1

- 2

PLANT FOOD FOR HUMAN NUTRITION (2018) 73:146-153

https://doi.org/10.1007/s11130-018-0664-3

Betaxanthin-rich extract from cactus pear fruits as yellow water soluble colorant with potential application in foods.

5 José A. Fernández-López¹, María J. Roca, José M. Angosto, José M. Obón

Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Paseo Alfonso XIII 52, E 30203 Cartagena, Murcia, Spain

8 Abstract. Cactus pear (*Opuntia ficus-indica*) fruit juice is a source of betaxanthin pigments which can be used as a natural yellow food colorant. The HPLC chromatographic pigment pattern corresponding to the betaxanthin-rich extract 9 revealed the presence of four betaxanthins, of which indicaxanthin (proline-betaxanthin) accounts for around 85%. A 10 betaxanthin-rich water-soluble food colorant from cactus pears fruits was produced by spray-drying microencapsulation 11 using maltodextrin as a wall material. The resulting powder was characterized by scanning electron microscopy, and its 12 apparent color was analyzed by spectrometry. The stability of the microcapsules was examined at +20, +4 and -20°C in 13 the dark during 6 months of storage. The degradation of betaxanthins was delayed by microencapsulation and their 14 colorant stability increased at lower temperatures. The potential application of the colorant microcapsules was successfully 15 assessed in two food model systems: a yogurt and a soft-drink. Both foods presented an attractive pale yellow color. 16 Pigment retention and color parameters were investigated during storage under controlled conditions. Slight changes in 17 the pigment retention, in both model systems, pointed to excellent preservation in the dark, even after 28 days at 4°C. 18 However, the presence of light contributed to betaxanthin deterioration. Spray-drying microencapsulation succeeds in 19 reducing volumen of the pigment extract and be easy in storage and delivery of the powders. It is proved to be a suitable 20 process that can be recommended for stabilizing betaxanthins from cactus pears to be used as water-soluble natural 21 colorants in foods. 22

¹ Corresponding author, e-mail address: <u>josea.fernandez@upct.es</u> Telephone number: 34 968325549; Fax number: 34 96832555

Keywords: natural food colorant, betaxanthins, *Opuntia ficus-indica*, microencapsulation, spray-drying, food model
 systems.

3 Introduction

In response to social media, focus groups and consumer surveys, the food industry is adjusting its products to meet the 4 concerns of consumers as regards the food and beverages they acquire. Indeed, it is becoming increasingly important to 5 6 meet consumers expectations for natural and healthy products. Hence, the search for new plant-derived colorants is of fundamental interest for the food industry [1-2]. The color of a food or beverage plays a huge role in the success of a 7 product because color not only makes a product more attractive, but can affect how consumers perceive its taste. Major 8 food industry initiatives include eliminating synthetic coloring and flavorings and replacing synthetic preservatives with 9 natural ones [3]. The use of natural coloring extracts in food and beverages has been increasing in recent years, a 10 development based on both technological improvements and market trends. The appearance of food is considered as 11 important as the taste. Colors, no doubt, enhance the look and guality perception of food, but the health conscious 12 movement is prompting more demand for natural colouring extracts [3]. Nowadays, fruit coloring or vegetable extracts are 13 the most popular way to achieve the desired color in foods because their application does not require any certification [4-14 5], both of them are healthy and help food to look appetizing. However, unlike colors, natural coloring extracts are 15 16 multifunctional as they combine color, flavor and natural antioxidants to create a well-rounded food enhancing product. In addition, these natural extracts may contain other bioactive ingredients that will also be incorporated into the food, thus 17 increasing its added functional value. 18

It has been demonstrated that betacyanins impart an attractive strawberry color to ice creams, dairy products, jams and jellies as well as sugar confectionery products which are not subjected to heavy heat treatment [4,6]. For their part, betaxanthins impart a yellow color, and preliminary studies have suggested that they could be used as food additives, stabilised by the addition of ascorbic and citric acids [1]. Cactus betalains have increasingly attracted interest as a source of water-soluble pigment preparations [7-8]. However, a key factor to consider when these pigments are used as bioactive colorants in foods is their stability. In this respect, the stabilization of betalains could be improved using microencapsulation

- 2 -

technologies, such as spray-drying, to ensure their bioavailability [2,7,9]. This technology is also used to change liquid
 solutions to powders, which are easier to handle.

Betalains are water-soluble nitrogen-containing pigments [10-11] which include the red-purple betacyanins and the yelloworange betaxanthins [12]. They are immonium conjugates of betalamic acid with *cyclo*-DOPA (betacyanins) and aminoacids or amines (betaxanthins), whose chromophore is a 1,7-diazaheptamethinium system [13]. They represent one of the most important natural pigment families. Betalains possess high antioxidant and free radical scavenging activities which have been described in plant extracts and purified pigments [14-15], and due to these characteristics they are considered as bioactive pigments [16].

9 Despite their coloring capacity, water solubility and bioactive characteristics, betaxanthin extracts are rarely used as 10 potential natural colorants in foods, because of limited supply. Thus, the aim of this work was to encapsulate the yellow 11 pigment extract from *Opuntia ficus-indica* fruits by spray-drying to investigate the pigment stability in two model food 12 matrices (a yogurt and a soft drink) colored with a betaxanthin-rich extract from cactus pear fruits.

13 Materials and methods

14 Betaxanthin-rich extract preparation and analysis

Opuntia ficus-indica fruits (yellow pulp) were obtained from a plantation located in the municipality of Alhama de Murcia, province of Murcia (Spain). Cactus pear fruits were manually peeled and the pulp was homogenised with an Ultraturrax Ika Labortechnik (T25, Staufen, Germany). The homogenised pulp was centrifuged for 10 min at 15,000 *x g* in a Hermle

18 centrifuge (Z383K, Wehingen, Germany) refrigerated at 5 °C, and supernatant was used as betaxantin-rich extract.

Acidity, pH, moisture content and total soluble solids (°Brix) were determined according to AOAC methods [17]. The total phenolic content was determined according to the Folin-Ciocalteu method [15]. The results were expressed as gallic acid equivalents (GAE) based on a calibration curve (0-100 μ g/mL). For the UV/VIS spectrophotometric quantification of total betaxanthins a molar extinction coefficient (ϵ) of 48000 M⁻¹ cm⁻¹ at 480 nm was used, and a molar extinction coefficient (ϵ)

²³ of 54000 M⁻¹ cm⁻¹ at 535 nm for betacyanins [11].

Individual betalain pigments were analyzed chromatographically according to the methods previously described [11].
 Betaxanthins were monitored at 480 nm and betacyanins at 535 nm. Identification was carried out by an HPLC-MS system.

- 3 -

1 Positive ion electrospray ionization (ESI) mass spectra were recorded on a quadrupole Waters ZQ instrument coupled to

2 an HPLC system, model Alliance (Waters, Milford, USA) [18].

Color measurements were performed using a Minolta CM-508i spectrophotometer-colorimeter (Minolta, Osaka, Japan) to obtain the CIELAB parameters (L^* , C^* and h^o) using the 10° standard observer and illuminant D65 (corresponding to daylight). Euclidean distance between two points in the three-dimensional CIELab space was used to calculate total color differences (ΔE^*) [2].

Free radical scavenging activity of the betaxanthin-rich extract was evaluated by the ABTS⁺⁺ and DPPH⁺ methods. The ABTS⁺⁺ was generated in the reaction medium (3 mL) containing 400 μ M ABTS, 39 μ M H₂O₂ and 50 nM horseradish peroxidase in 100 mM phosphate-citrate buffer pH 4.5. TROLOX (0-40 μ M) was used as reference [19]. The DPPH⁺ assay contained 150 μ L of pigment extract and 2.85 mL of 150 μ M DPPH dissolved in methanol [20]. TROLOX (0-40 μ M) was also used as reference. The results of both methods are expressed as TROLOX equivalent activity (TEAC).

12 Spray-drying process

Spray-drying was used for microencapsulation of the betaxanthin-rich extract. Maltodextrin, (Glucidex 6D, from Roguette, 13 Lestrem, France) was used as wall substance. Maltodextrin was dissolved in distilled water (15% w/v) under vigorous 14 vortexing. In each batch, 100 mL of the betaxanthin-rich extract (15 °Brix) were combined with maltodextrin solution (1:1 15 v/v) with constant stirring. The resultant solution (200 mL) was thermostated at 20 °C and fed to a Büchi Mini Spray Dryer 16 (B-290, Flawil, Switzerland) with the inlet air temperature at 160 °C, and the outlet air temperature kept at 75 °C. Liquid 17 18 feed was 5 mL/min, atomization air flow was 0.45 m³/h, and the drying air flow was 36 m³/h. The nozzle internal diameter was 0.7 mm and a glass cylinder (50 x 15 cm) was used as drying chamber [8]. The particles were separated from the 19 drying air by a cyclone. 20

21 Scanning electron microscopy (SEM)

Particle morphology was evaluated by SEM. Spray-drying powder was fixed onto SEM stubs using a two-side adhesive
 tape. The surface was sputered for 120 seconds and coated with a thin layer of gold and examined with a Hitachi S-3500N
 scanning electron microscope (Hitachi, Tokyo, Japan) operated at 5 kV with the lens at 7 mm.

25

- 4 -

1 Formulation of model food products

A yoghurt and a soft-drink were used to assess the colorant properties of the betaxanthin-rich extract in model food products. White fat-free yogurt purchased from a local supermarket, betaxanthin-rich extract powder from cactus pear fruits (15 g/kg) and sucrose (20 g/kg) were mixed under aseptic conditions in sterile flasks. The pH value of the model yogurt was 4.4. The soft-drink was formulated with water solutions of citric acid (1.52 g/L), potasium sorbate (0.18 g/L), sodium benzoate (0.14 g/L) and ascorbic acid (0.02 g/L) according to Dyrby and coworkers [21]. Betaxanthin-rich extract powder (50 g/L) was added as colorant and sucrose (86 g/L) was added as sweetener. The final pH of the soft drink was 3.2. After preparation, the soft-drink was filtered aseptically through 0.2 μm sterile filter and kept in sterile flasks.

9 Storage stability analysis

The stability of the betaxanthin-rich extract was analyzed at 20°C in the absence of light. Aliquots were taken at different times for 30 days and spectrophotometrically analyzed to follow the degradation of the betaxanthin pigments. The storage stability studies of the betaxanthin-rich extract powders were performed maintaining samples (2.0 g) in Petri dishes (2.0 cm diameter) in the absence of light, at constant temperature (20°C, 4°C, -20°C) in a desiccator filled with anhydrous silica gel. Samples were spectrophotometrically analyzed over a period of 6 months. The yoghurt and soft-drink were maintained in the absence of light under refrigeration (4°C). In both cases, samples were withdrawn twice a week and analyzed spectrophotometrically.

17 Statistical analysis

The mean values, standard deviations and analyses of variance (ANOVA) were determined with Minitab statistical software,
 version 15.0 (Minitab Inc., State College, Pennsylvania, USA).

20 Results and discussion

This investigation was performed with cactus pear fruits from a second late bloom, induced by the manual removal of the first flowers by the middle of June. This practice improves fruit quality, providing a strongly colored juicy pulp, larger size and lower number of seeds, for harvest late in the season, between mid-October and late November [22].

24

25

1 Betaxanthin-rich extract characterization

Table 1 shows the physicochemical characteristics of the betaxanthin-rich extract obtained from the yellow pulp of the 2 Opuntia ficus-indica fruits used in this investigation. As related to fruit ripeness, the results were in good agreement with 3 data from Italian, Mexican and Chilean cultivars. The acidity of the fruits was quite low (0.022 %), and because of the 4 extremely low content of organic acids, the pH of the fruit extract is high (6.58). The high soluble solid content (13.9 °Brix) 5 ensures that cactus pear fruits have an attractive tasty juice. A highly desirable balance between sweetness and acidity is 6 shown, similar to those reported by other authors, who reported the acidity to be 0.02-0.15 % (expressed as citric acid) [8, 7 22] with a pH of 5.3-7.1 [9] and total soluble solids ranging between 12 and 17 °Brix [7, 23]. The total phenolic content (220 8 mg GAE/100 g) was higher than those reported in *Opuntia* fruits by Chávez-Santoscoy and co-workers of 17-23 mg 9 GAE/100 g [24] and by Díaz-Medina and co-workers of 45-117 mg GAE/100 g [25]. The betalain content (betaxanthins 10 and betacyanins) was in accordance with previous reports [11], and is in the same order as the values found by other 11 authors in cactus pear yellow fruits [1]. The betaxanthin-rich extract exhibited a notable free-radical scavenging activity, 12 both against ABTS⁺ and against DPPH⁺ radicals, similar to that reported previously in Sicilian cactus pears [26], and 13 Chilean cactus pears [7]. These values, joined to the total phenolics content, would confirm a high level of antioxidant 14 15 activity, which would be beneficial in terms of protecting human health.

16 Betaxanthin and color analysis

The HPLC chromatographic pigment pattern corresponding to the betaxanthin-rich extract monitored at 480 nm is shown 17 18 in Figure 1. The isogram of each peak is also displayed. The characterization of each peak was performed on the basis of UV/VIS and mass spectrometry, as well as by comparison with previously reported retention and absorption characteristics 19 of betalains [27-28]. The chromatogram revealed the presence of four betaxanthins (peaks 1, 2, 3 and 5) and one 20 betacyanin (peak 4). The main pigment, which accounted more than 85% of the total, was indicaxanthin (proline-21 betaxanthin), which is the typical compound of *Opuntia* fruits [1, 23]. Others betaxanthins were also identified, as 22 muscaaurine VII (histidine-betaxanthin), vulgaxanthin I (glutamine-betaxanthin), and methionine-betaxanthin, all of them 23 previously detected in cactus pear fruits and shown to be genuine betaxanthins of betalainic plants [29]. Also detected, but 24

1 at lower level, was betanin (peak 4), the main betacyanin pigment. Although cactus pear fruits with yellow pulp were

2 selected to prepare the betaxanthin-rich extract, betanin often accompanies the predominant betaxanthins [30].

3 The chromatic parameters corresponding to the betaxanthin-rich extract (Table 1) confirmed its attractive pale yellow color,

4 which, together with its water-soluble character, means it is in high demand in the natural food market.

5 SEM of the maltodextrin-encapsulated betaxanthin-rich extract

The SEM micrographs of the spray-dried microcapsules are shown in Fig. 2. These images point to the succesful microencapsulation of the betaxanthin-rich extract using maltodextrin (Glucidex 6D) as a carrier, with an encapsulation efficency of around 71%. The spherical and non-agglomerated particles with smooth surfaces and uniform appearance suggest a uniform drying process. The spherical shape of the particles allows powder to flow better because there is no surface roughness and it does not form agglomerates. This morphology also reflects the positive tendency of maltodextrin to yield microcapsules to protect sensitive substances from light, moisture or oxidation, and confirms its physicochemical capability for encapsulating pigments and other bioactive molecules by spray-drying [2, 8, 31].

13 Stability of the maltodextrin-encapsulated betaxanthin-rich extract

Maltodextrin-encapsulated betaxanthin extract was studied in order to ascertain whether the encapsulation process increased pigment stability, by keeping its colorant properties intact, over a longer period of time. Figure 3 presents the results when the stability of maltodextrin-encapsulated powder was analyzed at three different temperatures, +20, +4 and -20° C in dark conditions. As can be seen, maltodextrin encapsulation contributed greatly to the stability of the betaxanthin pigments, which remained stable for several months at temperatures of +4 and -20° C. When the maltodextrinencapsulated powder was kept at +20°C for 6 months, only 60% of the betaxanthin pigments were not degraded.

²⁰ The results obtained when the stability of the liquid extract was analyzed revealed that this extract degrades more easily.

21 When it was stored at +20°C in the absence of light, 47% of its colorant capacity was degraded in only 30 days (Table 3),

- while under the same conditions only 6% of the maltodextrin-encapsulated pigment extract was broken down.
- Betaxanthins are considered very thermolabile compounds that deteriorate quickly during storage, with color loss following

first order kinetics [32]. To improve their stability it is necessary to use encapsulation technologies such as spray-drying

²⁵ and storage temperature below 4°C to ensure their proper preservation and subsequent bioavailability.

1 Pigment and color stability in model food products

To test the coloring ability of the maltodextrin-encapsulated powder, two food model systems were prepared: a yogurt and 2 a soft-drink, both of them are shown in Online Resource 1. Two sets of triplicate yogurt samples were prepared and the 3 powder colorant was added so that the color was similar to that of a lemon flavored yogurt ($L^*=87.4$, $C^*=19.6$, $h^*=100.6$). 4 The pigmented model yogurts (125 g) were stored for 28 days at 4°C in the dark or in the presence of light (fluorescent 5 lamp FC/22/T5 daylight 22 watts) to register color alterations. Aliguots were taken at 0, 3, 6, 9, 12, 15, 18, 21 and 28 days 6 to analyze betaxanthin concentration, pH and color modifications. The changes in pigment retention are shown in Fig. 3, 7 and point to an excellent preservation in the absence of light (95.1%), even after 28 days at 4°C. It is evident that light 8 contributes strongly to betaxanthin deterioration (40.3%). In addition, changes in the CIELab parameters of the model 9 yogurt were monitored during the sampling period. Table 3 shows that the hue angle (h°) , lightness (L^{*}) and intensity (C^{*}) 10 were similar in the initial sample and after 28 days storage at 4°C in the dark, so that the total color difference (ΔE^*) was 11 only 1.0 CIELab units. Exposure to light during storage accelerated these color changes, and, in this case, the ΔE^* 12 increased to 10.1 units. It is should be noted that for ΔE^* values below 3.0 consumers are not able to detect color differences. 13 [33]. The pH of the yogurt did not change during the 4 weeks of experimentation (4.4 ± 0.2) . 14

15 A soft-drink was selected as second food model system. Two sets of triplicate soft-drinks were prepared and maltodextrinencapsulated betaxanthin extract was added to reach a final absorbance of 0.80±0.02 at 480 nm and CIELab parameters 16 of $L^*=36.5$, $C^*=11.9$, $h^o=103.7$. The samples were maintained in refrigerated storage (4°C) for 28 days in the absence and 17 18 presence of light and aliquots were taken to evaluate pigment and color deterioration. In the samples stored for 28 days in the dark the betaxanthin loss was 9.8%, but in the presence of light the loss increased to 48.9% (Fig 3). As can be seen, 19 the level of betaxanthin deterioration in the soft-drink was higher than in the model yogurt, both in the presence of light and 20 in complete darkness. This can be explained by the fact that some of the yogurt components must play a protective effect 21 towards the pigments, slowing down their deterioration [34]. Differences in color appearance were also observed between 22 soft-drink stored in the dark and that stored in the presence of light. Changes in lightness (L^*) from 36.5 to 29.9 (light) or 23 34.2 (dark) were observed, while hue angle (h°) varied from 103.7 degrees to 101.5 (light) or 102.3 (dark). As expected, 24

total color difference (ΔE^*) was higher (7.9 units) in the soft-drink stored in light conditions compared with the 2.3 units of color difference in the sample maintained in the dark (Table 4).

The present investigation confirms that the maltodextrin-encapsulated betaxanthin-rich extract from cactus pear fruits can
be used as natural yellow colorant in yogurts and soft-drinks stored under refrigeration and formulated to be consumed in
3-4 weeks, extending our knowledge about the potential application of betaxanthins as water-soluble yellow colorant in
foods.

7 Conclusions

Attractive water-soluble natural yellow colors are in great demand in the competitive food and beverage industry. Color stability in model foods was greatly dependent on storage temperature, increasing stability at lower temperatures. It should be emphasized the effect of spray-drying microencapsulation in enhancement of betaxanthin stability. Betaxanthins from cactus pear fruits can be considered a promising colorant with multiple possibilities in low temperature storage and nontransparent packaged foods. Worthy of note is the bioactivity of the betaxanthin pigments with proven antioxidant effects. This study represents a step towards the diversification of colorants used to replace synthetic colorants by naturallyoccurring ones.

15

Acknowledgements. This research is part of the QUIMYTEC R&D group. Authors greatly acknowledge the financial
 support provided by Fundación Séneca (project 08702PI08).

18 Note. This article does not contain any studies with human or animal subjects.

19 References

Moβhammer MR, Rohe M, Stintzing FC, Carle R (2007) Stability of yellow-orange cactus pear (*Opuntia ficus-indica* [L.] Mill. cv. 'Gialla') betalains as affected by the juice matrix and selected food additives. Eur Food Res Technol
 225:21-32.

- 9 -

- [2] Otálora MC, Carriazo JG, Iturriaga L, Nazareno MA, Osorio C (2015) Microencapsulation of betalains obtained from
 cactus fruit (*Opuntia ficus-indica*) by spray-drying using cactus cladode mucilage and maltodextrin as encapsulating
 agents. Food Chem 187:174-181.
- 4 [3] Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Ann Rev Food Sci Technol *3*:595 77.
- 6 [4] Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food and in human
 7 nutrition. Trends Food Sci Technol *15*:19-38.
- 8 [5] Rodríguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20-26.
- 9 [6] Stintzing FC, Carle R (2007) Betalains-emerging prospects for food scientists. Trends Food Sci Technol 18:514525.
- [7] Saénz C, Tapia S, Chávez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from
 cactus pear (*Opuntia ficus-indica*). Food Chem 114:616-622.
- 13 [8] Obón JM, Castellar MR, Alacid M, Fernández-López JA (2009) Production of a red-purple food colorant from
 14 Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng 90:471-479.
- 15 [9] González-Palomares S, Estarrón-Espinosa M, Gómez-Leyva JF, Andrade-González I (2009) Effect of the
 16 temperature on the spray drying of roselle extracts (*Hibiscus sabdariffa* L.). Plant Foods Human Nutr 64:62-67.
- 17 [10] Delgado-Vargas F, Jiménez-Aparicio A, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins and
- betalains. Characteristics, biosynthesis, processing and stability. Crit Rev Food Sci Nutr 40:173-289.
- [11] Fernández-López JA, Almela L (2001) Application of high-performance liquid chromatography to the
 characterization of the betalain pigments in prickly pear fruits. J Chromatogr A 913:415-420.
- [12] Khan MI, Giridhar P (2015) Plant betalains: Chemistry and biochemistry. Phytochemistry 117:267-295.
- Piatelli M (1976) Betalains. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, Academic Press,
 New York, pp 560-596.

- [14] Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. 1 Am J Enol Vitic 16:144-158. 2
- [15] Gliszczyńska-Świgło A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin 3 of its exceptionally high free radical-scavenging activity. Food Addit Contam 23:1079-1087. 4
- [16] Gandía-Herrero F, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Escribano J (2010) Stabilization of the 5 6 bioactive pigment of *Opuntia* fruits through maltodextrin encapsulation. J Agric Food Chem 58:10646-10652.
- [17] AOAC (2016) Official methods of analysis of AOAC International (20th ed). AOAC International, Gaithersburg. 7
- 8 [18] Fernández-López JA, Castellar R, Obón JM, Almela L (2007) Monitoring by liguid chromatography coupled to mass spectrometry the impact of pH and temperature on the pigment pattern of cactus pear fruit extracts. J Chromatogr 9 Sci 45:120-125. 10
- [19] Obón JM, Castellar MR, Cascales JA, Fernández-López JA (2005) Assessment of the TEAC method for determining 11 the antioxidant capacity of synthetic red food colorants. Food Res Int 38:843-845. 12
- [20] Dyrby M, Westergaard N, Stapelfeldt H (2001) Light and heat sensitivity of red cabbage extract in soft drink model 13 systems. Food Chem 72:431-437. 14
- [21] Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-15 16 Food Sci Technol 28:25-30
- Gurrieri S, Miceli L, Lanza CM, Tomaselli F, Bonomo RP, Rizzarelli E (2000) Chemical characterization of Sicilian [22] 17
- prickly pear (*Opuntia ficus-indica*) and perspectives for the storage of its juice. J Agric Food Chem 48:5424-5431. 18
- [23] Feugang JM, Konarski P, Zou D, Stintzing FC, Zou C (2006) Nutritional and medicinal use of cactus pear (Opuntia 19 spp.) cladodes and fruits. Front Biosci 11:2574-2589. 20
- [24] Chávez-Santoscov RA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2009) Phenolic composition, antioxidant capacity 21
- and in vitro cancer cell cytotoxicity of nine prickly pear (*Opuntia* spp.) juices. Plant Foods Human Nutr 64:146-152. 22
- Díaz-Medina EM, Rodríguez-Rodríguez EM, Díaz-Romero C (2007) Chemical characterization of Opuntia dillenii [25] 23 and *Opuntia ficus-indica* fruits. Food Chem 103:38-45.

24

- 11 -

- [26] Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Livrea MA (2002) Antioxidant activities of
 Sicilian prickly pear (*Opuntia ficus-indica*) fruit extracts and reducing properties of its betalains: betanin and
 indicaxanthin. J Agric Food Chem 50:6895-6901.
- [27] Castellanos-Santiago E, Yahia EM (2008) Identification and quantification of betalains from the fruits of 10 Mexican
 prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J
 Agric Food Chem 56:5758-5764.
- [28] Kugler F, Graneis S, Stintzing FC, Carle R (2007) Studies on betaxanthin profiles of vegetables and fruits from the
 Chenopodiaceae and Cactaceae. Z Naturforsch C 62:311-318
- 9 [29] Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P (2005)
- Color, betalain pattern, and antioxidant properties of cactus pear (*Opuntia* spp.) clones. J Agric Food Chem 53:442 451.
- [30] Castellar R, Obón JM, Alacid M, Fernández-López JA (2003) Color properties and stability of betacyanins from
 Opuntia fruits. J Agric Food Chem 51:2772-2776.
- [31] Robert P, Torres V, García P, Vergara C, Sáenz C (2015) The encapsulation of purple cactus pear (*Opuntia ficus-indica*) pulp by using polysaccharide-proteins as encapsulating agents. LWT-Food Sci Technol 60:1039-1045.
- [32] Giménez PJ, Fernández-López J, Angosto JM, Obón JM (2015) Comparative thermal degradation patterns of
 natural yellow colorants used in foods. Plant Foods Human Nutr 70:380-387.
- [33] Martínez JA, Melgosa M, Pérez MM, Hita E, Negueruela AI (2001) Note. Visual and instrumental color evaluation in
 red wines. Food Sci Technol Int 7:439-444.
- [34] de Rosso VV, Mercadante AZ (2007) Evaluation of colour and stability of anthocyanins from tropical fruits in an
 isotonic soft drink system. Innov Food Sci Emerg Technol 8:347-352.
- 22
- 23
- 24

- 1
- 2
- 3
- 4
 - Table 1
- 5 6 Physicochemical characterization of the betaxanthin-rich extract from cactus pear fruits

Parameter	Value
рН	6.6 ± 0.1
Acidity (% citric acid)	0.022 ± 0.003
Moisture content (%)	86.6 ± 0.5
Total soluble solids (°Brix)	13.9 ± 0.2
Color parameters	
L* (darkness-lightness) (0, 100)	86.07 ± 0.09
C^* (chroma)	98.09 ± 0.08
h^o (hue angle, 0° red, 90° yellow, 180° green, 270° blue)	86.59 ± 0.02
Betaxanthins (mg indicaxanthin / 100 g)	27.5 ± 1.6
Betacyanins (mg betanin / 100 g)	12.6 ± 0.9
Total phenolics compounds (mg GAE / 100 g)	220.1 ± 3.3
Free radical scavenging activity (ABTS) (µmol TEAC / g)	5.9 ± 0.8
Free radical scavenging activity (DPPH) (µmol TEAC / g)	4.8 ± 0.4

Values are means \pm standard deviations of three replicates. 7

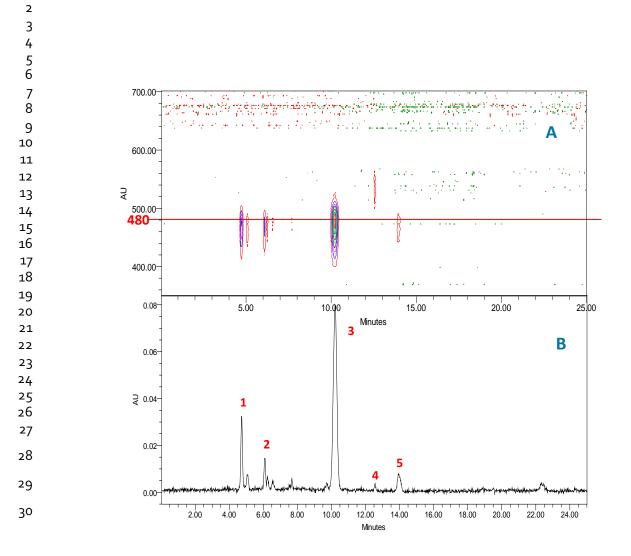
1 Table 2. Pigments detected in the betaxanthin-rich extract from *Opuntia* fruits.

\textit{Peak}^{\dagger}	Name	$t_R(min)^{\ddagger}$	$\lambda_{max}\left(nm ight)^{*}$	$m/z [M+H]^+$ (daughter ions)
1	Muscaaurine VII			
	(histidine-betaxanthin)	4.63	476	349 (215, 124)
2	Vulgaxanthin I			
	(glutamine-betaxanthin)	6.11	472	340 (323)
3	Indicaxanthin			
	(proline-betaxanthin)	10.40	480	309, (263, 129)
4	Betanine	12.53	535	551 (389)
5	methionine-betaxanthin	14.01	477	343 (299)

2 \dagger peak assignment refers to Fig. 2; \ddagger retention time refers to Fig. 2; *absorption maxima.

3 Table 3. Stability analysis of the betaxanthin-rich extracts in dark conditions.

LIQUID EXTRAC	Г			
DAYS	REMAINING BETAXA	NTHINS (%)		
	20 °C			
2	99.5±2.8 ^a			
5	98.0±2.8ª			
10	87.0±2.7 ^b			
15	79.0±3.0 ^c			
20	75.0±3.1 ^{cd}			
25	69.9±2.5 ^d			
30	55.1±2.3 ^e			
ENCAPSULATED POWDERS				
DAYS	REMAINING BETAXA	NTHINS (%)		
	20 °C	4 °C	-20 °C	
15	95.7±2.8ª	98.0±1.8 ^a	99.7±1.6 ^a	
30	94.4±2.7 ^a	96.6±1.9 ^a	99 .5±1.4 ^a	
60	88.6±2.6 ^b	95.8±1.8 ^a	99 .2±1.4 ^a	
90	75.1±3.3 ^c	95.3±1.6 ^a	99 .1±1.3 ^a	
120	70.1±3.0 ^{cd}	94.5 ± 1.3^{ab}	98.5±1.2 ^a	
150	60.6±2.0 ^e	93.7±1.3 ^b	96.9±1.4 ^{ab}	
180	58.9±4.0 ^e	91.6±2.0 ^b	96.6±1.2 ^b	

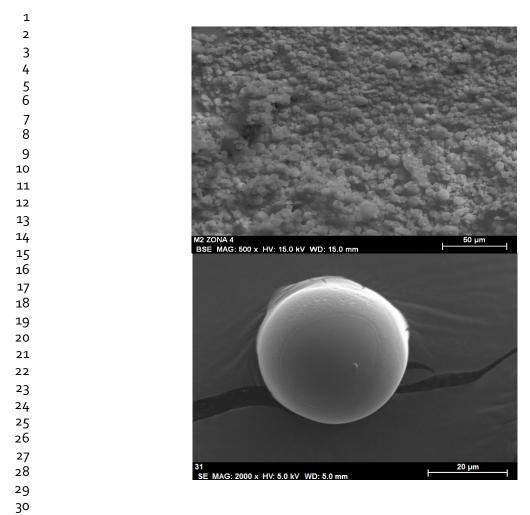

4 Values are means ± standard deviations of three replicates. Superscripts with different letters in same column

indicate significant differences ($P \le 0.05$).

6 Table 4. Color analysis (CIELab parameters) for model food products.

	YOGURT		
	Initial	28 days (dark)	28 days (light)
L^*	87.41±0.09b	87.13±0.07°	88.64±0.10 ^a
C^*	19.57 ± 0.09^{a}	18.85±0.12 ^b	9.47±0.10 ^c
h^o	100.60±0.08b	98.97±0.10 ^c	101.01±0.11 ^a
ΔE^*		0.95 ± 0.08^{b}	10.10±0.10 ^a
	SOFT-DRINK		
	Initial	28 days (dark)	28 days (light)
L^*	36.52±0.06 ^a	34.20±0.08b	29.89±0.09 ^c
C^*	11.85±0.09 ^b	12.19±0.11 ^a	7.57±0.10 ^c
h^o	103.67±0.09 ^a	102.41±0.09b	101.67±0.11°
ΔE^*		2.36±0.13 ^b	7.90 ± 0.15^{a}

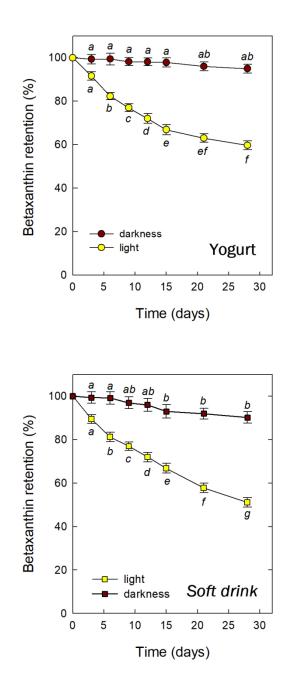
7 Values are means \pm standard deviations of three replicates. Superscripts with different letters 8 in same file indicate significant differences ($P \le 0.05$).



- 31 Fig. 1.
- 32 HPLC chromatographic pattern corresponding to the betaxanthin-rich extract from cactus pear fruits.

A. Contour-plots between 350 and 700 nm; B. Chromatogram at 480 nm.

- 34 (AU=absorbance units).
- (Peak assignment: 1-muscaaurine VII; 2-vulgaxanthin I; 3-indicaxanthin; 4-betanine; 5-methionine-betaxanthin)
 36
- 30 37


1

31 Fig. 2.

32 Scanning electron microscopic photographs of spray-dried microcapsules.

33

- 2
- 3 Fig. 3.
- 4 Betaxanthin retention in the model foods studied during storage at 4 °C.
- 5 Values are means \pm standard deviations of three replicates. Different letters in the same data series indicate significant differences ($P \le 0.05$).
- 6