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Abstract 

Ordinary differential equations represent the mathematical models of a great variety 
of problems in Science and Engineering which means that two different problems are 
equivalent from mathematical point of view if they are formulated by the same 
governing equations; a subject that is forgotten and even not perceived by most of 
students. Within this field of problems are those concerning with chaotic systems of 
an only variable belonging to the modern theory of chaos. As a multidisciplinary tool 
of teaching and learning, the subject of this communication is to design network 
models, or circuits, whose governing equation are formally equivalent to that of 
chaotic system, allowing its dynamic simulation easily in suitable codes of free use. 
Thanks to the lineal and non-lineal electrical components contained in the libraries of 
these codes, very few and intuitive programing rules are required for the design. So, 
we have a multidisciplinary tool that allows the students of first course of Graduate in 
Engineering and Sciences to solve this kind of systems, whatever is the order of 
equations, grade or type of non-linearity. An application is presented to illustrate the 
proposed subject. 
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Resumen 

Las ecuaciones diferenciales ordinarias representan modelos matemáticos de una 
gran variedad de problemas de ciencia e ingeniería, lo que significa que dos 
problemas diferentes desde el punto de vista físico o matemático son equivalentes si 
se formulan con el mismo conjunto de ecuaciones, un tema olvidado e incluso que 
pasa desapercibido para la mayoría de estudiantes. Dentro de este campo de 
disciplinas está la teoría del caos o de los sistemas caóticos sencillos de una 
variable. A modo de una herramienta multidisciplinar de enseñanza, el objeto de esta 
comunicación es el aprendizaje y enseñanza del diseño de modelos en red 
(circuitos) cuya ecuación de gobierno es formalmente equivalente a la del sistema 
caótico, permitiendo su simulación dinámica directa en códigos apropiados de libre 
uso. Gracias a los componentes lineales y no-lineales contenidos en las librerías de 
estos códigos, las reglas para la programación del modelo son muy pocas e 



 

intuitivas, dotando así a los estudiantes de primeros cursos de ciencias e ingeniería 
de una herramienta multidisciplinar potente para resolver problemas caóticos, 
cualquiera que sea el orden, grado o tipo de no-linealidad contenida en la ecuación 
de gobierno. Se presenta una aplicación para ilustrar el objetivo propuesto. 

Palabras Claves: Enseñanza multidisciplinar, Caos, Método de redes, Simulación 
dinámica 

Introduction 

Ordinary differential equations are the mathematical formulation of a great variety of 
problems in different fields of science and engineering, for example in mechanical 
engineering or applied physics [1]. In the first courses of graduate studies, students 
learn to solve certain types of ordinary differential equations after establishing their 
formal classification, both by means or analytic or semi-analytic methods, in 
disciplines belonging to the mathematical area, while other more complex equations 
required numerical methods to be solved, a subject also integrated in the same area 
of knowledge but out of the scope of first courses.  

The subject of this communication is double. On the one hand, to use the electric 
analogy for the design of circuits (which we named network models) whose 
governing equation is formally equivalent to that of the mathematical model of 
interest – equation that has no restriction as regards the order, grade or kind of non-
linearity. On the second hand, to run these models in a suitable, free software of 
circuit simulation [2] in order to obtain a numerical solution. Taking into account these 
subjects, the student has in their hands a multidisciplinary and pòwerful tool that 
allows him the solution of simple (anharmonic pendulum, dumped oscillator, skydiver 
equation...) and not so easy problems (Herzt oscillator, atractor separated by a 
repeller, Duffing equation...). 

Fisrtly, the proposed analogy requires a formal equivalence between the dependent 
variable, an arbitrary physic quantity, and that of the circuit (electric voltage or 
current). Time is the common independent variable both in the physical processes as 
well as in the network model. For example, the displacement of a particle in a 
mechanical problem can be related either to the voltage or to the current variable; in 
the first case the instantaneous velocity is defined as the derivative function of the 
electric voltage (a quantity easily measured or implemented in the network model by 
means of a basic auxiliary circuit) while in the second case the velocity is given by 
the instantaneous changes of the electric current (a quantity also easily implemented 
by an auxiliar circuit). Another example, the instantaneous change of mass of a 
certain body can be related to the electric current providing that the total change of 
mass along a finite time is related to the electric charge, a new quantity obtained by 
direct integratiojn of the current.  

So, the succesive derivative terms of the dependent variable can have physical 
meaning and, in consequence, be of interest for the user; however, their derivation 
does not require new equivalences between these terms and the electric quantities of 
the network model since these are implicit in the first relation between physicasl and 



 

network systems. In fact, the derivative terms – appearing or not in the governing 
equation – are obtained by mathematical manipulation of the output simulation data 
or by the implementation of new auxiliary circuits in the model.  

The design of the model makes use of: 

i) Constitutive equations that define the connection between voltage and 
current in lineal basic – electric – components such as resistors, coils and 
capacitors [3],  

ii) Controlled – voltage and current – sources that allow the implementationn 
of any kind of non-linearity contained in the governing equation of the 
physical problem [4].  

Constitutive quations are generally given by differential or their correspondent 
integral equations of first order that, applying them succesively, allow to represent a 
term of any order within the equation . So, from the expression 

ic,1 = C1 (
dvc,1

dt
)          (1) 

that relates the current through a capacitor (ic,1) with the difference of voltage at its 
ends (vc,1), it is inmediate to define the derivative term  

(
dic,1

dt
) =  C1 (

d2vc,1

dt2
)          (2) 

following the steps: (i) to change the current ic,1 into a voltage quantity of the same 
value with a special source named ‘current-controlled voltage source‘; (2) to apply 
the ends of this source to a new capacitor C2. The current through this capacitor is 
given by  

ic,2 = C2 (
dvc,2

dt
) = C2 (

dic,1

dt
) = C1C2 (

d2vc,1

dt2
)      (3) 

Repeating this process, providing a capacitance unity to C1, the succesive derivative 
terrms of the current ic,1, 

(
d2ic,1
dt2

) =  (
d3vc,1

dt3
) , (

d3ic,1
dt3

) =  (
d4vc,1

dt4
)…  

can be derived. The existance of four types of controlled sources (‘controlled-current 
voltage-source‘, ‘controlled-voltage voltage-source‘, ‘controlled-current current-
source‘ and ‘controlled-voltage current-source‘) together with the possibility of 
specifying tha control action of these sources by software, as a function of the 
dependent variable, extend the design of the model to any form of the governing 
equation that, generally, lucks of analytical solution.  

Based on the above, the basic knowledge the student requires for the design of the 
models – notions of a differential equation, non-lineal concept, Ohm´s law and 
Kirchooff´s theorems and constitutive equations of resistors, capacitors and coils - 
are given him in disciplines of first courses; so that in this level he is able to use this 
as powerful and useful tool for the solution of ordnary diferential equations.  



 

With all, the proposed work intends to reach an added aim, the multidisciplinary 
conception of the application of similar differential equations to different fields of 
science and engineering.  

Frequently, the student learns the way of solving these equations with established 
algorithms and protocols without to know the meaning of what the equation 
represents. Note that a differential equation is not more than the expression, in 
mathematical simbology, of the balance of a particular physical process (movement 
of a particle, radiatice decay of a nuclear body, population evolution...), balance that 
can be alternatively implemented by a suitable electric circuit. In this sense, the 
relations between equations and electric models allows him to connect two 
disciplines and enhance the use of interdisciplinariety to study and solve more 
complex problems.  

The ordinary differential equations 

The general scheme of the type of differential equation we intend to solve by the 
network method is the following: 
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where y and t are the dependent and independent variables, respectively, and n the 
order of the equation; the larger integer value of the exponential coefficients, 

qi(1in-1), defines the grade of the equation; finally, fi(0in-1) are arbitrary 
functions whose arguments can be t, y or any of the y derivatives (y’, y’’, y’’’…). In 
this way, equation (4) ranges all the possible spectrum of existing differential 
equations. As examples we will write the followings:  
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   =     Sky-diver equation 
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 t2
)          =     Pendulum equation(non-harmonic oscillator) 
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)     =     Dumped oscillator 
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)          =    Typical non-lineal oscillator 
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 t
)   =   Attractor separated by repeller 

(
 2 

 t2
)           

3 =     Duffing equation 

The particular solution of ordinary differential equations requires, besides, a number 
of initial conditions. 

Design of the network model 

The first rule for the design is to assume each addend of the equation as an electric 
current that balances algebraically with the rest of the addends in a common 



 

‘principal’ node where the solution y(t) – voltage of this node – is electrically adjusts 
in order to satisfy the imposed balance. Generally, the addends are implemented as 
controlled current-sources whose output is defined by programming, using a simple 
language, as functions of any argument (y, t, dy/dt, d2y/dt2…) whose lecture is read 
at the suitable nodes of auxiliary circuits or at the proper main node.  

The successive derivative terms are implemented by elemental auxiliary circuits that 
contain lineal electric components as well as controlled-sources. Finally, initial 
conditions are implemented fixing the initial charge or voltage at the capacitors.  

Auxiliary circuits. Design of the successive derivative terms. 

The first step for the design of the model is to implement the auxiliary circuits that 
allow to obtaining the successive derivative terms dy/dt, d2y/dt2, d3y/dt3… Since 
each term requires information referred to the terms of less order, the auxiliary 
circuits are implemented on a given order, from the first term, dy/dt, to the last, 
dny/dtn, regardless the term is or not contained in the equation.  
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Figure 1.Auxiliary circuits to implement the successive derivative terms  
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Starting from the potential solution y(t) that is found at the main node, the first 
derivative, dy/dt, is the current through the capacitor C1 of capacitance unity applying 
the voltage y(t) at its ends, since iC1 = C1(dvc/dt) = dy(t)/dt, Figure 1a. 

Derivatives functions, d2y/dt2 y d3y/dt3, are obtained by similar circuits, Figures 1b 
and 1c. In this figures, current-controlled voltage-source changes the currents iC1 and 
iC2 to voltages of the same values and apply them to the respective capacitors C2 and 
C3, whose currents are the derivatives d2y/dt2 and d3y/dt3. Derivative terms of higher 
order are implemented by new auxiliary but similar circuits formed by controlled 
voltage-source and capacitors. Finally, the resistors that appear in the circuit are 
imposed by the simulation code (Pspice, [4]) in order to fit continuity criteria to the 
circuit. The last derivative term, a resistor of resistance unity is fixed at the ends of 
the last source, Figure 1d. 

Initial conditions of the problem,  

y(t=0) = yo, dy/dt(t=0)= yo‘, d
2y/dt2(t=0)= yo‘’…,       (5) 

are implemented by fixing these initial voltages to the associated capacitors of each 
auxiliary circuit. 

Main circuit. The solution y(t) 

As mentioned, there are four controlled-sources in the libraries of the standard 
circuit simulation codes such as Pspice, Orcad and others. These special and 
non-lineal components allow to implement any kind of conversion between voltage 
and current and vice-versa as well as to implement any mathematical expression 
of the terms in the differential equation that contains dependencies with voltages 
at any node of the model or with currents at any component. In all these sources, 
the output is specified with simple and intuitive rules by programming. 

The main circuit is directly related with the topology of the governing equation 
under study and, as a consequence, contains as many branches as terms in such 
equation. Each branch contains a controlled-voltage current-source that provides 
the current that go into the node establishing the required balance; the quantities 
that control these sources are voltages read directly at the convenient nodes of 
the auxiliary circuits: dy/dt is read at the ends of source H1, d

2y/dt2 at the ends of 
H2…, and the solution y(t) at the node of the main circuit. 

Since the specification of the controlled-sources of the main circuit is carried out by 
programming using simple rules, it is immediate to implement any mathematical 
function of a term in the governing equation. To this end, it is enough to write the 
given expression substituting the derivative terms that appear as arguments by the 
voltage at the associated nodes.  

In the following section the network model of a system formed by two attractors 
separated by repeller is described step by step, in order to illustrate all the aspects 
related to the design of the main and auxiliary circuits.  

It is convenient to mention at this point that most of the circuit simulation codes such 
as Pspice, the one chosen in this work, allow create the file of the model not only as 
a text file but also as a schematic file using a symbolic standard electric language 



 

quite familiar even to the students of first courses in science and engineering. In 
addition, these codes provide their own output graphic ambient, quite powerful and 
illustrative, that allows to showing the dynamic solution of the problem as well as 
other post-processed representations.     

Application:  Attractors separated by repeller 

The governing equation of this oscillator is 

(
 2 

 t2
)         2    4 (

  

 t
)   =         (6) 

This is a non-lineal equation of second order and first grade, without analytical 

solution [5].  ,   and   are physical parameters of the system whose values provide 
solutions in the form of particular orbits y = y(t). Expression (6) is a particular case of 
Van der Pol’s equation [6,7] 

(
 2 

 t2
)        2 (

  

 t
)   =          (7) 

which represents auto-oscillation systems that emerge in electronics generators of 
the vacuum tube type.  

The network model is formed by three branches related to the three terms in the 
equation. The first, implemented by the controlled source G1, drives the current 

d2y/dt2 while the second, implemented by G2, drives the current 2 (1- y2+ y4)(dy/dt); 
finally, the third term, implemented by G3, drives the current y(t), just the solution 
of the equation once the balances adjust each other, Figure 2a. The sense of the 
current in each source is coherent with the algebraic sign in the equation in order 
to carry out the balance correctly. Nodes of the model related to the control 
variables of the sources are point out between brackets close to each source in 
the figure. 

The first auxiliary circuit, Figure 2b, is formed by the voltage-controlled voltage-
source E1 and the capacitor C1 of capacitance unity. Input and output voltages of E1 
is that of node 1, y(t), producing as the current through the capacitor the value of the 
derivative dy/dt. This values is transported to the second auxiliary circuit formed by 
the current-controlled voltage-source H1 and the capacitor C2 of capacitance unity. 
The current through this capacitor is, in this way, d2y/dt2.  

Finally, to change d2y/dt2 to a voltage to control the first source of the main circuit, 
G1, the auxiliary circuit formed by H2 (voltage-controlled current-source) and R 
(resistor of resistance unity) is implemented. With all, the following association 
between nodes of the model and solutions of the problem can be established: 

Nodo 1 (circuito principal)     y(t) 

Nodo 10 (circuito auxiliar)    y(t) 

Nodo 20 (circuito auxiliar)    dy/dt 

Nodo 21 (circuito auxiliar)    d2y/dt2 
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Figure 2.Network model of the equation y´´+ 2 (1- y
2
+ y

4
)y´+y = 0. 

a: main circuit, b-d: auxiliary circuits 

The simulation of the network model in Pspice[4] provides the solutions, in the 
form of phase diagrams (y versus dy/dt), show in the following figures:  

Figure 3a for the initial conditions y(t=0) = dy/dt(t=0) = 1, 

Figura3b for the initial conditions y(t=0) = 2, dy/dt(t=0) = 0 

These curves are attractors that converge towards the same orbit, the first, from 
the exterior and the second from the interior of the limit orbit. For the conditions 
y(t=0) = dy/dt(t=0) = 0.1, Figure 3c, the solution is an orbit that converges towards 
the origin y = dy/dt = 0. These results are in according with numerical solutions 
obtained by classical methods [6] 



 

a) 

b) 

c) 

Figure 3.Phase diagramsof the Van der Pol´s oscillator. 
Initial conditions: y´=y=1 (a); y´= 0, y=2 (b) and y´=y=0.1 (c) 

Summary 

Constitutive laws in terms of derivative expressions of the lineal electric components 
(resistors, coils and capacitors) together with Kirchoff theorems related to the 
conservation of the electric charge and unicity of the electric voltage, have allowed the 
design of network models capable to solve ordinary differential equations regardless the 
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order, grade and type of non-linearity. This provides the student of first courses of 
graduate sciences and engineering carriers with an interdisciplinary teaching and 
learning tool that help him in task related to this field of knowledge. 
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