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Abstract: This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise
polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main
properties, such as its reproduction of second-degree polynomials, approximation order, and condi-
tions for convexity preservation. In particular, for σ quasi-uniform grids with σ ≤ 4, we get a quasi
C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical
experiments regarding the approximation order and the convexity preservation.
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1. Introduction

Reconstruction operators are widely used in computer-aided geometric design. For sim-
plicity, the functions that are typically used as operators are polynomials. In order to avoid
undesirable phenomena generated by high-degree polynomials, reconstructions are usually
built piecewise. Due to the bad behavior of linear operators in the presence of discontinu-
ities, it has become necessary to design nonlinear operators to overcome this drawback.
One of these operators was defined in [1] and was called the piecewise polynomial har-
monic (PPH). This operator essentially consists of a clever modification of the classical
four-point piecewise Lagrange interpolation. The initial purpose of this definition was to
deal with discontinuities, reducing the undesirable effects to only one interval instead of
the three intervals affected in a reconstruction built with a four-point stencil. In addition
to that, as we will see throughout this paper, the reconstruction may also play an important
role in design purposes, since it keeps the convexity properties of the given starting data.

For the sake of simplicity, as much in the theoretical analysis as in the practical
implementation and computational time, studies usually start with data given in uniform
grids. Nevertheless, some applications require dealing with data over nonuniform grids.
At times, it is not trivial to adapt operators defined over uniform grids to the nonuniform
case. The above-mentioned PPH operator was defined over a uniform grid and some
of its properties were studied in [1]. These reconstruction operators are the basis for the
definition of associated subdivision and multi-resolution schemes. In this paper, we use the
definition that we made of the PPH reconstruction operator for data over nonuniform grids
in [2], and we study some properties of this operator in greater depth. In particular, we
focus on the smoothness of the reconstruction and the convexity-preserving properties of
the initial data. We show that PPH reconstruction gives a C∞ function, except for the knots
where the function remains C0 and the differences between the first, second, and third
one-sided derivatives are of the third, second, and first order, respectively (see Definition 5).

In [3], the authors proved that the related subdivision scheme in uniform meshes
preserves the convexity of the control points. In this article, we attempt to determine if this
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result about preserving convexity can be extended for the reconstruction operator and not
only in uniform meshes, but also in σ quasi-uniform meshes with σ ≤ 4.

The paper is organized as follows: Section 2 is devoted to defining the PPH reconstruc-
tion operator over nonuniform grids. For this purpose, we will use the weighted harmonic
mean with appropriate weights. Then, we show that the new reconstruction operator
amounts to the original PPH reconstruction operator when we restrict to uniform grids.
The definition is given for general nonuniform meshes, although in order to establish some
theoretical results, we consider σ quasi-uniform meshes. In Section 3, we study some basic
properties of PPH reconstruction, such as the reproduction of polynomials of the second
degree, approximation order, smoothness, boundedness of the operator, Lipschitz continu-
ity, and convexity preservation. In Section 4, we analyze the reconstruction when dealing
with strictly convex (or concave) initial data. In Section 5, we present some numerical tests.
Finally, some conclusions are included in Section 6.

2. A Nonlinear PPH Interpolation Procedure on Nonuniform Grids

Let us define the nonuniform grid X = (xi)i ∈ Z. Let us also denote the nonuniform
spacing between abscissae as hi := xi − xi−1. We will work with continuous piecewise
reconstructions of a given underlying continuous function f (x) with, at most, a finite set of
isolated corner or jump discontinuities, that is,

R(x) = Rj(x), x ∈ [xj, xj+1], (1)

where Rj(x) is a third-degree polynomial satisfying

Rj(xj) = f (xj), (2)

Rj(xj+1) = f (xj+1).

From now on, we will use the notation fi := f (xi).
Taking (1) into account, this implies that we are interested in building the appro-

priate polynomial piece Rj(x) in the interval [xj, xj+1]. Let us consider the set of values
{ f j−1, f j, f j+1, f j+2} for some j ∈ Z corresponding to subsequent ordinates of a function
f (x) at the abscissae {xj−1, xj, xj+1, xj+2} of a nonuniform grid X, and pLj(x) is the La-
grange interpolatory polynomial built with the points (xi, fi), i = j− 1, j, j + 1, j + 2, that is,
the unique polynomial of degree less or equal 3 satisfying

pLj(xi) = fi j− 1 ≤ i ≤ j + 2. (3)

The polynomial pLj(x) can be expressed as

pLj(x) = aj,0 + aj,1

(
x− xj+ 1

2

)
+ aj,2

(
x− xj+ 1

2

)2
+ aj,3

(
x− xj+ 1

2

)3
, (4)

where xj+ 1
2
=

xj + xj+1

2
.

It is well known that from conditions (3), one obtains the following linear system of
equations, where the coefficient matrix is a Vandermonde matrix with different nodes and
is, therefore, invertible:
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1
(
−hj −

hj+1

2

) (
−hj −

hj+1

2

)2 (
−hj −

hj+1

2

)3

1 −
hj+1

2

h2
j+1

4
−

h3
j+1

8

1
hj+1

2

h2
j+1

4

h3
j+1

8

1
(hj+1

2
+ hj+2

) (hj+1

2
+ hj+2

)2 (hj+1

2
+ hj+2

)3




aj,0
aj,1
aj,2
aj,3

 =


f j−1

f j
f j+1
f j+2

. (5)

In order to express the solution of system (5) in a form that is convenient for our
purposes, we introduce the definition of the second-order divided differences,

Dj := f [xj−1, xj, xj+1] =
f j−1

hj(hj + hj+1)
−

f j

hjhj+1
+

f j+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj, xj+1, xj+2] =
f j

hj+1(hj+1 + hj+2)
−

f j+1

hj+1hj+2
+

f j+2

hj+2(hj+1 + hj+2)
,

(6)

and a weighted arithmetic mean of Dj and Dj+1, defined as

Mj = wj,0Dj + wj,1Dj+1, (7)

with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(8)

With these definitions, after solving the system (5), we get the following expressions
for the coefficients of the polynomial (4):

aj,0 =
f j + f j+1

2
−

h2
j+1

4
Mj,

aj,1 =
− f j + f j+1

hj+1
+

h2
j+1

2(2hj + hj+1)
(Dj −Mj),

aj,2 = Mj,

aj,3 = − 2
2hj + hj+1

(Dj −Mj),

(9)

which can also be expressed as

aj,0 =
f j + f j+1

2
−

h2
j+1

4
Mj,

aj,1 =
− f j + f j+1

hj+1
+

h2
j+1

2(2hj+2 + hj+1)
(−Dj+1 + Mj),

aj,2 = Mj,

aj,3 = − 2
2hj+2 + hj+1

(−Dj+1 + Mj).

(10)

At this point, we give some more definitions and lemmas that we will need later.

Lemma 1. Let us consider the set of ordinates { f j−1, f j, f j+1, f j+2} for some j ∈ Z at the abscissae
{xj−1, xj, xj+1, xj+2} of a nonuniform grid X = (xi)i ∈ Z. Then, the values f j−1 and f j+2 at the
extremes can be expressed as
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f j−1 =
−1

γj,−1
(γj,0 f j + γj,1 f j+1 + γj,2 f j+2) +

Mj

γj,−1
, (11a)

f j+2 =
−1
γj,2

(γj,−1 f j−1 + γj,0 f j + γj,1 f j+1) +
Mj

γj,2
, (11b)

with the constants γj,i, i = −1, 0, 1, 2 given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj

hj+1 + hj+2
−

hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
−

hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
.

(12)

Proof. This proof is an immediate calculation just by expanding the expression of the
weighted arithmetic mean in (7) in terms of fi, i = j− 1, j, j + 1, j + 2, that is,

Mj = γj,−1 f j−1 + γj,0 f j + γj,1 f j+1 + γj,2 f j+2. (13)

Definition 1. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there exist
hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

In the presence of isolated singularities, predictions made using Lagrange reconstruc-
tion operators lose their accuracy in the vicinity of the discontinuity; in fact, three intervals
are expected to be affected, since we are considering a stencil of four points. In order to
reduce the affected intervals to only one, the one containing the singularity, we introduce
a weighted harmonic mean over nonuniform grids, which will be used in the general
definition of the PPH reconstruction operator. Notice that it is not possible to recover the
exact position of a jump discontinuity inside an interval by using point value discretization
of an underlying function. For the case of a corner discontinuity, a strategy such as the
subcell resolution technique [4] could be used to detect its position. This harmonic mean is
built as the inverse of the weighted arithmetic mean of the inverses of the given values. We
define the following function.

Definition 2. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1,
we denote as Ṽ the function

Ṽ(x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.
(14)

Lemma 2. If x > 0 and y > 0, the harmonic mean is bounded as follows:

Ṽ(x, y) < min
{

1
wx

x,
1

wy
y
}

. (15)

Before giving another important lemma for our purposes, we will introduce a defini-
tion about a basic concept that will be used throughout the rest of the article.
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Definition 3. The expression e(h) = O(hr) means that there exist h0 > 0 and M > 0 such that
∀ 0 < h ≤ h0,

|e(h)|
hr ≤ M.

Lemma 3. Let a > 0 be a fixed positive real number and let x ≥ a, y ≥ a. If |x− y| = O(h), then
the weighted harmonic mean is also close to the weighted arithmetic mean M(x, y) = wxx + wyy,

|M(x, y)− Ṽ(x, y)| =
wxwy

wxy + wyx
(x− y)2 = O(h2). (16)

Remark 1. The smaller the value of a > 0 in Lemma 3, the smaller the h0 in Definition 3 required
to attain the expected theoretical order.

It is well known that the divided differences (6) work as smoothness indicators [5–14].
If a potential singularity appears at the interval [xj+1, xj+2], we propose that the data
(xj+2, f j+2) are not interpolated, and that the ordinate f j+2 is exchanged for another value
that is more convenient for what happens in the target interval [xj, xj+1], where we want to
implement the local polynomial piece according to (1). In the same manner, if a potential
singularity lies in the interval [xj−1, xj], a symmetrical modification is carried out. Accord-
ing to these observations, we can give the following definition for the PPH reconstruction
on nonuniform meshes.

Definition 4 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = ( fi)i∈Z be
a sequence in l∞(Z). Let Dj and Dj+1 be the second-order divided differences, and for each j ∈ Z,
let us consider the modified values { f̃ j−1, f̃ j, f̃ j+1, f̃ j+2} built according to the following rule:

• Case 1: If |Dj| ≤ |Dj+1|, f̃i = fi, j− 1 ≤ i ≤ j + 1,

f̃ j+2 = −1
γj,2

(γj,−1 f j−1 + γj,0 f j + γj,1 f j+1) +
Ṽj

γj,2
.

(17)

• Case 2: If |Dj| > |Dj+1| f̃ j−1 = −1
γj,−1

(γj,0 f j + γj,1 f j+1 + γj,2 f j+2) +
Ṽj

γj,−1
,

f̃i = fi, j ≤ i ≤ j + 2,
(18)

where γj,i, i = −1, 0, 1, 2 are given in (12) and Ṽj = Ṽ(Dj, Dj+1), where Ṽ is the weighted
harmonic mean defined in (14) with the weights wj,0 and wj,1 in (8). We define the PPH nonlinear
reconstruction operator as

PPH(x) = PPHj(x), x ∈ [xj, xj+1], (19)

where PPHj(x) is the unique interpolation polynomial that satisfies

PPHj(xi) = f̃i, j− 1 ≤ i ≤ j + 2. (20)

According to Definition 4, and establishing a parallelism with expression (4), we can
write the PPH reconstruction as

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (21)

where the the coefficients ãj,i, i = 0, . . . , 3 are calculated by imposing conditions (20). De-
pending on the local case, Case 1 or Case 2, the coefficients will have different expressions.
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Case 1: |Dj| ≤ |Dj+1|, i.e., the possible singularity lies in [xj+1, xj+2].The replacement
of f j+2 with f̃ j+2 by exchanging the weighted arithmetic mean in Equation (11b) for its
corresponding weighted harmonic mean has been proposed. It is also important to point
out that Equation (17) shows that f̃ j+2 is not significantly affected by a potential singularity

at the interval [xj+1, xj+2] , since, by property (15) in Lemma 2, |Ṽj| ≤
1

wj,0
|Dj|, and in

turn, Dj is not affected by this discontinuity. Therefore, the influence of f j+2 on the values
of the reconstruction in the interval [xj, xj+1] will be limited. In this case, the coefficients of
the new polynomial (21) come from solving the linear system

1
(
−hj −

hj+1

2

) (
−hj −

hj+1

2

)2 (
−hj −

hj+1

2

)3

1 −
hj+1

2

h2
j+1

4
−

h3
j+1

8

1
hj+1

2

h2
j+1

4

h3
j+1

8

1
(hj+1

2
+ hj+2

) (hj+1

2
+ hj+2

)2 (hj+1

2
+ hj+2

)3




ãj,0
ãj,1
ãj,2
ãj,3

 =


f̃ j−1

f̃ j

f̃ j+1

f̃ j+2

. (22)

Thus, the coefficients ãj,i, i = 0, . . . , 3 take the form

ãj,0 =
f j + f j+1

2
−

h2
j+1

4
Ṽj,

ãj,1 =
− f j + f j+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj,

ãj,3 = − 2
2hj + hj+1

(Dj − Ṽj).

(23)

Case 2: |Dj| > |Dj+1|, i.e., the possible singularity lies in [xj−1, xj]. In this case,
in Definition 4, the value f j−1 is replaced with f̃ j−1 by using expression (18). The net
effect is again the exchange of the weighted arithmetic mean in Equation (11a) for the
corresponding weighted harmonic mean. On this occasion, we get an adaption of the
reconstruction to a potential singularity in [xj−1, xj], since the effect of the value f j−1 is

largely reduced. In fact, by property (15) in Lemma 2, |Ṽj| ≤
1

wj,1
|Dj+1|, and Dj+1 is not

affected by any discontinuity.
By solving the system (22), we obtain the following coefficients for the polynomial

(21):

ãj,0 =
f j + f j+1

2
−

h2
j+1

4
Ṽj,

ãj,1 =
− f j + f j+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj,

ãj,3 = − 2
hj+1 + 2hj+2

(−Dj+1 + Ṽj).

(24)

Remark 2. The replacement of the weighted arithmetic mean for the corresponding harmonic mean
in Definition 4 does not only guarantee adaptation near singularities, but also enlarges the region
where the reconstruction preserves convexity according to expressions (40) and (43), as we will see
in the next section.

Remark 3. In both cases, the value of the PPH reconstruction at the midpoint xj+ 1
2

of xj, xj+1 gets
the value PPHj(xj+ 1

2
) = ãj,0. This expression directly defines an associated subdivision scheme
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and, consequently, also an associated multi-resolution scheme in nonuniform meshes. The interested
reader is referred to [1,5] for more details in the context of uniform meshes.

Remark 4. Notice that, considering uniform meshes, i.e., hi = h ∀i, all the given expressions
reduce to the equivalent expressions in [1], which are valid only for the uniform case.

Remark 5. Notice that Definition 4 of the PPH reconstruction operator has been given for general
nonuniform meshes. From now on, one needs to take into account that some results are true for
general grids, while others need the restriction to σ quasi-uniform meshes.

3. Main Properties of the PPH Reconstruction Operator in Nonuniform Meshes

In this section, we study some interesting properties of the new reconstruction operator.
More precisely, we study the reproduction of polynomials, accuracy of the reconstruction,
smoothness, boundedness, Lipschitz continuity, and convexity preservation. We start with
the reproduction of polynomials up to degree 2.

3.1. Reproduction of Polynomials up to Degree 2

If the underlying function f (x) is a polynomial of degree 2, then Dj = Dj+1 = D is
constant and DjDj+1 = D2 ≥ 0. Using Equations (7), (10), (14), (23), and (24), we get

Mj = wj,0D + (1− wj,0)D = D,

Ṽj =
D2

wj,0D + (1− wj,0)D
= D,

ãj,i = aj,i ∀i = 0, 1, 2, 3.

So, PPHj(x) = pLj(x), i.e., PPHj(x), reproduces polynomials of a degree less than or
equal 2, since pLj(x) does this.

3.2. Approximation Order for Strictly Convex (Concave) Functions

We will prove full-order accuracy, that is, fourth order, for a reconstruction that locally
uses four centered points to get the approximation at a given interval [xj, xj+1] for any
j ∈ Z. In particular, we can enunciate the following proposition.

Proposition 1. Let f (x) be a strictly convex (concave) function of class C4(R) and let a ∈ R, a >
0 be such that f ′′(x) ≥ a > 0, ∀x ∈ R (let a ∈ R, a < 0 be such that f ′′(x) ≤ a < 0, ∀x ∈ R).
Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = ( fi)i∈Z,
the sequence of point values of the function f (x), fi = f (xi). Then, the reconstruction PPH(x)
satisfies

| f (x)− PPH(x)| = O(h4), ∀x ∈ R, (25)

where h = max
i∈Z
{hi}.

Proof. Given x ∈ R, there exist j ∈ Z such that x ∈ [xj, xj+1]. This implies that PPH(x) =
PPHj(x).

Now, let us suppose that the initial data f = ( fi)i∈Z come from a strictly convex
function (for a concave function, the arguments remain the same) satisfying the given
hypothesis f ′′(x) ≥ a > 0, ∀x ∈ R for some a > 0. Then, DjDj+1 > 0, since second-order
divided differences amount to second derivatives at an intermediate point divided by two,
i.e.,

Dj =
f ′′(µ1)

2!
≥ a

2
, Dj+1 =

f ′′(µ2)

2!
≥ a

2
,

with µ1 ∈ (xj−1, xj+1) and µ2 ∈ (xj, xj+2). Moreover, we have

|Dj+1 − Dj| ≤ Mh = O(h),
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where M is a bound of the third derivative of f (x) in the compact interval [xj−1, xj+2].

Since from Equations (7) and (14), we can write

Mj − Ṽj =
wj,0wj,1(Dj+1 − Dj)

2

wj,0Dj+1 + wj,1Dj
,

we get from Lemma 3 that

|Mj − Ṽj| = O(h2). (26)

Putting this information into (9) and (23), if |Dj| ≤ |Dj+1|, or into (10) and (24), if
|Dj| > |Dj+1|, we get that

|ãj,i − aj,i| = O(h4−i) ∀i = 0, 1, 2, 3. (27)

Thus,

|PPHj(x)− pLj(x)| ≤
3

∑
i=0
|ãj,i − aj,i|

∣∣∣∣(x− xj+ 1
2

)i
∣∣∣∣ = O(h4),

where pLj(x) is the Lagrange interpolatory polynomial. Taking the triangular inequality
into account again,

| f (x)− PPHj(x)| ≤ | f (x)− pLj(x)|+ |pLj(x)− PPHj(x)| = O(h4),

and using that Lagrange interpolation also attains fourth-order accuracy.

3.3. Smoothness

In this part, we study the smoothness of the resulting reconstruction, and for this
purpose, we give the following definition.

Definition 5 (Quasi Cs function). A function f : R→ R is said to be quasi Cs(R) if it satisfies:

(a) f (x) belongs to class Cs(R) except for a numerable set of points X = (xi)i∈Z with h =
max
i∈Z
{hi} < ∞, where hi = xi − xi−1.

(b) There exist one-sided derivatives until order s, f (m)(x+i ) and f (m)(x−i ), m = 0, . . . , s, and
these satisfy | f (m)(x+i )− f (m)(x−i )| = O(hs+1−m), m = 0, . . . , s.

Before giving the main result regarding smoothness, we will prove an auxiliary lemma
that we need.

Lemma 4. Let f : [a, b]→ R be a derivable function in (a, b), and let us suppose that there exist
h0, M > 0 and r ≥ 1 such that ∀ 0 < h < h0:

| f (x)|
hr ≤ M, ∀x ∈ (a, b),

then, there exists K > 0 such that ∀ 0 < h < h0

| f ′(x)|
hr−1 ≤ K, ∀x ∈ (a, b).

Proof. From the fact that f is derivable in (a, b), we have that given x ∈ (a, b) for all ε > 0,
there exists hε > 0 such that, ∀ h̃ : 0 < h̃ < hε,∣∣∣∣ f ′(x)− f (x + h̃)− f (x)

h̃

∣∣∣∣ < ε.
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Let h ∈ (0, h0); then, we take εh := hr−1, and there exists hεh > 0 such that, ∀ h̃ : 0 <
h̃ < hεh , ∣∣∣∣ f (x + h̃)− f (x)

h̃
− f ′(x)

∣∣∣∣ < εh = hr−1.

We now define h1 = min{h, hεh}. Then, for all h̃ with h̃ ∈ (0, h1), we get:

| f ′(x)|
hr−1 ≤

1
hr−1

∣∣∣∣ f ′(x)− f (x + h̃)− f (x)
h̃

∣∣∣∣+ 1
hr−1

∣∣∣∣ f (x + h̃)− f (x)
h̃

∣∣∣∣
<

hr−1

hr−1 +
1

hr−1

∣∣∣∣ f (x + h̃)− f (x)
h̃

∣∣∣∣
≤ 1 +

| f (x + h̃)|
h̃r

+
| f (x)|

h̃r
= 1 + 2M =: K.

We are now ready to present the following proposition with respect to the PPH
reconstruction given in Definition 4.

Proposition 2. Let f (x) be a strictly convex (concave) function of class C4(R) and a ∈ R, a > 0
such that f ′′(x) ≥ a > 0, ∀x ∈ R (a ∈ R, a < 0 such that f ′′(x) ≤ a < 0, ∀x ∈ R). Let
X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = ( fi)i∈Z, the
sequence of point values of the function f (x), fi = f (xi). Then, the reconstruction PPH(x) is
quasi C3(R).

Proof. By construction, the PPH reconstruction is C∞((xi, xi+1)) for all i ∈ Z, since it is
nothing else but a piecewise polynomial. Let us study the situation at a grid point xj
where two polynomial pieces join. Again, by construction, PPHj−1(xj) = PPHj(xj), and
therefore, the reconstruction is a continuous function. Using the proof of Proposition 1, we
know that

gj−1(x) := f (x)− PPHj−1(x) = O(h4), ∀x ∈ [xj−2, xj+1], (28)

gj(x) := f (x)− PPHj(x) = O(h4), ∀x ∈ [xj−1, xj+2].

From (28), we get that

PPHj(x)− PPHj−1(x) = gj−1(x)− gj(x) = O(h4), ∀x ∈ [xj−1, xj+1]. (29)

Thus, from Lemma 4, we get that

PPH(m)
j (x)− PPH(m)

j−1(x) = O(h4−m), m = 1, 2, 3. (30)

In particular, Equations (29) and (30) are true for the abscissa xj, which proves the
property of quasi C3 at the grid points.

3.4. Boundedness and Lipschitz Continuity

We start by giving the exact definitions of the concepts treated in this section.

Definition 6. A nonlinear reconstruction operatorR : l∞(Z)→ C(R) is called bounded if there
exists a constant C > 0 such that

||R( f )||∞ ≤ C|| f ||∞ ∀ f ∈ l∞(Z).
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Definition 7. A nonlinear reconstruction operator R : l∞(Z) → C(R) is called Lipschitz
continuous if there exists a constant C > 0 such that ∀ x, y ∈ R, it is verified that

|R( f )(x)−R( f )(y)| ≤ C|x− y|.

Before addressing these properties, we need to prove some lemmas.

Lemma 5. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let
Lm(x) m = −1, 0, 1, 2 be the Lagrange basis for a four-point stencil {xj−1, xj, xj+1, xj+2}. Then,

|Lm(x)| ≤ σ ∀x ∈ [xj, xj+1], m = −1, 0, 1, 2.

Proof. As is well known, the Lagrange bases are given by

Lm(x) =
2

∏
s=−1
s 6=m

x− xj+s

xj+m − xj+s
, m = −1, 0, 1, 2. (31)

Denoting α = x− xj, we have

|L−1(x)| =
∣∣∣∣∣ α

hj

hj+1 − α

hj+1 + hj

hj+2 + hj+1 − α

hj+2 + hj+1 + hj

∣∣∣∣∣ <
∣∣∣∣∣ α

hj

∣∣∣∣∣ ≤ σ,

|L0(x)| =
∣∣∣∣∣ (hj + α)(hj+1 − α)

hjhj+1

hj+2 + hj+1 − α

hj+2 + hj+1

∣∣∣∣∣ ≤
∣∣∣∣∣
(
max{hj, hj+1}

)2 − α2

hjhj+1

∣∣∣∣∣ ≤ σ,

|L1(x)| =
∣∣∣∣∣ hj + α

hj + hj+1

α

hj+1

hj+2 + hj+1 − α

hj+2

∣∣∣∣∣.
In order to obtain the bound for L1(x), we distinguish two cases.

1. If hj+2 ≥ hj+1, α ≤ hj+2 − (hj+1 − α),

|L1(x)| ≤
∣∣∣∣∣ hj + α

hj + hj+1

hj+2 − (hj+1 − α)

hj+1

hj+2 + (hj+1 − α)

hj+2

∣∣∣∣∣ ≤
∣∣∣∣∣ (hj+2)

2 − (hj+1 − α)2

hj+1hj+2

∣∣∣∣∣
≤
∣∣∣∣∣
(
max{hj+1, hj+2}

)2

hj+1hj+2

∣∣∣∣∣ ≤ σ.

2. If hj+1 > hj+2, α < hj+1 − (hj+2 − α), working in a similar way, we also get
|L1(x)| ≤ σ.

Finally,

|L2(x)| ≤
∣∣∣∣∣ hj + α

hj + hj+1 + hj+2

α

hj+1 + hj+2

hj+1 − α

hj+2

∣∣∣∣∣ ≤
∣∣∣∣∣hj+1 − α

hj+2

∣∣∣∣∣ ≤ σ.

Lemma 6. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let
us consider the expressions

∣∣∣ f̃ j+2

∣∣∣ in (17) and
∣∣∣ f̃ j−1

∣∣∣ in (18). Then, we have the following bounds:∣∣∣ f̃ j+2

∣∣∣ ≤ (5 + 16σ)σ3‖ f ‖l∞(Z),
∣∣∣ f̃ j−1

∣∣∣ ≤ (5 + 16σ)σ3‖ f ‖l∞(Z).
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Proof. From Equations (12), we get∣∣∣∣∣γj,−1

γj,2

∣∣∣∣∣ =
∣∣∣∣∣hj+2

hj

hj+1 + hj+2

hj+1 + hj

hj+1 + 2hj+2

hj+1 + 2hj

∣∣∣∣∣ ≤ σ3,∣∣∣∣∣γj,0

γj,2

∣∣∣∣∣ =
∣∣∣∣∣hj+2

hj+1

hj+1 + hj+2

hj+1 + 2hj

(
hj+1 + 2hj

hj+1 + hj+2
−

hj+1 + 2hj+2

hj

)∣∣∣∣∣ ≤ 2σ3,∣∣∣∣∣γj,1

γj,2

∣∣∣∣∣ =
∣∣∣∣∣hj+2

hj+1

hj+1 + hj+2

hj+1 + 2hj

(
hj+1 + 2hj+2

hj+1 + hj
−

hj+1 + 2hj

hj+2

)∣∣∣∣∣ ≤ 2σ3.

(32)

According to property (15) of the harmonic mean |Ṽj| ≤
|Dj|
wj,0

, , we also get

∣∣∣∣∣ Ṽj

γj,2

∣∣∣∣∣ ≤
∣∣∣∣∣ Dj

wj,0 · γj,2

∣∣∣∣∣ = 4hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
2

(hj+1 + 2hj+2)(hj+1 + 2hj)
(33)∣∣∣∣∣ f j−1

hj(hj + hj+1)
−

f j1

hjhj+1
+

f j+1

hj+1(hj + hj+1)

∣∣∣∣∣ ≤ 16σ4
∥∥∥ f k
∥∥∥

l∞(Z)
.

Plugging (32) and (33) into (17), we obtain∣∣∣ f̃ j+2

∣∣∣ ≤ (5 + 16σ)σ3
∥∥∥ f k
∥∥∥

l∞(Z)
.

Following a similar path for
∣∣∣ f̃ j−1

∣∣∣,∣∣∣∣∣ γj,0

γj,−1

∣∣∣∣∣ =
∣∣∣∣∣ hj

hj+1

hj+1 + hj

hj+1 + 2hj+2

(
hj+1 + 2hj

hj+1 + hj+2
−

hj+1 + 2hj+2

hj

)∣∣∣∣∣ ≤ 2σ3,∣∣∣∣∣ γj,1

γj,−1

∣∣∣∣∣ =
∣∣∣∣∣ hj

hj+1

hj+1 + hj

hj+1 + 2hj+2

(
hj+1 + 2hj+2

hj+1 + hj
−

hj+1 + 2hj

hj+2

)∣∣∣∣∣ ≤ 2σ3,∣∣∣∣∣ γj,2

γj,−1

∣∣∣∣∣ =
∣∣∣∣∣ hj

hj+2

hj+1 + hj

hj+1 + hj+2

hj+1 + 2hj

hj+1 + 2hj+2

∣∣∣∣∣ ≤ σ3.

Using the property (15) of the harmonic mean |Ṽj| ≤
|Dj+1|

wj,1
, we get

∣∣∣∣∣ Ṽj

γj,−1

∣∣∣∣∣ ≤
∣∣∣∣∣ Dj+1

wj,1 · γj,−1

∣∣∣∣∣ = 4hj(hj+1 + hj)(hj + hj+1 + hj+2)
2

(hj+1 + 2hj+2)(hj+1 + 2hj)∣∣∣∣∣ f j

hj+2(hj+2 + hj+1)
−

f j+1

hj+2hj+1
+

f j+2

hj+1(hj+2 + hj+1)

∣∣∣∣∣ ≤ 16σ4
∥∥∥ f k
∥∥∥

l∞(Z)
,

which leads us to ∣∣∣ f̃ j−1

∣∣∣ ≤ (5 + 16σ)σ3
∥∥∥ f k
∥∥∥

l∞(Z)
.

Proposition 3. The nonlinear PPH reconstruction operator is a bounded operator over σ quasi-
uniform meshes.



Mathematics 2021, 9, 310 12 of 18

Proof. Let x ∈ R and j ∈ Z such that x ∈ [xj, xj+1]. Depending on the relative size of Dj

and Dj+1, the PPH reconstruction operator replaces the value f j+2 with f̃ j+2 or f j−1 by
f̃ j−1 as follows:

PPHj(x) =

{
B−1 f j−1 + B0 f j + B1 f j+1 + B2 f̃ j+2 if |Dj| ≤ |Dj+1|,
B−1 f̃ j−1 + B0 f j + B1 f j+1 + B2 f j+2 if |Dj| > |Dj+1|,

where Bm = Lm(x), m = −1, 0, 1, 2, stand for the Lagrange polynomials. Applying the
triangular inequality for each case, we get

|PPHj(x)| ≤
{

(|B−1|+ |B0|+ |B1|)‖ f ‖l∞(Z) + |B2| f̃ j+2 if |Dj| ≤ |Dj+1|,
|B−1| f̃ j−1 + (|B0|+ |B1|+ |B2|)‖ f ‖l∞(Z) if |Dj| > |Dj+1|.

According to Lemmas 5 and 6, we obtain the following bound for both cases:

|PPHj(x)| ≤ σ(3 + 5σ3 + 16σ4)‖ f ‖l∞(Z).

The following lemma will be used for proving the Lipschitz continuity.

Lemma 7. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and
let f = ( fi)i∈Z be a sequence in l∞(Z). Then, the nonlinear reconstruction operator defined in (4)
satisfies that ∀j ∈ Z,

|PPH′j(x)| ≤ C|| f ||l∞(Z) ∀x ∈ (xj, xj+1).

Proof. Since f ∈ l∞(Z), there exists M ∈ R, M ≥ 0 such that | fi| ≤ M ∀i ∈ Z.

The reconstruction PPHj(x) and its derivative read

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (34)

PPH′j(x) = ãj,1 + 2ãj,2

(
x− xj+ 1

2

)
+ 3ãj,3

(
x− xj+ 1

2

)2
. (35)

Without lost of generalization, we will suppose that |Dj| ≤ |Dj+1|. The case |Dj| >
|Dj+1| can be carried out similarly. First, we prove the following inequalities:

|Dj| =

∣∣∣∣∣ f j−1

hj(hj + hj+1)
−

f j

hjhj+1
+

f j+1

hj+1(hj + hj+1)

∣∣∣∣∣ (36)

≤
∣∣∣∣∣hj+1 + (hj + hj+1) + hj

hjhj+1(hj + hj+1)

∣∣∣∣∣‖ f ‖l∞(Z) =
2

hjhj+1
‖ f ‖l∞(Z) ≤

2
(hmin)2 ‖ f ‖l∞(Z),

|Ṽj| ≤
2

(hmin)2 ‖ f ‖l∞(Z),

|Dj − Ṽj| ≤ max{|Dj|, |Ṽj|} ≤
2

(hmin)2 ‖ f ‖l∞(Z),

where hmin = min
i∈Z

hi depends on the particular σ quasi-uniform mesh.
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Using the expressions (23) for the coefficients of the polynomial derivative in (35),
we have

|ãj,1| ≤
∣∣∣∣∣ f j+1 − f j

hj+1

∣∣∣∣∣+
∣∣∣∣∣ (hj+1)

2

4hj + 2hj+1

∣∣∣∣∣|Dj − Ṽj|

≤ 2
hmin
‖ f ‖l∞(Z) +

(hmax)2

6hmin

2
(hmin)2 ‖ f ‖l∞(Z)

≤ 2
hmin

(
1 +

σ2

6

)
‖ f ‖l∞(Z),

|ãj,2| = |Ṽj| ≤
2

(hmin)2 ‖ f ‖l∞(Z),

|ãj,3| ≤
∣∣∣∣∣ 2
2hj + hj+1

∣∣∣∣∣|Dj − Ṽj| ≤
2

3hmin

2
(hmin)2 ‖ f ‖l∞(Z)

=
4

3(hmin)3 ‖ f ‖l∞(Z).

Thus, ∣∣∣PPH′j(x)
∣∣∣ = ∣∣∣∣ãj,1 + 2ãj,2

(
x− xj+ 1

2

)
+ 3ãj,3

(
x− xj+ 1

2

)2
∣∣∣∣

≤
(

2
hmin

(
1 +

σ2

6

)
+ 2

2
(hmin)2

hmax

2
+ 3

4
3(hmin)3

(hmax)2

4

)
‖ f ‖l∞(Z)

=
1

hmin

(
2 + 2σ +

4
3

σ2
)
‖ f ‖l∞(Z) = C‖ f ‖l∞(Z) ∀x ∈ (xj, xj+1),

where C =
1

hmin

(
2 + 2σ +

4
3

σ2
)

depends on the σ quasi-uniform mesh.

Proposition 4. The nonlinear PPH reconstruction operator is Lipschitz continuous over σ quasi-
uniform meshes.

Proof. Let us suppose first that there exists j ∈ Z such that x, y ∈ [xj, xj+1]. Using the
Lagrange mean value theorem, ∃ θ ∈ (xj, xj+1), such as

|PPH j(x)− PPH j(y)| = |PPH′j(θ)(x− y)|.

Thus, using Lemma 7 now, we get

|PPH j(x)− PPH j(y)| ≤ C|x− y|.

In the general case, we can suppose that x < y, x ∈ [xj1 , xj1+1], y ∈ [xj2 , xj2+1]
with j1 ≤ j2. If j1 = j2,, we have already proved the result. For j1 < j2,

|PPH(x)− PPH(y)| = |PPH j1(x)− PPH j2(y)| ≤ |PPH j1(x)− PPH j1(xj1+1)|

+
j2−1

∑
j=j1+1

|PPH j(xj)− PPH j(xj+1)|+ |PPH j2(xj2)− PPH j2(y)|

≤ C|x− xj1+1|+
j2−1

∑
j=j1+1

C|xj − xj+1|+ C|xj2 − y| = C|x− y|.
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3.5. Convexity Preservation

We first introduce a definition concerning what we call strictly convex data and a
strictly convexity-preserving reconstruction operator.

Definition 8. Let X = (xi)i∈Z be a nonuniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let
f = ( fi)i∈Z be a sequence in l∞(Z). We say that the data are strictly convex (concave) if, for all
i ∈ Z, it is satisfied that Di > 0 (Di < 0), where Di stands for the second-order divided differences.

Definition 9. Let X = (xi)i∈Z be a nonuniform mesh in R with hi = xi − xi−1 ∀i ∈ Z, and let
f = ( fi)i∈Z be a strictly convex (concave) sequence. We say that an operator R : l∞(Z)→ C(R)
is strictly convexity preserving in the interval (a, b) if there exists R( f )′′(x) and R( f )′′(x) >
0 (R( f )′′(x) < 0) ∀x ∈ (a, b).

Next, we give a proposition that introduces sufficient conditions on the grid for
convexity preservation of the proposed reconstruction.

Proposition 5. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, hi = xi − xi−1, ∀i ∈ Z, and
σ ≤ 4. Let f = ( fi)i∈Z be a sequence of strictly convex data. Then, the reconstruction PPH(x) is
strictly convexity preserving in each (xj, xj+1), that is, it is a piecewise convex function satisfying

PPH′′j (x) > 0 ∀x ∈ (xj, xj+1), ∀ j ∈ Z. (37)

Proof. Let x inR and j ∈ Z such that x ∈ (xj, xj+1). Let us also consider that Di > 0∀i ∈ Z.
The case Di < 0∀i ∈ Z is proved in the same way.

Computing derivatives in Equation (21), we get

PPH
′′
j (x) = 2ãj,2 + 6ãj,3

(
x− xj+ 1

2

)
. (38)

In order to analyze the sign of PPH
′′
j (x) we need to consider two cases due to the fact

that the expression of PPHj(x) is different for |Dj| ≤ |Dj+1| than for |Dj| > |Dj+1|.

Case 1: |Dj| ≤ |Dj+1|.
Replacing coefficients ãj,2, ãj,3 coming from Equation (23) in expression (38) results in

PPH
′′
j (x) = 2Ṽj −

12
2hj + hj+1

(Dj − Ṽj)
(

x− xj+ 1
2

)
. (39)

Taking into account that Ṽj − Dj ≥ 0, from (39), we get that proving PPH′′(x) > 0 is
trivial if Ṽj = Dj. Otherwise, the inequality PPH′′(x) > 0 reads

x > xj+ 1
2
−

2hj + hj+1

6
Ṽj

Ṽj − Dj
. (40)

Replacing Ṽj with its expression in Equation (14), we obtain

x > xj+ 1
2
−

hj + hj+1 + hj+2

3
Dj+1

Dj+1 − Dj
. (41)

Evaluating the previous expression at xj , we obtain the condition for convexity
preservation in (xj, xj+1). This condition reads(

hj+1 − 2(hj + hj+2)
)

Dj+1 < 3hj+1Dj. (42)
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Since X is a σ quasi-uniform mesh with σ ≤ 4, we have hj+1 ≤ 2(hj + hj+2) , and
therefore, the condition (42) is immediately satisfied. This proves the proposition in this
case.

Case 2: |Dj| > |Dj+1|.

This time, by replacing the coefficients ãj,2, ãj,3 coming from Equation (24) in expres-
sion (38) and following a similar track to that in Case 1, we obtain expressions similar to
(40) and (41) for the abscissae verifying PPH

′′
j (x) > 0:

x < xj+ 1
2
+

hj+1 + 2hj+2

6
Ṽj

Ṽj − Dj+1
, (43)

x < xj+ 1
2
+

hj + hj+1 + hj+2

3
Dj

Dj − Dj+1
. (44)

Now, evaluating at xj+1, we get(
hj+1 − 2(hj + hj+2)

)
Dj < 3hj+1Dj+1. (45)

Thus, since X is a σ quasi-uniform mesh with σ ≤ 4, we get the result.

Remark 6. As can be observed in expressions (41) and (44), the conditions that assure the strictly
convexity-preserving property depend on the second-order divided differences of the initial data.
The hypotheses of Proposition 5 are only sufficient conditions, but not necessary conditions.

Remark 7. Working in a similar way with the Lagrange reconstruction operator pLj(x), we obtain

the following expression that is analogue to (41) for the abscissa-fulfilling condition p
′′
Lj
(x) > 0:

x > xj+ 1
2
−

2hj + hj+1

6
−

hj + hj+1 + hj+2

3
Dj

Dj+1 − Dj
. (46)

Then, if we are under the supposition that Dj < Dj+1, calling xPPH and xpL to the second
members of inequalities (41) and (46), respectively, we get

xpL − xPPH =
hj+1 + 2hj+2

6
> 0, (47)

i.e., PPH reconstruction operator preserves the strict convexity in a wider interval than the
Lagrange reconstruction operator does. A similar conclusion can be reached under the supposition
that Dj > Dj+1.

4. PPH Reconstruction Operator over σ Quasi-Uniform Meshes for Strictly Convex
(Concave) Initial Data

In this section, we gather the most important properties of the presented PPH recon-
struction for strictly convex (concave) starting input data, and we give them in a unifying
theorem. We want to emphasize the potential practical importance of the studied technique
for designing processes.

Theorem 1. Let f (x) be a strictly convex (concave) function of class C4(R) and let a ∈ R, a > 0
such that f ′′(x) ≥ a > 0, ∀x ∈ R (a ∈ R, a < 0 such that f ′′(x) ≤ a < 0, ∀x ∈ R). Let
X = (xi)i∈Z be a σ quasi-uniform mesh in R with hi = xi − xi−1, ∀i ∈ Z, and let f = ( fi)i∈Z be
the sequence of point values of the function f (x), fi = f (xi). Then, the reconstruction PPH(x)
satisfies

1. Reproduction of polynomials up to the second degree.
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2. Fourth-order accuracy.
3. It presents a quasi C3 smoothness.
4. It is bounded and Lipschitz continuous.
5. It is strictly convexity preserving in each (xj, xj+1).

Proof. Taking the previous results into account, the proof of this theorem is now immediate.
In fact, the first affirmation is proven in Section 3.1, and the rest of the affirmations are
proven in Propositions 1–5, respectively.

5. Numerical Experiments

In this section, we present three simple numerical experiments. The first one is
dedicated to comparing the convexity preservation between the Lagrange and PPH re-
constructions. Let us consider the initial convex set of points, (0, 10), (8, 9), (25, 12), and
(30, 30) , that is, Dj > 0, Dj+1 > 0 . In Figure 1, we have depicted the reconstruction
operators corresponding to Lagrange and PPH, and we have marked with triangles the
inflection points for each reconstruction (5.66 and 10.16, respectively). We observe that PPH

preserves convexity in a wider range
hj+1 + 2hj+2

6
= 4.5 than the Lagrange reconstruction

does (see expression (47)). In fact, according to Theorem 1, PPH reconstruction is strictly
convexity preserving for the abscissae corresponding with the central interval (8, 25), while
Lagrange reconstruction is not.

0 5 10 15 20 25 30

5

10

15

20

25

30

Figure 1. Solid line: Lagrange polynomial; dashed line: piecewise polynomial harmonic (PPH)
polynomial. Circles stand for Lagrange values at the nodes, asterisks stand for PPH values at the
nodes, and triangles stand for inflection points.

The next experiment computes the numerical approximation order of the considered
reconstruction operator.

Let X be a nonuniform grid:

X = (
22

551
,

28
337

,
28

267
,

79
656

,
149
924

,
47

234
,

67
245

,
92

275
,

98
241

,
113
254

,
185
396

,
251
490

,
141
257

,
134
205

,
469
221

,
316
369

,
1189
1259

)π,

and let f (x) = sin(x) be a smooth test function. Let us consider the set of initial points
given by (xi, f (xi)), i = 1, ..., 17. In this experiment, we will measure the approximation
errors and the numerical order of approximation of the presented PPH reconstruction. The
numerical order of approximation p is calculated in an iterative way, just by considering at
each new iteration k, k = 1, 2, 3, 4, 5, 6, 7 a nonuniform grid Xk built from the previous one
by introducing a new node in the middle of each two consecutive existing nodes. The error
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Ek for the PPH reconstruction at each iteration k is calculated as a discrete approximation
to ‖ f (x)− PPH(x)‖∞ , thus evaluating a much denser set of points. Both the errors and
the approximation orders p for each iteration are shown in Table 1, where we can see that
PPH reconstruction tends to fourth-order accuracy with this smooth concave function, as
is expected according to Proposition 1.

Defining h := max
i=1,...,16

{hi}, we use the following formulae to compute the numerical

order of approximation p:

Ek−1 ≈ C
(

h
2k−1

)p
,

Ek ≈ C
(

h
2k

)p
.

Thus,
Ek−1

Ek
≈ 2p → p ≈ log2

Ek−1
Ek

, k = 1, 2, 3, 4, 5, 6, 7.

The appropriate behavior of the reconstruction can be checked in Figure 2, where the
preservation of the concavity and the accuracy of the approximation can be observed.

Table 1. Approximation errors Ek in the l∞ norm and corresponding approximation orders p obtained
after k iterations for the PPH reconstruction with f (x) = sin(x), k = 0, 1, ..., 7.

k Ek p k Ek p

0 4.6114 × 10−4 - 4 1.4165 × 10−8 3.8226
1 3.3727 × 10−5 3.7732 5 9.4710 × 10−10 3.9027
2 2.6009 × 10−6 3.6968 6 6.1330 × 10−11 3.9488
3 2.0042 × 10−7 3.6979 7 3.9035 × 10−12 3.9737
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0.7777

Figure 2. Solid line: function f (x) = sin(x); dashed line: PPH reconstruction obtained with the finest
considered nonlinear grid. (Left) Original function and PPH reconstruction. (Right) Zoom of a part
of the signal.

6. Conclusions

We have defined and studied the PPH reconstruction operator over nonuniform grids,
paying special attention to the case of σ quasi-uniform grids and initial data coming from
strictly convex (concave) underlying functions.

We have theoretically proven some very interesting properties of the new reconstruc-
tion operator from the point of view of a potential use in graphical design applications.
These properties include the reproduction of polynomials up to the second degree, ap-
proximation order, smoothness, boundedness of the operator, Lipschitz continuity, and
convexity preservation. In particular, we would like to emphasize the quasi C3 smoothness
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of the operator and the preservation of strict convexity according to the result contained in
Theorem 1.

In the section on the numerical experiments, we checked that the behavior corre-
sponded to the developed theory—in particular, the reconstruction attained fourth-order
accuracy and preserved the convexity of the initial data. The results clearly show that the
reconstruction introduces improvements in comparison with the Lagrange reconstruction.
Therefore, the numerical experiments that we carried out reinforce the theoretical results.
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