ∆n, can be expressed by

∆n(s, θ) =
(

r∗p − rp(s, θ)
)

· np(s, θ) (19)



10 Alfonso Fuentes-Aznar and Ramon Ruiz-Orzaez and Ignacio Gonzalez-Perez

where np(s, θ) represents the unit normal vector to the manufacturable active surface and is calculated
as

np(s, θ) =
∂rp(s,θ)
∂s

×
∂rp(s,θ)
∂θ

∣

∣

∣

∂rp(s,θ)
∂s

×
∂rp(s,θ)
∂θ

∣

∣

∣

(20)

Equation (19) can be singled out for each point (i, j) belonging to the aforementioned numerical
grid through the following equation

∆ni,j (si,j , θi,j) =
(

r∗p − rp (si,j , θi,j)
)

· np (si,j , θi,j) ∀

{

i = 1, 2, . . . ,M

j = 1, 2, . . . , N
(21)

i=1

i=N

j=1

j=M

Fig. 8 Regular discretization grid of tooth active surface on radial projection.

Position vector r∗p is computed at the intersection point of the normal np(s, θ) with the objective
surface pinion active tooth surface Σ∗

p . Once the deviations are computed for all points of the radial
grid (Figure 8), a numerical procedure to minimize those deviations ∆ni,j between the objective spiral
bevel pinion active tooth surface Σ∗

p and the manufacturable surface Σp by a fixed-settings cutter is
applied.

The first stage of the optimization process is to set up the generalized nonlinear bound-constrained
optimization problem, which has been formulated in Equation (22). An objective function f(x) : Rn →
R, which is laid out as sum of squares of m smooth functions rj(x) : R

n → R (∀j = 1, 2, . . . ,m) called

residuals, is required to be minimized (ideally nulled). Vector r(x) = [r1(x), r2(x), . . . , rm(x)]
T
: Rn →

R
m constitutes the residual vector, while vector x = [x1, x2, . . . , xn]

T ∈ R
n contains the independent

optimization variables. Besides, the set Ω constitutes a subset of Rn denominated the constraint set
or feasible set.

{

Minimize f(x) = 1
2r(x)

T r(x) = 1
2 ‖r(x)‖

2
= 1

2

∑m

i=1 r
2
i (x), m ≥ n

subject to x ∈ Ω
(22)

Next, variable vector x, objective function f(x), and set of constraints Ω contained in Equation
(22) will be singled out for the optimization problem.

– Vector of optimization variables x is comprised of all or, at least, some of the machine-tool settings
involved in the finishing process of the considered spiral bevel pinion active surface. Consequently,
the complete variable vector is defined in (23). Furthermore, those finishing machine-tool settings
not considered in the optimization process will be fixed.

x =
[

∆XD ∆XB ∆Em Sr q mwc C D E r α ρ
]T

(23)

Here, ∆XD is the machine center to back, ∆XB is the sliding base, ∆Em is the blank offset, Sr is
the radial distance, q is the cradle angle, mwc is the velocity ratio, C, D and E are the modified
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roll coefficients, r is the blade point radius, α is the blade profile pressure angle, and ρ is blade
edge radius. A detailed description of these machine-tool settings can be found in [2].

– The objective function has been set out as the sum of squares of distances between the objective
and best-fit manufacturable active surfaces measured in every point of the regular numerical grid
of surface discretization. Accordingly, the objective function can be expressed through Equation
(24).

f(x) ≡
1

2

M
∑

i=1

N
∑

j=1

∆n2
i,j (si,j , θi,j ,x) (24)

– The set of mathematical constraints has been established in order to avoid, firstly, deriving unreal
geometric dimensions of the finishing face-milling fixed-settings cutter and, secondly, surpassing
the physical limits of the hypoid gear generator. These finishing machine-tool setting constraints
must simultaneously fulfil some restrictions, as follows:

α ≥ 0 (25a)

r ≥ 0 (25b)

Sr ≥ 0 (25c)

7 Numerical example

A numerical example of design of a face-milled generated spiral bevel gear drive manufactured by the
Five-Cut Process has been proposed in order to illustrate the proposed approach. Table 1 shows the
initial design data of the reference face-milled spiral bevel gear drive.

Table 1 Initial design data of the reference face-milled spiral bevel gear drive.

Parameter UNITS PINION GEAR
Reference gear ratio, u - 2.5
Nominal torque, T Nm 682.09 1747.86
Rotation speed, n rpm 1400 546.34
Shaft angle, Σ deg. 90

Application of ANSI/AGMA 2005-D03 [20] and ANSI/AGMA ISO 23509-A08 [21] standards
enables to size the considered gear drive by determining blank geometry data from the initial data.
Table 2 reflects both design and geometry parameters of the reference face-milled spiral bevel gear
drive.

The gear finishing machine-tool settings will be derived according to the approach described in [14,
15]. As known, in a Five-Cut Process [28,29] the gear member is generated by means of a spread-blade
face-milling cutter. Table 3 shows the finishing machine-tool settings for the generated gear member.
The cutter point width Pw has been slightly increased regarding the corresponding value provided
by the approach presented in [14,30] (Pw = 2.2891 mm) and based on the standards ANSI/AGMA
2005-D03 [20] and ANSI/AGMA ISO 23509-A08 [21], to reduce the gear tooth thickness and, simul-
taneously, allow the pinion tooth thickness and its mechanical strength to be increased. Essentially,
balancing of contact stresses between pinion and gear constitutes the main reason of this decision,
since, otherwise, the teeth of the pinion with standardized tooth thickness may become too narrow.

Next, the pinion finishing machine-tool settings have to be determined. In a Five-Cut Process, the
pinion tooth surfaces are generated separately by two independent fixed-settings face-milling cutters
[28,29]. The conditions of meshing and contact must be defined previously by means of the procedure
described in Sections 4.3 and 5.1. Three different cases of design have been proposed in this work,
whose main contact properties are shown in Table 4. In all of them, pinion concave tooth active
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Table 2 Basic design and geometry parameters of the reference face-milling spiral bevel gear drive.

Design feature UNITS PINION GEAR
Hand of spiral - Left Right
Number of teeth, N - 16 41
Outer pitch diameter, de mm 87.6429 224.5849
Face width, b mm 36
Mean spiral angle, β deg. 35
Spread-blade cutter mean radius, rc mm 76.2
Outer pitch cone distance, Re mm 120.5401
Nominal design pressure angle - drive side, αdD deg. 20
Nominal design pressure angle - coast side, αdC deg. 20
Mean addendum factor, cham - 0.2564
Depth factor, kd - 2.0000
Clearance factor, kc - 0.1250
Thickness factor, kt - 0.0834
Outer transverse module, met mm 5.478
Pitch cone angle, δ deg. 21.3179 68.6821
Face cone angle, δa deg. 23.6452 69.4846
Root cone angle, δf deg. 20.5154 66.3548
Tooth taper - Duplex depth taper
Outer addendum, hae mm 6.4082 2.2095
Outer dedendum, hfe mm 3.1637 7.3624
Outer working depth, hwe mm 8.6177
Outer whole depth, he mm 9.5719

Table 3 Finishing machine-tool settings for the generated face-milled spiral bevel gear.

Basic machine-tool settings UNITS INNER BLADE OUTER BLADE
Machine center to back, ∆XDG mm 0.0000
Sliding base, ∆XBG mm -2.4616
Blank offset, ∆EmG mm 0.0000
Radial distance, SrG mm 85.7183
Basic cradle angle, qG deg. 46.7350
Machine root angle, γmG deg. 66.3548
Gear roll ratio, mwcG - 1.072562
Spread-blade cutter mean radius, rc mm 76.2000
Point width, Pw mm 2.8000
Profile pressure angle, αG deg. 21.3179 18.6441
Root fillet radius, ρG mm 0.9312 0.9312
Main profile type - Straight

surfaces will work as driving surfaces, whereas gear convex tooth active surfaces will be considered
as driven surfaces. Accordingly, the contact properties on the pinion concave tooth active surfaces
are different for each of the aforementioned design cases, while the corresponding to the pinion coast
tooth active surfaces (pinion convex surfaces) are common to all of them. A similar procedure can be
followed in order to get the desired contact pattern and function of transmission errors on the convex
side of the pinion surfaces.

Table 4 Contact pattern design parameters at the pinion tooth surfaces.

Design parameters UNITS CASE 1 CASE 2 CASE 3
Concave side contact path bias regarding pitch cone, νCC deg. 0 2 4
Concave side contact ellipse major semi-length, aCC mm 7 6.5 6
Concave side transmission error maximum level, ∆ΦCC arc sec 8 8 8
Convex side contact path bias regarding pitch cone, νCV deg. 30 30 30
Convex side contact ellipse major semi-length, aCV mm 5 5 5
Convex side transmission error maximum level, ∆ΦCV arc sec 8 8 8
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The proposed adjusted contact pattern on pinion concave tooth active surfaces for each of the
proposed cases of design, together with their corresponding common function of transmission errors,
are represented in Figure 9. The applied numerical algorithm to obtain the representation of the
contact pattern and function of transmission errors constitutes a simulated loaded tooth contact
analysis (SLTCA) approach [10], and it is based on the rigid body hypothesis of contact of mating
surfaces; accordingly, no elastic tooth deformation is considered for contact pattern estimation. The
contact path tracing and the numerical derivation of the function of transmission errors are based on
the ideas presented by Galina I. Sheveleva [31], according to which the relative position between pairs
of contacting tooth surfaces is taken into account, and the distance between them is minimized until
contact is reached. Here, the algorithm of tooth contact analysis was extended to consider three pairs
of contacting teeth. Contact ellipses are represented by those points which are positioned at a relative
distance between mating surfaces given by a preestablished virtual marking compound thickness,
usually equal to 0.0065 mm for slightly loaded gear drives.

As depicted in Figure 9, all proposed bearing contact orientations possess a slight deviation from
the longitudinal direction. Besides, the function of unloaded transmission errors has a parabolic shape
with a peak-to-peak maximum level of 8 arc-seconds.
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Fig. 9 Preestablished contact properties for the objective geometries.
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The pinion finishing machine-tool settings required to generate the objective geometry (pinion
tooth active surfaces), or, at least, approximate it as much as possible, are derived numerically through
the application of the optimization procedure described in Section 6 and based on the Levenberg-
Marquardt algorithm. Equation (26) represents the optimization variable vector. Pinion machine root
angle γmP has been fixed, and, consequently, it remains constant throughout the optimization process.
Furthermore, Table 5 contains the initial values adopted by the machine-tool settings as guess values,
as well as their corresponding valid variation ranges during the optimization process, which are related
with the geometry restrictions of face-milling fixed-settings cutters and the physical limits of hypoid
gear generators given by Equation (25). The total number of machine-tool settings to be determined
is twelve. Table 6 shows the numerical results finally derived after the mathematical optimization
algorithm has converged in each design case.

x =
[

∆XDP ∆XBP ∆EmP SrP qP mwcP C D E rP αP ρP
]T

(26)

Table 5 Initial values of machine tool settings and cutter geometry for the Levenberg-Marquardt algorithm.

Parameter Units Minimum Value Initial value Maximum Value Fixed
Machine center to back, ∆XDP mm - 10.0000 0.0000 10.0000 No
Sliding base, ∆XBP mm - 10.0000 - 0.4717 10.0000 No
Blank offset, ∆EmP mm - 10.0000 0.0000 10.0000 No
Radial distance, SrP mm 51.4512 85.7521 120.0529 No
Basic cradle angle, qP deg. 28.0266 46.7111 65.3955 No
Machine root angle, γmP deg. - 20.5007 - Yes
Velocity ratio, mwcP - 1.649858 2.749763 3.849668 No
Modified roll coefficient C - -0.10000 0.00000 0.10000 No
Modified roll coefficient D - -0.10000 0.00000 0.10000 No
Modified roll coefficient E - -0.10000 0.00000 0.10000 No
Blade profile point radius, rP mm 45.7200 76.2000 106.6800 No
Blade profile pressure angle, αP deg. 12.7907 21.3179 29.8450 No
Profile root fillet radius, ρP mm 0.5587 0.9312 1.3037 No

Table 6 Finishing machine-tool settings for the generated face-milled spiral bevel pinion.

Basic machine-tool settings UNITS
CONCAVE SIDE

CONVEX SIDE
CASE 1 CASE 2 CASE 3

Machine centre to back, ∆XDP mm 0.9740 0.1186 - 0.1633 7.0290
Sliding base, ∆XBP mm - 1.4142 - 1.0851 - 0.9835 - 3.9169
Blank offset, ∆EmP mm 2.5746 3.7591 4.2944 - 10.0000
Radial distance, SrP mm 83.8497 82.4824 81.9015 97.5496
Basic cradle angle, qP deg. 48.4549 49.0512 48.8369 49.6452
Machine root angle, γmP deg. 20.5154 20.5154 20.5154 20.5154
Gear roll ratio, mwcP - 2.750173 2.705981 2.684301 3.082189
Modified roll coefficient, C - - 0.03098 - 0.02530 - 0.02217 - 0.01826
Modified roll coefficient, D - - 0.01558 0.00177 0.01000 - 0.04422
Modified roll coefficient, E - 0.03625 0.02099 0.01678 - 0.02409
Blade profile point radius, rP mm 73.0663 73.3377 73.5313 77.4456
Blade profile pressure angle, αP deg. 18.5062 18.5037 18.6224 21.4197
Profile root fillet radius, ρP mm 1.3037 1.3037 1.3037 1.3037
Main profile type - Straight Straight Straight Straight

Contact patterns corresponding to the new derived geometries are compared with their corre-
sponding objective geometries in Figures 10, 11, and 12. The obtained function of transmission errors
for the objective geometry and the obtained manufacturable geometries are shown in Figure 13. As
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illustrated, objective contact patterns are similar to the contact patterns for the manufacturable ge-
ometries obtained with the application of the Levenberg-Marquardt algorithm, since normal distances
between the objective geometry and the finished-cut geometry (residual errors) are in the order of a
few micrometers at worst, as depicted in Figure 14 for Case 1 (the most unfavorable situation), and,
therefore, negligible regarding grinding tolerances. Consequently, the effectiveness and accuracy of the
presented procedure of design of face-milled spiral bevel gear drives have been proved.

(a) Objective geometry (b) Machinable geometry

Fig. 10 Contact pattern on the concave side of the pinion tooth surfaces - CASE 1.

(a) Objective geometry (b) Machinable geometry

Fig. 11 Contact pattern on the concave side of the pinion tooth surfaces - CASE 2.

(a) Objective geometry (b) Machinable geometry

Fig. 12 Contact pattern on the concave side of the pinion tooth surfaces - CASE 3.
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Fig. 13 Functions of transmission errors for the objective geometry and obtained manufacturable geometries.

Finite element analysis has been carried out by means of application of a general purpose computer
program [32] for each of the cases of design to obtain the evolution of contact and bending stresses
all over two cycles of meshing. Application of the finite element method requires the development
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Fig. 14 Normal deviations between the objective geometry and the finished-cut geometry (CASE 1).

of finite elements models for face-milled spiral bevel gear drives, which is based on an automatic
parametric computerized generation approach whose main ideas have been described in [2,5]. Finite
element models are comprised of seven pairs of teeth to, firstly, ensure the independence between
numerical results and boundary conditions when two consecutive cycles of meshing are analyzed,
and, secondly, investigate the transference and sharing of load between contiguous pairs of teeth at
simultaneous contact. Regarding the contact algorithm, the gear and pinion tooth active surfaces have
been considered as master and slaves surfaces, respectively. Gear teeth and rim volumes have been
meshed by means of three-dimensional continuum elements type C3D8I, which basically constitute
hexahedral first-order stress/displacement elements enhanced by incompatible deformation modes in
order to improve their bending behavior [32]. A linear isotropic elastic steel with general properties of
elastic modulus E = 210 GPa and Poisson ratio ν = 0.30 has been selected as the material for pinion
and gear. The generated finite elements models are comprised of 103124 elements with 127622 nodes.

The evolution of the pinion Von Mises equivalent contact and bending stresses throughout two
whole cycles of meshing is shown in Figure 15. A perfect uniform evolution of contact stresses is
observed for Case 2, whereas some areas of higher contact stresses are detected on Cases 1 and 3 in
some contact positions, although the maximum values are still acceptable. As far as bending stresses
are concerned, it is visible that the lower contact pattern bias is, the higher the maximum bending
stress is, although bending stresses are approximately in the same order of magnitude for all cases of
design.
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Fig. 15 Evolution of contact stresses (left) and bending stresses (right) corresponding to the face-milled spiral bevel
pinion.
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Figure 16 represents the evolution of Von Mises contact and bending stresses for the gear through-
out two cycles of meshing. Uniform evolutions are observed in contact stresses in all cases of design.
The geometry corresponding to Case 2 constitutes the best design from the mechanical behavior point
of view.
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Fig. 16 Evolution of contact stresses (left) and bending stresses (right) corresponding to the face-milled spiral bevel
gear.

Figures 17 and 18 show contact stresses for Cases 1 and 2 in which load transfer between contiguous
pairs of contacting teeth takes place. As shown, two pairs of teeth are in mesh simultaneously.
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Fig. 17 Contact stresses at contact position 5 on the pinion tooth surfaces.

8 Conclusions

Based on the performed research work, the following conclusions can be drawn:

1. An integrated computerized approach of design, generation, and stress analysis of low-noise high-
endurance face-milled spiral bevel gear drives machined by means of a Five-Cut Process has been
proposed. It is based on the definition of an objective surface topography for the pinion driving
active surface that takes into account a predesigned function of transmission errors with a preset
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Fig. 18 Contact stresses at contact position 5 on the gear tooth surfaces.

maximum value of peak-to-peak transmission errors, a preestablished direction of the contact path
and length of contact ellipses. Machine tool settings of the closest manufacturable pinion tooth
surfaces are obtained by application of a bound-constrained optimization algorithm.

2. Favorable contact properties (contact pattern and a predesigned negative parabolic function of
transmission errors with limited magnitude) and uniform evolution of contact and bending stresses
throughout the whole cycle of meshing are obtained by the proposed approach.

3. The proposed approach has been applied to the design of a face-milled generated spiral bevel gear
drive and the effectiveness and accuracy of the method shown.

4. The developed approach can be extended to the design of face-hobbed spiral bevel gear drives
and/or hypoid gear drives.
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