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A B S T R A C T

The determination of the pitch cones for hypoid gears is already well defined either through
numerical methods as those shown in the Standard ANSI/AGMA ISO 23509-B17 or through
algorithms available in the specialized literature. However, a procedure to determine the gear
tooth surfaces for hypoid gears directly from their pitch cones is still missing. An analytical
approach to determine the basic machine-tool settings for the pinion and the wheel of hypoid
gear drives is proposed here. It is based on the condition of exact generation, which means
that the gears will operate under conjugate condition. It can be applied for generation of face-
hobbed hypoid gears, produced either by the CycloCut or the CycloPalloid generation methods.
A numerical example proves the goodness of the proposed methodology in a high reduction
hypoid gear drive. The results of tooth contact and stress analyses prove that the bearing
contact is localized and stable against misalignments, requiring just a small adjustment through
the application of an optimum tip relief to the gear tooth surfaces to minimize the maximum
contact pressure.

. Introduction

High reduction hypoid gears are used in those applications where a high gear ratio and a compact design are required. An
xample of application of high reduction hypoid gears can be found in [1] where high reduction face-milled hypoid gears are used
n the transmission of an electric vehicle. The need for application of high gear ratios in a single stage transmission for electric
ehicles arises due to the high shaft velocities provided by electric motors that can reach 10,000 rpm. High reduction hypoid
ears can provide gear ratios that vary typically from 1:10 to 1:50 [2] and therefore they represent an appropriate solution for the
ransmission of an electric vehicle as long as reverse loading would be feasible.

The first step in the design of a hypoid gear drive is the definition of the pitch cones. This definition has been actually a subject
f intensive research. Basically, the available algorithms in the literature try to obtain the pitch angles, the spiral angles, and the
ean pitch radii of pinion and wheel for a hypoid gear drive given the desired gear ratio and offset. There is no a unique solution

ince an infinite number of locations of the pitch point are possible. One of the first publications [3] dealt with the determination
f basic geometric relationships in hypoid gear sets such as the condition of tangency of the tooth surfaces at the pitch point.
he concepts of limit pressure angle and limit curvature for the design of the pitch cones were developed in [4,5] and the pitch
ones were obtained through a trial-and-error procedure. Nowadays, a similar approach is applied in the Standard ANSI/AGMA ISO
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Nomenclature

𝑎 Hypoid offset
𝑎𝑡𝑟𝑖, 𝑎𝑡𝑟𝑜 Parabola coef. for tip relief
𝑏1, 𝑏2 Face width
𝑐ℎ𝑎𝑚 Mean addendum factor of wheel
𝑑𝑒1, 𝑑𝑒2 Outer pitch diameter
𝑑𝑚1, 𝑑𝑚2 Mean pitch diameter
ℎ𝑎𝑒1, ℎ𝑎𝑒2 Outer addendum
ℎ𝑓𝑒1, ℎ𝑓𝑒2 Outer dedendum
ℎ𝑟 Blade reference height
ℎ𝑡𝑟𝑖, ℎ𝑡𝑟𝑜 Height for tip relief
𝑘𝑐 Clearance factor
𝑘𝑑 Depth factor
𝑚𝑏 Blade module
𝑚𝑚𝑛 Mean normal module
𝑚𝑜𝑡 Outer transverse module
𝑚1𝑏, 𝑚2𝑏 Roll-to-blade ratio
𝑚1𝑐 , 𝑚2𝑐 Roll-to-cradle ratio
𝑞10, 𝑞20 Cradle angle
𝑟𝑏 Blade base radius
𝑟𝑐0 Cutter radius
𝑅𝑒1, 𝑅𝑒2 Outer cone distance
𝑅𝑚1, 𝑅𝑚2 Mean cone distance
𝑟𝑚1, 𝑟𝑚2 Mean pitch radius
𝑟𝑡 Tip edge radius
𝑆𝑟1, 𝑆𝑟2 Radial distance
𝑡𝑧1, 𝑡𝑧2 Pitch apex beyond crossing point
𝑧1, 𝑧2 Tooth number
𝑧0 Number of blade groups
𝛼𝑖𝑏, 𝛼𝑜𝑏 Blade pressure angle
𝛽𝑚1, 𝛽𝑚2 Mean spiral angle
𝛽𝑚12 Offset angle in pitch plane
𝛥𝐸𝑚1, 𝛥𝐸𝑚2 Blank offset
𝛥𝑋𝐵1, 𝛥𝑋𝐵2 Sliding base
𝛥𝑋𝐷1, 𝛥𝑋𝐷2 Machine center to back
𝛿1, 𝛿2 Pitch angle
𝛾𝑚1, 𝛾𝑚2 Machine root angle
𝜂 Wheel offset angle in axial plane
𝜈 Slope angle
𝜉 Pinion offset angle in axial plane
𝛴 Shaft angle

23509-B17 [6]. In [7], the relations between the pitch cone angles, the spiral angles, and the pitch radii were obtained through
the solution of a system of three non-linear equations established from the conditions of meshing of the tooth surfaces at the pitch
point and the location of the cutters on the pitch plane. This algorithm was valid for hypoid gears with orthogonal axes and was an
improvement respect to the previous trial-and-error algorithm described in [4,5]. Later, in [8], the algorithm was simplified through
the consideration of a system with just two non-linear equations for any shaft angle of the hypoid gear set. This algorithm considers
as variables the pinion and wheel offset angles, whereas the pinion spiral angle and the wheel pitch radius are considered as given.
A modification of the pitch cones was proposed in [9] to balance the contact ratio between the driving and coast sides using the
pitch angles as variables. An optimization of the axial and radial forces in hypoid gears was presented in [10]. In hypoid gear sets
with low shaft angle and face-milling as cutting method, a procedure to design the pitch cones and derive the machine-tool settings
was presented in [11] whereas a procedure to define the limits of the main design parameters such as the gear ratio, the gear pitch
diameter, the cutter radius, the offset, and the shaft angle was presented in [12]. Recently, a design method to minimize the contact
2

stress in hypoid gears through the determination of some basic gear parameters was presented in [13].
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The derivation of the basic machine-tool settings that allows the gear tooth surfaces to be determined for a given design of the
itch cones is another line of research. Most of the available literature refers to classical generators to define the so-called basic
achine-tool settings. These basic settings can be easily transformed to be used in modern numerical control machines.

It is necessary to distinguish between the face-milling and the face-hobbing methods. In face-milling, the first publications tried
o define a computational method to derive the tooth surfaces using a tilt angle and a swivel angle [14] or through the use of
odified roll [15], besides some other basic machine-tool settings. A complete review of the involved basic machine-tool settings

n face-milling is presented in [16].
Regarding the face-hobbing method, a first computational method to derive the tooth surfaces from the basic machine-tool

ettings was presented in [17]. Here, the Gleason’s process was considered and it consists on the application of a single head-cutter
ith inner and outer blades assembled on it. Later, in [18], the model was improved to correct manufacturing errors through the
odification of the basic machine-tool settings.

In all publications mentioned above related to face-milling and face-hobbing, the goal was to obtain a reliable computerized
odel to derive the tooth surfaces and to compute the contact pattern, the transmission errors, and the sensitivity of the contact
attern to the appearance of errors of alignment. In other words, the computerized models require the basic machine-tool settings
o be known. Subsequent publications were directed to optimize the gear drive performance through the modifications of the basic
achine-tool settings, such as in [19] to optimize the loaded contact pattern in face-milled hypoid gear sets, or in [20] to compensate
anufacturing errors through the modification of the basic machine-tool settings of the face-milled pinion.

An interesting line of research emerged to obtain the basic machine-tool settings directly from the basic gear parameters such
s the pitch cone and tooth macro-geometry data. In [21], an approach was proposed to derive the basic machine-tool settings
f a spiral bevel or a hypoid wheel, either in face-milling or face-hobbing, generated or non-generated, from the basic gear drive
ata. Once the wheel is obtained, it is possible to synthesize the pinion in some cases. In [22], local synthesis is applied to get the
asic machine-tool settings of a face-milled spiral bevel pinion. In [23], an alternative approach based on the consideration of a
ace-milled spiral bevel pinion as a conjugate of the wheel is developed. Most techniques such as those based on local synthesis or
ase-off have been focused mainly on face-milling to synthesize the pinion tooth surfaces from the wheel tooth surfaces.

In [24] the basic machine-tool settings were derived directly for both members of a spiral bevel and a hypoid gear drive
onsidering a face-hobbed non-generated wheel and a face-hobbed generated pinion. Such work showed that line contact and zero
nloaded transmission errors were possible either in a spiral bevel or a hypoid gear drive when face-hobbing with a non-generated
heel is considered. In [25], two face-hobbing methods, the Cyclo-CutTM and the Cyclo-PalloidTM, were illustrated and compared

as methods of generation of spiral bevel gears.
The presented research fills a gap between the pitch cones, obtained through known algorithms, and the determination of the

basic machine-tool settings for both members of a hypoid gear drive. This determination is analytical, direct, and based on an
exact system of generation that does not yield unloaded transmission errors. The exact system of generation is somehow linked
to face-hobbing where both members of the hypoid gear drive are generated (see [26]). The methodology can be applied either in
Cyclo-CutTM gears or in Cyclo-PalloidTM gears. The developed theory is applied to a high reduction hypoid gear drive with orthogonal
axes, although it can be extended to non-orthogonal axes. The results of tooth contact analysis and stress analysis will show that a
localized bearing contact with no unloaded transmission errors and stable contact pattern against misalignments is feasible. Such
contact pattern requires just a small adjustment through the application of a tip relief to the gear tooth surfaces to avoid areas of
severe contact.

The definition of the pitch cones implies the computation of the pinion and wheel mean cone distances, 𝑅𝑚1 and 𝑅𝑚2, both pitch
angles 𝛿1 and 𝛿2, and the mean spiral angles 𝛽𝑚1 and 𝛽𝑚2. The nomenclature corresponds to that used in the Standard ANSI/AGMA
ISO 23509-B17 [6]. Fig. 1(a) shows such data for an example of a hypoid gear drive. Here, 𝑎 is the hypoid offset, 𝑑𝑚1 and 𝑑𝑚2 are
the mean pitch diameters, and 𝛽𝑚12 = 𝛽𝑚1 − 𝛽𝑚2. The configuration represented in Fig. 1(a) is the starting step of the presented
research that pursues the materialization of the tooth surfaces on the pitch cones illustrated in Fig. 1(b) with the above mentioned
favorable conditions of contact.

2. Determination of the pitch cones and the pitch plane

The required data for the determination of the pitch cones can be slightly different among the different approaches described in
the previous section, but basically it consists of the hypoid offset 𝑎, the shaft angle 𝛴, the number of teeth 𝑧1 and 𝑧2, the wheel mean
pitch diameter 𝑑𝑚2, the wheel face width 𝑏2, the pinion spiral angle 𝛽𝑚1, the cutter radius 𝑟𝑐0 and, for the face-hobbing processes,
he number of blade groups 𝑧0. The selection of 𝑑𝑚2 and 𝑏2 allows the size of the transmission to be set. However, in some cases
he wheel outer pitch diameter 𝑑𝑒2 is considered instead of 𝑑𝑚2. On the other hand, some methods in the Standard ANSI/AGMA ISO
3509-B17 [6] considers the wheel mean spiral angle 𝛽𝑚2 as an input instead of 𝛽𝑚1. However, 𝛽𝑚1 would be preferable as an input
ata in high reduction hypoid gear drives to have a major control on the pinion helix angle and avoid the self-locking effect of the
ransmission. Angle 𝛽𝑚1 is considered as input data in the approaches represented in [7,8].

The determination of the pitch cones implies the positioning of the pitch point P (see Fig. 1(a)). Point P and the two generatrices
f the pitch cones (with lengths 𝑅𝑚1 and 𝑅𝑚2) form the pitch plane. The determination of the pitch plane is important for
he methodology proposed in this paper since it constitutes the plane of motion of the cradle and the cutter in the generating
3

ace-hobbing process.
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Fig. 1. Hypoid pitch cones: (a) representation of the pitch plane and (b) representation of the pitch cones and the to-be-determined gear tooth surfaces.

Fig. 2. The pitch plane with illustration of: (a) offset angles 𝜉 and 𝜂 and (b) alignment of O𝐶 with O𝑊 and O𝑃 .

The applied approach for the determination of the pitch cones is similar to that represented in [8] where just the solution of
wo non-linear equations with two unknowns, namely, the offset angles at the axial planes 𝜉 and 𝜂 (see Fig. 2(a)) is required. The

first equation represents the condition of meshing of the hypoid gears at the pitch point:

𝑓 (𝜉, 𝜂) = 𝑟 (𝜉, 𝜂)𝑧 cos 𝛽 − 𝑟 𝑧 cos 𝛽 (𝜉, 𝜂) = 0 (1)
4

1 𝑚1 2 𝑚1 𝑚2 1 𝑚2
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where 𝑟𝑚1 and 𝑟𝑚2 are the mean pitch radii, and the second equation is particular for face-hobbing processes and implies that the
cutter, which has a given cutter radius 𝑟𝑐0, has its center O𝐶 aligned with the pitch apexes O𝑃 and O𝑊 (see Fig. 2(b)):

𝑓2(𝜉, 𝜂) = O𝑊 A ⋅ O𝑃B − O𝑃A ⋅ O𝐶B = 0 (2)

ith

O𝑊 A = 𝑅𝑚2(𝜉, 𝜂) sin 𝛽𝑚12(𝜉, 𝜂) (3)
O𝑃B = 𝑅𝑚1(𝜉, 𝜂) − 𝑟𝑐0 sin(𝛽𝑚1 − 𝜈(𝜉, 𝜂)) (4)
O𝑃A = 𝑅𝑚2(𝜉, 𝜂) cos 𝛽𝑚12(𝜉, 𝜂) − 𝑅𝑚1(𝜉, 𝜂) (5)
O𝐶B = 𝑟𝑐0 cos(𝛽𝑚1 − 𝜈(𝜉, 𝜂)) (6)

Here, 𝜈 is the slope angle of the cutter,

𝜈(𝜉, 𝜂) = arcsin
(

𝑚𝑏(𝜉, 𝜂)𝑧0
2𝑟𝑐0

)

(7)

where 𝑧0 is the number of blade groups of the cutter and 𝑚𝑏 is the blade module, which is equal to the mean normal module
𝑚𝑚𝑛 = 𝑑𝑚2 cos 𝛽𝑚2(𝜉, 𝜂)∕𝑧2.

In this approach, the Wildhaber’s limiting condition [4] is not applied, although designers have to take precautions to keep the
pressure angles far from the limiting pressure angle (basically computing the limiting pressure angle, for example according to [7,8],
and avoiding some cutter radii).

The relations of the design variables as a function of angles 𝜉 and 𝜂 can be found in specialized literature [8] and are particularized
ere for a shaft angle of 90 degrees:

𝑟𝑚1(𝜉, 𝜂) =
𝑎 − 𝑟𝑚2 sin 𝜉

sin 𝜂
(8)

𝛿1(𝜉, 𝜂) = arctan
(

sin 𝜂
tan 𝜉

)

(9)

𝛿2(𝜉, 𝜂) = arctan
(

sin 𝜉
tan 𝜂

)

(10)

𝛽𝑚12(𝜉, 𝜂) = arccos(tan 𝛿1(𝜉, 𝜂) tan 𝛿2(𝜉, 𝜂)) (11)
𝛽𝑚2(𝜉, 𝜂) = 𝛽𝑚1 − 𝛽𝑚12(𝜉, 𝜂) (12)

𝑅𝑚1(𝜉, 𝜂) =
𝑟𝑚1(𝜉, 𝜂)
sin 𝛿1(𝜉, 𝜂)

(13)

𝑅𝑚2(𝜉, 𝜂) =
𝑟𝑚2

sin 𝛿2(𝜉, 𝜂)
(14)

3. An exact system of generation of pinion and wheel

The basic machine-tool settings for pinion and wheel have to be determined to guarantee an exact system of generation, which
means that pinion and wheel will rotate without unloaded transmission errors (conjugate action). In order to get this exact system
of generation, it is required that (see [26]):

(1) The cradles for generation of pinion and wheel have collinear axes.
(2) The head-cutters for generation of pinion and wheel have collinear axes.
(3) The pinion outer blades and wheel inner blades (respectively, pinion inner blades and wheel outer blades) have congruent

blade profiles.

The configuration of this system of generation can be visualized in Fig. 3 where both head-cutters, both cradles, and the pitch
plane have been represented. The rotations of the cradles and the head-cutters occur parallel to the pitch plane. Congruent profiles
can also be observed on a detailed view of the plane that contains the front faces of the blades. Such a system will provide a gear
drive with no backlash. In face-hobbing, the backlash and tooth thickness can be controlled throughout the application of an offset
angle between the inner and the outer blades without affecting the contact conditions.

The velocity of the pitch point P as a point of any of the cradles has to coincide with the velocity of the same point as belonging
to the wheel, 𝐯(𝑐𝑟1)𝑃 = 𝐯(𝑐𝑟2)𝑃 = 𝐯(2)𝑃 . This condition yields

𝜔𝑐𝑟2 = 𝜔2
𝑟𝑚2
𝑅𝑚2

= 𝜔2 sin 𝛿2 (15)

𝜔𝑐𝑟1 = 𝜔𝑐𝑟2 = 𝜔2 sin 𝛿2 = 𝜔1
𝑧1
𝑧2

sin 𝛿2 (16)

At the pitch point P, the wheel and its corresponding cradle have pure rolling. However, at the same point P, the pinion and its
cradle have rolling and sliding. The sliding velocity v(12)𝑃 results tangent to the pinion tooth surface and therefore to the gear tooth
5

surface too.
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Fig. 3. Configuration of the position of cradles and head-cutters for an exact system of generation of hypoid gears.

On the other hand, the velocity of the head-cutter 𝜔𝑐1 (respectively, 𝜔𝑐2) is related to 𝜔𝑐𝑟1 (respectively, 𝜔𝑐𝑟2) and therefore to
the rotation of the pinion 𝜔1 (respectively, of the wheel 𝜔2). The instantaneous center of relative rotation of any of the head-cutters
respect to its corresponding cradle is represented by point I. The segment IP has to be perpendicular to the sliding velocity v(12)𝑃
(that is also the cutting velocity). The segment IP is contained in the plane of the front faces of the blades. The following relations
have to be satisfied:

𝜔𝑐1 = 𝜔1
𝑧1
𝑧0

(17)

𝜔𝑐2 = 𝜔2
𝑧2
𝑧0

(18)

Fig. 3 shows the configuration of the machine coordinate systems 𝑆𝑚1 and 𝑆𝑚2 that allows, through the sough-for machine tool
settings, the positioning of the head-cutters, the pinion, and the wheel to be determined. The Appendix illustrates some basic
concepts related to the blades, the cutter, the cradle, and their assembly in a cutting machine for a generated face-hobbing process.

4. Determination of the basic machine-tool settings of the wheel

The basic machine-tool settings of the wheel are established through the location of the wheel and the cutter in the machine
coordinate system 𝑆𝑚2. Fig. 4 shows the configuration of system 𝑆𝑚2, where its origin O𝑚2 coincides with the wheel pitch cone apex
𝑊 and its axis x𝑚2 is aligned with the pitch cone generatrix that passes through the pitch point P. The axis z𝑚2, not represented

n Fig. 4, is directed normal to the pitch plane.
Since O𝑚2 coincides with O𝑊 , the machine center to back 𝛥𝑋𝐷2, the sliding base 𝛥𝑋𝐵2 and the blank offset 𝛥𝐸𝑚2 (see Appendix)

re all equal to zero. Additionally, the machine root angle 𝛾𝑚2 coincides with the wheel pitch cone angle 𝛿2.
On the other hand, the head-cutter is set on the cradle with its center of rotation O𝐶 located at a radial distance 𝑆𝑟2 from the

enter of rotation of the cradle O𝑐𝑟2 and at an initial cradle angle 𝑞20

𝑆𝑟2 =
√

𝑅2
𝑚2 + 𝑟

2
𝑐0 + 2𝑅𝑚2𝑟𝑐0 sin(𝛽𝑚2 − 𝜈) (19)

𝑞20 = arcsin
(

𝑟𝑐0 cos(𝛽𝑚2 − 𝜈)
)

(20)
6

𝑆𝑟2



Mechanism and Machine Theory 179 (2023) 105115I. Gonzalez-Perez and A. Fuentes-Aznar

w

i
t
i

Fig. 4. For illustration of the basic machine-tool settings of the wheel.

The rotation of the cradle 𝜓𝑐𝑟2 and the rotation of the cutter 𝜃𝑐2 are plane motions parallel to the pitch plane. Both rotations
are opposite since the instantaneous center of relative rotation, point 𝐼 , is located between centers O𝑐𝑟2 and O𝐶 . Both rotations are
related to the rotation of the wheel 𝜓2 through

𝜓2 = 𝜓𝑐𝑟2𝑚2𝑐 + 𝜃𝑐2𝑚2𝑏 (21)

here 𝑚2𝑐 is the velocity ratio or roll-to-cradle ratio

𝑚2𝑐 =
𝑅𝑚2
𝑟𝑚2

= 1
sin 𝛿2

(22)

and 𝑚2𝑏 is the roll-to-blade ratio

𝑚2𝑏 =
𝑧0
𝑧2

(23)

5. Determination of the basic machine-tool settings of the pinion

Fig. 5 shows the setting of system 𝑆𝑚1 for the determination of the pinion basic machine-tool settings. Origin O𝑚1 coincides with
the wheel pitch cone apex O𝑊 . Axis x𝑚1 is contained in the pitch plane and is kept parallel to the generatrix of the pinion pitch
cone that passes through the pitch point P. Axis z𝑚1, not represented in Fig. 5, is normal to the pitch plane.

Since O𝑚1 does not coincide with the pinion pitch cone apex O𝑃 , the settings 𝛥𝑋𝐷1, 𝛥𝑋𝐵1 and 𝛥𝐸𝑚1 are not zero but given by
the following relations:

𝛥𝐸𝑚1 = −O𝑚1Q = −𝑅𝑚2 sin 𝛽𝑚12 (24)
𝛥𝑋𝐵1 = QR = (𝑅𝑚2 cos 𝛽𝑚12 − 𝑅𝑚1) tan 𝛿1 (25)
𝛥𝑋𝐷1 = RO𝑃 = (𝑅𝑚2 cos 𝛽𝑚12 − 𝑅𝑚1)∕ cos 𝛿1 (26)

Furthermore, the machine root angle 𝛾𝑚1 coincides with the pinion pitch cone angle 𝛿1. The cradle, no represented in Fig. 5,
s located as in Fig. 4 with its center of rotation O𝑐𝑟1 located at the pitch cone apex O𝑊 of the wheel. The head-cutter also takes
he same position as in Fig. 4, but with the blades pointing in opposite direction (see Fig. 3). Then, the radial distance 𝑆𝑟1 and the
nitial cradle angle 𝑞10 are given as

𝑆 = 𝑆 (27)
7

𝑟1 𝑟2
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Fig. 5. For illustration of the basic machine-tool settings of the pinion.

𝑞10 = 𝑞20 + 𝛽𝑚12 (28)

As for the wheel, the rotation of the cradle 𝜓𝑐𝑟1 is opposite to the rotation of the cutter 𝜃𝑐1. Both rotations are related to the
otation 𝜓1 of the pinion through

𝜓1 = 𝜓𝑐𝑟1𝑚1𝑐 + 𝜃𝑐1𝑚1𝑏 (29)

here 𝑚1𝑐 is the velocity ratio or roll-to-cradle ratio

𝑚1𝑐 =
1

sin 𝛿2

𝑧2
𝑧1

(30)

and 𝑚1𝑏 is the roll-to-blade ratio

𝑚1𝑏 =
𝑧0
𝑧1

(31)

6. Numerical example

The following numerical example proves that feasible tooth surfaces with favorable conditions of meshing and contact can be
obtained after application of the proposed methodology. The starting point for application of the proposed methodology is the
positioning and dimensioning of the pitch cones of the hypoid gear drive, that can be given or can be determined from basic gear
drive data as shown in Section 2. Table 1 shows the initial data for the determination of the pitch cones. In this case, a high reduction
hypoid gear drive with a gear ratio 1:12.167 has been considered.
8
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Table 1
Basic input data for the hypoid pitch cone determination.

Data Pinion Wheel

Tooth numbers, 𝑧1 and 𝑧2 6 73
Shaft angle, 𝛴 [◦] 90.0
Pinion offset, 𝑎 [mm] 55.0
Wheel mean pitch radius, 𝑟𝑚2 [mm] 130.0
Wheel face width, 𝑏2 [mm] 35.0
Pinion spiral angle, 𝛽𝑚1 [◦] 65.0
Cutter radius, 𝑟𝑐0 [mm] 100.0
Number of blade groups, 𝑧0 5
Mean addendum factor of wheela, 𝑐ℎ𝑎𝑚 0.5
Depth factora, 𝑘𝑑 1.75
Clearance factora, 𝑘𝑐 0.125

aSee Standard ANSI/AGMA ISO 23509-B17 [6].

Table 2
Derived basic data of the hypoid gear drive.

Data Pinion Wheel

Pitch angles, 𝛿1 and 𝛿2 [◦] 10.791 78.152
Wheel spiral angle, 𝛽𝑚2 [◦] 40.308
Pinion mean pitch radius, 𝑟𝑚1 [mm] 19.280
Mean normal module, 𝑚𝑚𝑛 [mm] 2.716
Mean pitch diameter, 𝑑𝑚1 and 𝑑𝑚2 [mm] 38.56 260.0
Mean cone distance, 𝑅𝑚1 and 𝑅𝑚2 [mm] 102.974 132.830
Pinion face widtha, 𝑏1 [mm] 43.0
Outer pitch diameter 𝑑𝑒1 and 𝑑𝑒2 46.510 294.254
Outer transverse module, 𝑚𝑜𝑡 [mm] 4.031
Outer cone distance, 𝑅𝑒1 and 𝑅𝑒2 [mm] 124.205 150.330
Pitch apex beyond crossing point, 𝑡𝑧1 and 𝑡𝑧2 [mm] −17.397 8.063
Outer addendum, ℎ𝑎𝑒1 and ℎ𝑎𝑒2 [mm] 2.377 2.377
Outer dedendum, ℎ𝑓𝑒1 and ℎ𝑓𝑒2 [mm] 2.971 2.971

aDetermined according to method 3 in Standard ANSI/AGMA ISO 23509-B17 [6].

Table 3
Derived basic data of the head-cutters.

Data Value

Blade module, 𝑚𝑏 [mm] 2.716
Slope angle, 𝜈 [◦] 3.893
Reference height, ℎ𝑟 [mm] 2.971
Tip edge radiusa, 𝑟𝑡 [mm] 1.032

aDetermined as 0.38𝑚𝑚𝑛.

.1. Determination of the pitch cones and basic gear data

Solution of the system of Eqs. (1) and (2) provides the offset angles 𝜉 = 24.227◦ and 𝜂 = 4.920◦ (see Fig. 2). Then, application of
tandard ANSI/AGMA ISO 23509-B17 [6] allows the basic gear data to be derived (see Table 2). On the other hand, Table 3 shows
he derived basic data for the head-cutters of pinion and wheel. A blade pressure angle 𝛼𝑖𝑏 = 𝛼𝑜𝑏 = 20◦ has been considered. This
ngle is actually far from the calculated limiting pressure angle of the gear drive, which has a value of 0.649◦ [7,8] in this numerical
xample.

.2. Determination of the tooth surfaces of pinion and wheel

Application of Section 4 allows the basic machine-tool settings of the wheel to be derived (see Table 4 and Fig. A.16). In the
ame way, application of Section 5 allows the basic machine-tool settings of the pinion to be derived (see Table 5 and Fig. A.16).

It can be observed either in Table 4 or in Table 5 that the same set of machine-tool settings are applied to both tooth sides
convex and concave). Here, CV stands for convex tooth side and CC stands for concave tooth side. This means that a Cyclo-Cut
rocess with a head-cutter having their inner and outer blades assembled on it constitutes an appropriate method of cutting. The
eason is that the methodology proposed in Sections 4 and 5 provides a localized bearing contact, as it will be illustrated next, and
o crowning of the tooth surfaces is required. Therefore, the same machine-tool settings can be applied to both tooth sides and
o tilting of the head-cutter is required. A Cyclo-Palloid process would be possible as well considering that both head-cutters have
oincident axes and the so-called eccentricity [27] is zero.
9
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Table 4
Basic machine-tool settings of the wheel.

Data Wheel(CV) Wheel(CC)

Machine center to back, 𝛥𝑋𝐷2 [mm] 0.0
Sliding base, 𝛥𝑋𝐵2 [mm] 0.0
Bland offset, 𝛥𝐸𝑚2 [mm] 0.0
Machine root angle, 𝛾𝑚2 [◦] 78.152
Velocity ratio, 𝑚2𝑐 1.021768
Roll-to-blade radio, 𝑚2𝑏 0.068493
Radial distance, 𝑆𝑟2 [mm] 108.966
Cradle angle, 𝑞20 [◦] 47.606

Table 5
Basic machine-tool settings of the pinion.

Data Pinion(CV) Pinion(CC)

Machine center to back, 𝛥𝑋𝐷1 [mm] 18.029
Sliding base, 𝛥𝑋𝐵1 [mm] −3.376
Bland offset, 𝛥𝐸𝑚1 [mm] −55.489
Machine root angle, 𝛾𝑚1 [◦] 10.791
Velocity ratio, 𝑚1𝑐 12.431511
Roll-to-blade radio, 𝑚1𝑏 0.833333
Radial distance, 𝑆𝑟1 [mm] 108.966
Cradle angle, 𝑞10 [◦] 72.298

Fig. 6. Hypoid gear drive model and illustration of possible errors of alignment.

The tooth surfaces of pinion and wheel are determined by the application of the theory of gearing [16] and following the ideas
exposed in Appendix. Fig. 6 shows the hypoid gear drive model where the alignment errors (that will be considered in the next
10

section) are illustrated as well.
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Fig. 7. Results of tooth contact analysis for a clockwise rotation of the pinion: (a) contact patterns and (b) function of unloaded transmission errors.

6.3. Tooth contact and stress analyses

Tooth contact analysis (TCA) is applied following an algorithm already published in works [24,27]. A total of 21 steps or contact
positions are considered equally spaced along an angle of rotation of the pinion equal to 4𝜋∕𝑧1 (two angular pitches) and considering
a virtual marking compound thickness of 0.0065 mm for representation of the contact pattern. This algorithm considers that the
tooth surfaces are rigid and a total of three pairs of tooth surfaces can contact simultaneously. Application of TCA provides the
contact patterns illustrated in Fig. 7(a), represented on both the 3D model of the gear drive and schematically on a radial projection
of the gear tooth surfaces, for the pinion rotating in clockwise direction causing contact on the concave tooth surfaces of the pinion
and the convex tooth surfaces of the wheel. It can be observed that the bearing contact is localized and oriented in diagonal direction
on the gear tooth surfaces. Fig. 7(b) confirms that the function of unloaded transmission errors is zero and conjugate action is indeed
achieved.

Fig. 8 shows the results of TCA when the rotation of the pinion is in counterclockwise direction causing contact on the convex
tooth surfaces of the pinion and the concave tooth surfaces of the wheel. Similar conclusions as those obtained for a clockwise
rotation can be drawn.

Since no profile crowning or tip/root relief is applied to the tooth surfaces of pinion and wheel, the radial projections on Figs. 7
and 8 show that some contact ellipses are truncated and therefore high values of contact stresses are expected. In order to avoid
zones of severe contact, an optimized tip relief of the teeth could be found. Fig. 9 shows some values of parabola coefficients 𝑎(𝑃 )𝑡𝑟𝑜
and 𝑎(𝑊 )

𝑡𝑟𝑖 (see Fig. A.15) and their corresponding contact patterns on a radial projection of pinion concave tooth surface, considering
a tip relief height ℎ𝑡𝑟𝑖 = ℎ𝑡𝑟𝑜 = 1.5 mm. Here, 𝑎(𝑃 )𝑡𝑟𝑜 is the parabola coefficient for the tip relief of the outer blades that generate the
pinion concave tooth surfaces, and 𝑎(𝑊 )

𝑡𝑟𝑖 is the parabola coefficient for the tip relief of the inner blades that generate the wheel
convex tooth surfaces. The optimized values of parabola coefficients will depend on the applied torque that determines the real size
of the bearing contact (which is not shown in Fig. 9).

The real size of the bearing contact and the values of contact pressures are determined after a finite element analysis is carried
out. Fig. 10 shows the considered finite element model, that has a total of 508,118 nodes and 421,500 elements distributed in a
pinion with all its teeth and in a wheel with seven teeth. The number of finite elements along the face width is 150 for the pinion
and 55 for the wheel. There are 30 finite elements in profile direction for both the pinion and wheel tooth surfaces. The nodes on
the lower side of the pinion rim constitute a rigid surface, that is rigidly connected to reference node O𝑃 (the pinion pitch cone
apex). All the degrees of freedom are blocked on this node, but the rotation about the pinion axis is released. A torque 𝑇 is applied
on that released degree of freedom, transmitting the load to the pinion through the lower side of the rim. On the other hand, the
11
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Fig. 8. Results of tooth contact analysis for a counterclockwise rotation of the pinion: (a) contact patterns and (b) function of unloaded transmission errors.

Fig. 9. Effects of tip relief on the contact pattern on pinion concave tooth surface (ℎ𝑡𝑟𝑖 = ℎ𝑡𝑟𝑜 = 1.5 mm).

nodes around the rim of the wheel form as well rigid surfaces that are rigidly connected to the reference node O𝑊 (the wheel pitch
cone apex). All the degrees of freedom are blocked on this node. However, rotation about the wheel axis is forced at each step of the
analysis to investigate the evolution of the maximum contact pressure along the cycle of meshing. A total of 21 steps are considered
along two angular pitches of rotation of the pinion, covering an angle equal to 4𝜋∕𝑧1 rad. The contact interactions in the model
are defined between tooth surface pairs 1(𝑃 )-1(𝑊 ), 2(𝑃 )-2(𝑊 ), 3(𝑃 )-3(𝑊 ), 4(𝑃 )-4(𝑊 ), 5(𝑃 )-5(𝑊 ), 6(𝑃 )-6(𝑊 ), and 1(𝑃 )-7(𝑊 ), considering a
slave–master interaction [28].

A torque 𝑇 = 110 Nm is considered in this example. The required torque and the basic data that determines the size of the
transmission, 𝑟𝑚2 and 𝑏2, are related to each other and can be found through a trial-and-error procedure with the objective to keep
the maximum contact pressure below a certain value. The pinion spiral angle is also important in this procedure to guarantee a
high face contact ratio that allows variable 𝑟𝑚2 to be decreased. The pinion spiral angle may have also a maximum limit value if
reverse loading is desired.

Fig. 11 shows the formation of the bearing contact on the pinion model at step (or contact position) 11 of a total of 21 steps when
a parabola coefficient 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )

𝑡𝑟𝑖 = 0.005 mm−1 is applied. Fig. 11 shows that simultaneous contact occur in five tooth surfaces,
reaching a maximum contact pressure of 1172.2 MPa.

Fig. 12 shows the evolution of the maximum contact pressure for the case 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 = 0.005 mm−1, indicating its value at

each tooth pair and for each contact position 𝑖. The envelope to theses evolutions is also illustrated and named as 𝑝 . At step 11,
12
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Fig. 10. Finite element model and boundary conditions.

Fig. 11. Formation of the bearing contact on the pinion model and maximum contact pressure at step 11/21 for a torque 𝑇 = 110 Nm and 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 =

0.005 mm−1.

on tooth pair 4(𝑃 )-4(𝑊 ), the value of 1172.2 MPa, indicated in former Fig. 11, is shown. Fig. 12 shows as well that simultaneous
contact occur in four or in five tooth pairs. This circumstance justifies the use of seven teeth in the wheel model to keep the boundary
conditions far from the areas of contact.
13
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t

Fig. 12. Evolution of maximum contact pressure at each tooth pair for a torque 𝑇 = 110 Nm and 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 = 0.005 mm−1.

Fig. 13. Comparison of 𝑝𝑚𝑎𝑥 for several values of parabola coefficients 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 when 𝑇 = 110 Nm.

Fig. 13 shows a comparison of the 𝑝𝑚𝑎𝑥 for several values of 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 = {0.002, 0.003, 0.004, 0.005, 0.006} mm−1, observing

hat the optimum value is found for 𝑎(𝑃 )𝑡𝑟𝑜 = 𝑎(𝑊 )
𝑡𝑟𝑖 = 0.004 mm−1. A similar optimization could be done for the other rotation of

the pinion and considering the nominal torque for this reverse loading situation. In this case, the variables would be the parabola
coefficient 𝑎(𝑃 )𝑡𝑟𝑖 for the tip relief of the inner blades that generate the pinion convex tooth surfaces, and the parabola coefficient 𝑎(𝑊 )

𝑡𝑟𝑜
for the tip relief of the outer blades that generates the wheel concave tooth surfaces.

A study of the sensitivity of the gear drive to errors of alignment has been carried out to check the stability of the contact pattern
when errors of alignment are presented. This study has been done for the optimum tip relief. Fig. 6 shows the errors of alignment
𝛥𝛴, 𝛥𝑎, 𝛥𝐴1 and 𝛥𝐴2 in a positive direction. Fig. 14 shows the shift of the contact pattern on the radial projection of the pinion
concave tooth surface for several values of alignment errors. The considered values are not based in any previous calculation of
shaft deflections or gearbox casing deformations. However, they can be considered as high values for a gear drive size with nominal
torque of 110 Nm. The gray area allows the visualization of the relative shift of the contact pattern when an error of alignment is
presented respect to the expected location of the contact pattern when no errors occur. It can be shown that the contact pattern is
quite stable for the different values of alignment errors, showing its larger shift when an axial error of the pinion occurs.

7. Conclusions

The performed research work allows the following conclusions to be drawn:

(1) A methodology to determine the basic machine-tool settings of generated face-hobbed hypoid gears is proposed starting from
the definition of the pitch cones. The procedure, based on an exact system of generation, is analytical and direct since it does
14

not require optimization algorithms.
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Fig. 14. Relative shift of the contact pattern for several values of errors of alignment.

(2) Application of tooth contact analysis proves that the proposed methodology is actually based on an exact system of generation
with conjugate action and no unloaded transmission errors. TCA shows as well that the bearing contact is localized and stable
against misalignments.

(3) Stress analysis based on the application of the finite element method shows that the bearing contact requires a small adjustment
that can be achieved through the search of the optimum tip relief of the tooth surfaces. The geometries with optimum tip relief
show the minimum values of maximum contact pressure along the cycle of meshing.

(4) The methodology has been applied to a high reduction hypoid gear drive with orthogonal axes and considering the Cyclo-Cut
as the cutting method. The same problem could be solved considering Cyclo-Palloid as the cutting method. The methodology
could be extended to hypoid gear drives with non-orthogonal axes.
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ppendix. Basic concepts in a generating face-hobbing process

A computational model for the tooth surfaces of a spiral bevel gear or a hypoid gear that is based on a generating face-hobbing
rocess has been described in several publications [17,29,30]. This section summarizes such a model remarking those variables that
ave been used in this paper.

A generating face-hobbing process requires basically the definition of the cutter, the positioning of the cutter and the
o-be-generated gear in the cutting machine, and the relations of motions between both members.

Fig. A.15 shows a left-hand face-hobbing cutter where outer and inner blades are assembled on the head-cutter with an offset
ngle 𝜋∕𝑧0. Here, 𝑧0 is the number of blade groups. System 𝑆𝑐1 is used to define the blade profiles of the cutter that generates the
inion. Here, axis x𝑐1 points to P𝑜. Using a similar right-hand cutter (not represented in Fig. A.15), a coordinate system 𝑆𝑐2 would

be defined with its axis x𝑐2 pointing to P𝑖 and would allow the definition of the blade profiles of the cutter that generates the wheel.
The slope angle 𝜈 defines the orientation of the blades in their assembly on the head-cutter (see Fig. A.15). The slope angle 𝜈 is

defined as

𝜈 = arcsin
(

𝑟𝑏
𝑟𝑐0

)

= arcsin
(

𝑚𝑏𝑧0
2𝑟𝑐0

)

(A.1)
15

where 𝑚𝑏 is the blade module and 𝑟𝑐0 is the cutter radius.
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Fig. A.15. Definition of a left-hand face-hobbing cutter.

Fig. A.16. Illustration of basic machine-tool settings for: (a) a right hand wheel and (b) a left hand pinion.

The blade pressure angles 𝛼𝑖𝑏 and 𝛼𝑜𝑏 are contained in the front planes of the blades since a null rake angle has been considered
in this work to simplify the generating process. Otherwise, the blade pressure angle would not be contained in the front plane of
the blade and derivation of the profile pressure angle in the front plane would be necessary (see [27]).

The cutting edge is contained in the front plane of the blade and is defined through a profile parameter 𝑢 (𝑢1 for the pinion and
𝑢2 for the wheel). A tip relief as the required in this work can be implemented combining a parabola coefficient 𝑎𝑡𝑟𝑏 and a height
16

ℎ𝑡𝑟𝑏 where 𝑏 ≡ 𝑖 for the inner blades and 𝑏 ≡ 𝑜 for the outer blades.
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The positioning of the head-cutter and the gear (pinion and wheel) in the cutting machine is illustrated in Fig. A.16 for two
ossible configurations, a right hand wheel and a left hand pinion. Coordinate system 𝑆𝑐𝑖, 𝑖 = {1, 2}, is rigidly connected to the

head-cutter that generates the pinion (𝑖 = 1) or the wheel (𝑖 = 2). Coordinate systems 𝑆𝑝 and 𝑆𝑤 are rigidly connected to the
to-be-generated pinion and wheel, respectively. Systems 𝑆𝑚1 and 𝑆𝑚2 are fixed to the cutting machine.

Pinion and wheel tooth surfaces are obtained by simultaneous observation of the following coordinate transformations

𝐫𝑝(𝑢1, 𝜃𝑐1, 𝜓𝑐𝑟1) = 𝐌𝑝𝑏1(𝜓𝑝(𝜓𝑐𝑟1, 𝜃𝑐1))𝐌𝑏1𝑚1𝐌𝑚1𝑐𝑟1(𝜓𝑐𝑟1)𝐌𝑐𝑟1𝑡1𝐌𝑡1𝑐1(𝜃𝑐1)𝐫𝑐1(𝑢1) (A.2)

𝐫𝑤(𝑢2, 𝜃𝑐2, 𝜓𝑐𝑟2) = 𝐌𝑤𝑏2(𝜓𝑤(𝜓𝑐𝑟2, 𝜃𝑐2))𝐌𝑏2𝑚2𝐌𝑚2𝑐𝑟2(𝜓𝑐𝑟2)𝐌𝑐𝑟2𝑡2𝐌𝑡2𝑐2(𝜃𝑐2)𝐫𝑐2(𝑢2) (A.3)

nd the corresponding equations of meshing

𝑓1(𝑢1, 𝜃𝑐1, 𝜓𝑐𝑟1) =
( 𝜕𝐫𝑝
𝜕𝑢1

×
𝜕𝐫𝑝
𝜕𝜃𝑐1

)

⋅
𝜕𝐫𝑝
𝜕𝜓𝑐𝑟1

= 0 (A.4)

𝑓2(𝑢2, 𝜃𝑐2, 𝜓𝑐𝑟2) =
(

𝜕𝐫𝑤
𝜕𝑢2

×
𝜕𝐫𝑤
𝜕𝜃𝑐2

)

⋅
𝜕𝐫𝑤
𝜕𝜓𝑐𝑟2

= 0 (A.5)

Here, the following relations are verified

𝜓𝑝 = 𝜓𝑐𝑟1𝑚1𝑐 + 𝜃𝑐1
𝑧0
𝑧1

(A.6)

𝜓𝑤 = 𝜓𝑐𝑟2𝑚2𝑐 + 𝜃𝑐2
𝑧0
𝑧2

(A.7)

where 𝑚1𝑐 and 𝑚2𝑐 are the velocity ratios for pinion and wheel, respectively.
In (A.2) and (A.3), 4 × 4 order matrices are considered. Their expressions all well known in the specialized literature

nd are not repeated here. Matrices 𝐌𝑏1𝑚1 and 𝐌𝑏2𝑚2 depends on the basic machine-tool settings (𝛥𝐸𝑚1, 𝛥𝑋𝐵1, 𝛥𝑋𝐷1, 𝛾𝑚1) and
𝛥𝐸𝑚2, 𝛥𝑋𝐵2, 𝛥𝑋𝐷2, 𝛾𝑚2), respectively. Additionally, matrices 𝐌𝑐𝑟1𝑡1 and 𝐌𝑐𝑟2𝑡2 depends on the basic machine-tool settings (𝑆𝑟1, 𝑞10)
nd (𝑆𝑟2, 𝑞20), respectively.
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