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Abstract: This paper proposes two new nonparametric tests for independence between time series.
Both tests are based on symbolic analysis, specifically on symbolic correlation integral, in order to
be robust to potential unknown nonlinearities. The first test is developed for a scenario in which
each considered time series is independent and therefore the interest is to ascertain if two internally
independent time series share a relationship of an unknown form. This is especially relevant as
the test is nuisance parameter free, as proved in the paper. The second proposed statistic tests for
independence among variables, allowing these time series to exhibit within-dependence. Monte
Carlo experiments are conducted to show the empirical properties of the tests.
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1. Introduction

In Science, either Natural or Social, a primary focus of attention has been the evaluation of whether
two (or more) variables measured over time are related. If there is a relation, then further research into
the nature and strength of the relation could be worthwhile in order to make new discoveries and/or
gain predictive accuracy. Accordingly, testing for dependence between two univariate time series has
been widespread, as we will show below. However, the vast majority of literature on the topic has
relied on correlation as a main tool for developing other sophisticated statistical devices (tests). On the
other hand, any correlation-based test is designed to detect linear relationships between time series,
which limits the scope and utility of the test for dealing with (unknown) potential forms of dependence
between the series beyond linear ones. The relatively few attempts to deal with nonlinear relationships
have relied on nonparametric methods that generally require large data sets. In this age of massive data,
this is not a limitation and, therefore, new statistical tests with fewer assumptions and with a wider
range to detect potential relationships can be devised. The goal of this paper is to develop statistical
tools to test dependence among time series robust to the form of the potential dependence that is
established among the variables.

The classical Pearson cross-correlation coefficient assesses a linear relationship between two
time series. However, it is well-known that it is not reliable when the time series under study are
autocorrelated. In order to solve this caveat, scholars have developed several alternative statistical tests.
Most of the work done is parametric and is based on the residuals of estimated models. The starting
point was Haugh [1], who proposed a test for non-correlation between two jointly Gaussian covariance
stationary time series, say {Xt} and {Yt}, by first prewhitening Xt and Yt and then basing the test
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on the residual cross-correlation function. However, Haugh’s innovative test was rapidly criticized
because (of problems) of its low power against popular alternative hypotheses (see [2] and [3] for the
earliest documented critiques). Since then, Haugh’s technique has been extended in several ways and
the common denominator has been to improve the power of the test, (see: [4–11] for details). Many of
the results are summarized by [12]. Basically, all these procedures follow the main skeleton given by
Haugh, namely, first to obtain white noise residuals by performing univariate autoregression, and then
to check the sample cross-correlation of the residuals.

There have also been several attempts to avoid parametric approaches: see [13–16]. The last of
these proposed a nonparametric test of independence which was designed to avoid the autoregressive
moving average (ARMA) pre-specification and to avoid kernel selection methods. Pre-specification
and kernel selection were potential limitations in Haugh’s [1] and Hong’s tests [8]. In this vein,
this paper proposes two new nonparametric tests for independence between time series. The first
test is developed for a scenario similar to that in Pearson’s original test, namely, for situations in
which each considered time series is independent (within-independence or serially independent).
Therefore, the interest is to investigate if two (or more) internally independent time series can be
interrelated (either in a linear way, as in the case of correlation; or, more generally, in a nonlinear way).
As mentioned earlier, there are many instances in several scientific domains where each time series
is serially-dependent (auto-dependent). The second test proposed tests for independence between
variables by allowing these time series to exhibit within-dependence. We use the concept of the
symbolic correlation integral, as introduced in [17], to construct tests robust to nonlinearities.

Symbolic correlation integral is directly linked and influenced by the popular and well-known
correlation integral definition, which can be understood as a measure of dependence. In this regard,
dependence is not restricted to linear correlation (as in the case of Haugh-based tests) and therefore it
will be robust to other complex forms of dependence that might occur between variables. Symbolic
analysis is a field that has attracted the interest of many scholars and practitioners from several
scientific disciplines (see [17]). By relying on these kinds of nonparametric concepts and techniques,
we avoid imposing restrictive parametric assumptions, such as linearity and normality and, therefore,
more generally applicable tests can be constructed. There might be other possibilities like entropy
based statistics, as introduced in [18] that could avoid some of these restrictions.

The rest of the paper is structured as follows: in Section 2, we present the notation that will be
used throughout the paper and the definition of symbolic correlation that serves as a common thread
in the rest of the paper. Section 3 is devoted to presenting and defining the concept of joint symbolic
correlation integral and its corresponding estimator. In Section 4, two tests for independence between
series and their corresponding asymptotic treatment are described. In Section 5, empirical size and
power are analyzed to better understand the finite sample behavior of the tests under several scenarios.
We make a multi-level comparison with other tests available in the literature, and we provide some
guidelines about how to fix the parameters of the new tests.

2. Definitions and Notation

Let {xt}t∈I be a real-valued time series from a strictly stationary stochastic process of real random
variables, where I is a set of time indexes. For a positive integer m ≥ 2, we denote by Sm the
symmetric group of order m!, that is, the group formed by all the permutations of length m. Let π =

(i1, i2, . . . , im) ∈ Sm. We will call an element π in the symmetric group Sm a symbol. We consider that
the time series is embedded in an m-dimensional space as follows:

xt = (xt, xt+1, ..., xt+(m−1)).

When the set of indexes I is finite and has cardinality T, {xt}n
t=1 is a vectorial time series of

length n = T −m + 1. Each xt is called m−history and the positive integer m is usually known as the
embedding dimension.
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We say that xt is of π-type if and only if π = (i1, i2, . . . , im) is the unique symbol in the group Sm

satisfying the two following conditions:

(a) xt+i1 ≤ xt+i2 ≤ · · · ≤ xt+im , and

(b) is−1 < is if xt+is−1 = xt+is .

Condition (b) guarantees the uniqueness of the symbol π. This is justified if the values of xt

have a continuous distribution, so equal values are very uncommon, with a theoretical probability
of occurrence of 0. In the case of a discrete distribution, then condition (b) guarantees that the
symbolization map is well defined.

Next, we define the symbolization map

sx : Rm −→ Sm

defined by s(xt) = π if and only if xt is of π-type. Notice that the symbolization map s transforms
the vectorial time series of m-histories into a sequence of symbols. Moreover, each element of Rm is
mapped to a symbol of Sm providing a partition of Rm of size m!, called symbolic partition of Rm.
Given two time instants, t and s, and two ordinal patterns π, δ ∈ Sm, we define pπδ

ts as the probability
that, in time t, xt is of π-type and, in time s, xs is of δ-type. Thus, we can construct the following
m!×m! probability matrix

PMx(|t− s|) = (pπδ
ts )πδ.

Within this context, we define the indicator function

I(sx(xt), sx(xs)) =

{
1, if sx(xt) = sx(xs),
0, otherwise,

(1)

which always takes the value 1 when the ordinal patterns of the m-histories xt and xs are the same.
The indicator variable, I(sx(xt), sx(xs)), is a Bernoulli random variable with probability of success

µx
ts = ∑

π∈Sm

pππ
ts . (2)

Morover, if {xt} is i.i.d. and |t− s| ≥ m, then µx
ts =

1
m!

(as shown in [17]).
Based on these concepts, Caballero et al. [17] defined the symbolic correlation integral of a time

series {xt}t∈I for an embedding dimension m ≥ 2 as

SCm =
∫ ∫

I(sx(x), sx(y))dµ(x)dµ(y), (3)

and they proved that under the null that {xt}t∈I is i.i.d., the statistic

ŜC
m
=

2
n(n− 1) ∑

t>s
I(sx(xt), sx(xs))

is asymptotically distributed as an N( 1
m! , σm), where the standard deviation σm does not depend on

the sample time series.
An interesting relation between ŜCm with a well-known index can be obtained. If N(π) denotes

the absolute frequency of π ∈ Sm in the symbolic time series (of length n), then symbolic correlation
integral can be rewritten as:

ŜC
m
=

1
n(n− 1)

(
∑
π

N(π)2 − n

)
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which is closely related to normalized Gini index or Index of Qualitative Variation (see [19] for details),
which is given by

ÎQV =
m!

m!− 1
(
1−∑

π

N(π)2

n2

)
.

3. Joint Symbolic Correlation Integral

There is a natural extension of the symbolic correlation integral to a multivariate scenario. Similar
to Symbolic Correlation Integral, Joint Symbolic Correlation Integral will measure the probability that
all univariate time series forming the multivariate time series have the same ordinal pattern at different
time periods (where the patterns could potentially vary along the time series). As we are therefore
interested in analyzing a k-dimensional time series, first, we will define the Joint Symbolic Correlation
Integral (JSC) of a set X ⊂ Rm1 × · · · ×Rmk , and then we will focus on multivariate time series.

Definition 1 (Joint Symbolic Correlation Integral). Let Xj ⊂ Rmj with j = 1, 2, ..., k be distributed
according to invariant measures ν1, ν2, . . . , νk, respectively, and ν = (ν1, . . . , νk) a invariant measure on
X = X1 × X2 × · · · × Xk. The joint symbolic correlation integral of the set X = X1 × X2 × · · · × Xk is
defined as

JSCm(X) =
∫

. . .︸︷︷︸
2k

∫ k

∏
j=1

I(sxj(xj), sxj(yj))dν(x1, . . . , xk)dν(y1, . . . , yk). (4)

Notice that the symbolization map for the multivariate time series is component-wise, and we
allow for each component of the multivariate time series to have a different embedding dimension.

In the case in which the invariant measures are independent, that is, ν = (ν1, . . . , νk) =
k

∏
j=1

νj,

it follows that

JSCm(X) =
∫

. . .︸︷︷︸
2k

∫ k

∏
j=1

I(sxj(xj), sxj(yj))dν(x1, . . . , xk)dν(y1, . . . , yk) = (5)

=
k

∏
j=1

∫ ∫
I(sxj(xj), sxj(yj))dνj =

k

∏
j=1

SCmj(Xj),

where m = (m1, m2, . . . , mk).

Notice that, only under the null of independence among the time series, JSC =
k

∏
j=1

SCmj =

k
∏
j=1

(1−
mj!− 1

mj!
IQVj).

Based on this definition, we also have a natural extension of JSC for multivariate time series.
To this end, given a multivariate time series {wt = (x1t, x2t, . . . , xkt)}t∈I , each of the time series {xjt}
is embedded in Rmj , as in the previous section, to construct the embedded multivariate time series
wt = (x1t, x2t, . . . , xkt). Then, the symbol space for {wt}t∈I is defined as Γk = ∏k

j=1 Smj , the Cartesian
product of symmetric groups Smj with j = 1, 2, ..., k, and the symbolization map is defined as sw =

(sx1 , sx2 , . . . , sxk ). Thus, the symbolization of the multivariate time series is component-wise.
Next, we are interested in computing the estimator, ĴSC

m
, of the joint symbolic correlation integral

for {wt = (x1t, x2t, . . . , xkt)}T
t=1. To this end, we define the indicator function

JSts =
k

∏
j=1

I(sxj(xjt), sxj(xjs)) (6)
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and then

ĴSC
m
=

2
n(n− 1)

n−1

∑
t=1

n

∑
s=t+1

JSts, (7)

where n = min{n1, n2, . . . , nk} with nj = T − mj + 1 for j = 1, 2, . . . , k. In addition, the indicator
function defined by Equation (6) is a Bernoulli random variable with probability of success µ̃ts.
When the time series that form the vectorial time series {wt} are independent between themselves,
we have that

µ̃ts =
k

∏
j=1

µ
xj
ts . (8)

We should highlight that, when every
{

xjt
}T

t=1 is a stationary time series, from [20], the estimator
of joint symbolic correlation integral is asymptotically unbiased:

lim
n→∞

E
[

ĴSC
m]

= JSCm. (9)

4. Testing Independence between Time Series with JSC

In this section, we construct a test for independence between time series based on JSC. We will
distinguish between two null hypotheses. In the first, we will test independence between time series
when they are i.i.d. In this case, we will provide the asymptotic distribution of the test statistic and
will show the conditions under which this test is not affected by the intermediate step of estimating
the parameters of a given model. Such tests are called nuisance-parameter-free tests. In the second,
we will relax the null hypothesis to allow for the time series under consideration not to be i.i.d. In this
second case, we will not give the asymptotic distribution but use bootstrapping to test for significance.
Proofs can be found in Appendix A.

4.1. H0: Independent between Themselves While Being I.I.D.

We are going to consider a vectorial time series, {wt = (x1t, x2t, . . . , xkt)}t∈I , where each {xjt} is
i.i.d. and they are independent between themselves.

Since the time series {xjt} are i.i.d., from [17], we have that SCmj = 1
mj !

for j = 1, 2, ..., k. Moreover,
since the time series are independent between themselves, from Equations (8) and (9), we have that

lim
n→∞

E
[

ĴSC
m]

= JSCm =
k

∏
j=1

SCmj =
k

∏
j=1

1
mj!

.

As the time series {xjt} are i.i.d. for all j = 1, 2, ..., k, using Equation (8), it follows that

E
[

ĴSC
m]

=
2

n(n− 1)

(
n−m+1

∑
t=1

t+m−1

∑
s=t+1

µ̃ts +
n−1

∑
t=n−m+2

n

∑
s=t+1

µ̃ts +
n−m

∑
t=1

n

∑
s=t+m

k

∏
j=1

1
mj!

)
, (10)

where m = max{m1, m2, ..., mk} and then

lim
n→∞

E
[

ĴSC
m]

=
k

∏
j=1

1
mj!

.

Under these conditions, the following result provides the asymptotic distribution of ĴSC
m

.
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Theorem 1. Let {xjt}t∈ I with j = 1, 2, ..., k be k i.i.d. times series that are independent between themselves.
Given embedding dimensions m1, m2, ..., mk ≥ 2 and m = max{m1, m2, ..., mk}, it follows that√

n(n− 1)
2

(
ĴSC

m − JSCm
)

(11)

is asymptotically N (0, σm) distributed, where

JSCm =
k

∏
j=1

1
mj !

,

σ2
m = ∑m

h1=−m ∑m
h2=−m E[(JSts − µ̃ts)(JSt+h1s+h2 − µ̃t+h1s+h2)].

In many cases, the researcher wants to apply statistics, like statistic Equation (11), to estimated
errors (residuals) of a model fitted to the raw data. The asymptotic distribution of Equation (11) is
derived under the assumption that true errors are considered. Even in the case that true errors are iid,
the estimated errors might exhibit some form of dependence, and therefore the asymptotic distribution
might be affected by the estimation process. We now wonder if the statistic Equation (11) can be safely
applied after the estimation of some intermediate parameters.

Definition 2. Let S(θ̂) be a statistic that depends upon some consistently estimated parameter, θ̂. Assume that,
at a true value θ,

√
n
(

Sn(θ)− µ(θ)

σ(θ)

)
→d N (0, 1),

then S(θ̂) is a nuisance-parameter free statistic if

√
n
(

Sn(θ)− Sn(θ̂)
)
→P 0,

where µ(θ) = lim
n→∞

E[Sn(θ)] and σ2(θ) = lim
n→∞

E[(Sn(θ)− µ(θ))2].

Theorem 2 (Nuisance-free parameter property). Assume that the data-generating process for each time
series {xjt}t∈ I is given by

xjt = Gj(I j
t−1, θj) + ujt, (12)

where I j
t−1 is a finite set of regressors, θj is a vector of parameters,

{
ujt
}

are i.i.d., and Gj is a continuous
function defined on a compact set for j = 1, 2, ..., k. Then, given embedding dimensions m1, m2, ..., mk ≤
2 and m = max{m1, m2, ..., mk}, the statistic ĴSC

m
applied to the residuals {(u1t, u2t, . . . , ukt)}t is

nuisance-parameter free.

4.2. H0: Time Series Independent between Themselves

When the time series under consideration, {xjt}t∈ I , are not i.i.d., we consider the
following statistic:

δ̂(m) = ĴSC
m −

k

∏
j=1

ŜC
mj . (13)

Notice that, when the time series are independent between themselves, δ̂(m) = 0 and δ̂(m) 6=
0 otherwise. Thus, to test for significance, we use a bootstrap test based on the block-bootstrap
proposed by Politis and White [21] and corrected in Patton et al. [22]. In order to be under the null of
independence among the time series, we resample each time series independently rather than jointly.
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Let us illustrate the procedure. Given the original time-series {xjt}T
t=1, we compute δ̂(m) and

evaluate the same for each of the B− 1 bootstrap realizations of the k time-series, namely δ̂(b)(m).
Next, we compute the upper and lower p-values as

upper− p =
1
B

B−1

∑
i=1

1(δ̂(b)(m) > δ̂(m)), (14)

lower− p =
1
B

B−1

∑
i=1

1(δ̂(b)(m) < δ̂(m)), (15)

where 1 is the Heaviside function. Based on these values, the null hypothesis of independence among
time series is rejected at a significance level α if upper− p < α

2 or lower− p < α
2 .

5. Simulations

5.1. Empirical Size and Power

We present some evidence of the performance of the proposed tests when they are applied
to systems that might (or might not) exhibit within-dependence (i.e., autodependent processes,
whose easiest form is autocorrelation) and/or dependence between processes (between-dependence
or cross-dependence). We refer to the statistics depicted in Equations (11) and (13) by Test1 and Test2.
For simplicity, the statistics have been computed assuming that the correct time-lag has been obtained.
To this end, we have considered the following systems of relations:

S1 : Yt = εt Xt = νt

S2 : Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + νt

S3 : Yt = 0.5ε2
t−1 + εt Xt = 0.5ν2

t−1 + νt

S4 : Yt = 0.8Yt−1 + Xt + εt Xt = 0.8Xt−1 + νt

S5 : Yt = 0.3Yt−1 + 0.5Yt−2Xt−1 + εt Xt = 0.7Xt−1 + νt

S6 : Yt = εt Xt = 0.8Y2
t−1 + νt

S7 : Yt = 0.6ν2
t−1 + εt Xt = 0.6Xt−1 + νt

S8 : Yt = Xt−1 Xt = 4Xt−1(1− Xt−1).

We have selected these systems (with these parameters, sample sizes and relationships) because
they have been studied in previous works, so comparability is easy. In particular, system S1 specifies
two within-independent processes that are independent between themselves, while S2 specifies
two between-independent Gaussian autoregressive AR(1) processes. System S3 represents two
between-independent processes that exhibit a nonlinear form of within-dependence. On the other hand,
systems S4, S5, S6, and S7 are between-dependent processes. S4 is a linear within-dependent model that
entails ideal conditions (normality and linearity) for the application of parametric statistics. System S5
has a stable bivariate nonlinear autoregressive within-dependence. S6 model shows within-dependence
in one of the variables, but not in the other. System S7 shows first a nontrivial nonlinear relation
between the processes and, second, it considers two different forms of within-dependence. Finally,
system S8 is very interesting as it is a nonlinear deterministic process formed from the chaotic
logistic equation.

Each system was simulated 2000 times and the following tables collect the proportion of rejection
the null hypothesis considered at the 5% nominal level. The tests were performed for m = 3.
The selection of parameter m is open to the practioner, and we will deal with this regard later on
this section.

Table 1 shows the power and size results of Test1 for the eight models S1–S8 for the null Xt and
Yt being i.i.d. and independent between themselves.
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Table 1. Size and Power of Test1.

S1 S2 S3 S4 S5 S6 S7 S8

T = 200 0.045 0.288 0.175 1 0.389 0.190 0.271 1
T = 500 0.048 0.838 0.528 1 0.938 0.670 0.849 1
T = 1000 0.048 1 0.943 1 1 0.990 0.999 1
T = 3000 0.049 1 1 1 1 1 1 1

We observe first that, when the stochastic system is generated under the null (i.e., two independent
processes that are both auto-independent), the test rejects according at the fixed 5% level. In this regard,
the new test Test1 behaves as expected under the null, regardless of the sample size. The results for
systems S2 and S3 suggest that Test1 test easily detects a departure from one of the conditions of the
null (namely, within-dependence), even when they are between-independent processes. The results for
S4, S5 and S7 indicate that, when the departure from the null is larger (in this case both null conditions
are violated), then Test1 behaves powerfully, even in the case of nonlinear dependencies, as in systems
S5 and S7. As regards system S6, notice that, despite the fact that process Y is i.i.d., process X depends
on Y. Even in the case that one process has no within-independence but there is between dependence,
the test exhibits power to detect these departures. Finally, the results for system S8 are especially
interesting because the processes involved are purely deterministic (there is no random term) and
the dependence between them is evident. Despite this peculiar dynamic structure, it is noticeable
that the Pearson cross-correlation test has a rejection rate of the null of 5%; in other words, Pearson’s
test behaves at the nominal level of the statistic, which implies that it systematically suggests not to
reject the null of independence between processes when there is an obvious deterministic dependence.
In contrast, Test1 test rejects the null with great power. The explanation for this performance is that
Pearson’s test is limited to detecting linear relationships between variables, while Test1 considers any
form of potential relationship.

On the other hand, it can be also concluded from the above comments on simulations that Test1 is
not capable of distinguishing between the forms of dependences (between and/or within). In other
words, if the final user obtains a rejection of the null, she does not know the reason for the rejection.
Given the simplicity of the test and its power with complex dependence forms, it is advisable to use
Test1 as a first step. However, to complete the process, it is necessary either to use Test2 or to apply
some sort pre-whitening process. We now explore the first solution (Test2) and, later in the paper,
we consider the behavior of the test in the case of pre-whitening in a multivariate scenario.

Table 2 shows the power and size results of Test2 for the eight models S1–S8 for the null Xt and
Yt being independent just between themselves.

Table 2. Size and Power of Test2.

S1 S2 S3 S4 S5 S6 S7 S8

T = 200 0.049 0.056 0.056 0.998 0.068 0.247 0.104 1
T = 500 0.053 0.054 0.057 1 0.091 0.742 0.254 1

T = 1000 0.058 0.055 0.057 1 0.200 0.992 0.636 1
T = 3000 0.050 0.049 0.059 1 0.816 1 1 1

The empirical behavior of other available tests on the same systems and sample sizes are reported
in the Appendix. Based on the results for these models, we make the following remarks:

(i) The output for systems S1, S2 and S3 hints that Test2 can correctly deal with models that exhibit
several forms of within-dependence, and this internal dependence does not contaminate the ability of
Test2 to indicate, at a nominal level of 0.05 that both processes are independent. In this regard, it is
noteworthy to observe that, a Haugh-type test could not have been used with system S3 because these
tests report confident results only for systems of linear and Gaussian dependence, as is the case of S2.
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(ii) When within-dependence is linear, as in S4, the power of the test is impressive regardless
of the sample size. This empirical fact implies that Test2 can be used to detect simple cases of linear
relationships between variables. As reported in [14], Haugh-based tests also have extremely good
power for this type of linear dependence. Accordingly, the final user of the tests could safely use the
nonparametric Test2 test or parametric Haugh-based tests.

(iii) However, when there is within-dependence of nonlinear nature, as in S5, S6, S7 and S8, it is
well known that Haugh based tests are unable to detect dependence, regardless of the sample size.
As can be observed from this simulation, Test2 detects dependence when the sample is large enough.

From (i)–(iii), it can be concluded that Test2 can be used to effectively detect dependence between
variables with fewer restrictions than other available tests in the literature, and, from a practical point
of view, the larger the sample size, the more reliable the results are.

As mentioned earlier, an interesting advantage of both tests is that they can be used in a
multivariate setting. We now consider two new sets of multivariate systems. The first set is formed of
S9 and S10 systems. Each system is a three-variable stochastic linear system that is used in this paper
to show that Test1 can be satisfactorily used for pre-whitened data as proved in the previous section:

S9 Yt = 0.6Yt−1 + εyt Xt = 0.5Xt−1 + εxt Zt = 0.7Zt−1 + εzt,
S10 Yt = 0.6Xt−1 + εyt Xt = 0.5Xt−1 + εxt Zt = 0.7Yt−1 + εzt.

These systems were generated and estimated by Ordinary Least Squares (OLS) to obtain the linear
structure of each variable and residuals were then tested with Test1. The results are in Table 3.

Table 3. Test1 on Residuals.

S9 S10

T = 200 0.053 0.051
T = 500 0.050 0.050

T = 1000 0.053 0.055
T = 3000 0.053 0.054

After removing the linear structure, independent estimated errors are obtained. Provided that
errors are simulated independently, it is expected that Test1 will not reject the null at the nominal level,
as shown in the table above.

The second set of systems is conducted to study the behavior of Test2 in a multivariate system of
complex relationships. To this end, we have considered three systems:

S11 Yt = 0.5Yt−1 + Zt Xt = 0.5Xt−1 + Zt Zt = εt

S12 RYt = Yt−1(2.9(1−Yt−1))exp(−0.36Zt) RXt = Xt−1(3.1(1− Xt−1))exp(−0.3Zt) Zt = εt

Yt = 0.35Yt−1 + max(RYt−4 , 0) Xt = 0.4Xt−1 + max(RXt−4 , 0)
S13 Yt = 0.5Yt−1 + εyt Xt = 0.5Xt−1 + 0.5Yt−1 + εxt Zt = εzt .

S11 considers the case where two variables, X and Y, do not have between-dependence
(cross-dependence) but are both driven by a common variable Z. One can think of Z as an
environmental variable that determines (explains) X and Y, and therefore both are related by this
external variable. Here, we expect Test2 to reject the null. Thus, S12 is a nonlinear and more complex
model than S11, but, in essence, is similar. This system has two non-interacting variables, X and Y,
that share common environmental forcing. Finally, S13 considers the case of three-variables where one
of them has no dynamic structure, and the other two only have one-side dependence. We expect Test2
to be able to detect this dependence. The results are given in Table 4.
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Table 4. Power of Test2 on Multivariate Systems.

S11 S12 S13

T = 200 1 0.855 0.121
T = 500 1 0.935 0.415

T = 1000 1 0.974 0.879
T = 3000 1 0.998 1

The results suggest that Test2 is able to clearly detect departures from the null in a multivariate
context. Even in the case of hidden common variables, the test unveils the indirect relationship,
despite its linear or nonlinear nature and despite the sample size. It is also concluded that Test2 needs
more observations (larger sample sizes) to detect dependences when considering scenarios like S13,
where of six potential relationships between variables, only one exists (from Y to X).

5.2. Comparison with Other Tests

As we indicated in the introductory section, the technical literature on this topic has produced
several statistics that test for independence between time series. This subsection aims to compare
among the most relevant tests.

A comparison among tests can be conducted at several levels. We compare at the level of: the
assumptions required to derive and implement the test, the parameters that the final user has to fix to
conduct the test, and the empirical power of the test.

According to the literature, the improvements have occurred around some criteria that to some
extent are related to the required assumptions for deriving the statistic and implementing the test(s).
On this regard, scholars have mainly focused on the following criteria:

(i) stationarity (or not) of the system generating process,
(ii) linearity (or not) of the system, and

(iii) robustness (or not) to the presence of outliers.

On the other hand, all available statistics require the final user of these statistical tests to make
certain decisions on some aspects that will necessarily affect the final result of the test. Provided
the test is used in the residuals of the model, one of the most important decisions is the fact that a
correct model needs to be estimated. Obviously, pre-estimation (or not) of an autoregressive model
before using the test is a critical decision. Another important choice for using the test is due to the
fact that some of the tests relied on the use of kernels. Throughout the literature, there has been some
controversy regarding how to choose the kernel and to what extent empirical behavior of the test
changes because of the selected kernel. Along with the kernel, a selection is also required for truncation
parameters. Finally, all the tests have to choose the number of observations in the lag vector, which is
equivalent to parameter m (embedding) of our tests.

These observations lead us to complete the previous list with the following items:

(iv) Pre-estimation,
(v) Kernel selection,

(vi) embedding selection.

Table 5 allows us to compare the tests considered in terms of the robustness to processes that
might be nonstationary and nonlinear, and to the presence of outliers (criteria (i)–(iii)). The table
also facilitates comparisons in line with the choices that the user has to make before using the test(s),
(criteria (iv)–(vi)).
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Table 5. Comparison among Tests’ Properties.

Tests Robust to Choices

Properties Nonstationarity Nonlineariry Outliers Pre-Estimation Kernel Embedding

Haugh No No No Yes No Yes
Hong No No No Yes Yes Yes

Koch & Yang No No No Yes No Yes
Li & Hui No No Yes Yes No Yes

Hallin & Saidi [23] No No No Yes No Yes
Pham et al. Allows cointegration No No Yes No Yes

Test 2 (Test 1) No (No) Yes (Yes) Yes (Yes) No (No) No (No) Yes (Yes)

According to the previous table, the tests presented in this work have a greater range of
applicability. The data that can be analyzed can be compatible with an ample number of models.
In other words, other tests are less generally applicable. From a practical point of view, the new tests
facilitate user work, since she has to select a smaller number of parameters. This is especially relevant
since we alleviate the burden of modeling a (correct) autoregressive process. Any of our techniques
only require selecting parameter m, which is a necessary parameter in all the available tests.

As explained in the introductory section, mainly all the available tests are derived from a seminal
Haugh’s test, which is best known along with Hong’s test, which is the test with better behavior in
terms of power. To complete the comparison, we now compare the results in terms of power. To do so,
we consider these two well-known tests, namely Haugh and Hong tests, and compare it with Test2,
which is the most general one. To make a fair comparison, it is only conducted on models to which
both tests can be applied.

We firstly describe these competitive tests and then show their results on the
corresponding systems.

The Haugh’s (1976) [1] procedure considers the following portmanteau statistic given by

SM = n
M

∑
j=−M

r2
ûv̂(j),

where rûv̂(j) = ∑n
t=j+1 ûtv̂t−j/

(
∑n

t=1 û2
t ∑n

t=1 v̂2
t
)1/2 are the residual cross-correlations for 0 ≤ j ≤

n− 1, rûv̂(j) = rûv̂(−j) for 1− n ≤ j < 0, and ût, v̂t, t = 1, ..., n are the two residual series of length n,
obtained by fitting univariate models to each of the series. The constant M ≤ n− 1 is a fixed integrer
and must be chosen a priori. The asymptotic distribution of SM is chi-square under the null hypothesis
of independence and the hypothesis is rejected for large values of the test statistic.

Hong (1996) [8] generalizes Haugh’s statistic. In fact, Hong’s test is a weighted sum of residual
cross-correlations of the form

Qn =
n ∑n−1

j=1−n k2(j/d)r2
ûv̂(j)−Mn(k)

[2Vn(k)]
1/2 ,

where Mn(k) = ∑n−1
j=1−n (1− |j| /n) k2(j/d) and Vn(k) = ∑n−2

j=2−n (1− |j| /n) (1− (|j|+ 1)/n) k4(j/d).
The weighting depends on a kernel function k and a smoothing parameter d (both have to be selected
a priori). Under the null hypothesis, the test statistic Qn is asymptotically N(0, 1) and it rejects the null
for large values of Qn.

The empirical power results on systems are collected in Table 6.
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Table 6. Power Comparison among Tests.

Test S4 S5 S6 S7

T = 200
SM 1 0.21 0.11 0.11
Qm 1 0.23 0.20 0.29

Test2 0.99 0.07 0.25 0.10

T = 500
SM 1 0.20 0.10 0.14
Qm 1 0.22 0.23 0.31

Test2 1 0.09 0.74 0.25

T = 1000
SM 1 0.31 0.11 0.15
Qm 1 0.24 0.28 0.34

Test2 1 0.20 0.99 0.64

T = 3000
SM 1 0.29 0.37 0.17
Qm 1 0.24 0.27 0.33

Test2 1 0.82 1 1

Results point to several observations: (a) all tests have maximum power for the simplest system
(S4), so all are highly competitive, and therefore the following comments will only apply to systems
S5, S6 and S7. (b) None of the tests compared is competitive for (small) sample sizes: 200 and 500.
(c) Haugh and Hong tests do not improve power by increasing the sample size; however, Test2 not
only improves, but also reaches levels close to full power.

5.3. Selecting Parameter m

As mentioned earlier, all tests involve the selection of a parameter, m that comform the basic units
of analysis. This parameter is an integer which stands for the fix length of the vectors that are formed
to be introduced in the tests. These vectors are generally the first m consecutive observations from
a time series (raw data or residuals). We have referred throughout this paper to this parameter as
embedding dimension or m-history. This terminology is very frequent in the field related to entropy
and nonlinear chaotic dynamical systems.

None of the cited tests provide advice for how to select this parameter. In this section, we reflect
on how to select the parameter m and we analyze the empirical effect of increasing m.

An obvious observation is that, if the system generating process is constructed by two (or more)
cross dependent equations where dependence is in lags larger than m, then no test will capture such a
dependence and will consider that they are independent time series. One natural solution is to construct
the same m-histories with some fixed time-delay, namely. x̄t,τ = (xt, xt+τ , xt+2τ , ..., xt+(m−1)τ).

This problem and also this solution is rarely found in Economics and Finance; however, it is more
frequent in Physics and subfields related with nonlinear and chaotic behavior. Indeed, the modeling
and prediction of chaotic time series require proper reconstruction of the state space from the available
data in order to successfully estimate invariant properties of the embedded attractor. Thus, one must
choose appropriate delay time τ and embedding dimension m for phase space reconstruction. For the
aim of the presented tests, there is no need to go beyond what other tests do for analyzing dependences.

Provided that the new tests rely on symbolic measures, it is worth considering in this regard that
previous research on these measures (see [24]) has provided rules for selecting m. Each m induces a
number of symbols. The number of symbols has to be large enough to capture departures from the
null. For m = 2, only (2!)2 = 4 symbols are being evaluated and are expected to be too few to detect
departures from the null(s). For the next integer, m = 3, 36 symbols are evaluated, and in the case of
increasing to an embedding dimension of 4, 576 symbols will then be used.

According to the authors, gains in terms of power can be obtained by increasing m according to
the following rule: given a data set of T observations, the embedding dimension will be the largest
m that satisfies 5× number of symbols < T with m = 2, 3, 4, .... In our case, the rule is 5(m!)2 < T.
The intuition beyond this rule is clear; on the one hand, the larger the number of symbols, the larger the
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sensitivity for detecting departures from the null. On the other hand, m! grows very fast and statistical
devices require enough samples to behave normally. Note that the larger the m, the finer the search for
dependences, but at the cost of increasing sample size required to satisfy the rule.

Finally, the study is completed by empirically analyzing the effect (in terms of power) of a change
in the embedding parameter. We consider the basic models (S4–S8) and we evaluate for m = 2, 3, 4.
It makes no sense to use m = 5 because, in this case, 14,400 symbols will be used while (at most) only
3000 observations are available. Results are collected in Table 7.

Table 7. Behavior of Test2 for Several m.

m T S4 S5 S6 S7 S8

2 200 0.996 0.07 0.052 0.064 0.927
3 200 0.999 0.046 0.209 0.082 1
4 200 0.983 0.054 0.195 0.087 1

2 500 1 0.057 0.053 0.066 0.998
3 500 1 0.098 0.732 0.271 1
4 500 1 0.112 0.699 0.289 1

2 1000 1 0.06 0.052 0.059 1
3 1000 1 0.226 0.995 0.64 1
4 1000 1 0.321 0.994 0.749 1

2 3000 1 0.062 0.037 0.052 1
3 3000 1 0.799 1 0.998 1
4 3000 1 0.98 1 1 1

From these results, we firstly observe that, for a few number of symbols (i.e., for m = 2), the test
has no power (as expected), except for the deterministic system and the linear one. In addition,
secondly, the power of the test tends to increase with m. For this reason, we recommend the potential
users of the test to adhere to the automatic rule for choosing parameter m.

6. Conclusions

In this work, we have extended the concept symbolic correlation integral to the multivariate
domain with the intention of studying, in a non-parametric way, the dependency relationships that
might occur between observed variables. Taking as our starting point the multivariate correlation
integral, we have developed two statistical tests that can be used to detect dependence between series,
even in the case when the relations between them are complex. Each new test is characterized by
its corresponding null hypothesis. In both cases, these tests improve on the existing one in terms of
power and usability, which are mostly designed to capture linear relationships. As a consequence
of the nonparametric character of both tests, each test can be used with guarantees and practically
without restrictions as long as the series are stationary and the sample size is not excessively small.
This means that both tests are appropriate for massive data analysis. However, for small data sets
(say, below 200 observations), users should be aware that nonlinearity is highly difficult to detect and
our advice is to rely on other statistics if linear relations can provide a plausible link among series.
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Appendix A. Proofs

This section is devoted to the proof of Theorem 1. To this end, we need to prove the following
proposition where Jts = JSts − µ̃ts, which is a random variable with zero mean by Equations (6) and (8).

Proposition A1. Let {wt = (x1t, x2t, . . . , xkt)}T
t=1 be a k-dimensional time series, where {xjt} is i.i.d. for all

t = 1, 2, ..., k and they are independent between themselves. Given embedding dimensions m1, m2, ..., mk ≥ 2
and m = max{m1, m2, ..., mk}, it follows that

lim
n→∞

n(n− 1)
2

Var( ĴSC
m − JSCm) = σ2

m,

where

JSCm =
k

∏
j=1

1
mj!

,

σ2
m =

m

∑
h1=−m

m

∑
h2=−m

E[Jts Jt+h1s+h2 ],

with s ≥ t + 3m− 2.

In order to prove Proposition A1, we need the following two technical lemmas.

Lemma A1. Let {wt = (x1t, x2t, . . . , xkt)}T
t=1 be a k-dimensional time series where {xjt} is i.i.d. for all

t = 1, 2, ..., k and they are independent between themselves. Given embedding dimensions m1, m2, ..., mk ≥ 2
and m = max{m1, m2, ..., mk}, it follows that

E[Jts Jt′s′ ] = 0

provided that |t′ − t| > m− 1 or |s− s′| > m− 1.

Proof.

E[Jts Jt′s′ ] = E[(JSts − µ̃ts)(JSt′s′ − µ̃t′s′)],

E[Jts Jt′s′ ] = E

[
k

∏
j=1

(
I(s(xjt), s(xjs))− µ̃ts

) k
∏
j=1

(
I(s(xjt′), s(xjs′))− µ̃t′s′

)]
.

As time series are independent between themselves, if we call I
xj
ts = I(s(xjt), s(xjs))− µ

xj
ts , we have

E[Jts Jt′s′ ] =
k

∏
j=1

E
[(

I(s(xjt), s(xjs))− µ
xj
ts

) (
I(s(xjt′), s(xjs′))− µ

xj
t′s′

)]
=

= E

[
k

∏
j=1

I
xj
ts · I

xj
t′s′

]
.

As m = max{m1, m2, ..., mk}, we have that I
xj
ts and I

xj
t′s′ are independent, then E[I

xj
ts I

xj
t′s′ ] = 0 ([17],

p. 549) provided that |t′ − t| > m− 1 or |s− s′| > m− 1 and E[Jts Jt′s′ ] = 0 as desired.

Lemma A2. Let {wt = (x1t, x2t, . . . , xkt)}T
t=1 be a k-dimensional time series, where {xjt} are i.i.d. for t =

1, 2, ..., k, and are independent between themselves. Let m = max{m1, m2, ..., mk}. Then, for s ≥ t + 3m− 2,
the covariance of the variable Jts with any other Jt′s′ depends only on h1 = |t′ − t| and h2 = |s′ − s| and not on
the time periods themselves, that is,

δ(h1, h2) = E[Jts Jt′s′ ]

for all t, s, t′, s′.
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Proof. Recall that, for π, δ ∈ Smj , (pπδ
tt′ )πδ = PMxj(|t− t′|) and (pπδ

ss′ )πδ = PMxj(|s− s′|) for every
j = 1, 2, ..., k. Fix t and s such that s ≥ t + 3m− 2. Then, it follows that

1. If h1 ≥ m or h2 ≥ m, then by Lemma A1, we have that δ(h1, h2) = 0.
2. If h1 < m or h2 < m, we have the following cases:

• If t′ > t and s′ > s

E [JSts JSt′s′ ] = E

[
k

∏
j=1

Ij(s(xjt), s(xjs))Ij(s(xjt′), s(xjs′))

]
=

=
k

∏
j=1

∑
π∈Smj

 ∑
δ∈Smj

pπδ
tt′ pπδ

ss′

 (A1)

δ(h1, h2) = E [Jts Jt′s′ ] =
k

∏
j=1

∑
π∈Smj

∑
δ∈Smj

pπδ
tt′ pπδ

ss′ −
k

∏
j=1

(
1

mj!

)2

.

• If t′ > t and s > s′

E [JSts JSt′s′ ] = E

[
k

∏
j=1

Ij(s(xjt), s(xjs))Ij(s(xjt′), s(xjs′))

]
=

=
k

∏
j=1

∑
π∈Smj

 ∑
δ∈Smj

pπδ
tt′ pπδ

s′s

 (A2)

δ(h1, h2) = E [Jts Jt′s′ ] =
k

∏
j=1

∑
π∈Smj

∑
δ

pπδ
tt′ pπδ

s′s −
k

∏
j=1

(
1

mj!

)2

.

• If t′ = t and s′ 6= s

E [JSts JSts′ ] = E

[
k

∏
j=1

Ij(s(xjt), s(xjs))Ij(s(xjt), s(xjs′))

]
=

=
k

∏
j=1

 ∑
π∈Smj

pπ
t pππ

ss′

 (A3)

δ(h1, h2) = E [Jts Jts′ ] =
k

∏
j=1

 ∑
π∈Smj

pπ
t pππ

ss′

− k

∏
j=1

(
1

mj!

)2

.

The remaining cases t′ < t, s < s′, t′ < t, s′ < s, t 6= t′, and s = s′ are symmetric to the
previous ones. Since the probabilities used in Equations (A1)–(A3) depend only on h1 and h2,
the proof follows.

Proof of Proposition A1. We consider

n(n− 1)
2

Var( ĴSC
m − JSCm) =

2
n(n− 1)

Var

(
n−1

∑
t=1

n

∑
s=t+1

Jts

)

=
2

n(n− 1)

n−1

∑
t=1

n−1

∑
t′=1

n

∑
s=t+1

n

∑
s′=t′+1

E[Jts Jt′s′ ]. (A4)

From Lemma A1, the variance Equation (A4) can be rewritten as
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2
n(n− 1)

n−1

∑
t=1

n−1

∑
t′=1

n

∑
s=t+1

n

∑
s′=t′+1

E[Jts Jt′s′ ] =
2

n(n− 1)

n−1

∑
t=1

∑
t′∈N(t)

∑
s∈N(t)

∑
s′∈N(s)

E[Jts Jt′s′ ] (A5)

+
2

n(n− 1)

n−1

∑
t=1

∑
t′∈N(t)

∑
s 6∈N(t)

∑
s′∈N(s)

E[Jts Jt′s′ ].

Since N(t) and N(s) are finite sets, the first summand in Equation (A5) converges to zero as n
approaches infinity. The second summand in Equation (A5) can be written as

2
n(n−1) ∑n−1

t=1 ∑t′∈N(t) ∑s 6∈N(t) ∑s′∈N(s) E[Jts Jt′s′ ] = 2
n(n−1) ∑n−1

t=1 ∑t′∈N(t) ∑s 6∈N(t) ∑s′∈N(s)∩N(t′) E[Jts Jt′s′ ]

+ 2
n(n−1) ∑n−1

t=1 ∑t′∈N(t) ∑s 6∈N(t) ∑s′∈N(s)∩N(t′) E[Jts Jt′s′ ],
(A6)

where we denote by N(t) the complementary set of N(t).
In the first summand in Equation (A6), since t′ ∈ N(t) and s 6∈ N(t), we have that, for a fixed t,

the number of time indexes s that make s′ ∈ N(s)∩N(t′) possible is finite, and therefore this summand
converges to zero as n goes to infinity.

Notice that, for fixed t and s with s ≥ t + 2m, we have that E[Jts Jt+h1s+h2 ] = E[Jt′s′ Jt′+h1s′+h2
]

always and s′ 6∈ N(t′). Furthermore, from Lemma A1, it follows that

∑
t′

∑
s′≥t′+m

E[Jts Jt′s′ ] =
t+m−1

∑
t′=t−m+1

s+m−1

∑
s′=s−m+1

E[Jts Jt′s′ ] = σ2
m. (A7)

Then, from Equation (A7), we have that

lim
n→∞

n(n−1)
2 Var( ĴSC

m − JSCm) = lim
n→∞

2
n(n−1) ∑n−1

t=1 ∑t′∈N(t) ∑s 6∈N(t) ∑s′∈N(s)∩N(t′) E[Jts Jt′s′ ]

= lim
n→∞

2
n(n−1) ∑n−1

t=1 ∑n
s=t+2m ∑t+m−1

t′=t−m+1 ∑s+m−1
s′=s−m+1 E[Jts Jt′s′ ]

= lim
n→∞

2
n(n−1) ∑n−1

t=1 ∑n
s=t+2m σ2

m.

Since the number of summands in ∑n−1
t=1 ∑n

s=t+2m is 1
2 (−2− 4m(−1 + n) + n + n2), then

lim
n→∞

n(n− 1)
2

Var( ĴSC
m −

k

∏
j=1

1
mj!

) = lim
n→∞

2
n(n− 1)

n−1

∑
t=1

n

∑
s=t+2m

σ2
m = σ2

m (A8)

as desired.

Proof of Theorem 1. For each integer k > 4(m− 1), we define

Yk
n =

√
2

n(n− 1)

(
r

∑
j1=1

r

∑
j2=j1+1

Sj1 j2 +
r

∑
j=1

Tj

)
,

where

Sj1 j2 =
j1k−2m+2

∑
t=(j1−1)k+1

j2k−2m+2

∑
s=(j2−1)k+1

Jts,

Tj =
jk−2m+1

∑
t=(j−1)k+1

jk−2m+2

∑
s=t+1

Jts,

with r = [(n− 1)/k] the integer part of (n− 1)/k.
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It is interesting to note that the variables Sj1 j2 are i.i.d. of mean zero and variance

v =
k−2m+2

∑
t=1

2k−2m+2

∑
s=k+1

k−2m+2

∑
t′=1

2k−2m+2

∑
s′=k+1

E[Jts Jt′s′ ]. (A9)

Then, from Lemma A2, it follows that

v = ∑
|h1|<m

∑
|h2|<m

(k− 2m + 2− |h1|)(k− 2m + 2− |h2|)E[Jts Jt+h1s+h2 ]. (A10)

Therefore, from the Central Limit Theorem for i.i.d random variables, we have that√(
2

n(n− 1)

)( r

∑
j1=1

r

∑
j2=j1+1

Sj1 j2

)

is asymptotically N
(

0,
v
k2

)
as n→ ∞.

On the other hand, the variables Tj are i.i.d with zero mean, independent of ∑r
j1=1 ∑r

j2=j1+1 Sj1 j2

and lim
n→∞

Var
(√

2
n(n− 1) ∑r

j=1 Tj

)
= 0. Moreover,

lim
k→∞

v
k2 = σ2

m.

Then,
lim
k→∞

lim
n→∞

Yk
n = Y, (A11)

where Y ∼ N (0, σ2
m).

It only remains to show that

lim
k→∞

lim
n→∞

sup P

(∣∣∣∣∣
√

n(n− 1)
2

(
ĴSC

m − E[ ĴSC
m
]
)
−Yk

n

∣∣∣∣∣ > ε

)
= 0 (A12)

for all ε > 0, since Equation (11) will then follow from Proposition 6.3.9 in Brockwell and Davis (1987).
To establish Equation (A12), we write(√

n(n− 1)
2

(
ĴSC

m − E[ ĴSC
m
]
)
−Yk

n

)
=

√
2

n(n− 1)

(
USk

n + Uk
n + UTk

n

)
,

where

USk
n =

r−1

∑
j1=1

j1k−2m+2

∑
t=(j1−1)k+1

r−1

∑
j2=j1+1

j2k

∑
s=j2k−2m+3

Jts +
r−1

∑
j1=1

j1k

∑
t=j1k−2m+3

rk−2m+2

∑
s=j1k+1

Jts,

Uk
n =

rk−2m+2

∑
t=1

n

∑
s=rk−2m+3

Jts +
n−1

∑
t=rk−2m+3

n

∑
s=t+1

Jts,

UTk
n =

r−1

∑
j1=1

j1k−2m+2

∑
t=(j1−1)k+1

j1k

∑
s=j1k−2m+3

Jts +
r−1

∑
j1=1

j1k−1

∑
t=j1k−2m+3

j1k

∑
s=t+1

Jts.

Notice that, to prove Equation (A12), it is sufficient to prove the following equation by
Chebyschev inequality:
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lim
k→∞

lim
n→∞

sup Var

(√
n(n− 1)

2

(
ĴSC

m − E[ ĴSC
m
]
)
−Yk

n

)
= 0. (A13)

Taking into account that Var(Jts) ≤ 1 for all t, s that |Cov(X, Y)| ≤
√

Var(X)Var(Y) and
Lemma A1, we have that

Var(
α2

∑
t=α1

β2

∑
s=β1

Jts) ≤ (α2 − α1 + 1)(β2 − β1 + 1)(1 + (2m− 1)2), (A14)

Var
(√

2
n(n− 1)

USk
n

)
≤ 2

n(n−1)

(
(r− 1)(r− 2)

2
(k− 2m + 2)(2m− 2)(1 + (2m− 1)2)

+ (r− 1)((r− 1)k− 2m + 2)(1 + (2m− 1)2)

+ 2(r− 1)(1 + (2m− 1)2)

√
r− 2

2
(k− 2m + 2)(2m− 2)((r− 1)k− 2m + 2)

)
,

Var

(√
2

n(n− 1)
Uk

n

)
≤ 2

n(n− 1)

(
(rk− 2m + 2)m(1 + (2m− 1)2)+

+ m2(1 + (2m− 1)2) + (A15)

+ 2m(1 + (2m− 1)2)
√
(rk− 2m + 2)m

)
,

Var
(√

2
n(n− 1)

UTk
n

)
≤ 2

n(n− 1)
(
(r− 1)(k− 2m + 2)(2m− 2)(1 + (2m− 1)2) +

(r− 1)(2m− 3)2(1 + (2m− 1)2)+

+ 2(r− 1)(2m− 3)(1 + (2m− 1)2)
√
(k− 2m + 2)(2m− 2)

)
.

Then, it follows that

lim
k→∞

lim
n→∞

sup Var

(√
2

n(n− 1)
USk

n

)
= 0,

lim
k→∞

lim
n→∞

sup Var

(√
2

n(n− 1)
Uk

n

)
= 0,

lim
k→∞

lim
n→∞

sup Var

(√
2

n(n− 1)
UTk

n

)
= 0.

Hence,

lim
k→∞

lim
n→∞

sup Var

(√
n(n− 1)

2

(
ĴSC

m − E[ ĴSC
m
]
)
−Yk

n

)
= 0.

From Chebyshev’s inequality, we have that

lim
k→∞

lim
n→∞

sup P

(∣∣∣∣∣
√

n(n− 1)
2

(
ĴSC

m − E[ ĴSC
m
]
)
−Yk

n

∣∣∣∣∣ > ε

)
= 0, (A16)

which finishes the proof of the theorem.
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Proof of Theorem 2. Let θ̂j be a consistently estimated parameter of θj and mj ≥ 2 for all j = 1, 2, ..., k
and let m = max{m1, m2, ..., mk} . Now, we want to prove that, for the multidimensional time series
given by {(u1t, u2t, . . . , ukt)}t, it follows that√

n(n− 1)
2

(
ĴSC

m
(θ1, θ2, . . . , θk)− ĴSC

m
(θ̂1, θ̂1, . . . , θ̂k)

)
→P 0.

For all j = 1, 2, . . . , k, the residual function is given by

ujt(θ̂j) = xjt − Gj(I j
t−1, θ̂j) = ujt(θj) + Gj(I j

t−1, θj)− Gj(I j
t−1, θ̂j). (A17)

Then,
|ujt(θj)− ujt(θ̂j)| = |Gj(I j

t−1, θj)− Gj(I j
t−1, θ̂j)|. (A18)

The mj! symbols provide a partition of Rmj in mj! subsets {Aj
π1 , Aj

π2 , . . . , Aj
πmj !}, such that the

probability P(ujt(θj) ∈ Aj
πi ∩ Aj

πl ) = 0 for all i 6= l if the values of ujt come from a continuous
distribution because then equal values are very uncommon, with a theoretical probability of occurrence
of 0. Therefore, for a given mj history ujt(θj), we may assume without loss of generality that it belongs

to a ball of radius ε j > 0 satisfying B(ujt(θj), ε j) ⊂ Aj
π for some π ∈ Smj .

For each ε j and given that Gj is a continuous map in a compact set (and hence uniformly

continuous) for all j = 1, 2, . . . , k, there exists a δj > 0 independent of I j
t−1, θ j and θ̂j such that,

if ‖ (I j
t−1, θj)− (I j

t−1, θ̂j) ‖< δj, then by Equation (A18) |ujt(θj)− ujt(θ̂j)| < εj and hence ujt(θ̂j) ∈ Aj
π .

Thus, it follows that I(sxj(ujt(θj)), sxj(ujs(θj))) = I(sxj(ujt(θ̂j)), sxj(ujs(θ̂j))) for almost all t, s,
and hence

JSts(θ1, θ2, . . . , θk) = JSts(θ̂1, θ̂2, . . . , θ̂k)

and therefore

lim
n→∞

P

(√
n(n− 1)

2

∣∣∣ ĴSC
m
(θ1, θ2, . . . , θk)− ĴSC

m
(θ̂1, θ̂1, . . . , θ̂k)

∣∣∣ > 0

)
= 0,

which finishes the proof of the theorem.

Remark A1. Notice that we have used only the fact that the map Gj with j = 1, 2, ..., k, are uniformly
continuous. Therefore, we could state only this condition in Theorem 2 and avoid the compact domain of
every Gj.

References

1. Haugh, L.D. Checking the independence of two covariance-stationary time series: A univariate residual
cross-correlation approach. J. Am. Stat. Assoc. 1976, 71, 378–385. [CrossRef]

2. Pierce, A. Lack of dependence among economic variables. J. Am. Stat. Assoc. 1977, 72, 11–22.
3. Geweke, J. A comparison of tests of independence of two covariance stationary time series. J. Am. Stat. Assoc.

1981, 76, 363–373. [CrossRef]
4. Bouhaddioui, C.; Dufour, J.-M. Tests for non-correlation of two infinite-order cointegrated vector

autoregressive series. J. Appl. Probab. Stat. 2008, 3, 78–94.
5. Bouhaddioui, C.; Roy, R. A generalized portmanteau test for independence of two infinite-order vector

autoregressive series. J. Time Ser. Anal. 2006, 27, 505–544. [CrossRef]
6. Duchesne, P.; Roy, R. Robust tests for independence of two time series. Stat. Sin. 2003, 13, 827–852.
7. El Himdi, K.; Roy, R. Tests for noncorrelation of two multivariate ARMA time series. Can. J. Stat. 1997,

25, 233–256. [CrossRef]
8. Hong, Y. Testing for independence between two covariance stationary time series. Biometrika 1996,

83, 615–625. [CrossRef]

http://dx.doi.org/10.1080/01621459.1976.10480353
http://dx.doi.org/10.1080/01621459.1981.10477655
http://dx.doi.org/10.1111/j.1467-9892.2006.00473.x
http://dx.doi.org/10.2307/3315734
http://dx.doi.org/10.1093/biomet/83.3.615


Entropy 2019, 21, 878 20 of 20

9. Koch, P.D.; Yang, S.S. A method for testing the independence of two time series that accounts for a potential
pattern in the crosscorrelation function. J. Am. Stat. Assoc. 1986, 81, 533–544. [CrossRef]

10. Li, W.K.; Hui, Y.V. Robust residual cross correlation tests for lagged relations in time series.
J. Stat. Comput. Simul. 1994, 49, 103–109. [CrossRef]

11. Pham, D.T.; Roch, R.; Cedras, L. Tests for non-correlation of two cointegrated ARMA time series.
J. Time Ser. Anal. 2003, 24, 553–577. [CrossRef]

12. Muhammad K.W.; Islam K.A. Most stringent test of independence for time series. Commun. Stat.
Simul. Comput. 2018. [CrossRef]

13. Chan, N.H.; Tran, L.T. Nonparametric tests for serial dependence. J. Time Ser. Anal. 1992, 13, 19–28.
[CrossRef]

14. Matilla-Garcia, M.; Rodriguez, J.M.; Ruiz, M. A symbolic test for testing independence between time series.
J. Time Ser. Anal. 2010, 31, 76–85. [CrossRef]

15. Robinson, P.M. Consistent nonparametric entropy-based testing. Rev. Econ. Stud. 1991, 58, 437–453.
[CrossRef]

16. Skaug, H.J.; Tjøstheim, D. A nonparametric test of serial independence based on the empirical
distribution function. Biometrika 1993, 80, 591–602. [CrossRef]

17. Caballero-Pintado, M.V.; Matilla-Garcia, M.; Marin, M.R. Symbolic correlation integral. Econom. Rev.
2019, 38, 533–556. [CrossRef]

18. Granger, C.W.; Maasoumi, E.; Racine, J. A dependence metric for possibly nonlinear processes.
J. Time Ser. Anal. 2004, 25, 649–669. [CrossRef]

19. Agresti, A.; Agresti, B.F. Statistical Analysis of Qualitative Variation. Sociol. Methodol. 1978, 9, 204. [CrossRef]
20. Aaronson, J.; Burton, R.; Dehling, H.; Gilat, D.; Hill, T.; Weiss, B. Strong laws for L-and u-statistics.

Trans. Am. Math. Soc. 1996, 348, 2845–2866. [CrossRef]
21. Politis, D.N.; White, H. Automatic block-length selection for the dependent bootstrap. Econom. Rev.

2004, 23, 53–70. [CrossRef]
22. Patton, A.J.; Politis, D.N.; White, H. Correction: automatic block-length selection for the dependent bootstrap.

Econom. Rev. 2009, 28, 372–375. [CrossRef]
23. Hallin, M.; Saidi, A. Testing noncorrelation and noncausality between multivariate ARMA time series.

J. Time Ser. Anal. 2005, 26, 83–105. [CrossRef]
24. Matilla-Garcia, M.; Ruiz, M. A non-parametric independence test using permutation entropy. J. Econom.

2008, 144, 139–155. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01621459.1986.10478301
http://dx.doi.org/10.1080/00949659408811563
http://dx.doi.org/10.1111/1467-9892.00322
http://dx.doi.org/10.1080/03610918.2018.1527350
http://dx.doi.org/10.1111/j.1467-9892.1992.tb00092.x
http://dx.doi.org/10.1111/j.1467-9892.2009.00645.x
http://dx.doi.org/10.2307/2298005
http://dx.doi.org/10.1093/biomet/80.3.591
http://dx.doi.org/10.1080/07474938.2017.1365431
http://dx.doi.org/10.1111/j.1467-9892.2004.01866.x
http://dx.doi.org/10.2307/270810
http://dx.doi.org/10.1090/S0002-9947-96-01681-9
http://dx.doi.org/10.1081/ETC-120028836
http://dx.doi.org/10.1080/07474930802459016
http://dx.doi.org/10.1111/j.1467-9892.2005.00391.x
http://dx.doi.org/10.1016/j.jeconom.2007.12.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions and Notation
	Joint Symbolic Correlation Integral
	Testing Independence between Time Series with JSC
	H0: Independent between Themselves While Being I.I.D.
	H0: Time Series Independent between Themselves

	Simulations
	Empirical Size and Power
	Comparison with Other Tests
	Selecting Parameter m

	Conclusions
	Proofs
	References

