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Abstract: In this study, the viscoelastic properties of quartz and kaolin suspensions in seawater were
analysed considering two distinct conditions: pH 8 and 10.7. Creep and oscillatory sweep tests
provided the rheological parameters. An Anton Paar MCR 102 rheometer (ANAMIN Group, Santiago,
Chile) was used with a vane-in-cup configuration, and the data were processed with RheoCompassTM

Light software (ANAMIN Group, Santiago, Chile). The outcomes were associated with the formation
of solid species principally composed of magnesium precipitates. The magnesium in solution reduced
in the presence of quartz (68 wt %), from 1380 to 1280 mg/L. Since the difference was not large
regarding the solid-free seawater, the disposition of solid complexes at pH 10.7 was expected to be
similar. The jump in pH caused both yield stress and viscoelastic moduli to drop, suggesting that
the solid precipitates diminished the strength of the particle networks that made up the suspension.
For the kaolin slurries (37 wt %), the yield stress raised when the pH increased, but unlike quartz,
there was significant adsorption of magnesium cations. In fact, the concentration of magnesium in
solution fell from 1380 to 658 mg/L. Dynamic oscillatory assays revealed structural changes in both
pulps; in particular, the phase angle was greater at pH 8 than at pH 10.7, which indicates that at more
alkaline conditions, the suspension exhibits a more solid-like character.

Keywords: viscoelasticity; quartz; kaolin; seawater; magnesium precipitates

1. Introduction

Diverse mining companies have their deposits in arid areas, especially in northern Chile, southern
Peru, Australia, Africa and Asia [1,2]. In these regions, water availability may be a serious challenge and
is the primary purpose for plants to reduce their water demand while avoiding significant alterations
in production. A current strategy implemented in several plants is the use of seawater (see Table 1),
either through prior desalination treatment by reverse osmosis, where all salts are eliminated, or by
simply applying it directly, without altering the salinity [3–5]. The direct use of seawater entails
advantages associated with environmental impact and operational costs that involve the building of
a desalination plant [6]; however, the complexity of such an undertaking is the subject of constant
discussion and research for engineers and scientists [3]. For example, there is the issue of the location of
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plants that are far from the coast and at a high altitude. This may require a great amount of investment
in pumping, but it is the only option in some cases. In this scenario, the efficient use of hydric resources
is inevitable, which means advancing effective closures of seawater circuits. Here, it is essential to
acquire a deep rheological understanding of the mineral slurries, which restrict performance at the
dewatering stages [7].

Table 1. Examples of seawater use in mining (adapted from Cisternas and Gálvez [3]).

Plant Country Metal Technology

El Boleo Proyect Mexico Copper, cobalt, zinc, manganese Leaching
Mount Keith (*) Australia Nickel Flotation

Sierra Gorda SCM Chile Copper, molybdenum Flotation, leaching
Black Angel Greenland Lead–zinc Flotation
Batu Hijau Indonesia Copper-gold Flotation

Beverly Uranium Mine (*) Australia Uranium Leaching in situ
Minera Michilla Chile Copper Leaching

Antucoya Proyect Chile Copper Leaching
Minera Las Luces Chile Copper Flotation

Minera Algorta Norte S.A. Chile Iodine Leaching

* Saline water.

The high concentration of electrolytes in solution can hinder distinct stages of mineral processing,
such as flotation and tailings management [8,9]. Ions alter the interactions between the particles that
constitute the slurries, as well as the behaviour of several reagents which are commonly employed
in solid–liquid separation. Consequently, the industry is being driven to implement new methods
or technologies that can adapt to the challenges posed by a highly saline environment such as
seawater [10,11].

Understanding the fundamentals that govern the rheology of mineral pulps requires an in-depth
knowledge of the surface interactions that rule the stability of colloidal systems. It is generally
considered that the total interaction energy corresponds to the addition of van der Waals forces with
the electric double-layer forces. This is the origin of the classical Derjaguin-Landau-Vervey-Overbeek
(DLVO) theory. However, additional interactions may arise in highly saline media that are induced by
the solvation of ions and structural changes in the association of water molecules that interact with
mineral surfaces such as metal oxides [12]. An essential issue for solvation phenomena is the type
of ions dissolved in the solution, wherein maker ions such as Na+, Mg2+ and Ca2+ are small in size
and generate a strong electric field that causes the surrounding water molecules to become highly
structured. Otherwise, breaker ions such as K+ and Cl− are larger than the maker ions and, therefore,
produce a smaller electric field on their neighbouring molecules, disorganising the layers of associated
water molecules around the ions [13–15].

Copper concentration operations in freshwater are normally carried out under highly alkaline
conditions (above pH 10.5) to depress pyrite and prevent contamination of the concentrate [16–18];
however, it is challenging to operate in seawater at this condition and, generally, the processes are
restricted to the natural pH (approx. pH 8), requiring further reagents to deal with the quality of
concentrates [5,19]. At a high pH, the seawater divalent cations (Mg2+ and Ca2+) can hydrolyse to form
soluble complexes (e.g., Mg(OH)+ and Ca(OH)+) and varied solid substances (e.g., Mg(OH)2, Ca(OH)2,
etc.). These species may adsorb onto the mineral’s surface, which includes the main component
of copper tailings such as kaolin and silica. Some reports indicate that the presence of complexes
reduces the magnitude of the anionic zeta potential of particles, while solid precipitates can even assign
them cationic values [20]. This leads to a substantial impact on the interaction between particles, and
consequently, the effect on the rheological properties can be remarkable [21,22].

The tailings produced in copper processing operations mainly contain a significant amount of
clays and quartz, which are consistently the focus of study since these determine the rheological
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behaviour of the tailings [23]. Teh et al. [24] analysed the yield stress and zeta potential at different
pH levels in kaolin pulps. The results confirmed that, in most cases, the yield-stress–DLVO model is
obeyed, which means that the highest yield stress occurs at low magnitudes of zeta potential. Kaolinite,
the molecular formula of which is [Al4(Si4O10)(OH)8], has three crystallographically different surfaces:
a silica face, an alumina face and the edges. Previous studies revealed that, at a low pH, the alumina
face and the edges have cationic charges, while the silica face is anionic. This promotes the formation
of strong bonds between particles and, consequently, high yield stress. However, at a high pH, the
faces and edges have anionic charges, which causes the dispersion of the particles and thus leads to
lower yield stress [25]. Avadiar et al. [26] studied the rheological behaviour of alumina, silica and
kaolin slurries in the presence of calcium and magnesium salts. It was detected that the adsorption of
Ca(OH)+ and the precipitation of Ca(OH)2 induced a stronger association of particles than that caused
by adsorption of Mg(OH)+ and solids of Mg(OH)2. The authors ascribed this to the larger size of the
calcium complexes and precipitates, and due to hydration/solvation phenomena, these possess a lower
enthalpy of hydration than Mg(OH)+ and Mg(OH)2, respectively. Therefore, the former should adsorb
more readily on the particles’ surface [27].

The yield stress is the most used rheological parameter to characterise the flow properties of mining
tailings, indicating the stress that must be overcome by the pulps so that they begin to flow [28–30].
However, extending to a better rheological characterisation can provide more insight into the strength
of the particle networks that make up the suspensions, giving further control opportunities in tailings
handling, especially in the discharge of the underflow by rakes in thickeners. In this case, mineral pulps
can exhibit viscoelastic behaviours, which are described by a viscous component, represented by the
storage modulus (G’), and an elastic part, represented by the loss modulus (G”) [31]. The viscoelastic
modulus can be obtained by means of dynamic methods of oscillatory rheology, which are carried
out by subjecting the material to an oscillatory strain γ(t) = γ0 sin(ωt), where the resulting stress
in relation to time is τ(t) = γ0(G′(ω) sin(ωt) + G′′ (ω) cos(ωt)), where G′ is a measure of the stored
energy of the material and, therefore, is related to molecular events of an elastic nature, while G′′ is
a measure of energy dissipated as heat, associated with molecular events of a viscous character [32].
Additionally, creep tests consist of applying permanent stress to a specific material, measuring the
temporal evolution of its shear strain. The tests can be used as a descriptor of the strength of the
particle networks since stronger structures deform less [33,34]. Jeldres et al. [15] studied the effect
of the type of salt on the viscoelastic behaviour of silica suspensions prepared in monovalent brines.
By increasing the size of the cations, higher values of yield stress, elastic modulus and complex viscosity
were obtained, while the shear strain after application of fixed stress was lower. The authors explained
that silica has a greater tendency to agglomerate in the presence of larger ions such as K+, forming
stronger particle networks compared with smaller salts such as Na+ and Li+.

Several studies have analysed rheological behaviour in saline media, with respect to the primary
minerals that compose mining tailings, such as quartz and clays. The reported investigations covered
interpretation in monovalent [15,35,36] and divalent salt solutions [26,37]. However, no systematic
study has explained the viscoelastic behaviour of these minerals in seawater, especially at a high
pH (pH > 10.5), where interference by complexes of calcium and magnesium may appear. These
conditions are potentially attractive to carry out the concentration stages, particularly in the copper
industry, when the ores have a high content of pyrite [38]. In this sense, the objective of this study was
to examine the influence of the principal ionic species present in seawater on the viscoelastic behaviour
of quartz and kaolin slurries. The varied pH levels were linked to the formation of soluble complexes
and solid precipitates of divalent cations, and their remarkable impact on rheological properties were
studied through creep and oscillatory rheology tests.
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2. Methodology

2.1. Materials

Kaolin was acquired from Ward’s Science, and quantitative X-ray diffraction (XRD) analysis showed
that it contained 84 wt % kaolinite (Al2Si2O5(OH)4) and 16 wt % halloysite (Al2Si2O5(OH)4·2H2O)
(Figure 1). A D5000 X-ray diffractometer (Siemens S.A., Lac Condes, Chile) was used and the data
were processed with Total Pattern Analysis Software (TOPAS) (Siemens S.A., Lac Condes, Chile).
The FTIR spectrum (Figure 2) showed a double peak at 3696 and 3654 cm−1, characteristic of the kaolin
group. Three absorption bands at 3696, 3654 and 3621 cm−1 reflected the high structural order of the
samples by the OH stretching of the inner-surface hydroxyl groups. There was Si–O stretching at 1115,
1032 and 1009 cm−1. Al–O–Si deformation appeared at 539 cm−1, Si–O–Si deformation appeared at
471 cm−1 and Si–O deformation appeared at 431 cm−1. The zeta potential at pH 8 in distilled water was
−40 mV. This was measured using a Zetameter System 4.0 (Zeta-meter, Staunton, VA, USA) following
the methodology of Jeldres et al. [15].
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Quartz was acquired from a local Chilean store, where the SiO2 content detected by quantitative
XRD was over 99 wt % (see Figure 3) and the zeta potential in distilled water at pH 8 was −45 mV.
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Figure 3. X-ray diffraction (XRD) for quartz powder.

The volume weighted particle size distribution (PSD) was obtained using a Microtrac S3500 laser
diffraction particle size analyser (Verder Scientific, Newtown, PA, USA). The PSD of the quartz and
kaolin samples are shown in Figure 4, where it was found that 10% of the particles were smaller than
d10 = 1.8 and 3.8 µm in the samples of kaolin and quartz, respectively.
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Seawater was obtained from the San Jorge Bay in Antofagasta, Chile. The water was filtered
at 1 µm using a UV filter system to eliminate the bacterial activity. The cation concentrations were
determined by atomic absorption spectrophotometry: Na+: 10.9 g/L; Mg2+: 1.38 g/L; Ca2+: 0.4 g/L; K+:
0.39 g/L. By the argentometric method, Cl− was found to be 19.6 g/L. By acid-base volumetry, HCO3−

was found to be 0.15 mg/L. The conductivity was 50.4 mS/cm at 25 ◦C and natural pH.
The pH was raised with sodium hydroxide (NaOH) of analytical grade (over 98%), with the

presence of sodium carbonate less than 0.5%. The pulps were mixed with a mechanical stirrer, and the
reagent was added gradually. The pH was recorded with a PHS-3BW pH meter (Bante Instrument,
Shanghai, China).

2.2. Rheology

Stock slurries of silica and kaolin were prepared at 68 and 37 wt %, respectively, by mixing the
solid with seawater overnight with magnetic stirring. The pH was adjusted with sodium hydroxide
either to pH 8 or 10.7. Once prepared, a 60 mL aliquot was extracted to perform the rheological assays,
while the remaining pulp continued under mixing. Each aliquot was used for a single rheological test
and then discarded.
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The experiments were carried out on an Anton Paar MCR 102 rheometer, and the data were
processed with Rheocompass software. A vane-in-cup configuration was used to minimise the wall-slip
effects. The diameter of the vane was 2.2 cm and that of the cup was 4.2 cm.

Creep tests were performed by applying constant stress for 1200 s, which generated an increase
in the strain angle (θ) as a function of time. Then, the shear strain (γ) was obtained by Equation (1),
considering that the material has linear viscoelastic behaviour:

γ =
2θ(

1− (dv/dc)
2
) (1)

where θ is the strain angle, dv is the vane diameter and dc is the cup diameter. The apparent compliance
(J) is the apparent shear strain divided by the applied shear stress as follows:

J =
γ

τcreep
. (2)

If J remains constant concerning the applied stress, the slurry exhibits a linear viscoelastic
behaviour; otherwise, it is a nonlinear viscoelastic material. Equation (1) is valid only for linear
viscoelastic materials, but errors due to nonlinear viscoelasticity are expected to be small because the
main interest of this study was to capture only the trend of transition behaviour. The yield stress was
determined as the average between the stress that causes a maximum strain (critical strain) and the
minimum stress necessary for the pulp to start flowing instantly.

The oscillatory tests were carried out for a frequency sweep between 0.1 and 100 rad/s, keeping
the shear strain at 0.5%, previously selected by a sweep amplitude. This ensured that the test was
performed in the linear viscoelastic regime, wherein the deformation is proportional to the applied
stress, and the viscoelastic moduli have physical meaning.

3. Results

This section analyses the viscoelastic behaviour of silica and kaolin suspensions in seawater, using
the results of the creep and oscillatory sweeps tests. Different rheological parameters were obtained,
such as apparent critical strain, yield stress, viscoelastic modulus and phase angle. These parameters
were associated with the variations of pH and the appearance of magnesium precipitates, which
are made in seawater at alkaline conditions, and were distinguished by speciation graphs and the
consumption of sodium hydroxide.

3.1. Formation of Magnesium Precipitates

The principal chemical reactions that make soluble magnesium complexes and solid precipitates
in seawater are the following:

CO2(g) + H2O(l) ↔ H2CO3

H2CO3 ↔ HCO−3 + H+

HCO−3 ↔ CO2−
3 + H+

Mg2+ + HCO−3 ↔ MgHCO+
3

Mg2+ + OH− ↔ MgOH+

Mg2+ + CO2−
3 ↔ MgCO3

Mg2+ + 2OH− ↔Mg(OH)2

The formation of magnesium precipitates and complexes generates a buffer effect, which can be
identified in a range where a high amount of reagent is required to raise the pH slightly. Nevertheless,
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the presence of particles (concentrated slurries) interferes with the concentration of ions dissolved in
solution, modifying precipitation reactions and the buffer effect. Indeed, a chemical analysis by Atomic
Absorption Spectroscopy (AAS) determined that the magnesium in seawater reduced from 1380 to
1280 mg/L in the quartz pulps, while it dropped from 1380 to 658 mg/L in the kaolin suspension.

The amount of sodium hydroxide used (g/L) to raise the pH of seawater, quartz pulp and kaolin
pulp, normalised by the amount required to obtain pH 12.2, is shown in Figure 5. A marked buffer
effect was observed for pure seawater and quartz slurry between pH 10 and 11, which coincided with
the formation of magnesium precipitates, where carbonate precipitation started at pH 9.3 and ended
at pH 10, while hydroxide deposition started at pH 10.3 and completed at pH 11 [39–41]. This effect
was not clear in the kaolin pulp, indicating a lower formation of magnesium precipitates, which is
compatible with the loss of magnesium in solution (from 1380 to 659 mg/L). Considering the low
cationic exchange capacity of kaolinite [42,43], it is expected that magnesium cations are attached to
the anionic sites of the clay’s surface by electrostatic attraction. The adsorption of magnesium ions
reduces its concentration in solution, reducing the formation of solid complexes at a high pH.

Metals 2019, 9, x FOR PEER REVIEW 7 of 13 

 

the presence of particles (concentrated slurries) interferes with the concentration of ions dissolved in 
solution, modifying precipitation reactions and the buffer effect. Indeed, a chemical analysis by 
Atomic Absorption Spectroscopy (AAS) determined that the magnesium in seawater reduced from 
1380 to 1280 mg/L in the quartz pulps, while it dropped from 1380 to 658 mg/L in the kaolin 
suspension. 

The amount of sodium hydroxide used (g/L) to raise the pH of seawater, quartz pulp and kaolin 
pulp, normalised by the amount required to obtain pH 12.2, is shown in Figure 5. A marked buffer 
effect was observed for pure seawater and quartz slurry between pH 10 and 11, which coincided with 
the formation of magnesium precipitates, where carbonate precipitation started at pH 9.3 and ended 
at pH 10, while hydroxide deposition started at pH 10.3 and completed at pH 11 [39–41]. This effect 
was not clear in the kaolin pulp, indicating a lower formation of magnesium precipitates, which is 
compatible with the loss of magnesium in solution (from 1380 to 659 mg/L). Considering the low 
cationic exchange capacity of kaolinite [42,43], it is expected that magnesium cations are attached to 
the anionic sites of the clay’s surface by electrostatic attraction. The adsorption of magnesium ions 
reduces its concentration in solution, reducing the formation of solid complexes at a high pH. 

 

Figure 5. Sodium hydroxide (NaOH) required to modify the pH of (i) seawater, (ii) quartz slurry in 
seawater and (iii) kaolin slurry in seawater. NaOH is mass (g) consumed per 1 L of solution, 
normalised by the concentration at pH 12.2 (seawater: 6.1 g/L; quartz: 5.7 g/L; kaolin: 9.1 g/L). 

3.2. Creep Tests 

Figure 6a–d display the creep tests for quartz and kaolin slurries prepared with seawater at pH 
8 and 10.7. The temporal evolution of the apparent strain was measured under fixed stress for 1200 
s, and in all cases, a maximum strain was observed that remained constant at high times. When the 
applied stress was greater than a critical value, the pulp started to flow, and its deformation diverged. 
An apparent instantaneous strain was observed for the quartz pulps when the stress was lower than 
half of the yield stress (Figure 6a,b). This effect was not observed for kaolin pulps, which exhibited a 
gradual increase in their apparent strains (Figure 6c,d). 

 Time [s], t
10 100 1000

Ap
ar

en
t s

he
ar

 s
tra

in
, γ

 

0,01

0,1

1

10

100
5 Pa 
10 Pa 

15 Pa 
20 Pa 
30 Pa 
32 Pa 
35 Pa 
40 Pa 
41 Pa
42 Pa
43 Pa
44 Pa
45 Pa
46 Pa

 b) Quartz pH 10.7

 
(a) (b) 
Time [s], t

10 100 1000

Ap
ar

en
t s

he
ar

 s
tra

in
, γ

 

0,01

0,1

1

10

100

10 Pa 
15 Pa 
20 Pa 
30 Pa 
35 Pa 
40 Pa 
45 Pa 
50 Pa 
55 Pa 
56 Pa    a) Quartz pH 8   

Figure 5. Sodium hydroxide (NaOH) required to modify the pH of (i) seawater, (ii) quartz slurry in
seawater and (iii) kaolin slurry in seawater. NaOH is mass (g) consumed per 1 L of solution, normalised
by the concentration at pH 12.2 (seawater: 6.1 g/L; quartz: 5.7 g/L; kaolin: 9.1 g/L).

3.2. Creep Tests

Figure 6a–d display the creep tests for quartz and kaolin slurries prepared with seawater at pH 8
and 10.7. The temporal evolution of the apparent strain was measured under fixed stress for 1200 s,
and in all cases, a maximum strain was observed that remained constant at high times. When the
applied stress was greater than a critical value, the pulp started to flow, and its deformation diverged.
An apparent instantaneous strain was observed for the quartz pulps when the stress was lower than
half of the yield stress (Figure 6a,b). This effect was not observed for kaolin pulps, which exhibited a
gradual increase in their apparent strains (Figure 6c,d).
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with the formation of solid complexes in seawater. In the literature, it has been reported that these 
products can adsorb onto the surface of the particles, having different consequences on the
rheological properties [22]. The solid complexes may form bonds between quartz particles, mainly 
due to the reduction of zeta potential [20], but the strength of these bonds would be weaker compared 
with the cationic bridges generated by the divalent Mg2+ ions. For this reason, it is expected that at 
pH 8, where the concentration of Mg2+ ions in solution is higher, the yield stress is higher. On the
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precipitates. 
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Figure 6. Creep test for quartz and kaolin slurries at varied applied stresses: (a) quartz at pH 8,
(b) quartz at pH 10.7, (c) kaolin at pH 8 and (d) kaolin at pH 10.7.

The yield stress for each pulp examined in this study is shown in Figure 7. The quartz slurry at
pH 8 reached a yield stress of 56 Pa, which was significantly higher than the 43 Pa obtained at pH
10.7. Interestingly, the decrease of yield stress by increasing the pH (from pH 8 to 10.7) coincided
with the formation of solid complexes in seawater. In the literature, it has been reported that these
products can adsorb onto the surface of the particles, having different consequences on the rheological
properties [22]. The solid complexes may form bonds between quartz particles, mainly due to the
reduction of zeta potential [20], but the strength of these bonds would be weaker compared with
the cationic bridges generated by the divalent Mg2+ ions. For this reason, it is expected that at pH
8, where the concentration of Mg2+ ions in solution is higher, the yield stress is higher. On the other
hand, the kaolin suspension at pH 8 had a yield stress of 38 Pa, while at pH 10.7, it increased to
42 Pa. This behaviour is contrary to the quartz pulp and can be justified by the low presence of
solid precipitates.
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Figure 7. Yield stress for quartz and kaolin slurries at different pH levels.

Critical shear strain is an attractive property of materials, which is directly associated with the
strength of the bonds that form the particle networks just before they begin to flow [44]. Figure 8 shows
the critical strain, where for both minerals, the shear strain decreased as there was an increase in pH.
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Figure 8. Critical shear strain for quartz and kaolin slurries at different pH levels.

An exceptional contrast of the system that held precipitates (quartz at pH 10.7) with respect to
the rest of the slurries is that the yield stress was displayed in a range of stress (40–46 Pa) instead of a
single point. For that matter, the pulp began to flow depending on both the applied stress and the time
of stress application (Figure 9). Otherwise, for pulps in which there were no solid precipitates, the
yield stress was a precise value: quartz pH 8, 55 Pa; kaolin pH 8, 38 Pa; and kaolin pH 10.7, 42 Pa.
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Figure 9. Relationship between yield stress and applied time for quartz slurries at pH 10.7.

Mineral pulps may exhibit linear or nonlinear viscoelastic behaviour, or both, depending on the
applied stress. A linear response implies that compliance remains constant, independent of the stress
which was employed. This characteristic is shown in Figure 10, considering the compliance at the end
of the experiment (1200 s). The kaolin pulp at pH 8 suggested linear viscoelastic behaviour when the
stress was lower than 20 Pa, while at pH 10.7, the linear response limit was up to the stress of 35 Pa.
On the other hand, the quartz slurry at pH 8 had a linear behaviour up to 30 Pa, while at pH 10.7,
the system of which was affected by the presence of complexes and solid precipitates, the linearity
decreased considerably to a stress lower than 10 Pa.
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3.3. Oscillatory Rheology 

Oscillatory rheology tests are a good descriptor of pulp strength. In this case, a frequency sweep 
was performed considering a constant amplitude of 0.5%, previously defined by an amplitude sweep 
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shown in Figure 13, was higher at pH 8 than at pH 10.7, for both minerals. This suggests that the pH 
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3.3. Oscillatory Rheology

Oscillatory rheology tests are a good descriptor of pulp strength. In this case, a frequency sweep
was performed considering a constant amplitude of 0.5%, previously defined by an amplitude sweep
test. This ensured that the pulp was in a linear viscoelastic regime. Figure 11 shows the response of both
moduli G’ and G” concerning the angular frequency for the silica suspension. Viscoelastic moduli had
a higher value when silica was at pH 8, meaning a greater resistance of the particle networks, while at
pH 10.7, both moduli were diminished. Interestingly, for both pH levels, the moduli G’ and G” crossed
within the range of frequencies examined. The crossover point was an indicator of the relaxation time,
using the reciprocal of frequency under conditions where both moduli intersected. While at pH 8 the
relaxation time was 8.6 s, at pH 10.7, the value increased to 10.8 s. For the kaolin pulps, the behaviour
was different (Figure 12), and for both pH values (8 and 10.7), the storage modulus (G’) was higher
than the loss modulus (G”). It can be argued that both moduli had a weak dependence on frequency,
which is a typical gel behaviour [32]. The phase angle, as shown in Figure 13, was higher at pH 8 than
at pH 10.7, for both minerals. This suggests that the pH changed the internal structure of the pulps,
adopting a more solid-like character when the pH was more alkaline. In the silica suspension, it was
observed that at frequencies greater than 30 rad/s, the phase angle was independent of the applied
frequency, while for kaolin pulp, this happened at over 10 rad/s.
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4. Conclusions 

The viscoelastic properties of quartz and kaolin suspensions in seawater were analysed, 
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plants, and (ii) pH 10.7, which is attractive since it may enhance the quality of concentrates. 
Nevertheless, the latter is characterised by speciation reactions of divalent seawater cations, which 
lead to the formation of solid precipitates, mainly magnesium complexes. This feature changes for
slurries according to the mineral species because the particles' surfaces can adsorb a portion of the
cations, reducing their content in solution. Here, quartz pulp reduced magnesium from 1380 to 1280 
mg/L. Since it was not a large difference from the solid-free seawater, the disposition of solid 
complexes at pH 10.7 was similar. As rheological consequences, the increase in pH caused both yield 
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4. Conclusions

The viscoelastic properties of quartz and kaolin suspensions in seawater were analysed, examining
two different conditions: (i) pH 8, which resembles that used by copper concentrating plants, and
(ii) pH 10.7, which is attractive since it may enhance the quality of concentrates. Nevertheless, the
latter is characterised by speciation reactions of divalent seawater cations, which lead to the formation
of solid precipitates, mainly magnesium complexes. This feature changes for slurries according to
the mineral species because the particles’ surfaces can adsorb a portion of the cations, reducing their
content in solution. Here, quartz pulp reduced magnesium from 1380 to 1280 mg/L. Since it was not a
large difference from the solid-free seawater, the disposition of solid complexes at pH 10.7 was similar.
As rheological consequences, the increase in pH caused both yield stress and viscoelastic moduli to
drop, suggesting that the solid precipitates diminished the strength of the particle networks that made
up the suspension. For the kaolin slurries, the yield stress raised when the pH increased, but unlike
quartz, there was significant adsorption of magnesium cations. In fact, the concentration of magnesium
in solution fell from 1380 to 658 mg/L.

The dynamic oscillatory assays revealed structural changes for both pulps; in particular, the phase
angle was higher at pH 8 than at pH 10.7, showing that the more alkaline suspension exhibited a more
solid-like character.
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