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Abstract: Spectrophotometry has proven to be an effective non-invasive technique for the
characterization of the pollution load of sewer systems, enabling compliance with new environmental
protection regulations. This type of equipment has costs and an energy consumption which make it
difficult to place it inside a sewer network for real-time and massive monitoring. These shortcomings
are mainly due to the use of incandescent lamps to generate the working spectrum as they often require
the use of optical elements, such as diffraction gratings, to work. The search for viable alternatives to
incandescent lamps is key to the development of portable equipment that is cheaper and with a lower
consumption that can be used in different points of the sewer network. This research work achieved
the following results in terms of the measured samples: First, the development a calibration procedure
that enables the use of RGB-LED technology as a viable alternative to incandescent lamps, within the
range of 510 to 645 nm, with high accuracy. Secondly, demonstration of a simple method to model
the transmittance value of a specific wavelength without the need for optical elements, achieving a
cost-effective equipment. Thirdly, it provides a simple method to obtain the transmittance based on the
combination of RGB colors. Finally its viability is demonstrated for the spectral analysis of wastewater.

Keywords: RGB-LED spectrophotometer; water pollutants; transmittance modelling; cost effective

1. Introduction

The European Union states that in order to improve indicators of compliance with the Urban
Wastewater Treatment Directive, Directive 91/271, it is necessary to reduce pollution emitted through
combined sewer overflows (CSOs) [1,2]. At the same time, it is recognized that there is still a lack
of knowledge about how pollutants are mobilized in CSOs [3–5]. Overflows are closely related to
rainfall, thus presenting a great variability both in their volume and in the pollutant load they transport.
In addition, they can vary enormously throughout the same episode, registering pollution peaks,
which in turn can be reduced to very low values in intervals of minutes [6–8]. These reasons make it
necessary to devote significant efforts to the monitoring of overflows in order to quantify the impacts on
the receiving environment, taking into account the characteristics of that environment [9–11]. The US
DSS control policy (Clean Water Act) includes nine minimum controls to be carried out by landfill
owners, including monitoring and evaluation of the contaminating load [12,13].

The monitoring of pollution in sewer networks can be at different levels, from merely taking
some periodical samples to be analyzed in the lab, to the continuous monitoring of pollutants.
The measurement of continuous values of turbidity, pH, conductivity, temperature, nutrients, and organic
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compounds through spectrophotometric probes today constitutes robust techniques that enable the
mobilization of pollutants to be characterized throughout the day, on-line and continuously [4,5,14,15].
Furthermore, on-line monitoring helps in the planning of actions and infrastructures and is required
in order to comply with existing legislation on wastewater treatment [16,17]. Nowadays, to address
the CSOs’ pollutant dynamics, time-continuous transmittance measurements have been used with
satisfactory results. Measurements are taken at several wavelengths, like those of the visible and 254 nm
UV wavelengths [9,18,19]. Spectroscopy devices capable of working in the visible spectrum, such as
those made of RGB-LED, will help to increase knowledge of pollutants’ movement and water quality
monitoring during CSOs [20].

Cost-effective spectrophotometers based on LEDs are being developed and spread to determine
wastewater pollution with high accuracy [21–24], and their comparison with transmittance calculated
from classical devices based on incandescent lamps shows good agreement [25].

Low-cost RGB light-emitting diodes (RGB-LEDs) are nowadays used in the construction of simple
and compact spectrophotometers for molecular absorbance measurements in analytical chemistry.
For instance, RGB-LED-based sensors have been developed to measure different parameters on-line,
such as the microalgae-biomass concentration, within a photo-bioreactor, with a 2% error [26]. The use
of RGB allowed the study of on-line chromatic values without the cost spiraling throughout the
winemaking process [27]. An RGB sensor was also used to obtain information about the color of the
sample, detecting the movement of phytoplankton [28]. In the case of tap water, RGB sensors through
a web cam were also utilized to control the concentration of parameters, such as ortho-phosphate
and aluminum (III) [29]. In the case of wastewater, a portable RGB diode was utilized for the on-site
determination of nitrite and iron in river waters [30]. The results of visible spectrophotometry in the
near infrared region (NIR) using an RGB diode and a 360- to 740-nm spectrophotometer were compared
when characterizing parameters, such as the ammonia concentration and electrical conductivity
values [31].

RGB-LED has also been used to calculate the dense packing of bacterial cells in sample solutions
in well plates, obtaining good accuracy [32]. The RGB-LED assumes the superposition of different
wavelengths, as opposed to conventional spectrophotometers that apply reduced wavelengths for each
measurement. This fact introduces an increased susceptibility to interference. However, several authors
have shown RGB to be effective, simple, compact, and at a low cost. As stated by [33], its performance
indicates that it could be suitable as a replacement for conventional spectrophotometers used in
photometric analytical procedures. A loss of sensitivity will usually be encountered, and users will
have to decide if this is not significant, since the accuracy continues to be high enough.

The present work includes an experimental campaign in which transmittance is measured from
an RGB-LED diode through multiple water samples with different dyes and compounds that cover
a broad range of transmittance. The results are compared and discussed with those obtained from a
commercial spectrophotometer. An RGB-LED is operated with different equations to vary the emitted
superposition of wavelengths, so as to cover the widest possible range within the visible spectrum of
light, making use of the combination of the three small individual LEDs contained within the RGB-LED.

The contributions of this work are as follows: First, we developed a novelty calibration process, in
order to measure transmittance values between 510 and 645 nm using a single RGB-LED, without optical
devices, and with a high level of accuracy. As indicated in the study [25], 18 individual LEDs are needed
to be able to analyze water samples between 510 and 645 nm; therefore, a single RGB-LED enables us
to significantly reduce the cost of the equipment. Secondly, we provide a simple way to define the red,
green, and blue RGB-LED intensity combinations to be used in order to measure the transmittance
values that are in agreement with those obtained using the commercial equipment. The novelty lies in
using the RGB combination to produce a chemical response in water samples; this can be correlated
with that obtained by equipment based on incandescent lamps, where a single wavelength passes
through the sample.
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2. Materials and Methods

2.1. Analyzed Samples

Table 1 shows the different samples used in this research. From a total of 48 samples, 20 (S1—S20)
were used to carry out the calibration process, to ensure that the transmittance values provided by the
RGB-LED are close to those provided by commercial equipment based on incandescent lamps.

In order to evaluate the suitability of the calibration models, 28 water samples were analyzed,
including nine from urban wastewater of the city of Cartagena (Spain), and whose origin includes
important industrial areas. These wastewater samples were collected at different points at the Cabezo
Beaza wastewater treatment plant: Wastewater treatment plant inlet (S21, S43, and S44), at the Primary
Settler outlet (S22, S45, and S46), and at the treatment plant outlet (S23, S47, and S48).

Likewise, the food dyes used to generate part of the calibration samples were as follows: E105 (S3),
E133 (S3 and S4), E124 (S10, S13, and S14), E100 (S16), and E133 (S19)

All the samples were stored in standard 12 × 12 × 50 mm plastic test tubes of the SEOH brand [34],
designed for spectrophotometry purposes.

Table 1. Analyzed samples.

Designation Substance Dissolution

C
al

ib
ra

ti
on

Sa
m

pl
es

S0 Distilled water 100%

S1 Red wine 50%

S2 Tea 80%

S3 Yellow and Blue food dye 20%–80%

S4 Blue food dye 50%

S5 Washing machine detergent 50%

S6 Washing machine detergent 65%

S7 Washing machine detergent 75%

S8 Milk 100%

S9 Milk 50%

S10 Red food 50%

S11 Kitchen oil 100%

S12 Vinegar 90%

S13 Red food 75%

S14 Red food 55%

S15 Soluble coffee 75%

S16 Yellow food dye 40%

S17 Soluble coffee 50%

S18 Red wine 100%

S19 Blue food dye 30%

S20 Sea water 100%
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Table 1. Cont.

Designation Substance Dissolution
Te

st
Sa

m
pl

es

S21 Urban wastewater Wastewater treatment plant inlet 100%

S22 Urban wastewater Primary settler 100%

S23 Treated wastewater Wastewater treatment plant outlet 100%

S24 Olive oil 100%

S25 Cocoa powder 5%

S26 Cocoa powder 30%

S27 Cocoa powder 55%

S28 Caffeine powder 10%

S29 Caffeine powder 30%

S30 Cetylpyridinium chloride 50%

S31 Cetylpyridinium chloride 100%

S32 Beer 100%

S33 Beer 50%

S34 Olive water 100%

S35 Olive water 50%

S36 White wine 100%

S37 White wine 50%

S38 Pinkish visage 100%

S39 Pinkish visage 50%

S40 Pinkish visage 30%

S41 Amphoteric surfactants 100%

S42 Amphoteric surfactants 50%

S43 Urban wastewater WWTP inlet 100%

S44 Urban wastewater WWTP inlet 100%

S45 Urban wastewaterWWTP Primary settler 100%

S46 Urban wastewaterWWTP Primary settler 100%

S47 Treated wastewater WWTP outlet 100%

S48 Treated wastewater WWTP outlet 100%

2.2. Reference Equipment

In the present work, all the results were contrasted with the commercial equipment V-5000 VIS [35].
This has a working spectrum of between 325 and 1000 nm, with a bandwidth of 4 nm, which complies
with the following standards:

• ISO 22891: 2013: Determination of transmittance by diffuse reflectance measurement.
• ISO 10110-9: 2016: Preparation of drawings for optical elements and systems—Part 9:

Surface treatment and coating.
• ISO 7887:2011: Water Quality—Examination and determination of color.
• ISO 9001 7.6: Control of monitoring and measuring equipment.
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2.3. Sensor Unit

To develop a cost-effective equipment, one of the main points to tackle is the sensor unit.
Most commercial equipment are based on CCD (charge-coupled device) sensors [36], which can
measure multiple wavelengths at the same time. However, their high price and the need for an
additional elements to work (mainly an optical element), increase the price of such equipment. For this
reason, and pursuing the “minimum viable solution”, i.e., one that makes use of as few elements as
possible, we used an individual photodiode as a sensor, which is designed to capture a single beam of
light [37,38] from a wide range of wavelengths. Once the kind of sensor to be used has been chosen,
it remained to determine which one to choose, since this type of sensor is marketed with different
sensitivities and spectral responses. In order to determine which properties the sensor must have in
order to be valid for this type of application, we carried out a comparison between several models.
To simplify the explanation, we focused the study on two of them: S1223 [39] and OSD15-E [40].

Figure 1 shows the spectral response of both sensors. A photodiode can have a different spectral
response according to the wavelength of the incident light, that is, it will be able to detect more of some
wavelengths than others, as shown in the figure.

If the same sample is traversed by a certain wavelength, for example, at 470 nm, with a certain
brightness level, as shown in Figure 1, the measured value I (amount of detected light through the
sample) will be different. The sensor OSD15-E (Figure 1B) presents at that wavelength a sensitivity over
50%, while S1223 (Figure 1A) barely manages to reach 25%. This implies that the former (OSD15-E) will
be able to detect twice as much light as the latter, and therefore, the I value will be different. This fact
could lead us to think that the best sensor to choose will be the one that is capable of capturing a greater
amount of light at a certain wavelength, i.e., the one with the highest sensitivity. However, we must
take into account that the transmittance

(
T = I

I0

)
is the result of the amount of light that manages to

pass through the sample we seek to analyze (I), with respect to the amount of light that passes through
a reference sample (I0), typically distilled water. In addition, we must note that if the I value is twice
as much on the OSD15-E sensor as S1223, the I0 value of the first one (OSD15-E) will also be twice
that measured in S1223. Therefore, the transmittance relation will remain constant regardless of the
type of sensor used. A series of measurements performed proved that the differences between the
transmittance values provided by the two sensors in all cases were less than 4%.
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Based on the tests carried out, we concluded that the sensor that has a sensitivity of at least 5%
for the wavelength to be analyzed is valid for spectrophotometry applications. As we focused the
study on the visible spectrum, the sensor S1223, which has a monetary cost three times lower than



Sensors 2020, 20, 3492 6 of 26

OSD15-E, has been chosen to carry out the analysis of the samples shown in Table 1. However, the price
difference between the two is not particularly significant, so either could have been chosen without
overly affecting either the price of the equipment or its accuracy.

At this point, once the sensor was chosen, it was necessary to take into account that this type of
sensor generates an electrical current according to the amount of light that falls on them, which is of the
order of picoAmperium. Most microcontrollers/microprocessors are only capable of measuring voltage
levels within a certain range, for example, 0–3 v. Therefore, the values provided by the sensors must be
converted to the voltage and amplified by a transimpedance circuit. In our case, we configured the
sensor to provide a response within the 0–5 V range.

2.4. RGB Light-Emitting Diode (RGB-LED)

Incandescent lamps are able to generate a wide range of wavelengths on their own; however,
they have an associated power consumption and high temperature issues, as well as being large in
size, due to the additional elements required to operate them (overall, optical elements). Therefore,
the present research work focused on determining whether a new light source could replace them in a
cost-effective way.

A priori, one idea that would come to mind is to use LED technology, due to its low power
consumption and lack of temperature problems. Nevertheless, for analyzing the entire spectrum would
require the use of a huge number of LEDs [25], since each of them is designed to emit within a specific
range of wavelengths. This would therefore result in an increase in both the size of the equipment as
well as its cost.

Not all applications that make use of the spectrometry technique require the use of a full
multispectral analysis but merely some specific spectral points. For instance, the analysis of chlorophyll
focuses only on the 600-nm wavelength. For these reasons, in the current research work, we studied
the RGB-LED as a source of light for spectrophotometry applications, in order to define how many
wavelengths can be modelled by a single RGB-LED, without using optical devices; more specifically,
we used the HV-5RGB25 [41], a common cathode diode, 5 mm in diameter.

What is commonly known as an RGB-LED is in fact a package containing three small individual
LEDs, which emit at the following peak wavelengths: 460 (blue), 525 (green), and 625 nm (red),
as shown in Figure 2.
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Figure 2. Emission spectrum RGB-LED.

The part highlighted part (Figure 2) corresponds to the so-called “spectral width”, which is defined
as the wavelength range that presents an emission intensity greater than/equal to 50% of the maximum
value. So, wavelengths located below that threshold have a lower influence on the samples.
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As can be observed in Figure 2, each of the LEDs emits certain wavelengths simultaneously.
This results means that the water samples will be traversed by more than one wavelength simultaneously,
which will cause discrepancies with respect to the results provided by the commercial equipment.

However, commercial equipment based on an incandescent lamps makes use of optical elements,
such as monochromators or a diffraction grids, to diffract the light beam in the different wavelengths
that make up the source of the light’s spectrum (visible in our case). As a result of this diffraction,
a single wavelength is emitted at a time.

The multiple emission spectrums of LEDs have always been one of the reasons why this kind
of technology has not become a feasible replacement for the incandescent lamp, as the only way to
remove the effect of these “additional wavelengths” was through optical filters, which increase both
the size as well as the cost of equipment.

However, through the present research, we defined a simple method that enables the approximation
of a single wavelength transmittance by a single RGB-LED without using any optical devices, such as
filters of a diffraction grid.

As can already be observed, the emission spectrum of the RGB-LED does not seem to be enough
to cover the entire visible spectrum since, as we can see in Figure 2, there are some gaps in certain parts
of the RGB-LED spectrum, such as between 546 and 610 nm.

Therefore, our research focused on both: (i) Determining what portion of the visible spectrum it is
possible to model using each of the individual LEDs that make up the RGB-LED independently, and (ii)
finding the different combinations of red, green, and blue that produce a response in the samples
that has a linear correlation with the transmittance values obtained by spectrophotometric equipment
based on incandescent lamps.

2.5. Hardware

A simplified diagram illustrating the design of the equipment developed is presented in Figure 3.
Since one of the objectives was to reduce the size of the device, it was decided not to use optical
elements, such as lenses or monochromators, since this is one of the main reasons for the big dimensions
of commercial spectrophotometers.

The tests carried out revealed that the best results were obtained when the sensor (Figure 3A
right) was as close as possible to the sample without touching it. The light source (Figure 3A left) was
at a distance of about 20 mm with reference to the test tube.
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2.6. Methodology

The experimental campaign was followed by a calibration process that will enable the use of the
RGB-LED technology as viable to complement incandescent lamps. This process is shown in Figure 4.
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3. Results and Discussion

3.1. Preliminary Tests

The development of spectrophotometers based on RGB-LED has always faced the same issue:
This kind of diode cannot emit a wide range of wavelengths (such as the entire visible spectrum);
in fact, it only emits three small portions of the spectrum, i.e., 435–485 nm (blue), 500–550 nm (green),
and 610–650 nm (red), according to a normal distribution.

We began our study by analyzing what responses would be obtained when each individual LEDs
(red, green, or blue) was turned on separately. Taking the green LED (500 to 550 nm, and 525 nm peak)
as an example, Figure 5 shows that the transmission values achieved by the green LED were higher
than those provided by the incandescent lamp at 525 nm for the samples detailed in Table 1.

 
Sensors 2020, 20, x FOR PEER REVIEW 8 of 27 

3. Results and Discussion 

3.1. Preliminary Tests 

The development of spectrophotometers based on RGB-LED has always faced the same issue: 
This kind of diode cannot emit a wide range of wavelengths (such as the entire visible spectrum); in 
fact, it only emits three small portions of the spectrum, i.e., 435–485 nm (blue), 500–550 nm (green), 
and 610–650 nm (red), according to a normal distribution. 

We began our study by analyzing what responses would be obtained when each individual 
LEDs (red, green, or blue) was turned on separately. Taking the green LED (500 to 550 nm, and 525 
nm peak) as an example, Figure 5 shows that the transmission values achieved by the green LED 
were higher than those provided by the incandescent lamp at 525 nm for the samples detailed in 
Table 1. 

 
Figure 5. Comparative transmittance value by the green LED and incandescent lamp at 525 nm. 

Although the green LED has a peak wavelength of 525 nm, it also emits other wavelengths 
simultaneously (from 500 to 550 nm). This increases the amount of light that passes through the 
sample, and consequently, higher than expected transmittance values were obtained. 

This behavior is analogous to that observed with the blue and red LEDs (Figures 6 and 7), except 
that the differences were far more significant in the case of the blue LED. 

 
Figure 6. Comparative transmittance value by the red LED and incandescent lamp at 625 nm. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S1 S2 S3 S4 S5 S6 S7 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

S2
2

S2
3

S2
4

S2
5

S2
6

S2
7

S2
8

S2
9

S3
0

S3
1

S3
2

S3
3

S3
4

S3
5

S3
6

S3
7

S3
8

S3
9

S4
0

S4
1

S4
2

S4
3

S4
4

S4
5

S4
6

S4
7

S4
8

T Reference (Lamp) T Green LED

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S1 S2 S3 S4 S5 S6 S7 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

S2
2

S2
3

S2
4

S2
5

S2
6

S2
7

S2
8

S2
9

S3
0

S3
1

S3
2

S3
3

S3
4

S3
5

S3
6

S3
7

S3
8

S3
9

S4
0

S4
1

S4
2

S4
3

S4
4

S4
5

S4
6

S4
7

S4
8

T Reference (Lamp) T Red LED

Figure 5. Comparative transmittance value by the green LED and incandescent lamp at 525 nm.
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Although the green LED has a peak wavelength of 525 nm, it also emits other wavelengths
simultaneously (from 500 to 550 nm). This increases the amount of light that passes through the sample,
and consequently, higher than expected transmittance values were obtained.

This behavior is analogous to that observed with the blue and red LEDs (Figures 6 and 7),
except that the differences were far more significant in the case of the blue LED.
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Figure 6. Comparative transmittance value by the red LED and incandescent lamp at 625 nm.
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Figure 7. Comparative transmittance values by the blue LED and incandescent lamp at 460 nm.

At this point, it is key to determine how the effect of the remaining wavelengths can be eliminated,
without using filters or diffraction grids.

Our investigations concluded that there is a linear relation between the transmittance values
provided by the RGB-LED when it uses each of its LEDs (red, green, and blue) independently, and those
values that would be obtained with commercial equipment working at the same peak wavelength as
the mentioned LEDs.

However, not only can the peak length of each of the LEDs be calibrated but also all the wavelengths
emitted by each of them (within a certain range). Nevertheless, we must take into account the fact
that as the wavelength that we seek to model moves away from the peak wavelength of each LED,
the accuracy of the model is reduced, so not all wavelengths can be successfully modelled.

In order to determine which portion of the emission spectrum in each of the LEDs can be used for
spectrophotometric applications, Figures 8–10 show the fit between the transmittance measured from
incandescent lamps and that from red, green, and blue RGB-LEDs, independently, for five selected
wavelengths. These figures were calculated using the S1–S20 samples shown in Table 1.
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Figure 8. Comparison of the fit for the emission spectrum of the red LED to: (A) 600 nm, (B) 610,
(C) 625 nm-λPeak, (D) 630 nm, and (E) 645 nm.

It can be observed how the accuracy of the fit varies, improving when the wavelength approaches
the peak of each LED.

As we can see in Figures 8–10, the red LED showed the best performance, with a goodness-of-fit
above 90%, closely followed by the green LED. On the other hand, the blue LED presented the largest
disparity, since its fit was quite low, it is therefore not suitable for spectrophotometry applications.
As expected, the best fits were obtained at the peak wavelength and decreased as we moved away
from that point.

In order to understand the low performance of the RGB blue LED, Figure 11 shows the transmittance
correlation of a single blue LED, with a peak wavelength of 460 nm, which does not belong to an RGB
LED but coincides with its peak wavelength (Figure 10D).
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Figure 9. Comparison of the fit for the emission spectrum of the green LED to: (A) 500 nm, (B) 510,
(C) 525 nm-λPeak, (D) 530 nm, and (E) 550 nm.

As can be seen, the differences are noteworthy. The single blue LED produces a much better fit
(higher than 99%) in comparison with the RGB-LED when only blue is selected (79%) as shown in
Figure 10C.

The test carried out concluded that these results were due to the low-quality semiconductor used
in most RGB LEDs. An LED emits light as a result of the jump (bandgap) of electrons when they try
to pass from one layer (type N) to another where there are holes (type P). The size of this bandgap
will determine the type of light emitted by the electrons. A small bandgap will give rise to red light
(around 1.91 eV), and a large bandgap to blue light (2.64 eV) [42,43]. The greater the bandgap, the
bluer the light emitted by the diode.

Most blue individual LEDs, such as in Figure 11, are based on a 1-µm sapphire substrate, on which
alternate layers of gallium nitrate, indium, and aluminum are grown. These extra elements are key to
increasing the efficiency and brightness of the blue LEDs. Moreover, with the use of aluminum, it is
possible to make even ultraviolet LEDs.
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It is necessary to mention that generating blue LEDs has been a technological challenge for years.
In fact, Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura’s research on the development of this
type of diode won them the Nobel Prize in Physics in 2014 [44].
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Figure 10. Comparison of the fit for the emission spectrum of the Blue LED to: (A) 435 nm, (B) 445 nm,
(C) 460 nm-λPeak, (D) 470 nm, and (E) 485 nm.

The issue is that RGB-LEDs are designed to be used for visual purposes, where the combination
of primary colors creates the illusion that certain colors are being generated. This optical effect means
that it is not necessary to design RGB-LEDs that generate a “pure blue”, but something that our eye
perceives as blue [45] (in combination with red and green). For this reason, the quality of the substrates
used and the purity of the crystals are lower than the individual LEDs (Figure 11). Proof of this is that
an RGB-LED is around 10 times cheaper than an individual one.

Therefore, although an RGB-LED makes use of three different individual LEDs, which emit in a
large portion of the visible spectrum, only the red and green LEDs seem to be suitable. Moreover, of these,
only a portion of the spectrum between the following wavelengths is suitable for spectrophotometric
applications: 510 to 550 nm (green LED) and 610 to 645 nm (red LED), as presented in Figure 12.
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Figure 11. Fit of the LED whose peak wavelength is 460 nm.
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Figure 12. Useful emission spectrum of the RGB-LED.

To be able to perform analyses outside that range, for example, between 380 and 500 nm,
the RGB-LED would not be sufficient, and therefore, it should be combined with an individual
blue LED (with a peak wavelength of 460 nm) to replace the one already present on the RGB-LED.
This individual LED would allow measurements outside the range of 510–645 nm as shown in Figure 11.

However, in this research work, we only focused on the maximum spectral range that could be
modelled using a single RGB-LED, in order to minimize the number of components needed to develop
a spectrophotometry equipment.

3.2. Extension of the Working Range

In the previous section, it was shown that the red and green LEDs can model a reduced wavelength
of the visible spectrum (Figure 12). It will now be studied if certain combinations of red and green
can produce a response in the samples that has a linear correlation with the transmittance values that
would be obtained with an incandescent lamp.

The transmittance value of a water sample is the response of the physical and chemical properties
of the solids present in the water to a certain wavelength. The mere combination of three or two
different colors (groups of wavelengths) will never provide the same spectral response that a certain
wavelength would achieve. That is to say, you cannot create artificial wavelengths by simply combining
colors, even though the human eye perceives the opposite. For instance, the combination of blue and
yellow produces green, but this does not mean that the wavelengths from 500 to 550 nm are being
emitted, it is just an optical effect [45].
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3.2.1. Color Rendering

For this reason, a color rendering method was implemented, specifically, an algorithm developed
by Dan Bruton of the Texas A&M University [46], which enables the approximation of a specific RGB
combination to a certain color from a visual point of view, as Figure 13 shows.

This will allow us to obtain the correlations, in terms of transmittance, between the light
wavelengths contained in the range from 380 to 700 nm and the RGB values, from the point of view
of color representation. We observed that those color combinations (red, green, and blue) that are
visually closer to the wavelength we seek to model (Figure 13A) produce transmittance values that
reach a linear correlation with the transmittance values obtained with commercial equipment based on
incandescent lamps (Figure 13B). Figure 13A was obtained from the RGB combinations provided by
the equations that will be shown in this section.
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The determination of the correlation between RGB and the wavelength Lambda (λ) is carried out
by several sets of equations grouped by spectral regions, as presented in Equation (1), where R′, G′,
and B′ are the red, green, and blue adopted values in the 0–1 range, respectively, without considering
the brightness level Y:

(380 nm ≤ λ < 440 nm)→


R′ = −

(
λ−440

440−380

)
G′ = 0
B′ = 1

(440 nm ≤ λ < 490 nm)→


R′ = 0

G′ =
(
λ−440

490−440

)
B′ = 1

(490 nm ≤ λ < 510 nm)→


R′ = 0
G′ = 1

B′ = −
(
λ−510

510−490

)
(510 nm ≤ λ < 580 nm)→


R′ =

(
λ−510

580−510

)
G′ = 1
B′ = 0

(580 nm ≤ λ < 645 nm)→


R′ = 1

G′ = −
(
λ−645

645−580

)
B′ = 0

(645 nm ≤ λ < 781 nm)→


R′ = 1
G′ = 0
B′ = 0

.

(1)
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The brightness level Y is another factor to take into account when calculating correlations. This is
defined according to the spectrum that we wish to calculate (Equation (2)):

(380 nm ≤ λ < 420 nm)→ Y = 0.3 + 0.7 ∗ (λ−380)
420−380

(420 nm ≤ λ < 701 nm)→ Y = 1

(701 nm ≤ λ < 781 nm)→ Y = 0.3 + 0.7 ∗ (780−λ)
780−700 .

(2)

The RGB value is calculated through two additional parameters: Gamma=0.8. To be able to
perform the current variation, we used an 8-bit driver, which can provide 28

− 1 = 256 different values,
i.e., between 0 and 255, and therefore, the maximum working range that the LED will operate is I = 255.
However, this procedure would be scalable to other resolutions. For example, a 10-bit current driver
would make I take the value of 1023.

Finally, the expressions that allow the determination of the correlation between λ and the RGB
value are shown in Equation (3):{

(R′ = 0)→ R = 0
(R′ , 0)→ R = I ∗ (R′ ∗Y)Gamma{

(G′ = 0)→ G = 0
(G′ , 0)→ G = I ∗ (G′ ∗Y)Gamma{

(B′ = 0)→ B = 0
(B′ , 0)→ B = I ∗ (B′ ∗Y)Gamma ,

(3)

where R, G, and B are the current values required to be able to achieve a specific color through
an RGB-LED.

The variation of the RGB values to visually achieve the wavelengths between 380 and 700 nm,
from the previous Equations (1)–(3), is shown in Figure 14. The working range of each RGB-LED can
take a value between 0 and 255. However, in order to clarify the exposure of the results, the brightness
level given in Figure 14 was expressed as a function of the current applied to each LED, in mA,
taking into account that the highest level of intensity of the LED (255) is reached at 20 mA.
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Figure 14. Heuristic RGB values for visible wavelengths by color rendering.

3.2.2. LED Combination Calibration

As was previously stated in Section 3.1, the red and green LEDs are able to explain by themselves
(without combining them) the wavelength ranges between 510 and 550 nm and 610 and 645 nm with
a high accuracy. However, they cannot model other parts of the visible spectrum. Therefore, in this
section, we focus the study on the following three parts of the visible spectrum, which have not been
modelled by red and green LED themselves: 550 to 610 nm, 645 to 700 nm, and 380 to 550 nm.

To analyze the behavior of the samples in these regions, the lighting brightness level of each LED
(amount of current applied, which is directly proportional to the level of brightness) was set to produce
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the same color as the wavelength we sought to model using the color rendering algorithm presented in
Figure 14 through Equations (1)–(3).

As commented, the combination of RGB-LEDs to achieve the visual effect of a defined wavelength
will not generate the transmittance response expected of an incandescent lamp in the studied wavelength.
However, we observed that wavelength combinations that produce (from the visual point of view) a
color closer to the one we want to model (within a certain spectrum band) produce a response in the
samples that is linearly related to the transmittance values that an incandescent lamp would provide at
the same wavelength.

The tests carried out proved that wavelengths between 550 and 610 nm can be adjusted with the
combination of LEDs according these equations.

Figure 15 shows, the emission spectrum to render the different wavelengths (according to the color
rendering algorithm shown in Section 3.2.1) on the left, and the correlation between the transmittance
values provided by such a combination of LEDs and those that would be obtained with commercial
equipment based on incandescent lamps, for the following wavelengths: 560, 570, 580, 590, and 600 nm
and for the 20 samples designed in Table 1 for the calibration process (S1–S20), on the right.

As can be observed, all the cases provide a fit higher than 90%. Figure 16 shows the comparison
between the transmittance values obtained by the RGB-LED and the incandescent lamp at 580 nm for
the samples included in Figure 15.

Although the LEDs are not emitting wavelengths between 560 and 600 nm, the combination of
their wavelengths is able to produce a response in the samples that can be related to the transmittance
values expected in commercial equipment.

However, the remaining wavelengths (greater than 645 nm and less than 510 nm) could not
be modelled with the LEDs working individually, nor indeed with any combination of them.
Figure 17 shows that the goodness-of-fit was less than 80%, thus rendering them unsuitable for
the development of spectrophotometry equipment.

In order to understand this behavior, we performed the analysis of any three wavelengths, taken in
different color regions: 670, 505, and 460 nm; the results are shown in Figure 17.

As we can see, the goodness-of-fit is lower than 80% in all cases. In 670 nm (Figure 17A),
the emission diagram shows that only the red LED is on, i.e., there is no combination of wavelengths
but, despite this, as 670 nm is outside the spectral width of the red LED (Figure 12), the correlation is
very poor.

Something different seems to explain the lack of fit accuracy in the range from 460 to 505 nm.
In this range, there is a combination of green and blue LEDs. Although the wavelength is in the spectral
width covered by green and blue LEDs, the presence of the blue LED weighs down the results, due to
the low quality of its materials. Therefore, we can conclude that a single RGB-LED can model only the
spectrum between 510 and 645 nm, with a goodness-of-fit above 90%, without using any optical device.

Figure 18 shows a comparison between the transmittance values obtained for sample S4 using
an incandescent lamp and the transmittance values obtained with the RGB-LED after the calibration
process. The region between 510 and 645 nm (which is where the RGB-LED has shown the best
performance) was highlighted in red to facilitate the reader’s understanding. Additionally, the other
parts of the spectrum from RGB-LED, which could not be modelled correctly, are shown in grey. It can
be observed that the fit is quite good in the designated portion of the spectrum.

At this point, it is important to note that other non-linear models have been tested without success.
Only linear regression models have been able to determine the correlation between RGB combinations
and transmittance values provided by commercial equipment with a high precision.
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Figure 15. Combination of wavelengths and correlation for: (A) 560, (B) 570, (C) 580, (D) 590, and (E)
600 nm.
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Figure 16. Comparative transmittance value by the RGB-LED and incandescent lamp at 580 nm.
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Figure 17. Combination of wavelengths and correlation for: (A) 670, (B) 505, and (C) 460 nm.
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Figure 18. RGB-LED calibration between 380 and 700 nm for sample S4.

3.3. Final Results

In order to show the suitability of the calibration models, the results of the analysis carried out in
the range of 510 to 645 nm are shown for different samples. To clarify the presentation of the results,
we distinguished between those samples used during the calibration process (Figure 19) and those
used to check the effectiveness of the models (Figure 20), i.e., samples that were not used during the
calibration process (Table 1 from S21 to S48).

As can be seen, the charts shown in Figure 19 how a good level of fit within the 510–645 nm zone.
Outside that range, the transmittance values differ from those provided by the reference equipment
(incandescent lamp).
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Figure 19. Comparative results of the transmittance values between commercial equipment based
on the incandescent lamp (blue) and RGB-LED device developed (red) after the calibration within
510–645 nm, for the following samples used during the calibration process: (A) S7, (B) S12, (C) S15,
(D) S16, and (E) S20.

However, in order to show the suitability of the model with unused samples during the calibration
process, Figure 20 shows the results obtained with wastewater samples (S21–S23 and S43–S48),
corresponding to different points of a wastewater treatment plant, specifically: Wastewater treatment
plant inlet (S21, S43, and S44), at the Primary Settler outlet (S22, S45, and S46) and at the treatment
plant outlet (S23, S47, and S48).
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Figure 20. Comparative results of the transmittance values between commercial equipment based
on the incandescent lamp (blue) and RGB-LED device developed (red) after the calibration within
510–645 nm, for the following samples not used for the calibration process: (A) S21, (B) S22, (C) S23,
(D) S43, (E) S44, (F) S45, (G) S46, (H) S47, and (I) S48.

As can be observed in Figure 20, all the samples analyzed show a high accuracy according to the
transmittance values provided by the commercial equipment based on incandescent lamps within
510 nm to 645 nm.

Table 2, provides the reader with further information regarding the kind of wastewater the
RGB-LED is valid for, settler showing the main properties of wastewater samples analyzed in Figure 20,
namely: Chemical oxygen demand (COD), biological oxygen demand at 5 days (BOD5), total suspended
solids (TSSs), phosphorus (P), nitrate nitrogen (NO3-N), pH, and conductivity.
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Table 2. Characteristics of wastewater shown in Figure 20.

Polluting Parameters Wastewater Inflow
(S21)

Primary Settler
(S22)

Treated Water
(S23)

COD 763 mg/L 475 mg/L 52 mg/L
BOD5 500 mg/L 310 mg/L 9 mg/L

TSS 304 mg/L 88 mg/L 14 mg/L
Phosphorus (P) 9.1 mg/L 7.2 mg/L 2.5 mg/L

Total Nitrogen (TN) 74 mg/L 74 mg/L 16.6 mg/L
NO3-N 0.5 mg/L 0.3 mg/L 10.3 mg/L

PH 7.59 7.5 7.56
Conductivity 2770 µS/cm 2590 µS/cm 2580 µS/cm

Wastewater Inflow
(S43)

Wastewater Inflow
(S44)

Primary Settler
(S45)

COD 1275 mg/L 908 mg/L 727 mg/L
BOD5 720 mg/L 480 mg/L 460 mg/L

TSS 624 mg/L 558 mg/L 151 mg/L
Phosphorus (P) 8.7 mg/L 9.4 mg/L 12.5 mg/L

Total Nitrogen (TN) 75 mg/L 59 mg/L 89 mg/L
NO3-N 0.6 mg/L 0.8 mg/L 0.3 mg/L

PH 7.48 7.14 7.24
Conductivity 2590 µS/cm 2630 µS/cm 2600 µS/cm

Primary Settler
(S46)

Treated Water
(S47)

Treated Water
(S48)

COD 732 mg/L 47 mg/L 46 mg/L
BOD5 470 mg/L 6 mg/L 5 mg/L

TSS 106 mg/L 11 mg/L 13 mg/L
Phosphorus (P) 12.2 mg/L 0.8 mg/L 1.4 mg/L

Total Nitrogen (TN) 73 mg/L 59 mg/L 19.3 mg/L
NO3-N 0.5 mg/L 3.8 mg/L 10.8 mg/L

PH 7.13 7.69 7.45
Conductivity 2930 µS/cm 2340 µS/cm 2170 µS/cm

One of the main characteristics of urban wastewater is the existence of different suspended
substances, which influence the amount of light that passes through the samples.

A key issue in determining the validity of the RGB-LED was whether the presence of such
suspended particles would have a different effect on the transmittance values measured with the
RGB-LED than with equipment based on incandescent lamps.

The tests carried out showed that the spectral response within the range of 510–645 nm provided by
the RGB-LED has been close to that of the reference equipment. Samples S21, S43, and S44, which had
the highest concentration of total suspended solids (SST) provided proof of that.

Therefore, we conclude that these suspended particles affect both instruments in the same way,
highlighting the validity of the RGB-LED for the analysis of wastewater.

Although RGB-LED is not able to model the whole visible spectrum, it provides a simple method
to carry out a spectrophotometric analysis without the use of optical elements.

In order to quantify the precision of the results provided by RGB-LED after the calibration process,
several statistical indicators were calculated: The Root-Mean-Square Deviation (RMSD) [46], and the
error index, Er, through Equations (4) and (5):

RMSD =

√√
1
n

n∑
i

(Tmeasured_i − Tcalculated_i)
2, (4)

Er(%) =

∑n
i (Tmeasured_i − Tcalculated_i)∑n

i Tmeasured_i
∗ 100, (5)
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where Er is the error index (%); n is the number; and Tmeasured and Tcalculated are the transmittance
values obtained through the commercial equipment [32] and our design based on RGB-LED
technology, respectively.

Table 3 shows both the error index and the RMSD value from the samples shown in Figure 19
(used during the calibration process) and Figure 20 (test samples of wastewater), only for the spectrum
between 510 and 645 nm.

Table 3. Root-Mean-Square Deviation (RMSD) and error index 510–645 nm.

Sample RMSD Er (%)

Calibration Samples

S4 0.038 2.453
S7 0.042 3.415
S12 0.017 0.920
S15 0.028 5.252
S16 0.051 4.173
S20 0.028 1.691

Test Samples

S21 0.038 5.688
S22 0.031 3.595
S23 0.0231 −1.125
S43 0.0297 −3.163
S44 0.0257 −1.009
S45 0.0125 0.8946
S46 0.0408 3.7038
S47 0.0217 0.5203
S48 0.0222 0.7365

For all the samples, the error level was always been less than 6%, including in the case of wastewater
samples from urban areas. This proves the RGB-LED technology can be used for spectrophotometric
applications, achieving a fairly close response to the commercial equipment, and enabling the
development of more cost-effective equipment.

4. Conclusions

In this paper, we studied the possibility of using an RGB-LED device to work as a spectrophotometer
to calculate transmittance. This is a cost-effective and robust piece of equipment that can be used as a
complement to traditional incandescent lamps in the 510 to 645 nm range.

The method proposed in this research work is based on an RGB combination to produce a chemical
response in water samples, which can be correlated with the expected transmittance values obtained
with commercial equipment based on incandescent lamps, where a single wavelength passes through
the sample.

The calibration procedure enables us to achieve results with an RGB-LED that are comparable to
those highly accurate results obtained. Proof of this lies in the fact that the error obtained was less than
6% in all the cases (Table 3).

The methodology proposed:

(i) Demonstrates that RGB-LED can be used to carry out a spectral analysis of wastewater, obtaining
results very close to those provided by commercial equipment based on incandescent lamps.

(ii) Develops a calibration system for measuring transmittance values between 510 and 645 nm using
a single RGB-LED, with high accuracy. Moreover, it enables us to reduce the number of elements
used, and therefore, significantly reduce the cost of the equipment.

(iii) Models the transmittance value of a specific wavelength without the need for optical elements,
such as monochromators or diffraction gratings.
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(iv) Uses the red and green LEDs in combination to model those parts of the visible spectrum that
cannot be modelled by the RGB-LED when each of the LEDs that composes it acts individually.
This allows the wavelength range to be extended without increasing the number of LEDs used.

(v) Achieves reductions in the dimensions, costs, and sampling times of the equipment, which are
vital aspects for the development of low-cost autonomous systems designed to measure in any
type of environment.

This calibration procedure can serve as help when developing one’s own spectrophotometry
equipment. This research contributes to the development of cost-effective equipment.

A model valid for the measured samples was proposed, where the modelled spectrum
transmittance adjusts to that values calculated with commercial equipment between 510 and 645 nm
by using a single RGB-LED through a color rendering algorithm, without optical elements.

Although it is not possible to use RGB technology to develop full visible spectrum
spectrophotometry equipment (380–700 nm), the range of 510 to 645 nm could be of help to characterize
certain parameters, such as chlorophyll types C2 and C3 [45], for instance.

This research can help in the development of new systems based on this technology, lowering the
cost of equipment whilst also reducing its size and consumption, thus enabling the creation of
autonomous equipment that can run on batteries in any environment.

This type of system can be very useful for the detection of unauthorized discharges, as the system
can be placed in any environment, monitoring 24 h a day. It is therefore a tool to combat fraud and can
contribute to environmental protection.

All this research work will allow us to have real-time control of water quality in sewer systems
during rainfall events and dry weather periods, through a portable and cost-effective device to analyze
the contaminant load present in wastewater.
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