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Abstract— Numerical methods are widely used to analyze and
design microwave components for communication applications.
In the implementation of any numerical technique, however, there
are always a set of parameters that must be properly adjusted
in order to obtain, at the same time, computational efficiency
and numerical accuracy of the results. In this context, therefore,
we focus in this paper on the multimode equivalent network for-
mulation for waveguide devices, and we propose a more intuitive
and efficient strategy for choosing these parameters. Following
our approach, setting only one global numerical variable is suffi-
cient to adjust automatically the specific convergence parameters
of each discontinuity to give a specific level of numerical accuracy
of the results. As a consequence, the computational efficiency
is significantly increased. In addition, the user experience is
significantly improved since our approach eliminates all lengthy
convergence tests previously needed to assure good numerical
accuracy. In addition to theory, we discuss in this paper a number
of numerical results that clearly demonstrate how the new
strategy is very effective, thereby fully validating the theoretical
formulation.

Index Terms— Convergence, integral equations, method of
moments (MoM), multimode equivalent networks, numerical
methods, waveguide filters, waveguide junctions.

I. INTRODUCTION

NUMERICAL methods for solving electromagnetic (EM)
problems are attracting more and more attention in recent

years due to their ability of saving development time and
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experimental work in real communication projects. In this con-
text, therefore, a substantial research effort has been devoted
to the development of fast and accurate EM models for the
analysis and design of the needed microwave communication
components. Furthermore, a continuous effort is also devoted
to the reduction of the needed computational burden.

In this context, therefore, several EM analysis methods
have been proposed in the technical literature. Examples are
the finite element method [1], the finite differences in time
domain [2], and others based on modal methods or integral
equations [3], [4]. Commercial software tools, such as Ansoft
HFSS, CST Studio, and FEST3D [5], for instance, implement
some of these techniques, show good agreement with real
measurements, and also exhibit good numerical efficiency.

In general, however, any analysis method must be eventually
implemented numerically. As a consequence, there are always
a set of numerical parameters that need to be properly adjusted
in order to reach convergent results for the components under
analysis. If the parameters are undersized, the response may
not be convergent, that is, not accurate. On the other hand, if
we increase the parameters more than what it is required, the
problem may be oversized. This, in turn, may lead to an unnec-
essary increment of the computational effort, to ill conditioned
situations, or even to relative convergence problems [6].

It is clear, therefore, that a careful selection of these
numerical parameters is needed to find a compromise between
accuracy and efficiency.

Currently, the correct convergence of the numerical methods
that are integrated in commercial software tools continue to be
a critical issue. From the user’s point of view, this implies the
responsibility of selecting the proper parameters, without the
complete knowledge (in some cases) of the numerical methods
being implemented. This process usually requires repeated
simulations of the same structure with increased numerical
parameters, until convergence is reached. The whole process
can then be very time-consuming.

In this paper, we focus on the study of the convergence
properties of the multimode equivalent network (MEN) for-
mulation [7] for the analysis of waveguide components. This
technique has indeed been proved to be fast and accurate for
the analysis of many complex microwave devices [8]. The
MEN technique is based on an integral equation formulation.
In particular, the imposition of the boundary conditions at
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Fig. 1. 2-D step in waveguide technology.

the waveguide junctions leads to integral equations that are
typically solved by the method of moments (MoM) [9]. The
formulation finally produces an equivalent network, where the
interactions between all higher order modes are rigorously
accounted for by a generalized impedance or admittance
multimode coupling matrix.

Furthermore, the numerical efficiency of the MEN approach
has been recently enhanced by a novel formulation of the
kernel of the cited integral equation [10]. There, the kernel
is rigorously split into a dynamic and static parts. Thanks to
this transformation; the number of modes that needs to be
accessible in the equivalent network is no longer linked to the
convergence of the kernel.

To further exploit this advantage, we propose, in this paper,
a new strategy to select the numerical parameters that are
needed to ensure convergence in the MEN formulation. In the
remainder of this paper, we first discuss, in Section II, the
novel strategy to select the numerical parameters for the MEN
formulation. We then discuss, in Section III, a number of
practical application examples clearly showing the improve-
ments obtained, thereby fully validating the proposed strategy.
Finally, the main conclusions of this paper are outlined in
Section IV.

II. NEW CONVERGENCE METHOD FOR MEN
FORMULATION OF WAVEGUIDE DISCONTINUITIES

In this section, we briefly review the general MEN formula-
tion for 2-D waveguide junctions, as shown in Fig. 1. We then
explain the new strategy to select the numerical parameters that
ensure the accuracy of the computational results.

To start, we impose the continuity of the tangential com-
ponent of the magnetic field H(δ)

t in the aperture at z = 0.
We write this condition using the well-known modal expansion
formalism [7], [11] as follows:
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I (1)
n h(1)
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where h(δ)
m (s) is the magnetic vector modal function of mode

m in the medium (δ), s indicates a point in the waveguide
cross section, I (δ)

m and V (δ)
m represent the total modal currents

and voltages, respectively, and Y (δ)
m is the characteristic modal

Fig. 2. MEN (generalized Z -matrix) representation for the waveguide step
in Fig. 1.

admittance. In Fig. 1, δ = 1 or δ = 2 for z < 0 or z > 0,
respectively.

In (1), we have separated the accessible from localized
modes by splitting the summation in N(δ) terms. Thus, the
parameter N(δ) controls the number of accessible modes in
the resulting equivalent network for the waveguide (δ). These
modes are explicitly connected to the following discontinuity
(another MEN as in Fig. 2) by lengths of transmission lines.
The rest of the modes in the right-hand side of (1) are taken
into account as localized ones in the kernel of the integral
equation. Following the theory reported in [7] and [10], we
can finally obtain the fundamental integral equation of our
problem as

h(δ)
n (s) =

∫

ap
M(δ)

n (s′)K(s, s′)ds′ (2)

where M(δ)
n (s′) are the unknown functions of our problem, and

K(s, s′) is the kernel of the integral equation. The integral is
extended to the aperture (ap) of the junction (discontinuity)
as shown in Fig. 1. The kernel of the integral equation is
expressed through an infinite series, as

K(s, s′) =
2∑

δ=1

+∞∑

m=N(δ)+1

Y (δ)
m h(δ)∗

m (s′)h(δ)
m (s). (3)

To complete the rigorous network formulation, the elements
of the generalized impedance matrix Z are calculated as

Z (δ,γ )
m,n =

∫

ap
M(γ )

n (s′)h(δ)∗
m (s′)ds′. (4)

These equations can be interpreted in terms of the general-
ized network representation as shown in Fig. 2.

The MoM and the Galerking procedure [9] are usually
employed to solve the integral equations in (2). To do that,
we expand the unknown functions M(γ )

n (s′). Assuming that
the index r represents the smaller waveguide of the step, we
use as basis functions the modes of the smaller waveguide h(r)

k

M(γ )
n (s′) =

Nb∑

k=1

α
(γ )
n,k h(r)

k (s′)ds′ (5)

where Nb determines the number of modes of the smaller
waveguide that are used to expand the unknown functions.



In other words, the numerical parameter Nb fixes the number
of basis and test functions in the MoM procedure.

As already mentioned, it is also important to review the
transformation of the kernel first introduced in [10]. As shown
in [10], the kernel can be rigorously split into a dynamic
and static parts using Kummer’s transformation [12], thus
providing

K(s, s′) = Kd(s, s′) + Ks(s, s′)

=
2∑

δ=1

Nkd∑

m=N(δ)+1

(
Y (δ)
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m

)
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+
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Nk∑
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m h(δ)∗

m (s′)h(δ)
m (s) (6)

where Ŷ (δ)
m represents the asymptotic behavior of the charac-

teristic modal admittance when k(δ)
t,m � k.

The numerical parameters Nkd and Nk represent the number
of terms used in the dynamic and static kernel computation,
respectively. The number of terms in the static kernel (Nk )
controls the upper limit in the summation of the frequency-
independent part of the Green’s function, which describes the
discontinuity at the junction of the two waveguides. In the
cases in which some lower order localized modes do not
satisfy the asymptotic approximation assumed in the static
kernel, additional dynamic terms Nkd need to be computed.

This kernel formulation leads to the possibility of keeping
to a minimum the number of accessible modes in the coupling
matrix, and still having the important computational burden of
the kernel independent of frequency.

In the regular convergence procedure, the minimum specific
set of parameters that ensure a given degree of accuracy is
identified by increasing manually their value until convergent
results are obtained. As it is indicated in [5], the user should
start by simulating the structure with increasing number of
accessible modes (using a sufficiently large number of basis
functions Nb and terms in the kernel Nk ). Once the required
number of accessible modes is found, the process must be
repeated for the number of basis functions, until the mini-
mum number required for reaching convergence is identified.
Finally, to fix the number of terms in the kernel, one has to
simulate repeatedly the same structure with a sufficient number
of terms and decrease this parameter progressively until the
minimum required value is identified. This procedure requires
a large number of repeated computations and is clearly very
time-consuming.

To improve the situation, we propose in this contribution a
new automatic strategy for the identification of the optimum
set of computational parameters. It is important to note that
the proposed method is possible thanks to the fact that, using
the kernel formulation in (6), the number of accessible modes
is not linked anymore to the convergence of the kernel. This
is possible because of the fast converging dynamic summa-
tion that computes the lower order localized modes that do
not satisfy the static kernel approximation. In this way, the
number of accessible modes can now be fixed according to
the physical structure of the device, independently of the

kernel convergence issue. Using (6), this goal is possible,
while the computational burden of the kernel remains fre-
quency independent. In the following sections, we explain how
the specific MEN convergence parameters can be efficiently
adjusted automatically.

A. Number of Accessible Modes

The first parameter that needs to be adjusted is the num-
ber of accessible modes in each waveguide region of the
junction (see Fig. 1). To establish an appropriate criterion
for this selection, it is important to recall which modes are
theoretically needed as accessible in the equivalent network
(see Fig. 2). Naturally, all the modes that are propagating
along the waveguide section must be taken into account as
accessible modes, since they are responsible for the active
energy exchange between the discontinuities in the structure.
Furthermore, it is also known that the evanescent modes are
storing energy near the discontinuities. Since in real structures
many discontinuities are placed close to each other, some
evanescent modes must also be considered as accessible ones,
in order to achieve a complete characterization of the involved
energy exchange process. In this representation, therefore,
more modes than the propagating ones must, in general, be
considered as accessible modes for each waveguide region in
the equivalent network.

On this basis, the accessible modes in each region must
be the propagating modes plus the evanescent ones that reach
the next junction with enough energy. An automatic selection
procedure must take into account that in waveguide sections
with small lengths (such as thin coupling windows), we need
to include more evanescent modes, since these modes are
interacting with nearby discontinuities. On the other hand,
in waveguide sections with large lengths (such as resonant
cavities), only the first few propagating modes (with maybe
one or two additional evanescent modes) are needed.

To cope with these very different situations, we propose a
selection method based on fixing a power attenuation threshold
in decibel (dB) (that we call dBth). The attenuation for each
evanescent mode (Atm) along a distance l can be calculated
through its attenuation constant αm , as

Atm = αm · l. (7)

According to this criterion, an evanescent mode will be
considered to be accessible, if the total attenuation when it
reaches the next discontinuity is smaller than the specified
threshold. The number of accessible modes will then be given
by all propagating modes plus the evanescent modes that
satisfy the following condition (in dB)

Atm ≤ dBth (8)

which is imposed at the highest frequency in the analysis loop.
It is easy to see that this process automatically includes

more evanescent modes in short waveguide sections, and less
evanescent modes in long waveguide sections.

When analyzing a whole device, just a threshold dBth needs
to be fixed for the whole structure. The number of accessible
modes required in each waveguide section is then adjusted
automatically according to condition (8).



B. Number of Basis Functions

As described in (5), the number of basis functions used
for the MoM solution of the integral equation (2) is the
number of vector mode functions of the smaller waveguide
shown in Fig. 1. This also represents the number of test
functions, since the Galerking procedure is normally used.
In this case, we need to remember that the last mode we
need to represent as excitation of our integral equation is the
highest order accessible mode as indicated in (2). Once the
threshold dBth is set, this mode corresponds to the highest
order mode that satisfies the condition in (8). From now on, the
cut-off wavenumber of this mode is referred to as kcmax. In the
proposed procedure, all the modes of the smaller waveguide
with a cut-off wavenumber smaller or equal to this value
(times an accuracy factor Fb) are automatically selected as
basis functions. This condition can be written as

Nb → kcm ≤ Fb · kcmax (9)

where Fb is considered as a factor of precision. It is clear
that if the factor Fb is increased, more modes will satisfy
the condition in (9). This leads to a higher number of basis
functions to be used in the MoM solution.

The criterion to identify the correct Fb value is based on
the numerical convergence of the value of the last element
of the impedance submatrix that represents the autointeraction
of the smaller waveguide. According to (4), this last element
is written as Z (r,r)

N(r),N(r) . In this paper, we propose to use
the relative error in the computation of this element of the
impedance matrix to identify the value of the Fb factor,
evaluated at the highest frequency in the analysis loop. The
computational effort of this evaluation is really small in com-
parison to what is needed to adjust manually this parameter.
Once the dBth value is fixed by the user, the selection of Fb

is accomplished automatically, without any user intervention,
to ensure convergence.

C. Number of Terms in the Kernel

According to (6), the Nk -parameter refers to the number of
terms that is summed in the static kernel of the integral equa-
tion. In other words, it represents the number of terms in the
frequency-independent summation of the Green’s functions.
As for the basis functions, the kernel convergence depends
on the geometry of the step and also on the excitation of
the integral equation. In this respect, using the same cut-off
wavenumber of the last accessible mode kcmax, the number of
modes in the kernel (Nk ) will be taken as those modes of the
bigger waveguide with their cut-off wavenumbers kcn lower
than the selected kcmax times an accuracy Fk factor.

This condition can be written as

Nk → kcn ≤ Fk · kcmax (10)

where Fk is, as before, the precision factor. The adjustment of
this factor is going to be carried out according to the conver-
gence study on the element Z (r,r)

N(r),N(r) , which is accomplished
automatically.

A convenient option is to select the same factor
Fb = Fk = F to fix both the precision associated with the

Fig. 3. Inductive iris composed of two steps in waveguide technology.
The dimensions are a1 = 19.1 mm and a2 = 9.0203 mm, and the height
is b = 8.2 mm.

number of basis functions and to the number of terms in the
kernel. To simplify the convergence procedure, the same F
value is indeed used in this contribution. Therefore, if the
F factor is increased, more basis functions and terms in the
kernel will be used in the numerical solution of the problem.

When analyzing a complex device, the parameter F , which
adjusts the specific parameters Nb and Nk , is automatically
computed for each discontinuity, to assure convergence, and
therefore, the user is released of that responsibility. This results
in a significant reduction of the computational effort together
with an improved user simulation experience.

The complete picture is finalized with the calculation of the
dynamic part of the kernel as shown in (6). This parameter
is related to the Taylor expansion of the static approximation,
and converges with a few terms (Nkd ). The convergence of
this last term was extensively treated in [10]. On this basis,
we have taken a fix number Nkd = 10 for all the practical
examples considered in this paper.

It is important to remark that the static part of the kernel
only contains the higher order modes that satisfy the static
approximation. Thanks to the dynamic part, the localized
modes that do not satisfy the static approximation are no
longer considered as accessible modes (as it is done in the
original formulation), but are considered in the dynamic kernel
as localized.

III. NUMERICAL RESULTS AND APPLICATIONS

In this section, the proposed convergence method is
applied in an MEN implementation to analyze some induc-
tive waveguide structures. First of all, an iris between two
waveguides will be analyzed using the new mechanism to
show how the convergence parameters are adjusted according
to different lengths. Then, some practical inductive filters are
also studied using the new strategy, to show the performance
improvement achieved in the analysis of real waveguide struc-
tures.

A. Study on Simple Waveguide Iris

In this section, a simple iris between two waveguides shown
in Fig. 3 is analyzed, using the MEN formulation together
with the convergence method proposed in this contribution.
To show the behavior of the described technique according
to the length of the iris, the structure in Fig. 3 is studied for
different values of L.

At the input and output waveguides, only the propagating
modes need to be considered as accessible modes. However,



TABLE I

NUMBER OF ACCESSIBLE MODES ADJUSTED BY THE NEW METHOD
ACCORDING TO THE LENGTH L AND THE THRESHOLD dBth

Fig. 4. Relative convergence error of the element Z (r,r)
N (r),N (r) as a function

of the accuracy F factor for the first step in Fig. 3.

in the iris, the propagating plus some evanescent modes will
need to be accessible.

With the new technique, the authors are suggesting not to fix
directly the number of accessible modes but a global threshold
dBth. With this power attenuation threshold, the number of
accessible modes needed to satisfy the specified attenuation
condition level in each region will automatically be fixed.

In this context, in Table I, the number of accessible
modes (N) that the proposed method fixes for each medium
and for different values of dBth is reported.

As it is noticed, for dBth = 0 dB, since no attenuation
is specified, only the propagating modes are accessible in
all three regions. Moreover, when the attenuation threshold
is increased, more evanescent modes are considered to be
accessible in the iris. Also, the number of accessible modes
increases for thinner irises, as it is required to represent the
stronger energy exchange between nearby discontinuities.

Once this parameter has been chosen by the user,
the factor F is automatically adjusted, and consequently also
the number of basis functions and the number of terms in the
static kernel. For the problems treated in this paper, we have
observed that relative errors in the order of 10−3 during the
calculation of the F factors lead to good accuracy. Thus, for
each discontinuity, the factor F is selected as the one which
gives a relative convergence error in the order of 10−3 for the
element Z (r,r)

N(r),N(r) of the generalized impedance matrix.
In Fig. 4, we show this relative error as a function of

increasing the accuracy (F) parameter for the first step of
Fig. 3. In this test, we have fixed dBth = 10 dB and
L = 0.5 mm. As it is shown, for this step, a factor F = 3
is needed to obtain an error in the order of 10−3.

TABLE II

PARAMETERS ADJUSTED BY THE METHOD USING dBth = 10 dB
AND dBth = 20 dB FOR DIFFERENT LENGTHS L

In Table II, the automatically selected parameters F , Nb ,
and Nk are presented for each considered iris length. The
absolute convergence errors (ε) achieved with respect to
the convergent response are also included. The convergent
response is obtained by selecting arbitrary large numerical
parameters (in the examples treated in this paper 20 accessible
modes, 200 basis functions, and 2000 terms in the kernel).
Note that this time the absolute error is given instead of the
relative error. This is because the response contains poles and
zeros, which make inaccurate the calculation of the relative
errors at the corresponding frequencies.

In this case, we also consider two different threshold
levels dBth, 10 and 20 dB, to see how the factor F is adjusted.
For completeness, the number of accessible modes (N) in the
three regions are also given.

It can be seen that, for irises that require a smaller number
of accessible modes, a bigger F value is selected by the
algorithm, and this effectively preserves the accuracy of the
computations.

As it is noticed, the proposed selecting mechanism simpli-
fies the current manual convergence study since a physical
parameter, the threshold dBth, is just required to be fixed
according to the desired accuracy level. Then, the factor of
precision F is automatically adjusted, and finally, the number
of basis functions and terms in the kernel are automatically
selected according to the conditions (9) and (10), to provide
a convergent response.

Another important fact is that until now, for the sake of
simplification, MEN users used to select the same parameters
for all the discontinuities within a structure (global para-
meters). This can oversize the less restrictive discontinuities
until the others reach convergence. With this new convergence
mechanism, the user can still select global parameters, that is,
the same threshold dBth for all the discontinuities. However,
with the new algorithm this implies to use different specific
parameters (number of accessible modes, number of basis
functions, and terms in the kernel) in each discontinuity
according to their specific geometries. As a consequence,
all discontinuities have different numerical parameters better
suited to their specific needs, still using intuitive and global
parameters for the user.



Fig. 5. Single dual-mode inductive cavity under study (dimensions in mm).

TABLE III

CONVERGENCE PARAMETERS ADJUSTED AUTOMATICALLY
BY THE METHOD USING dBth = 10 dB

Fig. 6. S-parameters for the dual-mode cavity filter in Fig. 5 using the
parameters adjusted by the proposed method (see Table III) and compared to
the convergent performance using MEN formulation and HFSS software tool.

B. Practical Filtering Structures

In this section, the proposed convergence method is imple-
mented in the MEN technique to analyze some practical
inductive filters. In these cases, the waveguide filters are
composed of short and large length sections, mixed together.
Thus, the advantage of being able to use a global parameter
for the whole structure (while the actual numerical parameters
are adjusted differently for each discontinuity) is significant in
these examples.

The first example is proposed in [13], and consists of a
single dual-mode inductive cavity as the one shown in Fig. 5.

For a threshold dBth = 10 dB, the factors F and the specific
parameters N , Nb , and Nk , automatically selected for each
discontinuity, are shown in Table III.

The S-parameters simulated using the specific parameters
in Table III are compared in Fig. 6 to the convergent response
for 20 accessible modes, 200 basis functions, and 2000 terms
in the kernel and to HFSS simulation results.

Fig. 7. Three-pole filter under study. The dimensions are a = 19.1 mm,
a1 = 9.0203 mm, a2 = 5.1702 mm, and the height is b = 8.2 mm. The
lengths are l1 = 1 mm, l2 = 21.6581 mm, and l3 = 23.1495 mm.

TABLE IV

CONVERGENCE PARAMETERS ADJUSTED AUTOMATICALLY

BY THE METHOD USING dBth = 20 dB

The absolute convergence error is of 4.47 · 10−4. As we
can see, a good agreement between the convergent response
and the S-parameters obtained with the proposed method are
achieved. In addition, a great reduction in required simu-
lation parameters is noticed, which leads to a reduction in
the computational effort. Using an Intel Xeon E5-2620 v3
at 2.40 GHz with 32 GB of RAM, the computational time
per frequency point required to achieve the HFSS results
in Fig. 6 is 1 min and 1 s, while for the proposed MEN
implementation it is of 1.14 s. It is important to remember
that our software tool is specifically designed to analyze this
type of waveguide structures in contrast to HFSS, which is a
more generic analysis tool.

The second example consists of a three-pole in-line induc-
tive waveguide filter (see Fig. 7). For a global threshold
dBth = 20 dB, the selected parameters of each discontinuity
are shown in Table IV.

It can be observed that the proposed technique increases the
value of F when the number of accessible modes decreases.
This tends to keep a constant numerical accuracy along all the
discontinuities of the structure.

The resulting S-parameters, compared to the convergent
response for 20 accessible modes, 200 basis functions, and
2000 terms in the kernel and to results obtained with the
commercial software tool HFSS, are shown in Fig. 8. In this
case, we also include the performance for a lower threshold,
dBth = 10 dB, to show how the accuracy level can be
controlled through this parameter.

In this example, for dBth = 20 dB, the absolute convergence
error is of 6.33 · 10−4, indicating good numerical accuracy.
Moreover, a resulting reduction of the parameters in the
numerical method is effectively achieved. The computational
time per frequency point required to achieve the HFSS results
in Fig. 8 is 15 min and 13 s, while for the proposed MEN
implementation it is of 1.49 s.

The last example is proposed in [13] and consists of a
four-pole dual-mode inductive filter shown in Fig. 9. The
dimensions are reported in Table V.

For a threshold dBth = 20 dB, the factors F and the adjusted
parameters for each discontinuity, are shown in Table VI.

The resulting S-parameters, compared to the convergent
response for 20 accessible modes, 200 basis functions, and



Fig. 8. S-parameter for the three-pole filter in Fig. 7 using the parameters
adjusted by the proposed method for dBth = 10 dB and dBth = 20 dB
(see Table IV) and compared to the convergent performance using MEN
formulation and HFSS software tool.

Fig. 9. Four-pole dual-mode filter in the Ku-band. The dimensions are
reported in Table V and the height is b = 9.525 mm.

TABLE V

DIMENSIONS OF THE FOUR-POLE DUAL-MODE FILTER IN FIG. 9

2000 terms in the kernel and to HFSS simulation results, are
shown in Fig. 10.

The absolute convergence error in this case is of 8.08 ·10−4,
showing again the effectiveness of the proposed technique.
The computational time required for each discrete frequency
point to achieve the HFSS results reported in Fig. 8 is 11 min
and 33 s, while the time for the proposed MEN implementation
is of 1.28 s.

This example is appropriate for an in-depth study on the
importance of adjusting different F factors for each dis-
continuity. As we can see in Table VI, if the factor F is
selected to be the same, it should be the biggest to assure
convergence in all the discontinuities. In this case, it would be
F = 10 to assure convergence in steps 3 and 4. This would
imply that Nb and Nk in rest of the discontinuities would

Fig. 10. S-parameter for the four-pole dual-mode filter in Fig. 9 using the
parameters adjusted by the proposed method (see Table VI) and compared to
the convergent performance using MEN formulation and HFSS software tool.

TABLE VI

CONVERGENCE PARAMETERS ADJUSTED AUTOMATICALLY
BY THE METHOD USING dBth = 20 dB

TABLE VII

TOTAL COMPUTATIONAL TIME FOR DIFFERENT NUMERICAL PARAMETERS

IN THE MEN IMPLEMENTATION USING 250 FREQUENCY POINTS

also be increased. In other words, the parameters for some
discontinuities would be increased at the expense of reaching
convergence in the most limiting discontinuities. Since this
increment is unnecessary, this would result in an inefficient
oversizing of the convergence parameters. This problem is
avoided with the strategy proposed in this paper, since the
algorithm automatically adjusts different F factors for each
discontinuity.

As these examples show, the new mechanism for fixing
the convergence parameters in MEN implementations gives
accurate responses along with a more efficient computation
(thanks to the achieved reduction in the number of the involved
numerical parameters).

In this respect, in Table VII, the computational times
required by different numerical parameters in the MEN imple-
mentation for analyzing this last geometry using 250 frequency
points are reported.

Table VII shows that increasing the numerical MEN para-
meters affects negatively the computational effort. In com-
parison, the analysis of the same filter using the technique
described in this paper is only 1.89 s. Thus, Table VII shows



that an important reduction in computational time can be
obtained, if the numerical parameters of the MEN are kept to
the strict minimum required, as calculated by the new strategy
proposed in this paper.

IV. CONCLUSION

A simple and elegant strategy to choose efficiently the
numerical parameters needed to reach convergence in the
MEN formulation has been proposed.

With the proposed mechanism, only the parameter dBth
needs to be fixed by the software user. The chosen dBth value
will then affect the accuracy of the obtained results. The other
computational parameter needed, namely F , is automatically
adjusted according to the convergence of the last element of
the multimode impedance matrix. This leads to the correct
adjustment of all specific computational parameters (namely,
N , Nb , and Nk ), different for each discontinuity, by just fixing
the same attenuation threshold for the whole structure.

The first advantage is related to the fact that, for each
discontinuity, the actual numerical parameters are different
according to their specific convergence needs, thus the over-
sizing of discontinuities is avoided. The second advantage is
on user level. The proposed procedure implies a more intuitive
way of selecting just a parameter that controls the accuracy of
the calculations. This also leads to a huge saving in computa-
tional effort, as compared to the convergence study currently
required in commercially available MEN implementations.
In addition to theory, numerical results achieved using the
proposed mechanism have also been provided, indicating that
the new procedure leads to more efficient MEN calculations,
while producing an excellent numerical accuracy.
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