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Weld defects detection using X-ray images is an effective method of nondestructive testing. Conventionally, this work is based on
qualified human experts, although it requires their personal intervention for the extraction and classification of heterogeneity.
Many approaches have been done using machine learning (ML) and image processing tools to solve those tasks. Although the
detection and classification have been enhanced with regard to the problems of low contrast and poor quality, their result is still
unsatisfying. Unlike the previous research based on ML, this paper proposes a novel classification method based on deep learning
network. In this work, an original approach based on the use of the pretrained network AlexNet architecture aims at the
classification of the shortcomings of welds and the increase of the correct recognition in our dataset. Transfer learning is used as
methodology with the pretrained AlexNet model. For deep learning applications, a large amount of X-ray images is required, but
there are few datasets of pipeline welding defects. For this, we have enhanced our dataset focusing on two types of defects and
augmented using data augmentation (random image transformations over data such as translation and reflection). Finally, a fine-
tuning technique is applied to classify the welding images and is compared to the deep convolutional activation features (DCFA)
and several pretrained DCNN models, namely, VGG-16, VGG-19, ResNet50, ResNet101, and GoogLeNet. 'e main objective of
this work is to explore the capacity of AlexNet and different pretrained architecture with transfer learning for the classification of
X-ray images. 'e accuracy achieved with our model is thoroughly presented. 'e experimental results obtained on the weld
dataset with our proposed model are validated using GDXray database. 'e results obtained also in the validation test set are
compared to the others offered by DCNNmodels, which show a best performance in less time.'is can be seen as evidence of the
strength of our proposed classification model.

1. Introduction

During the construction of water pipes, internal and external
welding works will be carried out for fixing the metal parts.
Because of the imperfection of junctions, different types of
welding defects such as cracks or porosities can be observed
by the human expert, which could cause a limited lifetime of
pipelines. 'erefore, a quality control is required in order to
ensure a good quality of weld. 'e verification of the

pipelines should be done without destruction of the com-
ponent. Traditionally, this type of control is performed
through ultrasonic techniques. Currently, online nonde-
structive testing (NDT) is being tested using industrial vision
techniques. It is a testing and analysis technique used by
industries to evaluate that the exigency characteristics of a
material, structure, or system are fulfilled without damaging
the original part.Within the framework of this subject, welds
can be tested with NDT techniques such as radiography
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using radiation that passes through a test tube to detect
faults. X-rays are used for thin materials, while gamma rays
are used for thicker items. 'e results can be scanned using
film radiography, computer-assisted radiography, computed
tomography.

Currently, these films are digitized to be processed on a
digital computer. Since the digitized images are character-
ized with poor quality and low contrast, weld defect in-
spection could become a challenging task. Unluckily, these
qualities effect the interpretation and the classification.
'erefore, digital computer vision and machine learning are
invented to help the expert in judging the results. 'is
classification is a process of categorization, where objects are
recognized and understood. Certainly, the classification of
images will be in the coming years because it is a well-known
field of computer vision.

In the same frame of reference, computer-aided diag-
nosis method is a very important research approach that
replaces the human expert in the classification of the weld
defects for a neutral, nonsubjective, and less expensive way.
Generally, this kind of proposal is based on three steps: A
first preprocessing step, followed by a second step based on
segmentation and features extraction, and a last step where
the classification is obtained. Classically, the feature ex-
traction step is usually done by human experts, and therefore
it is a time-consuming process and is not accurate. In fact,
this problem of accuracy is due, firstly, to the variety of
welding defect classes [1], as is shown in Figure 1 and,
secondly, to the generated features that are inadequate to
achieve a good quality of recognition in order to detect the
defect effectively. Following the conventional scheme of the
machine learning (ML) application and engaging in features
extraction andML algorithms are well investigated for many
researches. However, the simplicity of implementation of
some artificial neural network (ANN) algorithms gets paid
with the classification time and the bad accuracy. But now
deep learning in particular is used to leverage a huge dataset
and to make an automatic feature extraction step that will be
effective for the reconnaissance of the flaws.

In the literature, there is research on deep learning
models for classification of welding, especially convolutional
neural network (CNN) models [2]. We are led to work with
this new trend, which is the industrial vision. Nevertheless,
the use of specific deep learning architecture for welding
control to match the command of classification with par-
ticular data remains a challenge and can be examined from
different angles. To overcome such restriction of previous
works and to invest in our dataset composed with the major
two defects types lack of penetration and porosities, a
pretrained network is applied based on the known tech-
nology transfer learning [3]. Our goal is then to preprocess a
suitable network model to fit with our case and allow
classification of new dataset with respectable accuracy. So,
we applied one of the first popular pretrained networks
“AlexNet.” On one hand, in this work, we enhanced the
quality of our few original images and enlarged them with
cropping and rescaling by keeping the same aspect ratio to
be sure not to destroy the images. 'is is for generating new
images also with different numbers of defects in the same

image and finally applying data augmentation (Section 4.3)
to our data. On the other hand, there are no available
pretrained networks previously trained on such data, so we
trained our radiographic images of pipeline welding with the
model and modified hyperparameters to fit with our case.
'is task is getting better also with transfer learning tech-
nology, considering available resources and short time. In
this paper, an AlexNet classification network for welding
images is proposed using five convolutional layers (Section
3.2).

In the following section, some researches are detailed on
welding detection and classification starting by the tradi-
tional methods and getting to the new models based on deep
learning; next, in the first section of the proposed method in
Section 3, the welding detection problems particularly in the
dataset are detailed and the factors affecting the convolu-
tional neural network’s performance are examined and
learned in detail. In Section 3.2, the structure of the network
is described; after that, in Section 4, the detailed parameters
are described and DCFAmethod is detailed. In Section 5, the
application result is cited, and the comparison term with the
Deep Activation Features Network and various CNNmodels
is deduced. In the end, Section 9 shows conclusions and
future work. So, the application of deep network which was
previously trained with extracted activated features on a
huge, fixed amount of classification tasks of the dataset is
evaluated and compared with transfer learning. 'e efficacy
of depending on different levels of the network is defined on
a fixed feature and gives new results which have been
exceeded on various significant challenge views. 'e ex-
perimental results on the images show that the introduced
methods have efficient accuracy of classification and transfer
learning improves current computer-aided diagnosis
methods while providing higher accuracy.

2. Related Work

Detection of industrial X-ray weld images defects is an
important research field in nondestructive testing (NDT)
[4]. Generally, this kind of proposal is based on three steps: a
first preprocessing step, followed by a second step based on
segmentation and features extraction, and a last step where
the classification is obtained. 'erefore, numerous works
were done with this purpose. Tong et al. [5] applied a weld
defect segmentation method based on morphological and
thresholding aspect. A system of defects detection [6] was
provided for classifying the digitized welding images on the
basis of traditional processes: segmentation, feature

Figure 1: From left to right: original and constructed welding
radiographic images of porosities defects; original and constructed
welding radiographic images of lack of penetration defects.
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extraction, and classification. 'ese previous approaches are
standard features extraction procedures. In [7], an artificial
neural network (ANN) is implemented for classification
based on the geographical features of the welding hetero-
geneity dataset. Another work [8] compared an ANN for
linear and nonlinear classification. In addition, Kumar and
al. [9] described a defect classification method based on
texture features extraction to train a neural network, where
an accuracy over 86% is obtained.

'e weld defects inspection based on approaches of this
kind is still semiautomatic and can be influenced by several
factors because of the need for expertise, especially for the
segmentation and features extraction steps. But now deep
learning is used with an automatic feature extraction step for
the reconnaissance of the flaws. In addition, deep models
have been verified to be more precise for many types of
objects detection and classification [10]. Convolutional
neural network (CNN) (as can be seen in Section 3.2) is a
known deep learning algorithm. Firstly, it enables the object
detection process by reducing design effort related to feature
extraction. Secondly, it achieves remarkable performance in
difficult tasks of visual recognition and equivalent or better
performance and accuracy compared to a human being [11],
such as classification, detection, and tracking of objects. In
[10], three CNN architectures are applied and compared for
two different datasets: CIFAR-10 and MNIST dataset. 'e
most acceptable result by comparing the three architectures
is the one that was formed with a CNN in CIFAR-10 dataset.
'e accuracy score reached was over 38% but these networks
had limitations related to the image quality, scene com-
plexity, and computational cost. Furthermore, the authors in
[12] applied a model of features adaptation to recognize the
casting defects.'e accuracy score was low for the detection.
In [13], a new deep network model is suggested to improve
the patch structure by distinguishing the input of the
convolutional layers in CNN. 'e test error results of the
combination of data augmentation and dropout technique
give the highest score. 'e application of multilayers and its
combinations has resulted in some limitations, especially in
comparing layers and reducing their performance.

CNN model is used for detection and classification of
welds. In [14], an automatic defect classification process is
designed to classify Tungsten Inert Gas (TIG) images gen-
erated from a spectrum camera. 'e work obtained a per-
formance of 93.4% in accuracy. Further research is
underway for the detection of defect pipelines welding. For
example, in [15], a deep network model for classification is
proposed, although this work does not allow the classifi-
cation of different types of weld defects. Leo et al. [16]
trained a VGG16 pretrained network for handed cut regions
of weld defect rather than the entire image. A similar topic is
proposed in [17]. Wang et al. proposed a pretrained network
based on RetinaNet deep learning procedure to detect
various types in a radiographic dataset of welding defects.
Another fundamental computer vision section is named
object detection. 'e mean difference between this part and
classification is the design of a bounding box around the
interest object to situate it within the image. According to
each case of detection, there are a specific number of objects

in each image. So, these objects can be situated in various
spatial locations in the image. 'us, the selection of different
regions of interest is applied to classify the presence of an
object within these regions based on CNN network. 'is
approach can lead to the blow-up, especially if there are
many regions. 'erefore, object detection methods such as
R-CNN, Fast R-CNN, Faster R-CNN, and YOLO [47–51]
are examined to fix these imperfections. Various developed
object detection methods have been applied based on region
convolutional neural network (R-CNN) architecture [47],
including Fast R-CNN that mutually optimizes bounding
box regression chores [48], Faster R-CNN that adds the
regions proposal network for regions search and selection
[49], and YOLO which performs object detection through a
fixed-grid regression [50]. All of them present varying
improvement degrees in detection performance compared
to the main R-CNN and make precise, real-time object
detection more feasible. 'e author in [48] introduced a
multitasking loss in the bounding box regression and
classification and proposed a new CNN architecture called
Fast R-CNN. So, generally the image is processed with
convolutional layers to produce feature maps. 'us, a fixed
length feature vector is extracted from each region proposal
with a region of interest (RoI) group layer. Every charac-
teristic vector is then introduced into a sequence of FC layers
before finally branching out into two sibling outputs. An exit
layer is responsible for producing softmax probabilities for
categories and the other output layer encodes the refined
positions of the bounding box with four real numbers. To
solve the shortage of previous R-CNNN model, Ren et al.
presented an additional Region Proposal Network (RPN)
[49], which acts in a nearly cost-free way by sharing full-
image convolutional features with detection network. 'e
RPN is carried out with a totally convolutional network,
which has the ability to predict the limits and scores of
objects in each simultaneous position. Redmon et al. [50]
proposed a new framework called YOLO, which uses the
entire map of higher entities to predict both the confidences
for several categories and the bounding boxes. Another
research topic based on Single Shot MultiBox Detector
(SSD) [51], which was inspired by the anchors, adopted RPN
[49] and multiscale representation. Instead of the fixed grids
adopted in YOLO, the SSD takes advantage of a set of default
anchor boxes with different aspect ratios and scales to
discretize the output space of the bounding boxes. To
manage objects of different sizes, the network combines the
predictions of various feature cards with different resolu-
tions. 'ese approaches share many similarities, but the
latter is designed to prioritize the speed of evaluation and
precision. A comparison of the different object detection
networks is provided in [52]. Indeed, several promising
instructions are considered as guidance for future work of
object detection on welding defects based on neural net-
work-based learning systems.

A research on CNN’s basic principles related to tests
series has made it possible to deduce the utility of this
technique (transfer learning), to recognize the steps taken to
adapt to a network, and to progress its integration in the
welding fields. Our goal is the classification of defects in
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X-ray images; in a previous work [18], we followed pre-
processing, extraction of ROI, and segmentation steps. Now,
we can get away from these last steps and go directly to the
classification with pretrained CNN to classify the defects.

3. Proposed Method for Weld
Defect Classification

3.1. Problem Statement. 'e acquisition system that gen-
erates the X-ray images is our original data set which is
illustrated Figure 1. It is characterized by poor quality,
uneven illumination, and low contrast. In addition, our
dataset is small but with images with large-size dimensions
between 640 × 480 and 720 × 576 pixels and each image has
single weld defect or multiple weld defects with different
dimension and quantity. Seeing that, the detection of weld
defects is a complex, arduous mission. 'e classification task
often used feature extraction methods that have been proven
to be effective for different object recognition tasks. Indeed,
deep learning reduces this phase by automating the learning
and extracting the features through the network’s specific
architecture. Major problems limiting the use of deep
learning methods are the availability of computing power
and training data (see Section 4). To train an end-to-end
convolution network on such hardware of ordinary con-
sumer laptop and with the dataset’s size would be enor-
mously time-consuming. In this work, we had access to a
high graphics processor applied for search goal. Moreover,
convolution networks need a wide quantity of medium-sized
training data. Since the collection and recording of a suf-
ficiently large dataset require hard work, all the works in this
topic focused on ready dataset. 'is is a problem because we
have few available datasets of radiographic pipeline welding
images which were previously pretrained and our data were
characterised with very bad quality and different type not
like the public dataset from GDXray dataset [19]. For the
same reasons, we tried to generate more data from the
original data we have of welding images presented in Fig-
ure 1. To be sure about not destroying the image, we cropped
and rescaled it while keeping the same aspect ratio (Section
5.1). Furthermore, overfitting is a major issue caused by the
small size of dataset; we will therefore apply other efficient
methods to prevent this problem by adding training labelling
examples with data augmentation and dropout algorithm
explained in Section 4.3. 'e general steps of our proposed
method are detailed, illustrating the adjustment process in
the following figure (Figure 2).

3.2. Overview of CNN Structure and Detailed Network
Architecture. Linear and nonlinear processes have been
implicated with convolutional neural model that is a set of
overlapping layers. 'ey are acquired in common [2]. 'e
CNN head structure blocks are constituted by convolutional
layer, cluster layer, and Rectified Linear Units (ReLU) layer
linked to a fully connected layer and a loss layer bottom.
'ere are prominent results for many applications as the
visual tasks [20]; also all fields of weld defects detection
[15–18, 30] are well investigated. AlexNet [21] is a developed

CNN [20] for ImageNet 2012 and the challenge of large-scale
visual recognition (ILSVRC-2012). Its architecture is as
follows: max pooling layer is fulfilled in the fifth and the two
convolutional layers. For each convolution, a nonlinear
ReLU layer is stacked and the normalization is piled for both
the first and the second ones. In addition, softmax layer and
the “cross entropy” loss function are stacked after two
completely fully connected layers. More than 1.2 million
images in 1000 classes are trained with this network. In this
part, AlexNet architecture is presented. According to the
following Figure 3, the convolutional layers are presented
with blue color; the max pooling layers are structured with
the green one and the white layers represent the normali-
zation. 'e fully connected layer is introduced as the final
rectangle in the upper right corner of the summary structure.
'e output of this mentioned network is one-dimensional
vector as a probability function with the number of elements
to be classified which corresponds to two classes in this case.
It indicates the extent to which the input images are trained
and classified for each type of class.

AlexNet is one of pretrained CNN-based deep learning
systems with a specific architecture. Five convolutional
layers constitute the network with core sizes of 11 × 11,
5 × 5, 3 × 3, 3 × 3, and 3 × 3 pixels: Conv1, Conv2, Conv3,
Conv4, and Conv5, respectively. Taking into account the
specificity of weld faults such as the dimensions of images in
the dataset, the resolution related to the first convolutional
layer is 227 × 227. It is stated to have 96 cores with a stride of
4 pixels and size of 11 × 11. A number of 256 kernels with a
stride of 1 pixel and size of size 5 × 5 are stacked in the
second convolutional layer and filtered from the pooling
output of the first convolutional layer. 'e output of the
previous layer is connected to the remainder of convolu-
tional layers with a stride of 1 pixel for each convolutional
layer with 384, 384, and 256 kernels of size 3 × 3 and without
pooling grouping. 'e following layer is piled to 4096
neurons for each of the fully connected layers and a max
pooling layer [22] (Section 4.2). After all, the last fully
connected layer’s output is powered by softmax, which
generates two class labels as shown in Figure 3. In this
architecture, a max pooling layer is piled with 32 pixels’ size
and the stride of 2 pixels only after the two beginning and the
fifth convolutional layers. 'e application of the activation
function ‘ReLU nonlinearity’ for each fully connected layer
improves the speed of convergence compared to sigmoid
and Tanh activation functions.'e full network requirement
and the principal parameters of the CNN design are pre-
sented in Table 1 and detailed in the third section.

3.3. Pretraining andFine-Tuning Learning. Transfer learning
computer vision technology [3] is a common way because it
permits us to configure precise models quickly. A consid-
erable labelled data amount with great power of processing is
advised for novel model of learning. So, we avert starting
from scratch by taking benefit of preceding training. With
transfer learning, when the process is with various issues, we
proceed with performed forms to solve a different problem.
It is usually expressed using a big reference dataset of a

4 Advances in Materials Science and Engineering



Input 227 ∗ 227

C

1
P

1

C

2
C

3

C

4

P

2

N

1

F
C

6

F
C

7

N
2

C
5

F
C

8

P

5

Features maps
96 256 256384 384 4096 4096 2

11 ∗ 11 ∗ 3 5 ∗ 5 ∗ 96 3 ∗ 3 ∗ 256 3 ∗ 3 ∗ 384 3 ∗ 3 ∗ 384 4096 ∗ 1 ∗ 1 4096 ∗ 1 ∗ 1 4096 ∗ 1 ∗ 1

Convolutional layer 

Max pooling layer

Cross channel normalization

Fully connected layer

Figure 3: 'e detailed pretrained network scheme.

. . . 

. . . 

. . . 

Training set

. . . 

. . . 

. . . . . . 

So�max
classification

Visualize features Deep neural network

Input layer Output layerHidden layer
So�max

classification

Testing set Classification of
accuracy of
two classes

Fine-tuningx(t) = (x1, x2, …, xn)

Figure 2: 'e proposed method’s flow chart.

Table 1: 'e principal parameters of the CNN design.

1 Data Image input 227 × 227 × 3 images with zero center normalization
2 Conv1 Convolution 96 11 × 11 × 3 convolutions with stride [4, 4] and padding [0, 0, 0, 0]
3 Relu1 ReLU ReLU
4 Norm1 Cross channel normalization Cross channel normalization with 5 channels per element
5 Pool1 Max pooling 3 × 3 max pooling with stride [2, 2] and padding [0, 0, 0, 0]
6 Conv2 Convolution 256 5 × 5 × 48 4 convolutions with stride [1, 1] and padding [2, 2, 2, 2]
7 Relu2 ReLU ReLU
8 Norm2 Cross channel normalization Cross channel normalization with 5 channels per element
9 Pool2 Max pooling 3 × 3 max pooling with stride [2, 2] and padding [0, 0, 0, 0]
10 Conv3 Convolution 348 3 × 3 × 256 convolutions with stride [1, 1] and padding [1, 1, 1, 1]
11 Relu3 ReLU ReLU
12 Con4 Convolution 348 3 × 3 × 192 convolutions with stride [1, 1] and padding [1, 1, 1, 1]
13 Relu4 ReLU ReLU
14 Con5 Convolution 256 3 × 3 × 192 convolutions with stride [1, 1] and padding [1, 1, 1, 1]
15 Relu5 ReLU ReLU
16 Pool5 Max pooling 3 × 3 max pooling with stride [2, 2] and padding [0, 0, 0, 0]
17 FC6 Fully connected 4096 fully connected layers
18 Relu6 ReLU ReLU
19 Drop6 Dropout 50% dropout
20 FC7 Fully connected 4096 fully connected layers
21 Relu7 ReLU ReLU
22 Drop7 Dropout 50% dropout
23 FC8 Fully connected 2 fully connected layers
24 Prob Softmax Softmax
25 Output Classification output Cross entropy
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pretrained model to resolve the task like the studied case.
Many studies have shown the feasibility and efficiency of
dealing with new tasks using the preformed model with
various types of datasets [23]. 'ey reported how the
functionality of this layer can be transferred from one ap-
plication to another. So, the amelioration of the general-
ization is accomplished by initialing transferred features of
any layer of network after fine-tuning to new application. In
our case, the fine-tuning [24] of the corresponding welding
dataset is done with the weights of AlexNet. All layers are
initialized only the last layer which correspond to the
number of labels categories of the weld defects data. 'e loss
function is calculated by label’s class computed for our new
learning task. A small learning rate of 10-3 is applied to
improve the weight of convolutional layers. As with the fully
connected layers, the weightings are randomly initialized
and the learning rate for these layers is the same. In addition,
for updating the network weights of our dataset, we have
used stochastic gradient descent (SGD) algorithm with a
mini batch size of 16 examples and momentum of 0.9. 'e
network is trained with approximately 80 iterations and 10
epochs, which took 1min on GPU GeForce RTX 2080.

4. Parameters Setting and DCFA Description

4.1. Normalization. 'e application of normalization in our
CNN helps to get some sort of inhibition scheme. 'e cross
channel local response normalization layer performs
channel normalization and in general comes after ReLU
activation layer. 'is process replaces each element with a
controlled value and this is accomplished by selecting the
elements of certain neighboring channels. So, the training
network estimates with following equation a normalized
value x′ for each component:

x′ �
x

(K +(α∗ ss/windowChameSize))β′
. (1)

Note that ss is the elements squares sum in the nor-
malization window and K, alpha, and beta are the hyper-
parameters in the normalization. In our case, after the first
and the second blocks of convolution, two cross channel
normalizations with five channels per element are
implemented.

4.2.OverlapPooling. For CNN networks, similarly in map of
the kernel, the neuron neighboring groups outputs are re-
capped in the grouping layers [22]. In the network, the
reduction of the parameters number is done gradually by
decreasing the representation spatial size. On each feature
map, pooling layer performs separately. To bemore accurate,
the assembly layer can be considered as a connection of
pooling units spaced by s pixels; each one summarizes a
neighborhood of size k × k which is centered on the pooling
unit position. In addition, the set of s� k is employed for
traditional local pooling and if s < ik we obtain the over-
lapping pooling. For this work, we put k � 3 and s� 2. 'e
greatest shared method used in pooling is max pooling [3].
'is method takes the defined grid maximum value and

intervenes in the downsampling of the width and height of
the image without changing the depth. After the application
of ReLU, the nonnegative numbers are presented only from
the resulting matrix. Indeed, overfitting is avoided and the
dimensions are reduced by max pooling. Anyways, in CNN,
the similarity of the number of outputs from the fully
connected neurons layer and the final convolution layer is
the result of the adjustment of the max pooling layer. In our
case, the applied pooling layer is between neighbouring
windows with 3 × 3 sizes and stride of 2.

4.3. Dropout and Data Augmentation. 'e objective is to
learn many parameters without knowingly growing the
metrics and extensive overfitting. 'ere are two major ways
to prevent that and they are detailed as follows. Dropout
layers showed a particular implementation to contract with
the task of CNN regularization. According to many studies,
dropout technique prevents from overfitting even if it in-
creases twofold the needed iterations number to converge.
Moreover, the “dropout” neurons do not contribute to direct
transmission and in back-propagation. Specific nodes are
removed at every learning’s step [25], with a probability p or
with a probability (1 − p). As is mentioned in Table 1, for
this work, the dropout is applied with a ratio proba-
bility� 0.5 in the first two fully connected layers.

For deep learning training, the required dataset must be
huge. 'e simplest and most common form to widen the
dataset artificially is by using label-preserving transforma-
tions. 'ere are many different methods to data size in-
creasing using data augmentation [26]. According to our
network architecture, there are three kinds of data aug-
mentation which permit a very small calculation for the
creation of the new images from our original images:
translations, horizontal reflections, and the intensities of the
RGB channels modification. In this work, these transfor-
mations are employed to get more training examples with
wide coverage. In addition, our dataset is constructed with
radiographic images in gray level; thus, we used the color
processing of the gray to RGBwhich is explainedmore in the
next section of experimental results.

4.4. Activation Features Network. Deep Convolutional net-
work with Activation Function (DCFA) is used to check the
efficiency of the structure applied before; we have tried the
modern method available for general comparison on the
same set of data. We tried to use a pretrained CNN as an
experienced copywriter. In fact, the convolutional neural
network (CNN) is a great method for automated learning
from the field of deep learning. Indeed, they are trained
using large collections of diverse images to pick up the rich
features’ representations of each image. 'ese entity rep-
resentations often exceed hand-created features such as
HOG, LBP, or SURF [27, 28]. One of the simple ways to
leverage CNN’s power without investing time and effort in
training is to use CNN, which has already been tested as a
feature extractor. In this comparative example, our images of
the weld dataset are classified using a multilayer linear SVM
that guides the CNN features extracted from the images.'is
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methodology to classify the image category surveys the usual
training off-the-regular using features extracted from im-
ages. An explicated schema of the whole procedure is shown
in Figure 4 as follows.

5. Experimental Results

5.1.DatasetProcessingandTrainingMethod. 'e images that
create the dataset were obtained from an X-ray image ac-
quisition system. X-ray films can be digitized by various
systems such as flat panel detectors or a digital image capture
device. Our model is based on X-ray source radiations of
total power Y.Smart 160E 0.4/1.5; the X-ray object which is a
spiral welded steel pipe of different thickness and diameter
and the image intensifier (II) detects the x-rays beams
generated by the X-ray source, filters them after penetrating
the exposed object up to 20mm, amplifies them, and con-
verts them into visible light using a phosphor screen. A
digital video recorder is used to capture the images from the
image intensifier analog camera (with 720p AHD) with 720
horizontal resolution and provides an image with 1280 × 720
pixels and converts it into a digital format. In this work, this
digital device was used to digitize the signal generated from
the Spa Maghreb Tubes 1. 'is resolution was adopted for
the possibility of detecting and measuring faults of hun-
dredths of a millimeter, which, in practical terms of ra-
diographic inspection, is much greater than the usual cases.
'e quality of the video generation is controlled by the
environment conditions which can be related to the object’s
thickness, the exposure environment, the motion of the pipe,
and the ADC (analog-to-digital converter) conversion cir-
cuits that affect the images’ quality and the use of image
enhancement filters is needed. According to the statistics on
the welding defects dataset, the defect images variable res-
olution is ordered between 640 × 480 and 720 × 576 pixels.
So, we implemented an algorithm with MATLAB for
cropping and rescaling the original image to new images;
after that, we applied preprocessing methods of noise re-
moval with Wiener and Gaussian filter and contrast en-
hancement with stretching as is mentioned in a previous
work [18]. An example of generated images is presented in
Figure 5. After that, the generated images are resized by
maintaining the same aspect ratio to a stable determina-
tion or a specific size of 250 × 200. Deep learning deals with
specific input size and mostly not big size. To match the
necessities of a continuous input dimension of the clas-
sification system, we describe welding defects to the ex-
treme level and decrease the complexity at the same time.
Although, from a strictly aesthetic point of view, the aspect
ratio of the image when resizing an image should be
maintained, most neural networks and convolutional
neural networks applied to the task of image classification
assume a fixed size input which means that the dimensions
of all images that must be passed through the network
must be the same. Common choices for width and height
image sizes used as input in convolutional neural networks
include 32 × 32, 64 × 64, 224 × 224, 227 × 227, 256 × 256,
and 229 × 229. So, mostly the aspect ratio here is 1 because
the width and the height are equal. Before proceeding with

the training, the images had to be resized to the size of the
model, which is 227 × 227, without keeping the image
aspect of the width to the height. Finally, the neural
network model is trained by the database that includes
only two folders of 695 X-ray welding images. Each folder
represents a class of defect. Each class has a number of
images that differ from the rest of the folders. 'erefore,
the lack of penetration group has 242 images and the
porosity group has 453 images, which are very known
defect types. 'e images are split for training set and
testing set with the same size. So, we have selected 80%–
20% for training and testing, respectively. So, in general,
we have 139 testing images and 556 training images. 'is
neural network is implemented with MATLAB R2020a
GeForce RTX 2080.

5.2. Data Augmentation Implementation and Layers Results.
In deep learning investigations, enormous amount of data
is needed to avoid many grave problems of unnecessary
learning. Below diverse uses, changing the image geo-
metrically is applied to raise this amount of data. In our
case, three types of data augmentation are used: image
translations, horizontal reflections, and altering the in-
tensities of the RGB channels. 'e first technique of data
generation is to create image translations and horizontal
reflections. To do this, we extract 227 × 227 random patches
(and their horizontal reflections) from 256 × 256 images
and form our network on these extracted patches. 'e
subsequent training examples are highly reliant due to the
size rise of the training, which is defined by the factor 4096.
If we will not apply this process for dataset, the network will
suffer significant overfitting. For the testing time, predic-
tion is made by taking five patches of 227 × 227 as well as
their horizontal reflections (and thus ten patches in total).
'e second one is changing our images from gray level
channel to RGB channels for training and testing images to
ensure good performance specifically for our type of images
because the pretrained network was trained on colors
images of ImageNet. A training image can generate
translated ones as seen in Figure 6, an example of lack of
penetration defect image, and the augmented images which
are most similar to each other. Anyways, if the original
dataset is used, the difference between the learning and
validation errors indicates the occurrence of an overfitting
problem. 'e learned form is not able to capture the large
variation within the small learning dataset. Nevertheless,
increasing the dataset size can ameliorate the performance
of training. As mentioned earlier, translating the dataset
has also been possible to solve the problem of partial re-
placement by reducing the gap between learning and
validation errors. Indeed, the performance of the pre-
trained AlexNet model after being fine-tuned for 10 epochs,
with mini batch size of 16, when training using the aug-
mented dataset outdid the training without data aug-
mentation. So, we conclude that the rescale and translation
can be of benefit in the process of training and in the
accuracy results. In addition, the performance of the model
has been significantly improved.
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5.3. Layers’ Fine-Tuning Experimental Results. For classifi-
cation means, transfer learning methods use new deep grids
to leverage information from the preliminary test delivered
by a pretrained network to apply it for new patterns in new
data. Usually, the training of data from scratch is slower than
using transfer learning and fine-tuning method. 'erefore,
using these types of networks allows us to pick up new works
without configuring a new network and with a great graphics
processor. We evaluated the network by training on the
welding images. For test, 20% of the two categories were

chosen as test and validation dataset means: 48 for lack of
penetration and 91 for porosities.'e images were employed
with fixed resolution of 227 × 227 as the input of the network
that would convolve and pool the activation repeatedly and
then forward the results into the fully connected layers and
classify the data stream into 2 categories. To prevent de-
creasing error caused by the low amount of data, the initial
learning rate (LR) base is adjusted as 0.001. Furthermore, the
softmax output layer FC8 is characterized by 2 categories
and the hidden layers FC6 and FC7 are piled with 4096
neurons. Inaccuracy of predictions in classification is pre-
sented by the loss function (LF) which measures the optimal
strategy. 'e system is performing well according to the
smallest value of LF. As can be seen in Table 2, after 80
iterations, the loss curve tends to zero, while the classifi-
cation accuracy curve tends to 1, meeting the requirements
of the optimization objectives. 'e validation classification
accurately reaches as high as 0.65 when the iteration is 1,
while it increases to 1 when the iteration is 80. 'e effect of
fine-tuning layers of the network, according to Table 2, is
shown in the form of AlexNet6-8 where the network will be
fine tuned from layer 6 to layer8 while the previous layers are
kept constant with no update. In addition, we stated that the

Training data

Figure 5: Generated images after the crops and resizing.

Figure 6: Data augmented for lack of penetration defect.

Input
Conv1

Conv2 Conv3 Conv4 Conv5

FC6 FC7
Output

227 ∗ 227 ∗ 3 55 ∗ 55 ∗ 96 4096 4096 100027 ∗ 27 ∗ 256 13 ∗ 13 ∗ 384 13 ∗ 13 ∗ 384 13 ∗ 13 ∗ 256

Training image AlexNet feature extraction SVM Classification

Figure 4: 'e flow chart of the DCFA.
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generation of dataset can give a high-quality image by en-
hancing the quality and eliminating the portion of periodic
noise in it [18], which is one of the main supporting suc-
cesses of the proposed algorithm. Last, it is required to
evaluate trained network. For each of the images in testing
set, it must be presented to the network and ask it to predict
what it thinks about the label of the image.'e predictions of
the model for an image in the testing set must be evaluated.
Finally, these model predictions are compared to the
ground-truth labels from testing set.'e ground-truth labels
represent what the image category actually is. In our work,
two categories are applied for experiments and the results in
the testing dataset are compared with the ground-truth
labels. 'eir mean classification accuracy was taken as the
final results in Figure 7. From there, the predictions of our
classifier were correct according to the Confusion Matrix
reports used to quantify the performance of network as a
whole.

5.4. Final Results and Discussion. We can conclude from
Figure 8 that the learning and validation curves are signifi-
cantly improved and the network tends to converge from the
second epoch and the cross entropy loss tends to zero with the
increase of the epochs. 'e accuracy curves of train set and
validation set are shown in the same figure. Each point of the
precision curve means the correct prediction rate for the set of
train or validation images. 'e accuracy curve adopts the
same smooth processing as loss curve. We can see that the
accuracy of train set tends to 100% after 2 epochs as well as the
validation set accuracy. 'e test accuracy of 139 weld defect
testing images is 100%. Additionally, we can note that the
results of testing are mentioned in Table 3 of the Confusion
Matrix for the validation data.'e performancemeasurement
is with four different combinations of predicted and target
classes which are the true positive, false positive, false neg-
ative, and the true negative. In this format, the number and
percentage of the correct classifications performed by the
trained network are indicated in the diagonal. For example, 48
of defects are correctly classified as lack of penetration (LP).
'is corresponds to 34.5% of all 139 testing welding images.
In the same way, 91 defects are correctly classified as po-
rosities. 'is matches 65.5% of all testing welding images. So,
all the classes of defects are correctly classified and the overall
accuracy is that 100% of predictions are correct and 0% are
incorrect.

As seen in Figure 9, a negative impact on system per-
formance results by fine-tuning the fourth convolutional
layer because the information gets very rudimentary about
data, such as edges and points of layers, and we learn specific

structures of the dataset. It is noted that fine-tuning the
earlier layers end to end with the fully connected layers is less
good than only fine-tuning of the fully connected layers.
However, according to Table 4 of the Confusion Matrix, for
the validation data, the fine-tuning of the network has been
decreased dramatically to less than 23% compared to our
model’s accuracy result.'e decrease in performance during
training of our network is very low compared to that of the
deep convolutional features activation system. 'is can be
seen as evidence of the strength of the AlexNet model for
classification task. Given that decrease, 77% validation ac-
curacy for the DCFA system has been recovered. Obviously,
38 of defects are correctly classified as lack of penetration
(LP). 'is corresponds to 27.3% of all 139 testing welding
images. In the same way, 69 defects are correctly classified as
porosities. 'is matches 49.6% of all testing welding images.
'e results show that an extensive and deep neural network
is able to deliver unprecedented results on a very challenging
dataset using supervised learning. It should be noted that the
performance of our network is deteriorating if only one
convolutional layer is removed. Depth also is really im-
portant to achieve our results. We did not use any prior
unsupervised training [29] because of simplicity, although
we expected it to be useful, especially if we have sufficient
computing power to considerably increase the size of the
network without growing the amount of labelled data. 'e
time used for processing each patch is 0.01 s, which is also
faster than DCFA method mentioned before. 'is has
proved that the deep transfer learning is suitable for
detecting weld defects in X-ray images. In the end, we would
like to use very large and deep convolutional networks on
video streams whose timeline provides very useful visible
information or huge dataset of images to provide good
results.

6. Performance Comparison of Transfer
Learning-Based Pretrained DCNN
Models with the Proposed Model for
Our Dataset

6.1. Methodology of Transfer Learning in DNNs Models.
'e idea of transfer learning is related more to its efficiency
in implementing DCNN [32, 33] trained on big datasets and
to “transferring” their situational capabilities in training to
newer image categorization than DCNN formation from
scratch [45]. With correct fit, pretrained DCNN succeeded
in performance trained DCNN from scratch. Actually, this
mechanism using any pretrained model will be described
shortly in Figure 10. 'e well-known pretrained DCNN

Table 2: Training results for the first epoch.

Epoch Iteration Time elapsed, hh :mm : ss Validation accuracy (%) Validation loss Base learning rate
1 1 00 : 00 : 01 65.47 1.0146 0.0010
1 3 00 : 00 :15 66.19 0.6706 0.0010
1 6 00 : 00 :16 87.77 0.3102 0.0010
1 9 00 : 00 :16 91.37 0.3085 0.0010
1 12 00 : 00 :17 92.09 0.2529 0.0010
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models like GoogLeNet [34], ResNet50 [35], ResNet101 [35],
VGG-16, and VGG-19 [31] have been used for efficient
classification. 'e organization shown in Figure 10 is
composed of layers from the pretrained model and few new
layers. In this work, for all the models, only the last three
layers have been replaced to suit the new image categories.
'e modification of each pretrained network is detailed as
follows:

(i) For VGG-16 and VGG-19, only the last three layers
of the preformed network with a set of layers are
modified (fully connected layer, softmax layer, and
classification output layer) to classify images into
respective classes.

(ii) For GoogLeNet, also the network’s last three layers
are changed. 'ese later layers loss3-classifier, prob,
and output are altered by a fully connected layer,
softmax layer, and a classification output layer.
Afterwards, the last transferred layer remaining on
the network (pool5_drop 7 × 7_s1) is linked by the
new layers.

(iii) For ResNet50, the last three layers fc1000,
fc1000_softmax, and ClassificationLayer_fc1000
of the network are substituted by fully connected
layer, a softmax layer, and a classification output
layer. 'en, the last remaining transferred layer
on the network (avg_pool) is connected to the
novel layers.

(iv) For ResNet101, predictions of the network’s last
three layers which are fc1000, prob, and Classi-
ficationLayer_ are altered with a fully connected
layer, a softmax layer, and a classification output
layer, respectively. Finally, the new layers and the
last transferred layer remaining in the network
(pool5) are connected.

(v) Train the network.
(vi) Test the new model on the testing dataset.

Figure 7: Predicted images (from left to right): well-classified porosities defects image, well-classified lack of penetration defect image, well-
classified lack of penetration defect image, and well-classified lack of penetration defect image.
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Figure 8: Training process curves: training accuracy and loss curves are represented by a straight line; validation accuracy and loss curves are
represented by a dashed line.

Table 3: Confusion Matrix for validation data.

Output Class

LP 48
34.5%

0
0.0%

100%
0.0%

Porosities 0
0.0%

91
65.5%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

LP
Target class Porosities
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6.2. Comparison of the Proposed Model with the DCNNs
Procedures: Results and Discussion. 'e transferred DCNN
models are investigated in this work to compare the results
and to prove the efficiency of our proposed model.
According to the details mentioned in 6.1, we designed each
model in MATLAB R2020a and we changed the layers of
each one to fit with our needs. 'e transferred models were
trained using stochastic gradient descent with momentum
(SGDM).'e mini batch size was taken as 16, the maximum
number of epochs was 10, and the learning rate was 0.001
and in general the other parameters were taken to be the
same as the proposed structure and the details of each
network are replaced as described in subsection 6.1. 'e
ranking performance of each CNN is summarized in Table 5
which illustrates performance comparison for all pretrained
models using all chosen performance metrics. 'e tabular
results show that the pretrained AlexNet model reaches the
best results followed by VGG-16 and VGG-19. 'e per-
formance measures presented in Table 5 indicate that the
DCNNs models VGG-16, VGG-19, and GoogLeNet proved
to be stellar by attaining 95%, 97.8%, and 99.3% accuracy.
Moreover, ResNet50 and ResNet101 have accomplished
100% but with more computation time compared to our
proposed model. 'e training time is considered as a
comparative metric for the efficiency of each model. In
addition, AlexNet model reaches the highest accuracy level
in the lowest time opposed to other transferred DCNN
models. For the challenging X-ray dataset, the models with
transfer learning yielded specific significant results thanks to
their implementation using a strong hardware with GPU
capability (NVIDIA RTX 2080). So, the processing time is
mostly not high. 'e training progress curves and the
Confusion Matrix of the best model which is AlexNet are
presented in Table 3 and Figure 8. From the training

progress curve, it is apparent that the AlexNet model attains
the highest level of accuracy for the dataset in only 10
epochs. Also, it is able to make correctly classified samples
from datasets with a limited false positive rate and a superior
true fraction value. 'e value of performance metrics shows
the advantage of transfer learning in minimizing overfitting
and increasing the convergence speed.

7. Comparative Performance Using the
GDXray Images

'e GDXray (Grima X-ray) database covers five categories
of radiographic images: welds, castings, settings and natural
objects, and luggage. As is known, until now there have been
no public databases of digital radiographic images for X-ray
testing. We are interested in the welding data which are
grouped into 3 series including 88 images. So, these X-ray
images were generated from the BAM Federal Institute for
Materials Research and Testing, Berlin, Germany, as shown
in Figure 11.

Experiments with these data were done in different
works [36–39]. Many efforts have been made in the field of
weld failure detection, especially using the GDXray data-
base as it is the public and available benchmark. For
classification purpose usually, the data is preprocessed as it
contains few images with big size, different quality, and
various defect types in each image, which is not the same
case as that in our images. In addition, as previously
mentioned, researches done applied a method to extract the
image to different patches or regions to augment the data
and after that classify it. 'is data was used usually for
detection aim with any machine learning algorithm as the
focused data and it is cropped, resized, and ameliorated and
then trained and finally tested. In our case, we will apply
this benchmark for validation of our proposed classifica-
tion model, which means that the data was not trained
before with the specificity of the pretrained network.
'ereby, at first, the preprocessing is needed to group the
data into two defect types: porosities and lack of pene-
tration; secondly, cropping from the original images, de-
fects positions according to the labels class to reduce the
identification burden, and finally, resizing the cropped
regions to small version according to the input layer of the
AlexNet network. 'us, the generated images are resized,
keeping the same aspect ratio in a stable determination or a

Figure 9: Results of application of DCFA (from left to right): porosities defects image classified as follows: lack of penetration defect
image, well-classified lack of penetration defect image, well-classified lack of penetration defect image, and well-classified porosities
defects image.

Table 4: Confusion Matrix of DCFA for validation data.

Output Class

LP 38
27.3%

22
15.8%

63.3%
36.7%

Porosities 10
7.2%

69
49.6%

87.3%
12.7%

79.2%
20.8%

75.8%
24.2%

77.0%
23.0%

LP
Target class Porosities
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specific size of the network, 227 × 227. According to the
statistics on this database, the defect images are few with
variable resolution ordered between 11668 × 3812 pixels or
less with multiple various dimensions. So, the process takes
place in two stages: first cropping each image to patches in
the region of defect so that we get 108 images and after that
resizing it to the network model. Normally, for the testing
time, it is needed to apply data augmentation for changing
our images from gray level channel to RGB channels as the
pretrained network was trained on colors images of
ImageNet to fit with the input data of the model. 'ese
images are not large enough to test a deep convolutional
neural network. We adopted our proposed network model
to expand the dataset with translation and reflections so
that we avoid the overfitting problem. In this comparative
aspect, two categories are applied for experiments and the
results in the testing dataset are compared with the ground-
truth labels.'eir mean classification accuracy was taken as
the final results in Figure 12. From there, the predictions of
our classifier are shown in the Confusion Matrix reports
used to quantify the network validation performance as a
whole. 'e classification performance of the proposed
transferred model is evaluated on GDXray, and the results
of testing are mentioned in Table 6 of the validation da-
tabase Confusion Matrix. Performance measurement
consists of four different combinations of predicted and

target classes that are true positive, false positive, false
negative, and true negative. In this format, the correct
classifications number and percentage reached by the
network are presented diagonally. For example, 43 were
fully and correctly classified as lack of penetration (LP).
'is corresponds to 39.8% of the 108 weld test images. Also,
49 faults are correctly classified as porosities, which cor-
responds to 45.4% of all the weld test images. 'us, the
overall accuracy is that 85.2% of the predictions are correct.
Moreover, the training on the GDXray images is presented
in Table 7, which reached the overall accuracy of 87%. We
can conclude that the results are accurate and performant
enough according to the images quality and amount and
the volatility inside the patches. 'e advantage of applying
each of these models was quantified through ablation tests.
Based on the transferred DCNN models, we compare the
results and prove the efficiency of our proposed model on
GDXray images. 'e ranking performance of each CNN is
summarized in Table 8 which illustrates performance
comparison for all pretrained models using all chosen
performance metrics on GDXray images. 'e tabular re-
sults show that the pretrained AlexNet model reaches the
best results. 'e performance measures presented in Ta-
ble 8 indicate that the DCNNs models VGG-16, VGG-19,
and GoogLeNet proved to be stellar by attaining 84.3%,
80.6%, and 74.1% accuracy.

Input images Initial layers of the pretrained
model

Replaced layers 

Transferred pretrained model

Porosities

Lack of penetration

Output classes

Figure 10: Mechanism of transfer learning using pretrained models.

Table 5: Performance metrics of DCNN models with processing time.

Pretrained model Accuracy Error Sensitivity Specificity Precision False positive rate Time
AlexNet 100 0 100 100 100 0 47 s
VGG-16 95 0.05 100 85 92 0.145 3min 34 s
VGG-19 97.8 0.0216 100 93.75 96.8 0.0625 3min 55 s
GoogLeNet 99.3 0.0072 98.9 100 100 0 1min 38 s
ResNet50 100 0 100 100 100 0 3min 12 s
ResNet101 100 0 100 100 100 0 6min 52 s
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8. Comparison of the Transfer Learning-Based
AlexNet Model with Studies on
Welds Classification

Table 5 shows that the transferred DCNN models AlexNet,
ResNet50, ResNet101, VGG-16, and VGG-19 have achieved
performant accuracy. Indeed, a comparative analysis in
Table 9 is given with the existing works on welds database.
An overview of studies using supervised machine learning
algorithms for the classification step is presented in Table 9.
According to this table, various works are based on ANN
(artificial neural networks) [40–42] and fuzzy logic systems
[43]. Moreover, support vector machines have been utilized
[44]. In [43], the credibility level is considered for failure
proposals detected by a fuzzy logic system. 'e aim of this
proposal is to decrease the rate of false alarms (or false
positives) instead of increasing the detection accuracy
subject to a low false positive rate. 'e authors in [40]
covered the classification related to welding fault that in-
tegrates the ANN classifier with three different sets of
functionalities. 'is manuscript is based on preprocessing,
segmentation, feature extraction (both texture and geo-
metric), and finally classification in terms of individual and

combined features. It is necessary to improve the precision
of the classification using textures and geometric charac-
teristics based on the ANN classifier. 'e classification ac-
curacy based on the combination of the features’
characteristics led to an acceptable accuracy between 84%
and 87%. It should also be noted that [46] investigates the
fake defects that are inserted into the radiographs as a
training set with positive results. General shape descriptors,
which are used to characterize weld failures, have been
studied, and an optimized set of shape descriptors has been
identified to efficiently classify weld failures using a multiple
comparison procedure. However, the rate of successful
categorization varies from 46% to 97%. It is important to
note that a successful categorization depends largely on the
variability of the entry. Most of the studies in Table 9, as well
as the machine learning study, have focused on how to
correctly detect and classify as many defects as possible
based on features extractions and classifiers. 'e

Figure 11: Some images of group welds series of GDXray.

Figure 12: Results of validation with GDXray (from left to right
and from top to bottom): well-classified porosities defects image,
porosities defects image classified as lack of penetration, well-
classified porosities defects image, and well-classified lack of
penetration defect image.

Table 6: Confusion Matrix of validation database GDXray.

Output Class

LP 43
39.8%

13
12.0%

6.8%
23.2%

Porosities 3
2.8%

49
45.4%

94.2%
5.8%

<93.5%
6.5%

79.0%
21.0%

85.2%
14.8%

LP
Target class Porosities

Table 7: Confusion Matrix of training database GDXray.

Output Class

LP 40
37.0%

8
7.4%

83.3%
16.7%

Porosities 6
5.6%

54
50.0%

90.0%
10.0%

87.0%
13.0%

87.1%
12.9%

87.0%
13.0%

LP
Target class Porosities

Table 8: Comparison of the performance metrics of pretrained
DCNN models.

Accuracy (%) TP (%) TN (%) FN (%) FP (%)
Our method 85.2 39.8 54.4 2.8 12.0
VGG-16 84.3 37 47.2 5.6 10.2
VGG-19 80.6 25.9 54.6 16.7 2.2
GoogLeNet 74.1 21.3 52.8 21.3 4.6
ResNet50 68.5 29.6 38.9 13.0 18.5
ResNet101 74 25.0 49.1 17.6 8.3
DCFA 71.3 22.2 49.1 20.4 8.3

Advances in Materials Science and Engineering 13



comparative analysis has been restricted to the measures
reported in the literature, that is, classification accuracy,
number of features, and computation time. 'e measures
reported show that transferred DCNN models reached
higher level of accuracy compared to the methods devised in
previous cited works. 'e main pretrained DCNN models’
benefit in comparison with the studies is that they do not
require a feature extraction mechanism or an intermediate
feature selection phase. Furthermore, AlexNet model with
transfer learning achieves a recognition rate of 100% with 25
learning layers. In addition, the transferred AlexNet model
rendered 100% recognition, with short computation time.

9. Conclusions

'is paper proposed the transfer learning method based on
AlexNet for weld defects classification. 'e previously
learned network architecture has been modified to fit the
new classification problem by resizing the output layer and
adding two dropout layers to avoid the overfitting problem.
'e application of the fully convolutional structure needs the
same size input for training as the similar processing, even
for the testing images. Few datasets of two low quality classes
that contain 695 X-ray welding images are applied to study
learning performance. In order to ameliorate the network’s
performance, dataset augmentation is used through trans-
lations, horizontal reflections, and modification to RGB
channels. It is noted that the implementation result has
achieved 100% of classification accuracy. Comparing the
results of our network with the DCFA network and different
pretrained DCNN models with transfer learning, we note
that our AlexNet network achieves the highest performance.
As expected, it has been verified that it is recommended to
fine-tune the fully connected layers of the AlexNet network
instead of doing it for the whole network, specifically for
small datasets. 'e benefits of applying pretrained DCNN
models with transfer learning for classification are varied: at
first, the classification mechanism is fully automated; besides
it eliminates the conventional step of feature extraction and
selection and then no inter- and intraobserver biases are
there and the predictions done by the pretrained DCNN
models are reproducible with a high accuracy level. For
classification and defect detection applications, the system

required the generation of a new welding dataset that
represented different types of welds with good quality. Now,
the defect detection step is really needed to be investigated to
recognize the defect and its dimensions. Several algorithms
can be implemented for object detection, which belong to
the RCNN family. 'is can be the focus of the upcoming
article.
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