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A B S T R A C T

In road transportation, long-distance routes require scheduled driving times, breaks, and rest
periods, in compliance with the regulations on working conditions for truck drivers, while
ensuring goods are delivered within the time windows of each customer. However, routes are
subject to uncertain travel and service times, and incidents may cause additional delays, making
predefined schedules ineffective in many real-life situations. This paper presents a reinforcement
learning (RL) algorithm capable of making en-route decisions regarding driving times, breaks,
and rest periods, under uncertain conditions. Our proposal aims at maximizing the likelihood of
on-time delivery while complying with drivers’ work regulations. We use an online model-based
RL strategy that needs no prior training and is more flexible than model-free RL approaches,
where the agent must be trained offline before making online decisions. Our proposal combines
model predictive control with a rollout strategy and Monte Carlo tree search. At each decision
stage, our algorithm anticipates the consequences of all the possible decisions in a number of
future stages (the lookahead horizon), and then uses a base policy to generate a sequence of
decisions beyond the lookahead horizon. This base policy could be, for example, a set of decision
rules based on the experience and expertise of the transportation company covering the routes.
Our numerical results show that the policy obtained using our algorithm outperforms not only
the base policy (up to 83%), but also a policy obtained offline using deep Q networks (DQN),
a state-of-the-art, model-free RL algorithm.

. Introduction

Planning long-distance road transport routes involves scheduling driving hours, breaks, and rest periods in compliance with
he regulations on working conditions for truck drivers, specifically, EC Regulation 561/2006 (EC Regulation 561/2006, 2006) in
he European Union. When each delivery must be made within a customer-specific time window, this schedule must also ensure
n-time delivery. This is a challenging problem even under deterministic conditions because, as shown in previous works (Goel,
009, 2018), a given route can meet delivery times following some schedules but not others, and the set of possible schedules can
e very large. To illustrate this with a couple of examples, consider a working day starting with a driving period of 4.5 h. According
o EC Regulation 561/2006, after this period, the driver must either take an uninterrupted break of 45 min or rest for 3 h (split
est), which includes part of the daily rest time, meaning that the second rest period can last 9 h instead of 11. Each option results
n a different schedule. Consider now that the vehicle stops after a driving period of 4.5 h, but now the driver has already completed
total number of 9 driving hours during the day and has not taken a split rest. The driver can: (1) start a rest period that will end
hen 24 h have elapsed since the end of the previous rest period; (2) start a rest period lasting the minimum time of a normal
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rest period (11 h); (3) start a reduced rest period (9 h); (4) take a break and drive for an additional hour (option 3 can be used 3
times a week, and option 4 only twice a week). Again, each decision generates a different schedule. In long distance routes like the
ones considered in this paper (more than 4500 km and up to 8 visited nodes), the number of occasions when scheduling decisions
should be made range roughly between 15 and 25, and the average number of options available at each decision stage is close to
4. Accordingly, the number of possible schedules for these routes ranges between 415 and 425 (i.e., approximately between 109 and
015). The objective of previous works like (Goel, 2009, 2018) was to find schedules ensuring that arrival and service times (loading
nd unloading) at every node were compatible with the time-window at each node. Of course, a predefined schedule can be planned
nly for deterministic travel speeds and service times.

In reality, however, the distance covered during each driving period and the service times at the visited nodes are non-
eterministic and depend on diverse uncertainties, such as traffic intensity, waiting times at each location, or incidents causing
nexpected delays. Let us consider a long-distance route with a regulation-compliant schedule ensuring on-time delivery under
eterministic conditions. When the route is already in progress, the vehicle may arrive at a certain location later than planned. At
hat point, the predefined schedule may no longer be effective, and a specific unplanned decision should be made. This decision
epends on the available options considering the current conditions of the driver (daily driving hours, uninterrupted driving and
orking hours, breaks taken, split rest taken, and so forth). We refer to these real-time decisions as en-route decisions. In fact, effective
n-route decisions should take into account all the relevant variables of the route (e.g., the distance covered, customer locations,
heir time windows), as well as the uncertainty of future travel speeds and service times, to anticipate the possible outcomes of
he current and future decisions. With all these considerations, making en-route decisions becomes a stochastic control problem
here the decision maker observes all the relevant variables of the route/driver (which we refer to as the state) and selects the best
ossible regulation-compliant action to maximize the chances of serving every customer on time. This is the problem addressed in
his paper.

It could be argued that most freight companies have been successfully operating long-haul routes for a long time without needing
o solve such a challenging stochastic control problem. En-route decisions can be based on a predefined set of common-sense decision
ules (a base heuristic policy). Such a policy can select actions that make efficient use of the available time (e.g., take a break
hen arriving to a customer location ahead of the time-window) and try to arrive earlier to the next node when the vehicle is

unning short of time for the next delivery (e.g., by extending the daily driving time and/or reducing the rest period) (Alcaraz et al.,
019). However, a base heuristic policy capable of generating an effective schedule under deterministic conditions can experience
ifficulties when faced with the randomness and unpredictability of real-life long-distance journeys. Under uncertain conditions, a
ub-optimal policy may lead to unexpected out-of-window deliveries and/or make an excessive of use of driving time extensions and
est period reductions. As we show in this paper, all these undesirable circumstances can be mitigated by more effective policies.
n this paper, we present an online reinforcement learning (RL) algorithm to generate these policies.

Our proposal follows a model-based RL approach according to the definition in Sutton and Barto (2018), incorporating a sample
odel, (i.e., it uses a characterization of the route uncertainties, such as velocities and service times, as random variables), to

imulate possible sequences of future events (trajectories) at each decision stage. It is also a fully online mechanism, since learning
nd planning are conducted simultaneously during decision time. At each decision stage, the algorithm observes the current state
nd then estimates (learns) the expected cost of the trajectories (cost-to-go) of each decision. This implies that the policy is generated
n real time, in contrast to offline RL, where the policies are learned before starting the route by means of previous (offline)
imulations. More specifically, our proposal combines several model-based RL methods for decision-time planning (Sutton and Barto,
018; Bertsekas, 2019). The first one is model predictive control (MPC), where the controller searches for the best actions within
limited number of future stages (lookahead horizon), then takes the estimated best action for the first stage and discards the

ollowing ones. Second, to estimate the cost-to-go, we use a rollout strategy, which consists of using a predefined base policy to
enerate the route decisions beyond the lookahead horizon. Third, we use a Monte Carlo tree search (MCTS) method to decide how
any trajectories are generated for each action at each stage of the lookahead horizon.

We have evaluated the effectiveness of our proposal by simulating realistic routes based on the operations of a Spanish long-
istance transport company. The results verify the policy improvement principle (Bertsekas, 2019), which states that if we obtain a
ew policy that optimizes the decisions for the lookahead stages, assuming that the cost-to-go beyond the lookahead horizon is
etermined by a suboptimal base policy, the new policy will outperform the base policy. We use two algorithms as benchmarks.
he first algorithm is the specific base policy used in our rollout scheme. This base policy is shown to be effective for every route
nder deterministic conditions but is clearly outperformed by our proposal when the environment is stochastic. The second baseline
s deep Q-networks (DQN) (Mnih et al., 2015), a state-of-the-art, model-free RL algorithm. This allows us to discuss the benefits and
rawbacks of our model-based approach compared to a model-free one. We also evaluate the role of the base policy in our proposal,
he tradeoff between prediction accuracy and computational overhead, and the effect of uncertainty on performance.

The remainder of this paper is organized as follows. Section 2 discusses related work and highlights the contributions of our
roposal. Section 3 formulates the problem of en-route decision-making. Section 4 details our control algorithm. Section 5 describes
ur evaluation methodology and presents our numerical results. Finally, Section 6 outlines our conclusions.

. Related work and contribution

Regulations on driving times and rest periods have been taken into account in several previous works, but only as an additional
onstraint in the formulation of the Vehicle Routing Problem (VRP), not for en-route decision-making. Consequently, the aim of
2

hese previous works is to generate routes with a predefined (static) schedule in compliance with the regulations. In this section, we
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first discuss how previous works have handled these regulatory constraints in diverse VRP variants. Then, we will review how RL
is gradually being adopted as a tool for solving different VRP variants, since it is becoming a promising approach for combinatorial
optimization (Mazyavkina et al., 2021). Note that none of these previous works address the specific problem of this paper: optimizing
en-route decisions with uncertainty on a given route. Thus, this section only considers antecedents of our approach in a related
domain, the VRP, which shares elements with our problem but is different in terms of objectives and methods.

The work by Kok et al. (2010) formulates a Vehicle Routing with Time Windows (VRPTW) considering EU legislation on working
nd driving hours and addresses it by using the dynamic scheduling algorithm developed in Gromicho et al. (2012), which they
odify to insert breaks in the journeys between customers. Goel (2009) proposes an extension of the Large Neighborhood Search

LNS) heuristic for a VRPTW in a way that each insertion or removal of a customer from a route must be feasible within the regulatory
ramework. A similar approach is used in Prescott-Gagnon et al. (2010), where an LNS heuristic is also employed, but, in this case, the
ain contribution is an efficient heuristic procedure to check the viability of a route after each customer insertion. Bernhardt et al.

2016) propose a Mixed Integer Linear Programming (MILP) model considering EU regulations, which they extend in Bernhardt et al.
2017) to integrate refueling decisions. They also show that incorporating these regulations in the problem significantly increases the
omputational time required to generate feasible solutions. Kleff (2019) uses a local search based algorithm and considers different
ariants of the VRPTW with drivers’ labor regulations, showing that its computational cost can become too high as more aspects are
aken into account. In Zäpfel and Bögl (2008) and Kovacs et al. (2012), the break and rest periods are inserted using a predefined
equence, while (Alcaraz et al., 2019) considers a predefined set of decision rules equivalent to the base policy used in our rollout
cheme. A common conclusion in these previous works is that scheduling decisions should receive a closer attention in long-haul
ransport. This is because the legislation allows breaks and rest periods to be distributed over time with some flexibility (scheduling
ecisions), and sometimes a given route can be feasible under some scheduling decisions but not under others. Consequently, finding
he optimal solution to a VRP compatible with driver rules implies considering all the possible schedules for every possible route,
hich might be in the order of 1015 for a single long-haul route, as discussed in the introduction. Therefore, adding regulation

constraints to a VRP notably increases the inherent complexity of the problem, even when the remaining constraints are standard
(e.g., vehicle capacity and time windows). We refer interested readers to Laporte (2016), Goel (2018) for more extensive coverage
of the regulatory impact on long-haul VRP.

Travel times uncertainty is another aspect that must be addressed. Some of the previously mentioned works consider travel times
variations throughout the day (Kok et al., 2010; Gromicho et al., 2012; Kleff, 2019). For example, in Kleff (2019), the driving time
along a segment of the network depends on the time of day and, in Kok et al. (2010), the travel speeds on customer-to-customer
routes are assumed to be available. However, traffic congestion is generally unpredictable, and deterministic routing and scheduling
can lead to suboptimal solutions that require frequent route re-planning to ensure that customers’ demands are met. Stochastic
travel and service times can be incorporated into the VRP by using random variables subject to probability distributions, such as
normal (Li et al., 2010), Li and Li (2020), Gamma (Taş et al., 2014), and log-normal (Gutierrez et al., 2018) distributions. Incidences
on routes are also taken into account (Jabali et al., 2015; Vareias et al., 2019) to generate routes with more resilient schedules. In
general, considering stochasticity provides better solutions in terms of robustness but makes the problems considerably harder to
solve (Gutierrez et al., 2018).

In recent years, Reinforcement Learning (RL) techniques have being gradually adopted as additional tools for solving diverse
variants of the VRP. Early works (Mao and Shen, 2018; Nazari et al., 2018) show how a model-free RL (MFRL) framework can
generate good quality solutions to basic VRP instances with little computation time (after training). J. Poullet (Poullet, 2020) extends
this framework to more complex VRP variants. These works show the potential RL has to address stochastic VRPs and make real-
time en-route decisions under uncertainty, although the latter application is still an open issue. It should be noted that, unlike
our online approach, MFRL algorithms require previous training, involving considerable computational effort, or a representative
training dataset, which can be hard to obtain. In some cases, RL algorithms are used in combination with other algorithms, such as
neural networks, metaheuristics, or classical optimization methods. For example, James et al. (2019) uses a deep neural network
model for fast route generation, and a deep RL (DRL) strategy to determine the model parameters. Zhao et al. (2020) present a
hybrid approach in which a DRL algorithm generates VRP solutions that are then improved with a local search method. Liu et al.
(2020) combine deep inverse reinforcement learning with Dijkstra’s algorithm to recommend routes for food delivery drivers. We
can find additional examples of the use RL in other related areas of transportation. In taxis dispatching, model predictive control is a
common strategy (Miao et al., 2016), and RL has been combined with an integer programming model of vehicle-customer matching
in Liang et al. (2021).

In conclusion, although there are an increasing number of recent works applying RL to address diverse transportation problems,
RL has not yet been explored for en-route decision-making in long-haul transportation considering EU regulations on drivers’ working
conditions.

2.1. Contribution

Here we detail the contributions of this paper:

1. We address a problem of significant practical interest for trucking companies: en-route decision-making for long-haul routes,
considering driving, breaks and rest periods in compliance with EU regulations. Decisions should be made based on the current
state of the journey, considering the uncertainty of future travel and service times, and aiming to deliver every transported
3

good within the predefined time window. To the best of our knowledge, this is still an open problem.
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2. We propose an online, model-based RL framework, which is a novel approach in this environment. It has two main advantages:
First, it does not require prior training, which makes our approach more flexible compared to offline model-free approaches
(e.g. it can adapt, without additional training, to changes in optimization criteria, regulations, or the statistic characterization
of the route uncertainties). Second, it uses an existing base policy, which our algorithm is guaranteed to improve according to
the policy improvement principle. This base policy can be a set of decision rules based on the experience of the road transport
company. The performance of the base policy provides a lower bound on the performance of our algorithm.

3. We combine the following techniques: model predictive control to make decisions by anticipating their future consequences; a
rollout strategy to approximate the cost-to-go using a base policy; and a Monte Carlo tree search (MCTS) method to efficiently
sample future trajectories. We provide a novel implementation of MCTS based on a multi-armed bandit algorithm aimed at
maximizing the probability of selecting the best action given a limited number of samples.

4. We have empirically verified that the obtained policy consistently improves the base policy under stochastic conditions,
and it also outperforms an offline trained DQN agent, at the expense of higher computation at decision time. We quantify
the performance and the per-stage computation time under different configurations and different degrees of uncertainty, to
assess the feasibility of the proposal. Our results show that efficient decisions can be made within computation times that
are compatible with real-time operation.

3. Problem statement

As described in the introduction, this work addresses the problem of selecting driver decisions on long-distance routes, during
events (such as stops on the route, or the end of a delivery) where more than one decision is available. The occurrence of one
of these events is a decision stage in our model. Our objective is to find a decision rule (policy) that selects, at consecutive stages,
actions that comply with regulations on driving and rest periods, maximize the expected amount of goods delivered within their
respective time windows, and make a moderate use of last resort decisions (driving extensions and reductions in rest time). In this
section, we explain this problem in detail, starting with a description of the regulations involved.

3.1. Driving and working hours regulation

Drivers’ working conditions in the European Union are regulated by EC Regulation 561/2006 (EC Regulation 561/2006, 2006),
which came into effect in April 2007. According to this regulation, driving periods, breaks, and rest periods must be scheduled as
follows:

1. After a driving period of 4.5 h, drivers must take an uninterrupted break of at least 45 min, unless they take a rest period.
2. Daily driving time must not exceed 9 h. A regular daily rest period is any rest period of at least 11 h.
3. The daily rest period may be reduced to 9 h no more than three times a week.
4. Daily rest need not be completed at the end of the 24-h period provided that more than 11 (or 9) hours of daily rest have

elapsed within the 24-h period. In other words, normal daily rest must begin no later than 13 h after the end of the last rest
period. In the case of rest reduction, daily rest must begin no later than 15 h after the end of the last rest period. These values
(13 and 15 h) are known as the maximum daily duration and the maximum extended daily duration.

5. In each 24-h period after the end of the previous daily rest period, the driver must take a new daily rest period.
6. Weekly driving time must not exceed 56 h.
7. Daily driving time may be extended to a maximum of 10 h not more than twice a week.
8. The break may be replaced by a break of at least 15 min followed by a break of at least 30 min.
9. The daily rest period may be taken in two parts, the first of which must be an uninterrupted period of at least 3 h and the

second an uninterrupted period of at least 9 h.

In addition, the European Directive 2002/15/EC (2002), which regulates uninterrupted working periods (i.e., driving plus loading
or unloading the vehicle), must be observed. This directive introduces two additional restrictions:

1. Working time intervals must not exceed six hours.
2. Weekly working time must not exceed 60 h.

3.2. Elements of the problem

The problem addressed is essentially a stochastic control problem where, at each decision stage, the decision maker (agent)
observes the state of the controlled system and makes a decision based on this observation. The next state will be determined by
the current state and decision and, in general, by the outcome of a random variable (thus, the stochastic nature of the problem).
This subsection describes all the elements that set up this problem.

System state. The state of the system is defined by the following set of route and driving variables.

• The distance 𝑑 covered by the vehicle up to the current stage
• The total time 𝑡 elapsed since departure from the depot
4

• The number of days elapsed since departure, 𝐷 = 1, 2,…
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Fig. 1. Sequence of events within a route and the possible actions associated with each event.

• The next location to be visited 𝑗 ∈ , where  denotes the set of locations visited along the route
• The event associated with the current stage 𝑘, belonging to the following set: {START_DRIVING, STOP_DRIVING, AR-

RIVAL_TO_NODE, SERVICE_AT_NODE, END_SERVICE}
• Driving time during the current day, 𝑡drive
• Current uninterrupted driving time, 𝑡on road
• Current uninterrupted work time, 𝑡work
• A boolean value indicating if at least one break has been done during the current day, BREAK_DONE
• A boolean value indicating if the daily rest time has been split, SPLIT_REST
• A boolean value indicating if the daily rest time has been reduced, REDUCED_REST
• A boolean value indicating if the driving time has been extended, EXTENDED_DRIVE
• The number of daily rest reductions used, 𝑅rest
• The number of driving time extensions used, 𝐷ext

The above variables are grouped into the system state 𝑥𝑘, where 𝑘 = 0, 1,… , 𝑁 denotes consecutive decision stages.
Actions and action subsets. At each stage, the agent selects an action 𝑢𝑘 based on the observed state 𝑥𝑘. The action 𝑢𝑘 is

constrained to take values from a given subset 𝑈𝑘(𝑥𝑘), which depends on the variables in 𝑥𝑘 and the regulations. For example,
consider a stop in which the daily driving time 𝑡drive is equal to 9 h (the maximum without an extension). If the variable 𝐷ext, which
accounts for the driving time extensions used during the route, is less than 2, extending the driving time will be possible. If 𝐷ext = 2,
this option will not be available. Fig. 1 shows the possible actions that could belong to 𝑈𝑘(𝑥𝑘) depending on the event reported in
𝑥𝑘. Appendix A details how the specific actions within 𝑈𝑘(𝑥𝑘) are determined.

Decision Stages. As shown in Fig. 1, there are three events (STOP_DRIVING, ARRIVAL_TO_NODE, END_SERVICE) associated
with multiple actions. Therefore, decision stages are defined as the moments these events occur.

System dynamics. We use this term to refer to the function 𝑓𝑘 that governs the evolution of the state from stage 𝑘 to stage
𝑘 + 1. This function depends on the current state 𝑥𝑘, the selected action 𝑢𝑘, and a random variable 𝜔𝑘, which is characterized by a
probability distribution that depends on 𝑥𝑘 and 𝑢𝑘, and gives the system its stochastic nature. In our problem, there are two sources
of randomness: vehicle speed at each driving period and service (loading or unloading) times at each node. Therefore, if the current
decision 𝑢𝑘 is to start driving, 𝜔𝑘 will be sampled from the probability distribution characterizing vehicle speed. If 𝑢𝑘 dictates starting
the service at the current node 𝑛 (specified by 𝑥𝑘), 𝜔𝑘 will be sampled from the probability distribution characterizing the service
5

time at 𝑛. In Section 5, we provide a specific example of the characterization of these route variables.
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Given the described elements, the system dynamics are as follows:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘), for 𝑘 = 0, 1,… , 𝑁 (1)

where 𝑢𝑘 is constrained to take values from 𝑈𝑘(𝑥𝑘).
Total cost of a route. To evaluate the effectiveness of a given policy, we need to define a numerical measure of the cost of

a route governed by this policy. We will associate the overall cost of a route with three variables: (1) the amount of pallets 𝑄late
that could not be delivered within their respective time widows, (2) the number of daily rest reductions used, 𝑅rest, and (3) the
number of driving time extensions used, 𝐷ext. Note that shortening rest periods or extending driving times should be considered last
resort measures since they may worsen drivers’ well-being and may represent an additional expense to the company, depending on
contractual agreements. In general, the objective is to minimize a weighted sum of these three variables. We consider equal weight
in our numerical experiments, thus, the total cost of a route is given by 𝑄late +𝑅rest +𝐷ext. Note that this cost is a random variable
that depends on the values taken by 𝑥𝑘, 𝑢𝑘, 𝜔𝑘, for 𝑘 = 0, 1,… , 𝑁 .

Cost per stage. This is denoted by 𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘), and it is defined as the sum of the increments in the cost variables 𝑄late, 𝑅rest,
and 𝐷ext, occurring during the transition from stage 𝑘 to stage 𝑘 + 1.

Policy. Formally, a policy is a sequence of functions 𝜋 = {𝜇0,… , 𝜇𝑁}, where 𝜇𝑘 maps states 𝑥𝑘 into actions, 𝑢𝑘 = 𝜇𝑘(𝑥𝑘). We say
that a policy is feasible if 𝜇𝑘(𝑥𝑘) ∈ 𝑈𝑘(𝑥𝑘) for any 𝑥𝑘 at 𝑘 = 0, 1,… , 𝑁 .

Cost-to-go. At a given state 𝑥𝑘, observed at stage 𝑘, the cost-to-go function under policy 𝜋 is defined as the expected cost starting
from 𝑥𝑘:

𝐽𝑘,𝜋 (𝑥𝑘) = E
[ 𝑁
∑

𝑛=𝑘
𝑔𝑛(𝑥𝑛, 𝜇𝑛(𝑥𝑛), 𝜔𝑛)

]

(2)

where the expectation E [⋅] is defined over the random variables 𝜔𝑛 for 𝑛 = 𝑘,… , 𝑁 (whose distributions depend on the visited
state–action pairs 𝑥𝑛, 𝑢𝑛, for 𝑛 = 𝑘,… , 𝑁). Note that the cost-to-go functions can be defined recursively as follows:

𝐽𝑘,𝜋 (𝑥𝑘) = E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) + 𝐽𝑘+1,𝜋 (𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘))
]

, for 𝑘 = 0,… , 𝑁 (3)

where each expectation is defined over the corresponding random variable 𝜔𝑘 for 𝑘 = 0,… , 𝑁 , and by convention it is assumed that
𝐽𝑁+1,𝜋 (⋅) = 0.

3.3. Problem formulation

Given an initial state 𝑥0 at 𝑘 = 0, the goal is to find an optimal policy 𝜋∗, that minimizes the cost-to-go starting at 𝑥0. This is
formulated as the following optimization problem:

𝐽0,𝜋∗ (𝑥0) = min
𝜋∈𝛱

𝐽0,𝜋 (𝑥0) (4)

where 𝛱 denotes the set of feasible policies (i.e., complying with regulation constraints).
Dynamic Programming formulation. We will now provide a more suitable formulation of the problem (4) based on the

Dynamic Programming algorithm (Bertsekas, 2019). First, we can define the optimal cost-to-go function at 𝑘 recursively, as we
did for the cost-to-go function in (3):

𝐽 ∗
𝑘 (𝑥𝑘) = min

𝑢𝑘∈𝑈𝑘(𝑥𝑘)
E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) + 𝐽 ∗
𝑘+1(𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘))

]

, for 𝑘 = 0,… , 𝑁 (5)

where, as in (3), each expectation is defined over 𝜔𝑘 for 𝑘 = 0,… , 𝑁 , and 𝐽 ∗
𝑁+1(⋅) = 0. If the functions 𝐽 ∗

0 , 𝐽 ∗
1 , …, 𝐽 ∗

𝑁 were known,
we could obtain an optimal policy with

𝜇∗
𝑘(𝑥𝑘) ∈ arg min

𝑢𝑘∈𝑈𝑘(𝑥𝑘)
E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) + 𝐽 ∗
𝑘+1(𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘))

]

(6)

for each state 𝑥𝑘 encountered at 𝑘 = 0, 1,… , 𝑁 .
Q-functions. The function minimized on the right hand side of (5) and (6) at each 𝑘 is often referred to as the Q-function (and

also as the Q-value or Q-factor):

𝑄𝑘(𝑥𝑘, 𝑢𝑘) = E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) + 𝐽 ∗
𝑘+1(𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘))

]

(7)

Let us assume that we have access to an estimation 𝐽𝑘+1 instead of the exact function 𝐽 ∗
𝑘+1. In this case, we define the

approximated Q-function:

�̃�𝑘(𝑥𝑘, 𝑢𝑘) = E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) + 𝐽𝑘+1(𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘))
]

. (8)

Estimating (8) to obtain a suboptimal policy �̃�𝑘(𝑥𝑘) ∈ arg min𝑢𝑘∈𝑈𝑘(𝑥𝑘)�̃�𝑘(𝑥𝑘, 𝑢𝑘) constitutes a general reinforcement learning (RL)
6

strategy known as approximation in value space. In the next section we explain the specific RL algorithm used in our problem.
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4. Online reinforcement learning

The general operation of our online reinforcement learning agent is given by the following steps. At each 𝑘 = 0, 1,… , 𝑁 :

1. Observe state 𝑥𝑘
2. Obtain an approximation �̃�𝑘(𝑥𝑘, 𝑢𝑘) of the Q-function 𝑄𝑘(𝑥𝑘, 𝑢𝑘) for 𝑢𝑘 ∈ 𝑈𝑘(𝑥𝑘)
3. Compute and apply the action �̃�𝑘(𝑥𝑘) ∈ arg min𝑢∈𝑈𝑘(𝑥𝑘)�̃�𝑘(𝑥𝑘, 𝑢𝑘)
4. Return to step 1 until 𝑘 = 𝑁 .

It is important to highlight the difference between an offline strategy and our online proposal. When a simulator of the
environment is available, an offline RL algorithm will be trained using this simulator in order to obtain an approximated Q-function
capable of estimating the Q-function at any visited state–action pair. Once trained, the algorithm will be deployed on the real
environment and it will use its Q-function estimator to select the most appropriate action at each online decision stage, just as in
step 3 above. In contrast, our online RL scheme does not approximate the Q-functions in advance. Thus, no previous offline training
is required. Instead, �̃�𝑘(𝑥𝑘, ⋅) is estimated once 𝑥𝑘 is observed.

The main challenges of Q-function estimation are obtaining the 𝐽𝑘 functions for 𝑘 = 1,… , 𝑁 , and computing the expectation in
(8). The following subsections present the proposed techniques to address these two challenges.

4.1. Rollout algorithm with multistage lookahead

Let us assume that a heuristic policy 𝜋 = {𝜇0, 𝜇1,… , 𝜇𝑁}, called the base policy, is provided. The rollout algorithm aims to
improve the performance of the base policy, producing an improved policy called the rollout policy. In its 𝓁-stage lookahead form,
this policy improvement relies on the following approximation of the optimal cost-to-go function for 𝓁 > 1:

𝐽𝑘+1(𝑥𝑘+1) = min
𝑐𝑢𝑛∈𝑈𝑛 (𝑥𝑛 )

𝑛=𝑘+1,…,𝑘+𝓁−1

E
[𝑘+𝓁−1
∑

𝑛=𝑘+1
𝑔𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛) + 𝐽𝑘+𝓁,𝜋 (𝑥𝑘+𝓁)

]

(9)

and 𝐽𝑘+1(𝑥𝑘+1) = 𝐽𝑘+1,𝜋 (𝑥𝑘+1) if 𝓁 = 1. With this approximation, the computation of �̃�𝑘(𝑥𝑘) involves the minimization of the
aggregated cost over a limited lookahead horizon of 𝓁 stages followed by the cost-to-go 𝐽𝑘+𝓁,𝜋 of the base policy 𝜋. In other words,
this approximation assumes that the base policy takes control after 𝓁 stages and then runs until the 𝑁th stage. Therefore, for 𝓁 > 1,
the following stochastic optimization problem must be solved at each stage 𝑘:

minimize
𝑢𝑘 ,𝑢𝑘+1 ,…,𝑢𝑘+𝓁−1

E
[

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝜔𝑘) +
𝑘+𝓁−1
∑

𝑛=𝑘+1
𝑔𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛) + 𝐽𝑘+𝓁,𝜋 (𝑥𝑘+𝓁)

]

subject to
𝑢𝑛 ∈ 𝑈𝑛(𝑥𝑛), for 𝑛 = 𝑘,… , 𝑘 + 𝓁 − 1
𝑥𝑛+1 = 𝑓𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛), for 𝑛 = 𝑘,… , 𝑘 + 𝓁 − 1

(10)

where the expectation is taken with respect to the trajectories induced by the random process 𝜔𝑘,… , 𝜔𝑘+𝓁−1. If 𝓁 = 1, the summation
term is removed from the objective function in (10). The first action of the obtained sequence 𝑢𝑘, 𝑢𝑘+1,… , 𝑢𝑘+𝓁−1 is then applied at
stage 𝑘, �̃�𝑘(𝑥𝑘) = 𝑢𝑘, while the remaining ones are discarded.

4.2. Simulation-based implementation

The problem (10) can be solved approximately by generating simulated trajectories starting from 𝑥𝑘. However, implementing
a lookahead of 𝓁 > 1 stages is not straightforward because each trajectory requires the generation of an approximately optimal
sequence of 𝓁 consecutive actions 𝑢𝑘,… , 𝑢𝑘+𝓁−1. One possible approach is to proceed backwards in time using a dynamic
programming strategy for each generated trajectory. This implies obtaining recursive approximations of the optimal cost-to-go.
At stage 𝑘 + 𝓁 − 1, the approximation is defined as:

𝐽𝑘+𝓁−1(𝑥𝑘+𝓁−1) ≈

min
𝑢𝑘+𝓁−1∈𝑈𝑘+𝓁−1(𝑥𝑘+𝓁−1)

E
[

𝑔𝑘+𝓁−1(𝑥𝑘+𝓁−1, 𝑢𝑘+𝓁−1, 𝜔𝑘+𝓁−1) + 𝐽𝑘+𝓁,𝜋 (𝑥𝑘+𝓁)
]

(11)

and for 𝑛 = 𝑘 + 1,… , 𝑘 + 𝓁 − 2, the approximations are defined as:

𝐽𝑛(𝑥𝑛) ≈ min
𝑢𝑛∈𝑈𝑛(𝑥𝑛)

E
[

𝑔𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛) + 𝐽𝑛+1(𝑥𝑛+1)
]

(12)

where expectations at each recursive step are estimated by sample averaging.
The general strategy involves generating a lookahead tree as follows. The root node of the tree is the observed state 𝑥𝑘, from

which 𝑆|𝑈 (𝑥𝑘)| trajectories are initiated, where |𝑈 (𝑥𝑘)| denotes the cardinality of the action set 𝑈 (𝑥𝑘) (i.e., the number of available
actions at 𝑥𝑘), and 𝑆 denotes the per-action sample budget at each node of the tree. 𝑆 is a configurable parameter of the algorithm,
whose influence will be discussed later in Section 5.

Each of the edges leaving the root node corresponds to one specific action 𝑢𝑠𝑘 ∈ 𝑈 (𝑥𝑘) and one sample of the random variable
𝜔𝑠 . Each edge connects 𝑥 with one child node given by 𝑥𝑠 = 𝑓 (𝑥 , 𝑢𝑠 , 𝜔𝑠 ) and is associated with one sample of the per-stage
7

𝑘 𝑘 𝑘+1 𝑘 𝑘 𝑘 𝑘
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t

Fig. 2. Schematic representation of a 2-stage lookahead tree built from 𝑥𝑘 with the rollout algorithm. The sets of available actions at both 𝑥𝑘 and 𝑥1𝑘+1 are equal
o {𝑎1 , 𝑎2}, and the per-action budget is 𝑆 = 3 (although the samples are not evenly assigned among actions). From states 𝑥𝑠𝑘+2 (for 𝑠 = 1,… , 𝑆), the base policy

is used until reaching the last stage.

cost 𝑔𝑠𝑘 = 𝑔𝑘(𝑥𝑘, 𝑢𝑠𝑘, 𝜔
𝑠
𝑘). From every child node, 𝑆|𝑈 (𝑥𝑠𝑘+1)| new edges come out, resulting in 𝑆|𝑈 (𝑥𝑠𝑘+1)| variations on each of the

trajectories initiated at 𝑥𝑘. Each variation is generated by one sample of the random variable 𝜔𝑠
𝑘+1 and one action 𝑢𝑠𝑘+1 ∈ 𝑈 (𝑥𝑠𝑘+1).

The tree generation proceeds similarly up to stage 𝑘 + 𝓁 − 1, as detailed in Algorithm 1. As a result, the tree contains 𝓁 depth
levels, one per lookahead stage, such that the edges on level 𝑖 are defined by pairs (𝑥𝑠𝑘+𝑖, 𝑥

𝑠
𝑘+𝑖+1) for 𝑖 = 0,… ,𝓁 − 1, and each edge

is associated with one action 𝑢𝑠𝑘+𝑖 and one cost sample 𝑔𝑠𝑘+𝑖. See Fig. 2 for an illustration of a lookahead tree with 𝓁 = 2 and 𝑆 = 3.

Algorithm 1 Generate lookahead tree
1: Input: Current state 𝑥𝑘, depth of the tree 𝓁, per-action budget 𝑆.
2: Output: Tree data structure containing state, actions, and cost samples.
3: Generate action set 𝑈𝑘(𝑥𝑘)
4: for 𝑠 = 1,… , 𝑆|𝑈 (𝑥𝑘)| do
5: Select action 𝑢𝑠𝑘 ∈ 𝑈𝑘(𝑥𝑘)
6: Generate sample 𝜔𝑠

𝑘
7: Obtain cost sample 𝑔𝑠𝑘 = 𝑔𝑘(𝑥𝑘, 𝑢𝑠𝑘, 𝜔

𝑠
𝑘)

8: Produce state sample 𝑥𝑠𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑠𝑘, 𝜔
𝑠
𝑘)

9: Associate 𝑢𝑠𝑘 and 𝑔𝑠𝑘 with edge (𝑥𝑘, 𝑥𝑠𝑘+1)
10: end for
11: for 𝑖 = 1,… ,𝓁 − 1 do
12: for each 𝑥𝑠𝑘+𝑖 do
13: Generate action set 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)
14: for 𝑠 = 1,… , 𝑆|𝑈 (𝑥𝑠𝑘+𝑖)| do
15: Select action 𝑢𝑠𝑘+𝑖 ∈ 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)
16: Generate sample 𝜔𝑠

𝑘+𝑖
17: Obtain cost sample 𝑔𝑠𝑘+𝑖 = 𝑔𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢

𝑠
𝑘+𝑖, 𝜔

𝑠
𝑘+𝑖)

18: Produce state sample 𝑥𝑠𝑘+𝑖+1 = 𝑓𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢
𝑠
𝑘+𝑖, 𝜔

𝑠
𝑘+𝑖)

19: Associate 𝑢𝑠𝑘+𝑖 and 𝑔𝑠𝑘+𝑖 with edge (𝑥𝑠𝑘+𝑖, 𝑥
𝑠
𝑘+𝑖+1)

20: end for
21: end for
22: end for

From each leaf node 𝑥𝑠𝑘+𝓁 , the base policy 𝜋 must run from stage 𝑘 + 𝓁 to the final stage 𝑁 , completing the trajectory and
obtaining a sample of the cost-to-go function 𝐽𝑘+𝓁,𝜋 (𝑥𝑠𝑘+𝓁) for the base policy, as detailed in Algorithm 2. Recall that taking one
sample of the cost-to-go requires generating all the samples 𝜔𝑠

𝑛 for 𝑛 = 𝑘 + 𝓁,… , 𝑁 .
To determine an upper bound on the number of generated trajectories from 𝑥𝑘, let �̄� denote the maximum number of available

actions at any state (in our case �̄� = 9). In the first stage, up to 𝑆�̄� trajectories are initiated. Each one of them branches into
a maximum of 𝑆�̄� trajectories in the second stage, resulting in

(

𝑆�̄�
)2 trajectories. Generalizing, we conclude that the sample

( ̄ 𝓁
)

8

complexity (number of generated trajectories) at each decision stage is 𝑂 (𝑆𝑈 ) .
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Algorithm 2 Generation of a trajectory with the base policy
1: Input: Base policy 𝜋 = {𝜇0,… , 𝜇𝑁}, state 𝑥𝑠𝑘+𝓁
2: Output: Cost-to-go sample 𝐽𝑘+𝓁,𝜋 (𝑥𝑠𝑘+𝓁)
3: 𝐽𝑘+𝓁,𝜋 (𝑥𝑠𝑘+𝓁) = 0
4: 𝑥𝑛 = 𝑥𝑠𝑘+𝓁
5: for 𝑛 = 𝑘 + 𝓁,… , 𝑁 do
6: Obtain action 𝑢𝑛 = 𝜇𝑛(𝑥𝑛)
7: Generate sample 𝜔𝑛
8: Update cost-to-go 𝐽𝑘+𝓁,𝜋(𝑥𝑠𝑘+𝓁) = 𝐽𝑘+𝓁,𝜋 (𝑥𝑠𝑘+𝓁) + 𝑔𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛)
9: if 𝑛 < 𝑁 then

10: Generate next state 𝑥𝑛+1 = 𝑓𝑛(𝑥𝑛, 𝑢𝑛, 𝜔𝑛)
11: end if
12: end for

Note that all the available actions need to be sampled at every visited state to estimate their performances. However, the principal
im is to use the available sample budget efficiently to estimate the best action for each state. This is a non-trivial problem that will
e discussed in the next subsection.

Given the data stored in the lookahead tree, we can obtain the approximate value 𝐽𝑘+𝑖 of the optimal cost-to-go using Monte
arlo averaging, starting at level 𝑖 = 𝓁 −1 and proceeding backwards until 𝑖 = 1. This procedure is described in Algorithm 3, where
(𝑢′ = 𝑢) is an indicator function that equals 1 when 𝑢′ = 𝑢 and 0 otherwise.

Algorithm 3 Computation of the Q-function
1: Input: Lookahead tree starting at 𝑥𝑘
2: Output: Approximated Q-function �̂�𝑘(𝑥𝑘, 𝑢) for 𝑢 ∈ 𝑈𝑘(𝑥𝑘).
3: for each leaf node 𝑥𝑠𝑘+𝓁 do
4: 𝐽𝑘+𝓁(𝑥𝑠𝑘+𝓁) = 𝐽𝑘+𝓁,𝜋 (𝑥𝑠𝑘+𝓁)
5: end for
6: for each depth level of the lookahead tree 𝑖 = 𝓁 − 1,… , 0 do
7: for each node 𝑥𝑠𝑘+𝑖 at the 𝑖-th depth level of the tree do
8: for each child node 𝑥𝑠𝑘+𝑖+1 of 𝑥𝑠𝑘+𝑖 do
9: Get 𝑢𝑠𝑘+𝑖 and 𝑔𝑠𝑘+𝑖 associated with edge (𝑥𝑠𝑘+𝑖, 𝑥

𝑠
𝑘+𝑖+1)

10: 𝑞𝑠𝑘+𝑖(𝑥
𝑠
𝑘+𝑖, 𝑢

𝑠
𝑘+𝑖) = 𝑔𝑠𝑘+𝑖 + 𝐽𝑘+𝑖+1(𝑥𝑠𝑘+𝑖+1)

11: end for
12: for each 𝑢 ∈ 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖) do

13: �̂�𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢) =
∑𝑆

𝑠=1 𝑞
𝑠
𝑘+𝑖(𝑥

𝑠
𝑘+𝑖, 𝑢

𝑠
𝑘+𝑖)𝛿(𝑢

𝑠
𝑘+𝑖 = 𝑢)

∑𝑆
𝑠=1 𝛿(𝑢

𝑠
𝑘+𝑖 = 𝑢)

14: end for
15: if 𝑖 > 0 then
16: 𝐽𝑘+𝑖(𝑥𝑠𝑘+𝑖) = min

𝑢∈𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)
�̂�𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢)

17: end if
18: end for
19: end for

4.3. Sampling strategy

In the rollout algorithm described above, every time a new state sample 𝑥𝑠𝑘+𝑖 is generated for 𝑖 = 0,… ,𝓁 − 1, it is necessary to
generate trajectories from all the actions in 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖) to obtain a sample of 𝐽𝑘+𝑖(𝑥𝑠𝑘+𝑖) (the approximation of the optimal cost-to-go).
Because the algorithm operates online, the sampling process necessary to build a lookahead tree at each stage must be accomplished
in reasonable and bounded time. To address this limitation, we introduced the sample budget 𝑆 in the previous subsection, resulting
in 𝑆|𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)| total samples at a given node 𝑥𝑠𝑘+𝑖 of the lookahead tree. Let 𝐴 = |𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)| denote the cardinality of the action
et at this node, and let 𝐵 = 𝑆𝐴 denote the total sample budget at the node.

Because all the actions in 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖) need to be evaluated, the problem is how to allocate the 𝐵 samples among the 𝐴 actions.
ampling all the actions equally often (i.e., taking 𝑆 samples per action) can provide estimations of similar accuracy for all the
ctions. However, this approach can be inefficient because many samples can be wasted in poor performing actions, while finding
he best action may require sampling the better ones more often. In fact, we should aim for two objectives: first, to accurately identify
he best action for each state, and second, to obtain more samples of the best action to increase the accuracy of the Q-function
9

pproximation.
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This problem fits into the category of multi armed bandits (MABs) (Lattimore and Szepesvári, 2020). In a general setting, MABs
escribe sequential decision problems where an agent takes samples from a set of actions (arms) and observes their performance.
he arm selected at each step is determined by the history of past actions and observations. There are various types of MAB problems
epending on their objective. In our case, we consider a best arm identification problem that aims to accurately find the best arm
ith a given sample budget.

Several algorithms addressing this problem have been proposed: Sequential Halving (SH) (Karnin et al., 2013), Successive Rejects
SR) (Audibert et al., 2010) and UCB-E (Audibert et al., 2010). The first two are parameter-free, meaning they do not require previous
ff-line tuning of any parameter. Our algorithm implements the more recent algorithm, SH, described in Algorithm 4, which operates
s follows. First, SH divides the sample budget 𝐵 into 𝑇 = ⌈log2(𝐴)⌉ elimination rounds of identical numbers of samples. At the end
f each round, the algorithm discards half of the arms with the lowest empirical performances. During each round, each arm that
as not yet been discarded is selected equally often. The selected action �̂� is the last surviving arm.

Algorithm 4 Sequential Halving
1: Input: Set of actions 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖), per action sample budget 𝑆
2: Output: Best empirical action �̂� ∈ 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)
3: 𝐴 = |𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)|, 𝐵 = 𝑆𝐴, 𝑇 = ⌈log2(𝐴)⌉
4:  (0) = 𝑈𝑘+𝑖(𝑥𝑠𝑘+𝑖)
5: for each elimination round 𝑡 = 0,… , 𝑇 − 1 do
6: for each 𝑢 ∈  (𝑡) do

7: Select arm 𝑢 for
⌊

𝐵
⌈

log2(𝐴)
⌉

| (𝑡)
|

⌋

consecutive samples

8: Update the performance estimation of 𝑢
9: end for

10: Let  (𝑡+1) contain the ⌈| (𝑡)
|∕2⌉ actions with better performance in  (𝑡)

11: end for
12: �̂� is the only element in  (𝑇 )

One benefit of SH over randomized MAB algorithms like UCB is that SH allows us to compute the exact number of samples
btained from the best empirical arm, as follows:

𝑛BEST =
𝑇−1
∑

𝑡=0

⌊

𝐵
⌈log2(𝐴)⌉⌈

𝐴
2𝑡 ⌉

⌋

(13)

The work that presented SH (Karnin et al., 2013) also provided an upper bound on the probability of finding the best arm, but it
howed that its empirical performance is notably better than this bound. Section 5 numerically evaluates how estimation accuracy,
mplicitly determined by 𝑆 and 𝓁, affects the performance of our proposal.

The use of an MAB-based sampling strategy at each visited state 𝑥𝑠𝑘+𝑖, imposes a subtle but relevant constraint on the generation
f the lookahead tree. The actions selected from 𝑈 𝑠

𝑘+𝑖(𝑥
𝑠
𝑘+𝑖) cannot be determined a priori. Instead, each selected action depends

n the actions previously selected from 𝑈 𝑠
𝑘+𝑖(𝑥

𝑠
𝑘+𝑖) and their performance observations. Recall that these observations are samples

f the Q-function 𝑄𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢), not the per-stage cost. Therefore, taking one sample of 𝑄𝑘+𝑖(𝑥𝑠𝑘+𝑖, 𝑢) implies generating a new edge
𝑥𝑠𝑘+𝑖, 𝑥

𝑠
𝑘+𝑖+1) and then generating the whole tail of the lookahead tree from 𝑥𝑠𝑘+𝑖+1. For the sake of clarity, this aspect is not reflected in

lgorithm 1 but must be taken into account if multistage lookahead is combined with an MAB algorithm, as in our implementation.

. Numerical results

.1. Methodology

In this section, we evaluate the performance of our online RL algorithm by simulating complete realizations of realistic long-haul
outes based on typical operations of a real freight company in Spain.1 These routes pick up goods in southeastern Spain and deliver
hem to customers in Germany, with each route characterized by its delivery day and time-window. For each route, we estimate
he cost attained with our algorithm, the cost obtained with the base policy detailed in Appendix B, and the cost obtained with a
tate-of-the-art, model-based RL algorithm known as Deep Q-Networks (DQN) (Mnih et al., 2015). Unlike the base policy and our
roposal, DQN needs to be trained offline to find an effective policy. Later in this section, we will discuss how DQN was configured
nd trained.

In all our experiments, each algorithm is evaluated in 200 simulations of each route (1200 runs in total). Each simulation run
nvolves the generation of random travel speeds for all the driving periods and all the service times at the nodes. In these test
uns, the simulator may insert random incidents along the journey, affecting either travel speeds or service times at any point
long the route. These incidents are inserted for testing purposes, and the algorithms are assumed to be unaware of them during

1 The simulation environment and the RL agents developed for this section are available in https://github.com/jjalcaraz-upct/mbrl-route.
10
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Table 1
Configuration of the simulation parameters.
Velocity during each driving period

Distribution Truncated Gaussian

Max speed 100 km/h
Mean speed 80 km/h
Min speed 60 km/h
Standard deviation 5 km/h

Service time (load or delivery) at locations

Distribution Truncated Gaussian

Min time 30 min
Mean time 3 min per pallet
Standard deviation 10% of mean time

Incidences

Incidence probability 0.1 per drive/service period
Maximum incidences 1 per route
Max speed 40 km/h
Mean speed 25 km/h
Min speed 10 km/h
Standard deviation 1 km/h
Mean service time 6 min per pallet

Online RL algorithm

Budget 10 samples/action
Lookahead tree depth 2 levels

Table 2
Route 1. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 0 9.4 5.5
Alicante 204.8 17.3 8.3 9.26
Valencia 362.8 4.8 12 12.52
Gaimersheim 2517.6 −5.6 74–77 75.33 75.83 1.16
Eching 2687.2 −1.7 76–83 78.7 79.33 3.66
Marktredwitz 2861.3 −13.9 78–83 81.35 82.03 0.96
Langenberg 3130.9 −10.3 98–101 97.79 98.5 2.5
Murcia 5417.8 162

Table 3
Route 2. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 0 11.8 7.5
Alicante 204.8 6.6 10.46 10.97
Valencia 362.8 9.4 13.71 14.21
Melsungen 1777.1 −4.4 50–59 57.08 57.64 1.36
Trostberg 2520.7 −6.8 74–77 75.5 76 0.99
Bielefeld 2624.1 −12.1 76–83 77.97 78.65 4.34
Neumunster 3038.8 −4.5 102–107 99.8 102.5 4.5
Murcia 5450.2 166.6

Table 4
Route 3. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 0 15.9 7.78
Alicante 204.8 6.1 10.66 11.18
Valencia 362.8 9.8 13.93 14.43
Grunheide 2238.5 −10.1 78–83 76.89 78.5 4.49
Landsberg 2319.8 −1.5 78–83 79.52 80.05 2.94
Coswig 2841.7 −8.6 102–107 97.25 102.5 4.5
Tuningen 3452.7 −11.6 126–131 124.3 126.6 4.36
Murcia 6157.1 193.6
11
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Table 5
Route 4. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 0.0 31.2 8.54
Valencia 270.1 1.6 12.35 1.85
Balingen 1967.0 −11.5 74–77 73.65 74.63 2.37
Lauenau 2430.1 −5.3 76–83 80.74 81.24 1.75
Meckenheim 2487.2 −8.3 76–83 81.93 82.57 0.42
Striegistal 2715.7 −2.7 98–101 96.23 98.5 2.5
Gonitz 2897.7 −5 98–107 100.6 101.1 5.9
Murcia 4879.8

Table 6
Route 5. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 6.4 5.5
Alicante 204.8 12.3 8.38 8.89
Valencia 362.8 0.5 10.88 11.63
Heddesheim 2464.3 −2.5 74–83 77.48 78.11 4.88
Valluhn 2827.0 −11 100–107 83.39 100.5 6.46
Erharting 3031.2 −5.7 100–107 102.7 103.3 0.56
Murcia 5055.4 163.2

Table 7
Route 6. Units: Distances (km/h), load (euro-pallets), time window, arrival and departure time (hours since the
start of the departure day), margin (hours).
Nodes Distance Load Window Arrival Depart Margin

Murcia 1.9 4.5
Alicante 204.8 5.9 7.38 8
Valencia 362.8 8 9.99 11.25
Schwabach 2306.7 −11.1 74–77 74.62 75.19 1.08
Straubing 2430.6 −1.2 77–83 76.74 77.29 5.7
Malchow 2839.7 −3.2 77–83 82.07 82.63 0.37
Murcia 4828.9 142.6

training/planning periods. Table 1 summarizes the simulation setup for these runs. In Section 5.4, we consider scenarios with a
different degree of uncertainty.

The simulated routes correspond to a fleet of vehicles delivering to multiple customers, so each vehicle visits a subset of nodes.
ehicles pick up goods from some specific nodes in Spain (Murcia, Alicante, and Valencia), and deliver them to destination nodes in
ermany. The parameters of these routes, shown in Tables 2, 3, 4, 5, 6, and 7, are: the distance to the origin of each location along

he route, the amount of loaded goods (or delivered goods if the value is negative) at each location, and the delivery time window (in
ours counted from the start of the departure day). As an example, Fig. 3 depicts route 1, which covers 5417.8 km in 162 h following

the base policy with deterministic travel and service times. Additionally, to illustrate the adequacy of the base policy, these tables
include the arrival and departure times with the base policy for a nominal speed of 80 km/h and a deterministic, load-dependent
service time. The last column shows the time margins from the completion of each delivery to the end of its corresponding time
window. As will become clear in the following subsection, the base policy is effective for these routes as long as there are no
uncertainties in travel and service times on the routes.

5.1.1. Base policy
The base policy is both an element of our algorithm and a baseline in our numerical experiments that allows us to validate our

algorithm by assessing the policy improvement principle. The base policy was designed with these goals in mind: first, it needed
to be a lightweight procedure since it has to be executed thousands of times during each run; second, it should be effective at least
under deterministic conditions; and third, it should be compliant with EU regulations on drivers’ working conditions. In Section 5.3,
we evaluate the impact of using alternative base policies.

The base policy detailed in Appendix B operates on the following principles: Decisions are mostly based on the upcoming
customer, 𝑗, on the route, and, more specifically, on the customer’s delivery time-window, which is delimited by a start time 𝑡start(𝑗)
and an end time 𝑡end(𝑗). At each decision stage, the algorithm estimates the driving time 𝑡est(𝑗) required to arrive at 𝑗 at a constant
speed and the service time 𝑡serv(𝑗), considering a constant service time per pallet. Using these variables, the decisions are made as
follows:

• When the vehicle stops, if the current working day has not finished, the decision is simply to take a break. Otherwise, the
algorithm successively assesses which decision ensures on time delivery, starting from those providing a longer daily rest and
12
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Fig. 3. Illustration of route 1, one long-haul route considered for the evaluation of the decision-making policies. The vehicle picks up goods from Murcia,
Alicante, and Valencia, in Spain, and delivers them to several German locations.

finishing with a rest reduction and a driving extension (provided that both options are available). The policy selects the first
decision capable of delivering the goods within the time window, aiming to avoid unnecessary rest reductions and/or driving
extensions.

• Upon an arrival at a node, if the current time 𝑡 is earlier than 𝑡start(𝑗), the policy successively assesses which interruption fits
in the time available until the window opens: a daily rest, a split rest (if available), or a break, selecting the first one that fits.
A break will be taken if required to comply with the maximum 6 h of continuous work. Otherwise, the service starts.

• After finishing a service, if the working day has not ended, the selected action is to continue driving unless a break must be
taken to comply with the maximum working hours. If the day has finished, the rest period starts.

• Whenever a decision to take a break is made, a split break (lasting 15 min) is taken if possible, i.e., if the current uninterrupted
driving time is less than 4.5 h and if a break has not been taken previously.

In summary, the base policy tries to meet the delivery of the upcoming node on time while making efficient use of the available
resources (time, driving extensions, and rest reductions).

5.1.2. DQN description and configuration
DQN is a state-of-the art, model-free deep RL algorithm especially suitable for controlling environments with discrete actions

(like the one in this paper). DQN belongs to the family of Q-learning algorithms, which learn an approximation of the Q-function
for all the state action pairs. DQN approximates the Q-function with a deep neural network (known as Q-network). To stabilize the
learning process, it includes an experience replay buffer and a duplicate of the Q-network, which is used as the learning target during
a predefined amount of training episodes (see Sutton and Barto (2018) and Mnih et al. (2015) for more details on Q-learning and
DQN).

One of the drawbacks of DQN, and of model-free RL algorithms in general, is that it requires a non-negligible amount of
hyperparameter tuning and offline training before it can be deployed on the controlled environment. For our experiments, we tuned
and trained DQN for each one of the routes considered (a DQN agent capable of generalizing any possible route is a challenging
problem that is out of the scope of this paper). The configuration parameters that remained fixed for all the routes are the following:

• The Q-network contains 2 hidden layers of 128 neurons each and rectified linear unit (ReLU) activation.
• The replay buffer stores up to 50 000 transitions.
• The batch size (number of samples taken from the replay buffer at each update) is 64.
• The target Q-network is updated every 100 episodes.
• The optimization algorithm is Adam, and the loss function is the mean squared error.

The above setting is fairly standard. In our experiments, increasing the number of neurons per hidden layer to 256 and the size of
the replay buffer to 100 000 samples did not provide noticeable improvements.
13
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The two hyperparameters that need to be carefully tuned are the learning rate 𝛼, which determines the step size at each update,
nd the epsilon decaying rate 𝜖𝑟, which determines how the exploration parameter (𝜖) decays from its initial value (generally 1)
o its minimum value (0.01 in our case). To find the best configuration of 𝛼 and 𝜖𝑟, we trained DQN on each route for all the
ombinations of 𝛼 ∈ {1 ⋅ 10−7, 5 ⋅ 10−7, 1 ⋅ 10−6,… , 5 ⋅ 10−3, 1 ⋅ 10−3} and 𝜖𝑟 ∈ {0.99, 0.995, 0.999}. Each training experiment involved

the simulation of 50 000 episodes, which was found to be long enough for DQN to converge. As a result of this campaign of training
experiments, we found the following best configuration pairs (𝛼, 𝜖𝑟) for each route: Route 1: (1 ⋅10−5, 0.995), Route 2: (5 ⋅10−5, 0.995),
Route 3: (5 ⋅ 10−5, 0.99), Route 4: (5 ⋅ 10−5, 0.995), Route 5: (5 ⋅ 10−5, 0.999), Route 6: (1 ⋅ 10−5, 0.995). It should be noted that training
each configuration of the DQN agent took our server (an HP Proliant DL380 with 2 Intel Xeon E5-2650V3 CPUs) between 8 and 70
h, depending on the available computational resources. This volume of computation might render offline training impractical for
freight companies that need to plan tens or even hundreds of routes daily.

5.2. Efficiency comparison

Fig. 4 shows the histograms for the 200 cost values obtained by each algorithm for each route. Complementing the results shown
in this figure, Table 8 summarizes the statistical estimations of the mean and the standard deviation of the cost of each algorithm
on each route, including the p-values for the null hypothesis that the performance of the considered algorithm is equivalent to ours.
All the p-values are below 0.05, showing sufficient statistical evidence that our rollout policy outperforms both baselines in all the
routes. Recall that the cost of a route is determined by the pallets delivered late, plus a penalty that accounts for the number of
driving extensions and rest reductions. We can consider the route costs of the base policy under deterministic conditions to provide
a reference for these estimated costs. In this ideal case, the costs are: 1 for routes 1 and 2 (both routes included one extension of
the driving time), and 0 for routes 3, 4, 5, and 6.

We can draw the following conclusions from these results: First, it is evident that randomness in velocities and service times
makes the problem more challenging, as evidenced by worse performance of the base policy. To illustrate the negative effect of
uncertainty, let us consider route 1. In a deterministic scenario, the base policy attains a cost of 1. However, in a realistic route,
a succession of unfavorable travel times could cause a late delivery to the third customer, increasing the cost from 1 to 8.6. Also,
since the delay is cumulative, a late delivery to the third customer makes it more likely to arrive late to the fourth customer, raising
the cost to 24.2. Thus, a slight inaccuracy in planning can have a very large impact on cost, hence, the significant differences in
performance observed among policies. Second, even though our proposal uses the base policy for its rollout scheme, the resulting
rollout policy clearly outperforms the base policy, reducing the cost by a factor of between 5 and 20. This empirical verification
of the policy improvement principle (Bertsekas, 2019) validates our implementation. Third, although DQN is more resilient than the
base policy, it is still less effective than the proposed algorithm. One possible explanation for this is that although both algorithms
leverage the same prior knowledge about the environment (i.e., route details and the statistic characterization of velocities and
service times), DQN, as all model-free algorithms, uses this information to learn an approximation of the Q-function in advance.
This approximation should be valid for any state, not just for the specific states that will be visited during the route and which
are impossible to know during offline training. In contrast, our proposal exploits this information in decision time so that once a
state is observed, our online algorithm can devote all available resources to estimating the Q-function at this particular state. As a
result, the online estimation can be more accurate than one that generalizes from visits to other states, enabling more effective
decision-making.

The strategy of estimating the Q-function once the state is observed is known as decision-time planning (Sutton and Barto, 2018)
and has the well-known drawback of increased computational cost per decision (due to the simulation of the multiple trajectories
across the lookahead tree), which limits its use to applications that do not require fast responses. This is precisely the case of our
en-route decision-making problem: in any of the events where a decision should be made (STOP_DRIVING, ARRIVAL_TO_NODE,
END_SERVICE), a latency of around 1 min can be considered acceptable. Section 5.4 discusses this issue in further detail. Table 9
summarizes the main differences between DQN, a model-free RL approach, and our model-based online RL proposal.

5.3. Influence of the base policy

While the policy improvement principle guarantees that the rollout policy will outperform the base policy, it does not clarify to
what extent the base policy determines the performance of the rollout policy. In this subsection, we address this issue by evaluating
and comparing the performance of our proposal under three different base policies: (1) base policy 1, detailed in Appendix B, is
the one used in the previous section; (2) base policy 2 is a simplification of base policy 1, from which it removes the options of
extending driving time and reducing rest periods; and (3) base policy 3, which simplifies base policy 2 by removing the options of
taking split breaks or split rests. We have repeated the performance evaluation experiments of the rollout policy using base policies
2 and 3. Table 10 shows the average cost and confidence interval (with a confidence level of 95%) for each route. Also, for policies
2 and 3, we show the 𝑝-value for the null hypothesis that using the alternative base policy provides similar performance to using
base policy 1.

We see that the performance of the rollout policy is very similar with the three base policies. The confidence intervals are
mostly overlapping, and most p-values are greater than 0.05, exceeding 0.3 in many cases. In conclusion, it cannot be stated that
the design of the base policy has a notable influence on rollout policy performance. Recall that by using a base policy to approximate
the cost-to-go of the trajectories, we introduce a pessimistic bias into the Q-value estimations. Nevertheless, these results suggest
that this bias has little influence on the comparison of the actions, i.e., base policies tend to worsen the Q-values of all the actions
in such a way that their relative differences in performance are kept, at least for the best actions, from one base policy to another.
14
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Fig. 4. Histograms of the 200 cost values obtained with each algorithm on each route.

.4. Parameter configuration and computational overhead

As discussed in Section 4.3, the prediction accuracy of our online RL algorithm is determined by two parameters: the depth of
he lookahead tree 𝓁 and the sample budget 𝑆. Increasing the values of these parameters enhances prediction accuracy at each
ecision stage, allowing the algorithm to make more effective decisions at the cost of greater computational effort. Therefore, we
eed to quantify the accuracy-computation tradeoff to assess the feasibility of our proposal. Moreover, we evaluate its robustness
15

gainst different degrees of uncertainty in travel and service times.
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Table 8
Statistical comparison of route costs obtained with the base policy, the DQN policy and, our rollout policy.
Route Base policy DQN policy Rollout policy

Mean var p-value Mean var p-value Mean var

1 18.9 121.45 8.34 ⋅ 10−60 8.95 44.79 5.86 ⋅ 10−26 2.38 23.41
2 6.56 24.43 2.41 ⋅ 10−36 6.11 36.5 1.44 ⋅ 10−23 1.35 3.78
3 0.178 0.825 0.0043 0.0675 0.097 0.0052 0.0075 0.011
4 7.23 30.6 2.22 ⋅ 10−40 3.82 28.93 3.03 ⋅ 10−12 0.85 6.21
5 0.27 2.67 0.013 0.37 2.96 0.0022 0.016 0.0512
6 7.26 7.14 1.57 ⋅ 10−60 7.06 13.3 6.96 ⋅ 10−44 2.04 7.09

Table 9
Quantitative and qualitative comparison of DQN vs. our model-based online RL proposal combining MCP, rollout and MCTS.

Feature DQN MPC + rollout + MCTS

Training time 8–70 h per route, depending on the available
computational resources

No offline training is required

Decision time 0.6 ms 25 s (𝑆 = 10, 𝓁 = 2), 0.67 s (𝑆 = 10, 𝓁 = 1)
Performance (improvement over base policy) 22% 83% (𝑆 = 10, 𝓁 = 2), 79% (𝑆 = 10, 𝓁 = 1)

Hyperparameters 𝛼, 𝜖𝑟, replay buffer size, Q-network update frequency, multiple
deep neural network hyperparameters (e.g. layers, dimensions,
activation function, optimizer, batch size)

𝑆 and 𝓁

Configuration Per-route hyperparameter tuning is required Larger 𝑆 and 𝓁 values improve
performance but increase decision time

Flexibility (to changes in the environmental
conditions)

The policy must be re-trained using a route simulator that
includes the changes in the environment

Only requires a simulator update
(no re-train needed)

Table 10
Statistical comparison of route costs obtained by the rollout policy with three different base policies. Each statistical value is
obtained for 200 runs of each route.
Route Base policy 1 Base policy 2 Base policy 3

Mean 95% CI Mean 95% CI p-value Mean 95% CI p-value

Low Up Low Up Low Up

1 2.39 1.71 3.06 2.30 1.68 2.92 0.428 2.61 1.91 3.32 0.322
2 1.35 1.08 1.62 1.00 0.79 1.21 0.022 1.20 0.92 1.32 0.088
3 0.01 0.00 0.02 0.00 0.00 0.00 0.159 0.00 0.00 0.00 0.159
4 0.86 0.51 1.20 1.23 0.84 1.67 0.073 0.80 0.46 1.14 0.417
5 0.10 0.00 0.23 0.02 0.00 0.05 0.109 0.16 0.00 0.03 0.309
6 2.24 1.84 2.66 1.62 1.26 1.98 0.012 1.95 1.59 2.31 0.141

We carried out a campaign of experiments in which we evaluated our online RL algorithm using all the (𝑆,𝓁) pairs for
𝑆 ∈ {5, 10, 15, 20} and 𝓁 ∈ {1, 2} to quantify the computation overhead. We run 200 simulations of the 6 routes described previously
for each configuration, measuring route costs and the elapsed time at each decision stage. Fig. 5 shows the average decision time
per stage for each parameter setting. Given the time scale of the controlled process, where driving periods last several hours and
service times last at least 30 min, the 25 second decision time of the selected configuration (𝑆 = 10, 𝓁 = 2) is within acceptable

argins for an en-route execution of the algorithm. Although it may be feasible to use configurations of greater depth and budget,
t is advisable to be aware of the exponential increase in computational time that this entails.

We have defined two additional scenarios which are variations of the reference scenario specified in Table 1 to evaluate the
erformance of each configuration under different degrees of uncertainty:

1. High uncertainty scenario: the standard deviation of the random variables is doubled with respect to the reference scenario.
2. Low uncertainty scenario: the standard deviation of velocity is divided by 5, the standard deviation of service time is divided

by 10, and no en-route incidents occur.

ig. 6 shows the average costs (6 routes, 200 runs per route) at each scenario under different configurations of 𝑆 and 𝓁. As
xpected, higher uncertainty implies higher average costs. These results also confirm that the parameter configuration is relatively
traightforward: higher values of 𝑆 and 𝓁 provide better quality decisions (thus lower expected cost) at the expense of longer
omputation time (which is as shown in Fig. 5 for the three scenarios). Fortunately, even under high uncertainty conditions,
onfigurations requiring a moderate computational effort attain notable cost reductions compared to the base policy: the average
osts obtained by the base policy at each scenario are 2.23 for the low uncertainty scenario, 6.01 for the reference scenario, and
.77 for the high uncertainty scenario. Note that our selected configuration (𝑆 = 10, 𝓁 = 2) achieves a reasonable balance between
omputation time (25 seconds per decision) and performance since no significant improvements are observed beyond 𝑆 = 10.
16

owever, we could greatly reduce the decision time without significantly increasing the cost. For example, by setting 𝓁 = 1, we
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Fig. 5. Average elapsed time per decision stage as a function of the sample budget for 𝓁 = 1 and 𝓁 = 2.

Fig. 6. Plots of the average cost achieved with our proposal in each scenario under different configurations of 𝑆 and 𝓁. Each estimation has been obtained
rom 1200 experiments. Confidence intervals are computed with a 95% confidence level.

educe the decision time from 25 seconds to 0.69 s, while the cost increment is less than 0.25. Finally, it must be highlighted that
aving to configure only two parameters (of predictable effect) is an advantage over model-free methods, especially those using
eep neural networks that involve multiple hyperparameters.
17
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6. Conclusions and future work

In long-distance road transport, en-route decisions regarding the duration of driving and rest periods must assure the delivery
f goods within their time windows while complying with regulations on driving time, breaks and rest periods. We have shown
hat, when travel and service times are deterministic, a set of heuristic decision rules can be sufficient to accomplish this task.
owever, in real-life journeys, these times are random, and unforeseen incidents may occur introducing additional delays. Under

hese circumstances these heuristics can be ineffective, resulting in higher route costs, measured in terms of out-of-time delivered
oods, drive extensions and rest reductions.

We propose a model-based RL method combining MPC, rollout, and MTCS for en-route decision-making. At each decision stage,
ur method anticipates future events by generating a set of trajectories (simulations of the route) starting from the current state
f the route. In these trajectories, the algorithm evaluates all the available actions at future stages up to a given horizon, after
hich the generated trajectory follows the base policy. Each trajectory provides a sample of the optimal cost-to-go from the current

tage using a given action, allowing the algorithm to pick the best estimated action at the current stage. Since obtaining samples is
omputationally expensive, our method incorporates an MAB algorithm to maximize sample efficiency in the search for the optimal
ction at each level of the lookahead tree. We have conducted extensive experiments on realistic routes based on the real-life
xperience of a Spanish freight company. In our numerical experiments, our RL method reduced the cost of the base policy by a
actor of between 5 and 20, in accordance with the policy improvement principle applicable to rollout methods. Compared to a
tate-of-the-art, model-free RL algorithm, such as DQN, our algorithm does not need to be trained offline, which can be a very
ime consuming process, especially if it includes hyperparameter tuning. Instead, our proposal integrates learning and control, thus
equiring more computational effort at decision time. To assess the feasibility of this online operation, we have quantified the
radeoff between computational overhead and prediction accuracy, determined by the two main parameters of the algorithm: the
ample budget per action and the length of the lookahead horizon. Our results show that notable cost reductions can be attained
ith computation times that are compatible with real-time operation.

Nevertheless, it should be noted that including additional degrees of freedom in en-route decisions will increase the computa-
ional cost of each decision. For example, some companies would be interested in adding tactical decisions, such as unloading some
oods in a nearby logistic center to outsource the last-mile delivery, like in Alcaraz et al. (2019). The inclusion of additional actions
nd events in the problem is an interesting future research line. Another potential improvement would be to increase the accuracy
f the estimations by obtaining empirical distributions for travel velocity and service times, which could be even particularized to
oad segments and locations, leveraging the experience and data gathered by the freight company.

cknowledgments

This work has been funded by Consejeria de Desarrollo Economico, Turismo y Empleo, Region de Murcia, under the RIS3Mur
roject grant SiSPERT (ref. 2I16SAE00023), and by project Grant PID2020-116329GB-C22 funded by
CIN/AEI/10.13039/501100011033.

ppendix A. Creation of the action sets

In this appendix, we show how to determine the actions included in the set 𝑈𝑘(𝑥𝑘). Each action in 𝑈𝑘(𝑥𝑘) must comply with
he regulations considering the driver’s variables in state 𝑥𝑘. Fig. A.7 shows the conditions associated to each action at each state.
ables A.11 and A.12 summarize the variables and constants involved, respectively.

Table A.11
Variables considered when determining the action sets.

Variable Definition

𝑗 Next node to be served
𝑡start(𝑗) Start of 𝑗’s time window
𝑡end(𝑗) End of 𝑗’s time window
𝑡service(𝑗) Expected service time at 𝑗
𝑡rest Available rest time for the current day (11 or 9 h)
𝑡until_rest Time until the start of the rest period (13 or 15 h)
𝑡drive Driving time during the current day
𝑡on_road Current uninterrupted driving time
DRIVE_ALLOWED Boolean indicating if driving is allowed (according to daily and weekly drive time, rest periods, work time, and so forth)
BREAK_DONE Indicating whether a break (of any length) has been taken in the current day
𝑡break Time of a break (45, 30 or 15 min for a normal, short, or split break respectively)
DRIVE_EXTENDED Boolean indicating whether the driving extension option has been used in the current day
REST_REDUCED Boolean indicating whether the rest reduce option has been used in the current day
18



Transportation Research Part E 164 (2022) 102790J.J. Alcaraz et al.

u
r
E
t
M

Fig. A.7. Diagram illustrating the conditions that should be met for each action to be included in the set of available actions.

Table A.12
Variables considered when determining the action sets.
Variable Definition

𝑡max_drive_day = 9 h Maximum allowed daily drive time, without drive extension
𝑡split_rest = 3 h Minimum duration of the first rest period in case of split break
𝑡max_work = 6 Maximum duration of an uninterrupted work period
𝑁max_ 𝐷_ext = 2 Maximum number of driving extensions
𝑁max_𝑅_rest = 3 Maximum number of rest reductions

Appendix B. Base policy

In this appendix, we detail the base policy in Algorithm 5. In addition to the variables defined in Appendix A, the base policy
ses 𝑡est(𝑗), which denotes the estimated time to arrive to the next node, and 𝑡𝑅 rest = 9 h, corresponding to the duration of a
educed rest period, REDUCIBLE_REST is a boolean indicating if it is possible to reduce the rest time during the current day,
XTENSIBLE_DRIVE is a boolean indicating if it is possible to extend the driving time during the current day, and 𝑡ext denotes
he driving time added by a driving extension. An additional check is made after running Algorithm 5: whenever 𝑢𝑘 is set to
AKE_A_BREAK, if 𝑡drive < 𝑡max drive and BREAK_DONE are inactive, 𝑢𝑘 is re-set to MAKE_SHORT_BREAK.
19
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Algorithm 5 BasePolicy
1: Input: Current state 𝑥𝑘.
2: Output: Action 𝑢𝑘
3: if event variable in 𝑥𝑘 = STOP_DRIVING then
4: if 𝑡until_rest > 0 or 𝑡drive < 𝑡max_drive_day then
5: 𝑢𝑘 = MAKE_A_BREAK
6: else if 𝑡 + 𝑡until_rest + 𝑡rest + 𝑡est(𝑗) < 𝑡start(𝑗) then
7: 𝑢𝑘 = FINISH_WORKING_DAY
8: else if 𝑡 + 𝑡rest + 𝑡est(𝑗) + 𝑡service(𝑗) < 𝑡end(𝑗) then
9: 𝑢𝑘 = START_REST
0: else
1: if 𝑡 + 𝑡𝑅 rest + 𝑡est(𝑗) + 𝑡service(𝑗) < 𝑡end(𝑗) and REDUCIBLE_REST then
2: 𝑢𝑘 = START_REDUCED_REST
3: else if 𝑡ext < 𝑡est(𝑗) and EXTENSIBLE_DRIVE then
4: 𝑢𝑘 = EXTEND_DRIVE
5: else if EXTENSIBLE_DRIVE and REDUCIBLE_REST then
6: 𝑢𝑘 = EXTEND_DRIVE_&_REDUCE_REST
7: else
8: 𝑢𝑘 = START_REST
9: end if
0: end if
1: else if event variable in 𝑥𝑘 = ARRIVAL_TO_NODE then
2: if 𝑡start(𝑗) > 𝑡 + 𝑡rest then
3: 𝑢𝑘 = START_REST
4: else if 𝑡start(𝑗) > 𝑡 + 𝑡split_rest, 𝑡 + 𝑡split_rest < 𝑡until_rest and not SPLIT_REST then
5: 𝑢𝑘 = MAKE_SPLIT_REST
6: else if 𝑡start(𝑗) > 𝑡 + 𝑡break then
7: 𝑢𝑘 = MAKE_A_BREAK
8: else if 𝑡work + 𝑡service(𝑗) < 𝑡max_work then
9: 𝑢𝑘 =SERVICE
0: else
1: 𝑢𝑘 = MAKE_A_BREAK
2: end if
3: else if event variable in 𝑥𝑘 = END_SERVICE then
4: if 𝑡until_rest > 0 and 𝑡drive < 𝑡max_drive_day then
5: if 𝑡work < 𝑡max_work then
6: 𝑢𝑘 = DRIVE
7: else
8: 𝑢𝑘 = MAKE_A_BREAK
9: end if
0: else
1: 𝑢𝑘 = START_REST
2: end if
3: end if
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