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Abstract

We explore a method to obtain presentations of the group of units of an integral group ring
of some finite groups by using methods on Kleinian groups. We classify the nilpotent finite
groups with central commutator for which the method works and apply the method for two
concrete groups of order 16.

1 Introduction

We denote by R* the group of units of a ring R (with identity). Let G be a finite group. The
problem of studying the structure of the group of units ZG* of the integral group ring ZG has
attracted the attention of many authors. The last chapter of the book of Sehgal [17] contains a list
of open problems. One of these problems asks for giving presentations by generators and relations
of ZG* for some finite groups G. In this paper we explore a method to obtain presentations of
ZG* for some finite groups G by using techniques on Kleinian groups, that is discrete subgroups of
PSLy(C). In order to present the main idea it is convenient to consider a more general situation.

Let A be a finite dimensional semisimple rational algebra and R an order in A. (By an order,
we always mean a Z-order.) It is well known that R* is commensurable with the group of units of
every order in A and with Z(R)* x Ry, where R; denotes the group of elements of reduced norm 1
of R. Recall that two groups G and H are said to be commensurable if there are subgroups G; of G
and H; of H such that [G : G1] < oo, [H : H1] < oo and G and H; are isomorphic. In particular,
if A= [],cx Az where each A; is a simple algebra then R* is commensurable with [] .y Z(R;)* x
[L.cx(Rz)1, where R, is an order in A, for each z € X. Since Z(R;)* is well understood by
the Dirichlet’s Unit Theorem, the difficulty in understanding R* up to commensurability relies on
understanding the groups of elements of reduced norm 1 of orders in the simple components of the
Wedderburn decomposition of A. If each simple component S of A can be embedded in M»(C)
so that the image of (Rg); is a discrete subgroup of SLy(C), for Rg an order of S, then one can
describe R* up to commensurability by using methods on Kleinian groups to describe the groups
of (Rg)1, for S running on the simple algebras of the Wedderburn decomposition of A. In case
A = QG, the rational group algebra of a finite group G, then this method could be used to study
the group of units of the integral group ring ZG which is an order in QG. This is the motivation
of the following definition.
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Definition 1.1 A finite dimensional semisimple rational algebra A is said to be of Kleinian type
if for every simple quotient S of A there is an embedding ¢ : S — Ms(C) such that ¢(R1) is a
discrete subgroup of SLa(C) for some order R of S.

A finite group G is said to be of Kleinian type if and only if the rational group algebra QG is
of Kleinian type.

Recall that a presentation of a Kleinian group can be derived from a fundamental polyhedron by
using methods that go back to Poincaré and Bianchi [15, 2]. Thus if G is a finite group of Kleinian
type then in principle one can obtain a presentation of a group commensurable with ZG* as follows:
firstly computing the Wedderburn decomposition [[;* ; A; of the rational group algebra QG and
an order R; of A; for each ¢; secondly applying Dirichlet’s Unit Theorem to obtain presentations
of Z(R;)*; thirdly computing a fundamental polyhedron of (R;); for every ¢; fourthly using these
fundamental polyhedrons to derive presentations of (R;); for each i and finally putting all the
information together, namely ZG* is commensurable with a direct product of the groups for which
presentations have been obtained.

Once we have explained the main idea we are leaded to several problems in order to come true
the hope of obtaining concrete presentations of ZG* for many groups. The first problem is to
understand what is the scope of the method, that is to classify the finite groups of Kleinian type.
The second, but not easier, problem is to obtain fundamental polyhedrons for the discrete groups
appearing along the process. In this paper we deal with these two problems but most of the space
is devoted to the first one. Notice that if G is of Kleinian type then all the reduced degrees of G
are at most 2. This implies that if G is not nilpotent then G has a nilpotent subgroup of index 2
[6]. This suggest to concentrate at a first instance on the classification of the nilpotent groups of
Kleinian type.

Now we explain the contents of the several sections of the paper. In Section 2 we establish
the basic notation and explain Poincaré’s method to obtain a presentation of a Kleinian group
from a fundamental polyhedron. In Section 3 we first characterize the simple algebras of Kleinian
type. (Notice that A is of Kleinian type if and only if every simple quotient of A is of Kleinian
type.) Then we use this characterization and results from [8] to characterize the finite nilpotent
groups of Kleinian type in terms of the Wedderburn decomposition of the corresponding rational
group algebra. Using this characterization we obtain the complete list of the finite nilpotent groups
of Kleinian type that are not 2-groups. Another consequence of the characterization of the finite
nilpotent groups of Kleinian type in terms of its Wedderburn decomposition is that every nonabelian
finite nilpotent group of Kleinian type is of the form G; x A where (G; is an indecomposable 2-group
(of Kleinian type) and A is an abelian group of exponent a divisor of 4 or 6. Thus the difficulty
on describing the finite nilpotent groups of Kleinian type relies on the 2-groups. In Section 4 we
describe explicitly the 2-groups of Kleinian type that satisfy the additional condition that every
commutator is central. We finish the paper by obtaining, in Section 5, presentations of a normal
complement of £G in ZG*, for two concrete finite groups of Kleinian type of order 16. There are
nine non abelian groups of order sixteen: Qg x Ca, Dy x Co, Dg, Q1g, DTG? Dis, D, P and H (see
Section 2 for the notation). The only one that is not of Kleinian type is Dg. It is well known that all
the units of Z(Qs x C2) are trivial. A description of ZG* in terms of matrices has been obtained for
the remaining eight groups in [7] and [10]. If G = Dy x Co, Q16, P or H then ZG* has a subgroup of
finite index which is a direct product of free groups. Such a subgroup with minimal index in ZG*
has explicitly computed in [16] (see also [7, 13]). We obtain presentations for normal complements
of the trivial units in ZD* and (ZDj;)*. Since Di4 is also of Kleinian type, the method explained
above is available for this group but the computations seem to be much more complicated than for
D and D1+6.



2 Preliminaries

The group of units of an arbitrary ring B is denoted by B* and if B is embedded in a finite
dimensional rational algebra, then B; denotes the subgroup of B* formed by the elements of reduce
norm 1.

For every positive integer n, C,, denotes the cyclic group of order n, D,, the dihedral group of
order 2n and ()4, the quaternion group of order 4n, that is D,, and ()4, are given by the following
presentations:

D, = {a,bla®™=b>=1,ba=a"'b)
Qin = {a,bla®” =a"b? =1,ba = a'b)

We also need the following groups

Dis = {a,bla® =a®=1,ba = a’b)

Dis = (a,bla® =a® =1,ba = a®b)

D = {a,bcla®=1=0b%c*=1,ac= ca,bc = ch,ba = c*ab)
P = (a,bla* =b* = 1,ba = a®b)

H = ({(a,bla* =b* = (ab)? = [a®,b] = 1)

Dt = (a,b,cla* =b* = c*, ac = ca,bc = cb,ba = ca’b)

If R is a commutative ring and a and b are two non zero elements of R then (a]’%b) denotes the

quaternion R-algebra defined by a and b, that is the R-algebra given by the following presentation:

b
(aé ) = Rli, jli* = a,5* = b, ji = —ij].

In case a = b = —1, then the previous ring is denoted by H(R).

If G is a group and X is a finite subset of G then X denotes the element of QG given by
X = & > zex . Notice that if X is a subgroup of G' then X is idempotent which is central in
QG if and only if X is normal in G.

We finish this section by recalling some basic facts on groups acting on 3-dimensional hyperbolic
space. We refer to [1], [3] and [4]. We are going to use Poincaré’s model of the 3-dimensional
hyperbolic space, that is the upper half space H> = {(x,y,7) € R3 : » > 0}. The projective
special linear group PSLy(C) can be identified with the group Isom™ (H?) of orientation preserving
isometries of H®. Recall that a subgroup of SL(C) is discrete (in the obvious Euclidean topology)
if and only if its image in PSLy(C) acts discontinuously on H3. Such groups are known as Kleinian
groups.

If G is a Kleinian group and D is a fundamental polyhedron of G then a presentation of G can
be derived from D. This is explained in [1] for Fuchsian groups and in [4] and [12] for Fuchsian
and Kleinian groups. For the convenience of the reader we explain how to obtain a presentation
of G from a fundamental polyhedron D of G. The main ingredients of the method are the sides
and the edges of D. The sides are the subsets of H? of the form Sg = DN g(D) with g € G which
have dimension 2 (that is, contained in an hyperplane of H3 but not in a line) and the edges are
the sets of the form ey, = s4 N sp, of dimension 1 (that is contained in a line but not in a point).
The sides are congruent in pairs under G (namely if s, is a side, then s,-1 is another side and
g(s4-1) = 54), and the side pairing transformations generate G. Let X C G such that {s;: g € X}
is a set of representatives of the pairs of sides. A full set of relations of G is formed by the reflection
relations and the cycle relations. One side s, is paired with itself if and only if g> = 1. These are
the reflection relations. A cycle is a list of even length

[elagla €2,02,€3,..., envgn]



where for each i = 1,...,n, ¢; is an edge, g; € X or 91;_1 € X, and g;(e;) = ej+1 where e,11 = ey.
Each cycle gives rise to a relation (g, ---g1)F = 1 where k is the order of g, ---g1. These are the
cycle relations. The value of k can be also computed using geometrical information [1, 4, 12].

3 Finite Groups of Kleinian type

In this section we firstly classify the simple algebras of Kleinian type. Note that a finite dimensional
semisimple rational algebra is of Kleinian type if and only if its simple quotients are of Kleinian
type. Then we use the classification of the simple algebras of Kleinian type to obtain a precise
characterization of the finite nilpotent groups of Kleinian type in terms of the Wedderburn de-
composition of the corresponding rational group algebra. Finally we use this characterization to
describe explicitly all the finite nilpotent groups of Kleinian type that are not 2-groups.

Notice that the condition on an order R of a simple finite dimensional rational algebra S in
Definition 1.1 does not depend on the particular order selected (see [4, Theorem 2.2.6]). The clue of
the proof of next proposition, that is the use of the Strong Approximation Theorem, was suggested
by Fritz Grunewald in a private communication.

Proposition 3.1 A finite dimensional rational simple algebra S is of Kleinian type if and only if
one of the following conditions hold:

1. S is a number field,

2. S is a totally definite quaternion algebra,

.S = MZ(Q);

Co

. S8 = My(Q(+/d)) where d is a negative square free integer or

B

5. S is a division quaternion algebra over a number field K with exactly one pair of complex
embeddings such that S is ramified at all the real embeddings of K.

Proof. If S satisfies condition 1 or 2 then R; is finite for every order in S and so it is of Kleinian
type. Obviously S is of Kleinian type if it satisfies condition 3 or 4. Finally, if S satisfies condition
6 then it is of Kleinian type by [3, Theorem 10.1.2].

Conversely, assume that S is of Kleinian type. Since S embeds in My(C), then necessarily S is
either a number field, and therefore condition 1 holds, or S is a quaternion algebra over its centre.
In the remainder of the proof we assume that S is a quaternion algebra over its centre K.

Let o01,...,0, be representatives up to conjugation of the non real embeddings of K in C,
Ty, ..., T the real embeddings of K at which S does not ramify and pq, ..., tm the real embeddings
of R at which S ramifies. Then there are natural embeddings f,, : S — M>(C), fr, : S — M(R)
and f,, : S — H(R). By hypothesis f,(R1) is a discrete subgroup of SLy(C) for some embedding
p: K — C and we may assume that p is either o,,, 7 or ;.

Assume first that p = 7. Then f (R1) is a Fuchsian group and therefore every free abelian
subgroup of fr, (R1) is cyclic. This implies that K = Q, because f (R1) contains a lattice of

dimension [K : Q] formed by the elements of the form < L 7(@)

0 1 ) with z in the centre of R.

Thus either condition 2 or 3 holds.
Assume now that p = o, or p = p,. By the Strong Approximation Theorem (see [14] or [18]),
if k> 1then f5, X -+ X fo, X fry X -+ X fr, X fu, X -+ X f,, maps Ry into a dense subgroup of
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SLa(C)" x SLy(R)*=1 x H(R)P* and if n > 2 then fyy X -+ X fo, X fry X - oo X fro X fuy X -+ X fun,
maps R into a dense subgroup of SLy(C)"~! x SLy(R)* x H(R)T. The first statement and the
hypothesis implies that & = 0. The second one implies that n < 1 and if p = 7,,, then n = 0. Thus,
if p = pm, then condition 2 holds. It only remain to consider the case p = ;. If S is not a division
algebra then m = 0 and hence condition 4 holds. Otherwise condition 5 holds.

The following lemma is a direct consequence of the obvious fact that the class of algebras of
Kleinian type is closed under quotients and subalgebras.

Lemma 3.2 The class of finite groups of Kleinian type is closed under subgroups and quotients.

Of course Proposition 3.1 provides a characterization of when a finite group G is of Kleinian
type in terms of the Wedderburn decomposition of QG. The following theorem is more precise and
provides the simple algebras that occurs as quotients of the rational group algebras of groups of
Kleinian type.

Theorem 3.3 The following conditions are equivalent for a finite nilpotent group G:
(a) G is of Kleinian type.

(b) Every noncommutative simple quotient of QG is isomorphic to either H(K), with K = Q or
Q(V2), or My(K), with K = Q, Q(v/—1), Q(v/=2) or Q(v/=3).

In this case if e is a primitive central idempotent of QG then one of the following cases hold:

1. If QGe 2 H(Q) then Ge = Qs.
(

2. If QGe = H(Q(v/2)) then Ge = Q1.

3. If QGe = M3(Q) then Ge = Dy.

4. If QGe = My (Q(v/—1)) then Ge = D, D or DT.

5. If QGe = My(Q(v/—2)) then Ge = D.

6. If QGe = My(Q(v/=3)) then Ge = Dy x Cs or Ge = Qg x Cs

Proof. (b) implies (a) is a direct consequence of Proposition 3.1.

Let G be a finite nilpotent group of Kleinian type and e a primitive central idempotent of QG
such that QGe is not commutative. Notice that Ge is of Kleinian type by Lemma 3.2. Assume first
that QGe is not a division ring. Then by Proposition 3.1, QGe = My(Q(V/d)) for d a non positive
integer. By Theorem [8, Theorem 2.2], Ge and QGe satisfy one of the conditions 3-6.

Assume now that QGe is a division ring. Then, by [8, Theorem 2.3], either Ge = Qan for n > 3
or Ge = Qg x C), for an odd integer n > 1 such that the multiplicative order of 2 module n is odd.
In the latter case H(Q(&,)) is isomorphic to a simple quotient of QGe. By Proposition 3.1, Q(&,)
has at most one pair of complex embeddings. Thus ¢(n) < 2, where ¢ denotes the Euler function.
Since n is odd, this implies that n = 3, contradicting the fact that the order of 2 module n should
be odd. Therefore Ge = Qan for n > 3. Let K = Q(&yn—2 +§2_nl_2). Since one of the simple quotients
of Q2n is isomorphic to My(K) and K is totally real, then K = Q, by Proposition 3.1. Thus n = 3
or 4. We conclude that Ge = Qg and QGe = H(Q) or Ge = Q16 and QGe = H(Q(v/2)). &

We close this section with two corollaries of Theorem 3.3 on the structure of the finite nilpotent
groups of Kleinian type. The first one shows that the difficulty relies on the identification of the
2-groups of Kleinian type and the second lists explicitly the nilpotent groups of Kleinian type that
are not 2-groups.



Corollary 3.4 Let G be a a finite non abelian nilpotent group of Kleinian type. Then G = G1 x A
where G is an indecomposable non abelian 2-group of Kleinian type and A is abelian of exponent
a divisor of 4 or 6.

Proof. If G; and G2 are two nilpotent non abelian groups such that G; x G3 is of Kleinian type
then, by Theorem 3.3, Q(G1 x G2) = QG; ®gp QG3 has a simple quotient in common with one of
the following algebras

H(Q) @ H(Q)
H(Q) ®q H(Q(v2))

H(Q) ®q M2(Q) = M>(H(Q))
M(H(Q(v2)))
(Q(v/—n))

111 111

H(Q) ©g Ms(Q(v—n)) M>(Q) @g Mo = My (Q(V—n))
My(Q(v'—n)) ©@g Ma(Q(v'—n)) 2My(Q(v—n))
My(Q(v=n)) ®g Ma(Q(v=m)) Q(v=n,v=m))

for n and m equal to either 1, 2 or 3 and n # m. This contradict Theorem 3.3.

Therefore, if G is a nilpotent non abelian group of Kleinian type, then G = G x A with Gy
an indecomposable non abelian group and A an abelian group. Furthermore, by Theorem 3.3, the
order of (1 is even. If n divides the exponent of A then G has a subgroup H = Gy x C,, which
is of Kleinian type by Lemma 3.2. Then QH has a non commutative simple quotient S such that
Z(S) contains Q(&,), where &, is a primitive n-th root of unity. By Theorem 3.3, ¢(n) < 2 and
hence n is a divisor of 4 or 6. |

Corollary 3.5 Let G be a finite nilpotent group which is not a 2-group. Then G is of Kleinian
type if and only if G is either abelian or isomorphic to H x A with A an abelian group of exponent
8 or 6 and H one of the groups given by the following presentations:

(a) (z,y|a* =y* = [2*y] = [2,9°] = [z, [z,9]] = [y, [2,9] = 1),

() (zy1,-oyn |2t = yF = [y, ys) = (22 0] = [z, 9], y5) = [z, 9i] 2] = 1),
(c) @iy | 2t =y = yile, v = [y ys] = [2%, 0] = [v7,2] = 1),

(d) (@1, oy | 22 = 47 = [yiyy) = (2,01, 93] = [, 0> = 1),

(e) (x,y1,- . yyn | 2° = yi = yPla,yi] = [y, yy] = [z, v, 2] = 1),

() @y oyn | 2t = yf = 2?7 = gl u) = [y, ys) = [y 2] = 1),

Proof. By [9], the following conditions are equivalent for a finite nilpotent group G:
1. Every non commutative simple quotient of QG is isomorphic to either M2(Q) or H(Q).

2. @ is either abelian or isomorphic to H x B with B an elementary abelian 2-group and H one
of the groups given by the presentations (a)-(f). (Warning: The list in [9] is displayed in a
different way.)

Assume that G = H x A where H is one of the groups (a) — (f) and A is an abelian group of
exponent 3 or 6. Set A = B x C where B is an elementary abelian 2-group and C' a non trivial
elementary abelian 3-group. By the previous paragraph, every non commutative simple component
of Q(H x B) is isomorphic to either H(Q) or M3(Q). Since the simple quotients of QA are all
isomorphic to either Q or Q(v/—3), every non commutative simple quotient of QG is isomorphic to



either H(Q), M2(Q) or H(Q) ® Q(v/—=3) & M2(Q(v/—-3)) & M>(Q) ® Q(v/=3). By Theorem 3.3, G
is of Kleinian type.

Conversely, assume that G is a non abelian nilpotent group of Kleinian type which is not a
2-group. By Corollary 3.4, G =2 H x B x C where B is a elementary abelian 2-group, C is a
non trivial elementary abelian 3-group and H is an indecomposable 2-group of Kleinian type. If
H(Q(v/2)), M2(Q(i)) or My(Q(+/—2)) is isomorphic to a quotient of QH, then QG has a simple
quotient isomorphic to either H(Q(v/2))®0Q(v/—3) = My (Q(v/2,v/—3)) or M2(Q(i))®0Q(v/—3) =
Ma(Q(V/3,1)) or Ma(Q(v/—2))20Q(v—3) = Ma(Q(v/—2,v/—3)), contradicting Theorem 3.3. Thus,
by Theorem 3.3, every simple quotient of QH is isomorphic to either H(Q) or M»(Q). By the first
paragraph of this proof and the indecomposability of H one deduce that H is isomorphic to one of
the groups (a)-(f). 1

4 2-Groups with Central Commutator.

In the previous section we have characterized the finite nilpotent groups of Kleinian type in terms of
its Wedderburn decomposition. Using this characterization we have obtained a complete description
of those which are not 2-groups and have shown that in order to describe all the finite nilpotent
groups of Kleinian type it is enough to describe those that are 2-groups. In this section we deal
with this problem. Unfortunately we have not been able to obtain a full description of these groups.
Nevertheless we are going to describe all the 2-groups of Kleinian type for which the centre contains
the commutator. Namely we prove the following theorem.

Theorem 4.1 Let G be a finite non abelian 2-group such that G' C Z(G). Then G is of Kleinian
type if and only if G is isomorphic to a quotient of H x C}* where m > 0 and H is the group given
by one of the following presentations.

By, = <$1,.’IJ2‘£I}§ = [xi,:c?] = [z, [xj, 2] = 1,4, 4,k = 1,2)
Az = <a/:1,m2,x3|ﬂv‘i1 = [xz,:c?] = [, [xj,2]] = 1,1 < i, 5, k < 3)
Azg = <:101,x2,553|xi1 = :U%[xl,:cg] = xg[xl,xg] = [mz,xg] =1,1<4,5,k <3)
B, = (xl,xg,...,wn]ﬁ:xi:[xi,a:?]:[mk,xl]:[a:i,[a:l,a:k]]:1,1§i,j§n,2§k,l§n>
Bna = (x1,79,...,2,]2f = xi[xl,xk] = [acz,:n?] =[xk, ) =[x, [x1,2]] = 1,1 <4, j < m,
2 <k,l<mn)

We denote by G the class of finite 2-groups of Kleinian type G such that G’ C Z(G).
The following two lemmas are easy consequences of Lemma 3.2 and Theorem 3.3.

Lemma 4.2 The class G is closed under subgroups and homomorphic images.

Lemma 4.3 If G € G and e is a primitive central idempotent of QG, such that QGe is noncom-
mutative then one of the following cases hold:

1. QGe 2 H(Q) and Ge = Qs.
2. QGe = M3(Q) and Ge = Dy.
3. QGe = M5(Q(i)) and Ge = D{; or D.

Therefore both (Ge)' and Ge/Z(Ge) are elementary abelian 2-groups.



Lemma 4.4 If G € G, then G x Cy € G.

Proof. The noncommutative simple quotients of QG are of the form H(Q), M2(Q) and M2(Q(7)),
and therefore the noncommutative simple quotients of Q(G x Cy) also are of this form.

The following lemma provides a first approach to the description of the elements of G.

Lemma 4.5 If G is a non abelian element of G, then Z(G) has exponent a divisor of 4 and both
G/Z(G) and G’ are elementary abelian 2-groups.

Proof. Let eq,e9,...,¢e, be the primitive central idempotent of QG. Each Ge; is a multiplicative
n
subgroup of QGe; and the map f: G — [] Ge; defined by f(g) = (ge1, gea, . .., gey) is an injective

homomorphism of groups such that the lcolmposition of f with the projection on each component
is surjective.

Assume that Gey,...,Gey are abelian and Gegy,...,Ge, are not abelian. By Lemma 4.3,
for each i > k, (Ge;)" and Ge;/Z(Ge;) are elementary abelian 2 groups. The first implies that the
exponent of G’ is 2. Let H = Ge; x---xGep and K = Gepqqx---xXGey,. Then f(Z(G)) C HxZ(K)

n n
and therefore f induces an homomorphism [’ : G/Z(G) — ][] K/Z(K) = ][] Gei/Z(Ge;).
i=k+1 i=k-+1
Furthermore f’ is injective because the composition of f with the projection on every component
is surjective. Thus G/Z(G) is elementary abelian.

Let g € Z(G). Then g(1 — é\’) is a central unit of QG(1 — é\’) By Lemma 4.3, QG(1 — é\’) =
H(Q)™ x M2(Q)* x M2(Q(i))" for some r,s,m > 0. Since the central periodic units of order a
power of 2 of H(Q), M>(Q) and M>(Q(i)) have order a divisor of 4, g*(1 — é\’) =(1- @) As G
is nonabelian we have that G’ # 1 and comparing coefficients it follows that ¢* € G’ and in fact
g* = 1. Therefore the order of g is a divisor of 4.

We are going to call the rank of a finite group G, denoted r(G), to the minimum of the
cardinalities of the generating subsets of G. As a consequence of Lemma 4.5, if GG is a nonabelian
element of G and 7(G) = n then G is a quotient of a group of the form

Bp = (x1,29, ..., 25|25 = [ml,x?] = [, [zj, 2] = 1,1 < 4,5,k <n)

The following proposition proves that the group Bs belongs to G and therefore by Lemma 4.2,
the non abelian groups in G of rank 2 are precisely the non abelian quotients of Bs.

Lemma 4.6 By € G.

Proof. The central primitive idempotents e of QBy(1 — E\é) are the following:

er=(1-Byafs3 es = (1 - B)(1 - 2})f(1 - })

2 = (1= By)atob(1 - ) er = (1= By)(1 — al)oba}
es=(-B(Ll-aDole3  es=(1-By(1-shad(l-3)
eq=(1— l/?é)gl\— :cl)/a\:‘ll(l —z2)x} eg = (1— B/é\)(l - xﬁ(l - xélx%x% -
es = (1 — By)ai(l —x3) e10 = (1 - By)(1 — 27)(1 — 23)(1 — afa3)

The corresponding simple algebra QGe; is isomorphic to M3(Q) if i < 4, isomorphic to H(Q) if
i = 4 and isomorphic to M2(Q(7)) if i > 4. The Proposition now follows from Theorem 3.3. |

If B, € G were true for every n then the elements of G would be the groups isomorphic to
quotients of the B,,’s. Unfortunately B,, ¢ G if n > 3. This is a consequence of next lemma.



Lemma 4.7 Let G € G such that G = (x1,x2,...,2,, Z(G)). Fixi=1,2,....,n and let T =T, =
([wi,z;)|j #1). If G #T, then z} € T.

Proof. If 2} ¢ T, then the image of z; in G/T is central element of a nonabelian element of G
whose order does not divide 4, contradicting Lemma 4.5. |

Notation 4.8 For the rest of the section, each time we consider a non abelian element G of G we
assume that G is a quotient of B,,. We are going to abuse frequently of the notation by denoting
by x; both the generators of B,, and its image in G. We also denote t;; = [z;,z;], both in B,, and
G.

By Lemma 4.5, t;; and xf are central elements for all 4, j. This implies that t?j = 1 and hence
tij = tji.

Frequently we are going to claim that one may assume some relation on the z;’s to hold. In that
case we mean that the corresponding assumption is possible after some changing on the z;’s. For
example, assume that G = (z1,x2, 23) and r(G’) = 2. Then we may assume that to3 = 1. Indeed, if
t;j = 1 for some i # j, then the claim follows after reordering the generators. If t13t23 = 1, then the
claim follows after replacing xo by xix9 in the list of generators. A combination of this change of
generators with a reordering deals with the cases t1ot13 = 1 and t13t93 = 1. Finally if t1ot13t03 = 1,
then the desired conclusion follows after replacing xo and x3 by z1x9 and zix3, respectively.

From Lemma 4.7 we deduce additional conditions for the groups of rank 3 in G.

Lemma 4.9 If G € G and r(G) = 3 then G is a quotient of one of the following five groups

By x Cy, Bsi = Bs/(tas,z5,23), Bso = Bs/(tas, x3t12, ht13),
Asy = Bs/(xt,23,23),  Ase = Bs/{(x], xit12, xit13).

Proof. If r(G') = 1, then we may assume that one of the z; is central, for instance x3, and
hence t13 = t93 = 1. From Lemma 4.5 we obtain that x§ = 1 and therefore GG is a quotient of
BQ X 04 = Bg/(tm,hg,ﬂ?%).

If r(G') = 2, then we may assume that to3 = 1 and that t12,t13 and t19t13 are all different to 1.
By Lemma 4.7, x5 € (t12), 73 € (t13) and (va23)* € (t12t13). This implies that either 25 = x5 =1
or 33‘21 = t19 and x% = t13, that is to say, G is a quotient of B3y or Bss.

Finally, assume that r(G’) = 3. Using Lemma 4.7 once more we have that there exist ag, as,
b1, B3, 71 and 2 in {0, 1} such that

4 _ yog03 4 _ 61,063 4 g2
Ty =1t35173, Ty =tiolys  and  x3 =ty3lo3

Then

(p19)* = 1929103458 € (119, t15tas)

(z123)t = 1551557432 € (t13, tratos)

(zox3)* = t9LE75E53772 € (o3, troty3)
and this implies that ag = (3, as = v9 and ;1 = 1. Put a1 = B, a2 = as y az = ag for a more
friendly notation. Then

4 ai+az a3 a3
4 _  gaza3 (r122)* = 1957113153
1 = U103 4 _  azja1tasgas
4 _ a0 d (r1z3)* = t15t75" 153 41
Lo = Tly3lo3 an 4 _  a140100+a3 (4.1)
m% 401402 (2w3)" = 12+13 23+ N
- 13723 4 a1+aza1+a3a2+a
(zrwgws)” = typ 1T T



Considering the eight possible values of (a1, as, as3), it follows that at least one of the seven elements
in (4.1) is equal to 1. Thus we may assume that 27 = 1, and hence as = a3 = 1. Then z3 = {}
and x3 = t{3. We conclude that G is a quotient of A3y (if a1 = 0) or Ass (if a1 =1). 11

In the proof of the Theorem 4.1 we will see that the 5 groups of Lemma 4.9 belong to G. This
will completes the description of the nonabelian elements of G of rank at most 3 as quotients of 5
groups. To describe the groups of rank greater than 3 the following lemma will be helpful.

Lemma 4.10 If G € G then r(G/Z(QG)) = 2 if and only if r(G') = 1.

Proof. Let G be an arbitrary finite group and p a prime integer. By [11, Lemma 1.4] G/Z(G) =
Cp, x Cp if and only if |G'| = p and every non linear irreducible complex representation of G has
degree p. Then the Lemma follows noticing that if G € G then every irreducible nonlinear complex
representation of G has degree 2. |

We are going to consider an elementary abelian 2-group of rank s as an n-dimensional vector
space over the field Fo with 2 elements. The elements 0 and 1 will be interpreted both as integers
and as elements of Fs.

Now we are going to introduce some notation. Let G € G such that G’ = (t) = Cy. To every
list 1, o, ..., x, of elements of G such that G = (x1,x9,...,z,, Z(G)) we associate a symmetric
matrix A = (a4j)i; € M, (F2) defined by the following formula ¢;; = t*4.

Consider now the element x = 2" --- 28" with a; € {0,1}. Then z is a central element of G if
and only if (g, -+, ay) belongs to the null space of the matrix A. From Lemma 4.10 we obtain
that this matrix has rank 2. This trivial observation is going to be used several times without

specific mention.

Lemma 4.11 If a finite group G has 4 elements x1,xa,x3, x4 such that [x1,x9] # 1, [x3,24] # 1
and [z;,x;] =1 for all1 <i<2<j <4, then GEG.

Proof. By Lemma 4.2 we may assume that G = (z1, x2, 3, z4). Then G’ = ([x1, x2]) = ([z3, 24]) =
(5 and the matrix associated to x1, s, T3, x4 is

0100
1 000
0 0 01
0 010

which has rank 4. Thus G € G. 1
We now prove two Lemmas for groups of rank 4 module its centre.
Lemma 4.12 If G € G and r(G/Z(G)) = 4 then r(G') = 3.

Proof. By Lemma 4.2 we may assume that r(G) = 4 and therefore G is a quotient of By, say
G = B4/T. Then T C Z(B4) because otherwise r(G/Z(G)) < 3. Moreover G' = B/, /(T N B}).

For every permutation ijkl of {1,2,3,4} let M;;_p = (tik, tit, tjk, tji, tijtu)-

Claim 1: TN B} € M;;_jy for any permutation ijkl of {1,2,3,4}

We argue by contradiction. By symmetry we may assume that 7N Bj C Mjs_34. Then
t1o & TMis_34 because otherwise we have that t1o = tm with t € T and m € Mjs_34. Hence
t € TN B} C Mja_34 and therefore t1o5 € Mya_34, a contradiction. Analogously ts4 & TMio_34.
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Then the quotient H = By/T Mjs_34 verifies the conditions of Lemma 4.11 and therefore H ¢ G
which contradicts Lemma 4.2 because H is isomorphic to a quotient of G. This proves Claim 1.
Claim 2: If r(ByNT) <2 then t;j; ¢ T for any 1 <1i,j <4 with i # j.
Claim 2, follows from Claim 1, if #(7'N B}) < 1. Therefore assume that r(7'N B)) = 2 and that
t;j € T for some 7 # j. By symmetry we may assume that ¢12 € 7', hence

T'N By = (ha, 113115153 155157)

for some «; € {0,1}, not all 0. Since TN B} € Mi3_24 and T'N B} € Mj4_23 we have that a1 # ay
and as # 3. By symmetry one may assume that «; = 1 and therefore ay = 0. If ag = 1 then
TN B:l = <t12,t13t14t?j>. Replacing z3 by x3x4 we have that T N Bi = <t12,t13t§2> C Myy_o3, a
contradiction. Therefore ay = 0, and hence TN B = (t12, t13t23t§‘2>. If a5 = 0, replacing x1 by x1x9
we have that TN B C My4_93 and if a5 = 1 replacing x4 by z12224 we have that TN B C Mj3_24
a contradiction. This proves Claim 2.

Claim 3: »(ByNT) >3

Assume that #(Bj NT) < 2 and therefore t;; ¢ T for all i # j, by Claim 2. Then one may
assume that t10t73t77155t51t57 € T for some «; € {0, 1}, not all 0. Replacing 2 and z; by zez5" x)>
and x125°xy* respectively we may assume that t19t5; € T'. Since t;; ¢ T we have that as = 1, that
is to say, t1atsq € T. Therefore there are (new) «a;’s such that

TN By = (tiataa, t = t15t15105155150150)

Since TN B) € Mia_34, necessarily oy # ag. By symmetry, we may assume that oy = 1 and ag = 0
obtaining that T N Bj = (t12t34, t12t]5t75t55t55). Arguing similarly as # a5 and a3 # ou. Again
taking advantage of the symmetry we may assume that as = 1 and therefore a5 = 0. If ag =1
then T'N Bjy = (ti2t34, t12t13t14). Replacing zo by zox3x4 we obtain that ¢19 € T', a contradiction.
If a3 = 0 then T'N BZL = <t12t34, t12t13t23>. Replacing 1 by T1T2X4 WE obtain that t13 S T, again a
contradiction. This proves Claim 3.

As a consequence of Claim 3 and Lemma 4.10 one conclude that 2 < 7(G’) < 3 and it only
remains to prove that r(G’) # 2. By means of contradiction we assume that r(G’) = 2.

So far in this proof we have used ¢;; to denote commutators in B4. Now we are going to change
the notation and put G = (x1, x2, x3,24) and adopt the conventions of Notation 4.8.

Claim 4: One may assume that G' = (t12,t13).

Proving Claim 4 is equivalent to prove that one may assume that G’ = (tqz,14y) for some
a,z,y € {1,2,3,4}. We may assume that t1o2 # 1. Let H = (t12,t13,t14, t23,t24). If r(H) = 2 we
may assume that ¢ and ¢13 are linearly independent. Otherwise we have that H = (t;2) and since
r(G’) = 2 we deduce that G’ = (t12,t34). By Lemma 4.11, there exist 1 < i < 2 < j < 4 such that
tij # 1. Since t;; € H, t;; = t12 and hence G’ = (t;;,t34). This finishes the proof of Claim 4.

Therefore one may assume that G’ = (t12,t13) and so one may assume also that to3 = 1,
as explained in Notation 4.8. Let us write t;4 = t?ﬁt% with ¢ = 1,2,3. If H = G/(t12) then
H' = t;3 = C5 and the associated matrix is (see paragraph before Lemma 4.11)

0 0 1 5
0 0 0 pB
1 0 0 pB3
Br B2 P30
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As the rank of this matrix has to be 2, §o = 0. By a similar argument with H = G/(t13) we obtain
the associated matrix

0 1 0 (6751
1 0 0 a9
0 0 0 a3

] G2 Qa3 0

from which we deduce that as = 0. Consider now H = G/(t12t13), obtaining the associated matrix

0 1 1 o+

1 0 0 (6%)

1 0 0 B
a;+ 061 az B3 0

and therefore ag = 3. Summarizing
tiy =ttt =155, taq =133

Replacing x4 by z{?z4 we may assume that ap = 0. Then :cg”:cglm is a central element of G
contradicting the initial hypothesis. In conclusion r(G’) = 3, finishing the proof of this Lemma. J

Lemma 4.13 If G € G and r(G/Z(G)) = 4 then there exist four elements x1,x2,x3,24 € G such
that G = <1‘1,$2,$3,$4,Z(G)>, G/ = <t12,t13,t14> = 023 and t23 = t24 = t34 =1.

Proof. By assumption there are z1,x2,x3, x4 such that G = (x1,x9, x3, 24, Z(G)). We adopt the
conventions of Notation 4.8. We start proving that one may assume that G’ = (t19,t13,t14) =
C’S. Assume the contrary. Then by Lemma 4.12, ¢4;,t4y,tq. are linearly dependent for every
permutation axyz of {1,2,3,4}. Since 7(G’) = 3 we may assume that t12 and t;3 are linearly
independent.

Assume that G’ = (t19,t13,t23). Since tq,, tay,taz are linearly dependent for every permutation
aryz of {1,2,3,4}, necessarily tiy € <t12,t13>, tog € <t12,t23> and t34 € <t13,t23>. If tiy = t(lthlig,
then by replacing x4 by :nggx4, we may assume that t14 = 1. Let us write

tog = 193453 and g = tO3E2.

Arguing as in the proof of Lemma 4.12 with the quotients G/(ti2,t13t23), G/(t13,t12t23) and
G /(tas, t12t13) we obtain that the three matrices

0 0 1 0 0 1 0 0 0 1 1 0
0 O 1 a3 1 0 1 a1+ aj 1 0 0 oy
1 1 0 81+ Bo 0 1 0 B 1 0 0 p
0 ag Bi+ [ 0 0 a1+az [ 0 0 an B1 O

have rank 2. Therefore ag = 2 = 0 and «; = (1. This implies that 27" x4 is central, which yields
to a contradiction.

We have proved that G’ # (ti2,t13,t23) and therefore either G’ = (t19,t13,t24) or G' =
(t12,t13,t34). Since x5 and z3 play symmetric roles, we may assume that G’ = (t12, t13,t24). More-
over, as we are assuming that t,;,t.y,t.. are linearly dependent for every permutation axyz of
{1,2,3,4} we have that to3 € (t12,t13) N (t12,t24) = (t12). We may assume that te3 = 1, by re-
placing z3 by zjxs if necessary. Besides t14 € (t12,t13), hence t14 = t‘btl{g and replacing x4 by
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w%aﬁgm we obtain that t14 = 1. The derived subgroup of the groups G/(t12,t13t24) has rank 2 and

its associated matrix is

0 0 1 0
00 O 1
10 0 b+c
01 b4+c¢c 0

which has rank 4, a contradiction.

Therefore we have proved that we may assume that G’ = (t12, t13,t14). Let us see that we also
may assume that to3 = tog = t34 = 1.

If tog & (t12,t13) by considering G/(t12,t13) we obtain a matrix of the form

0

—_ o O

* = O O
* O = O
S ¥ ¥ =

which has rank 4. Therefore to3 € (t12,t13) and by similar arguments we have that to4 € (t12,t14)
and tsg € (t13,t14). If tog = t‘thl{:;), replacing xo and x3 by m?m y x{x3 respectively we may assume
that t93 = 1. Let us write

tog = 315, taa = 13153
with a;,b;,¢; € {0,1}. Replacing x4 by :):Cl”x4 we may assume that a; = 0. By considering the
following quotients G/(t12t14,t13), G/(t12,t13t14) and G/(t12t13,t14) we obtain the following three
matrices

0 1 0 1 0 0 1 1 01 1 0
1 0 0 ¢ 0 0 0 c1 1 0 0 O
0 0 0 e 1 0 0 ba + co 1 0 0 by
1 ¢4 ¢ O 1 ¢ ba+co 0 0 0 by O

and deduce that cog = ¢y = by = 0, that is to say, to4 = t34 = 1 which finishes the proof. J

The next step is generalizing Lemma 4.13 to groups of rank at least 4. We will argue by
induction and for the inductive step we need the following Lemma.

Lemma 4.14 Let G € G such that r(G/Z(G)) =n > 3. Then there exist a subgroup H of G such
that r(H/Z(H)) =r(G/Z(G)) — 1.

Proof. We argue by induction in n. The result is trivial for n = 3. Assume that n > 4 and the
induction hypothesis. Let H be a subgroup of G such that

r(H/Z(H)) = max{r(K/Z(K)) : K a subgroup of G such that Z(G) C K and r(K/Z(K)) # n}

Clearly Z(G) C H and 2 < r(H/Z(H)) < n. Let {z1Z(H),x2Z(H),...,zxZ(H)} be a basis of
H/Z(H). Then {z1Z(G),x2Z(G), ...,z Z(G)} are linearly independent. Let {z1Z(G),z2Z(G), ...,
xnZ(G)} be a basis of G/Z(G). Assume that k& < n — 2. For every k < i < nlet K; = (H,x;).
Then k < r(K;/Z(K;)) < k+1<n. Thus r(K;/Z(K;)) = k, by the maximality of k, and H = K,
by the maximality of H. Thus G = (z1,...,zk, Z(G)), which yields to a contradiction. Thus
r(H/Z(H)) =n — 1 and the Lemma follows. 1

We can now generalize Lemma 4.13
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Lemma 4.15 Let G € G such that r(G/Z(G)) = n > 4. Then r(G') = n — 1 and there exist
T, T2, ..., € G such that G = (x1,22,...,2,, Z(G)), G' = (ti2,t13,...,t1n) and t;; = 1 for
2<i<j3<n.

Proof. We argue by induction on n with the case n = 4 being Lemma 4.12. Assume that n > 4
and the induction hypothesis.

By Lemma 4.14, G has a subgroup H such that r(H/Z(H)) = n — 1. By the induction
hypothesis there exist z1,z2,...,2,—1 € H such that H = (x1,22,...,2p—1,Z(H)), tij = 1 for
every 2 <i <n—1and t12,...,t(,_1) are linearly independent. In particular 7(G’) > n — 2. Then
there exists an element x,, € G such that G = (x1,z2,...,2,, Z(G)). We adopt the conventions of
Notation 4.8.

Notice that the induction hypothesis implies that if S € G with 7(S/Z(S)) = n then r(S") >
n— 2.

Claim 1: If r(G') = n — 2 then t;, € (t1;) for every 1 <i < n.

Assume that 7(G') = n — 2. Then G’ = (t12,...,t1(n—1)) and hence t1, = 173 .. .t??n__ll) for
some a; € {0,1}. We argue by contradiction and taken advantage of the symmetry we may
assume that to, & (t12). Let S = G/(t12) and adopt the conventions of Notation 4.8 in the group
S. With this notation we have that t13,...,¢(,—1) are linearly independent and t12 = 1 # ta,.
Let y = z{*...2% € Z(S) with a; € {0,1}. Then 1 = [z2,y] = 3" and therefore a, = 0.

Moreover 1 = [z1,y] = t73 . .. t(lla;ll) and since t13, . .., t;(,—1) are linearly independent we have that
az =---=ap—1 = 0. Finally 1 = [z3,y] = t{3, hence a; = 0. This proves that z1Z(S),...,z,Z(S)

are linearly independent and therefore r(S/Z(S)) = n. This yields to a contradiction because
r(S") =n — 3 and Claim 1 follows.

Claim 2: r(G') > n— 1.

Otherwise G' = (t12...ti(n—1)) = C3~% and hence t,, = 93 ... t??{il) for some a; € {0,1}. Then
replacing @, by 242 ... z," 'z, we may assume that t1,, = 1. By Claim 1, for every 1 < i < n, either
tin = 1 or t;, = ty;. Since z,, is not central there exists a 2 < ¢ < n such that t;, = t1;. Moreover,
as x1x, is not central there exists 2 < ¢ < n such that t;, # t1; and therefore t;,, = 1. By reordering
the s, if necessary, we may assume that t3, = t13 and t2,, = 1. Now we obtain a contradiction
by showing that the group S = G/(t12t13) satisfies r(S") = n — 3 and r(S/Z(S)) = n. The former
equality is obvious. To prove the latter equality notice that (adopting Notation 4.8 for the group
S) tig = t13 = tgp, # 1. Let y = z{* ... 2% € Z(S) with a; € {0,1}. Then 1 = [x9,y] = t{3 and
hence a; = 0. Besides 1 = [z3,y] = t5", hence a,, = 0. Moreover 1 = [z1,y] = {37314 .. .t‘ll?n_il)
and since t13, ... s t1(n—1) are linearly independent we have that ay = -+ = a,—1 = 0 and a2 = as.
Finally 1 = [z,,y] = t53, hence 0 = a3 = as. This finishes the proof of Claim 2.

Claim 3: r(G') =n — 1.

Recall that t;; =1 for 2<i < j<n—1andso G = (ti;,tin,t1n : 2 < i < n).

Assume that t12,...,t1(,—1), 1, are linearly independent. Let 1 < i,j < n with i # j. By
the case n = 4 we have that r((z1,z;, z;,2,)") < 3 and therefore t;, € (t1;,t15,t1n), thus G =
(t12, ... ti(n—1),t1n) and hence 7(G’) =n — 1.

Otherwise, that is, if t12,...,¢1(y—1),t1n are linearly dependent, then there exists 1 < i < n
such that t12,...,%1(n—1),tin are linearly independent, by Claim 2. Let 1 < j < n with j # i.
By the case n = 4 we have that r({x1,z;, zj,z,)") < 3 and therefore ti,,t;, € (t1;,t1;,tin). Thus
G’ = (t12,---,t1(n—1), tin) and hence r(G’) = n — 1. This finishes the proof of Claim 3.

Claim 4: t;, € (t1;) for every 1 <i < n.

For simplicity take ¢ = 2. If to, & (t12) let S = G/(t12). Clearly r(S’) = n — 2 and proving
that r(S/Z(S)) = n we obtain a contradiction with Claim 3. Let y = 2'...z% € Z(S) with
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a; € {0,1}. Then 1 = [z9,y] = t{5 and therefore a,, = 0. We also have that 1 = [z3,y] = t{3, hence
a; = 0. Besides 1 = [z1,y] = 73 .. ta?n* 1)’ hence a3 = -+ = ap—1 = 0. Finally 1 = [z,,y] = 3?2
thus as = 0. Thus Claim 4 follows.

To finish the proof consider the quotient S = G//(t1;t1;) for 1 < i < j < n. Arguing as before
we show that the assumptions ¢;, = 1 and t1; = t,; implies that r(S/Z(S)) = n and r(S") =n — 2
yielding a contradiction with Claim 3. Thus t;, =1 for all 1 <7 < n or t;, = t1; for all 1 < i <n.
The second case reduces to the first one by changing z; by x1x, and this finishes the proof of this

Lemma. |
Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We start proving that if G' is a quotient of H x C}"* with m > 0 and
H = By, A3y, Ass, Bu1 or By with n > 3 then G € G. By Lemmas 4.2 and 4.4 it is enough to show
that H € G for the five possible values of H. We have already seen in Lemma 4.6 that By, € G. So
let G = A31,A32, Bnl or BTLQ, with n Z 3.

Let H be the set of maximal subgroups of G’. We claim that it is enough to show that G/S € G
for every S € ‘H. Indeed, if X is a noncommutative simple quotients of QG then X is a quotient
of QG(1 — G’) Since {S(l - G’)|S € H} is a complete set of orthogonal central idempotents of
QG(1 — G’) X is a QGS(l — G’) for some S € H, and hence X is a quotient of QGS Since
QGS =~ Q(G/S), X is isomorphic to a simple quotient of Q(G/S). Thus, if G/S € G then X is of
Kleinian type and so G € G.

So fix S € H and prove that G/S € G.

Suppose first that G = Asz; or Agp. Then S is of one of the following forms: (t;j, tir), (tij, tictjx),
(ti2t13, t13ta3). Since Z(G/S) contains strictly Z(G)/S, r((G/S)/Z(G/S)) = 2. Let z,y € G/S
be two elements linearly independent modulo Z(G/S). Then G/S = (z,y) x Cy where (z,y) is
isomorphic to a quotient of By and therefore G/S € G, by Lemma 4.4.

Suppose now that G = By, or Bys. Consider the map ¢ : G' — G given by ¢(t{3-- - --t{") = x5?*-

-z for (ag,...,a,) € {0,1}"1. Notice that [x1, p(x)] = =, for every z € G'. Let {c3,...,c,} be
a basis of S and {c2,c3,...,cp} a basis of G'. Let y; = ¢(¢;). Then {21Z(G), y2Z(G), ..., ynZ(G)}
is a basis for G/Z(G) and therefore G = (x1, 92, ..., yn). We may assume, without loss of generality,
that y; = z;, that is to say, [x1,z;] € S for i > 3 and [x1,29] € G'\ S. Therefore

G/S = <.TJ1,:U2> X <x37"' 7$n> = <.’E1,$2> X CZIZ_Q

and (x1,x9) is isomorphic to a quotient of By. By Lemma 4.4 G/S € G and this finishes the first
part of the proof.

Conversely, let G be a nonabelian element of G and set n = r(G/Z(G)). Select elements
x1,T2,...,T, of G such that {x1Z(G),22Z(G),...,x,Z(G)} is a basis of G/Z(G). Let Z(G) =
(z1) X <+ X (2zp,) with z; of order k;. If H = (x1,22,...,x,) then H has a presentation of the form
(x1,2,...,2,|R) for some set of relations R. Moreover

Z(G) = (21, zm|2F = [21,25] = 1,1 <4, < m)
is a presentation of Z(G). Then G has a presentation of the form
(T1yeeoy Ty 21y ey Z2m| Ry zi = [z, 25) = [z, 2] = 1,h=2,(h,2) € T)

where T'= {(h,z) € H x Z(G) : h = z, in G}. By Lemma 4.5, k; divides 4 for each i =1,2,...,m
and therefore GG is isomorphic to a quotient of

(X1, oy Ty 215 -+ Zm| Ry zgl = 21, 25) = [z, 2] = 1) = H x C}".
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Since r(H) = R(H/Z(H)) = n, we have proved that we may assume without loss of generality that
n=r(GQ) =r(G/Z(Q)).

Since G is nonabelian, n > 2. If n = 2, then G is a quotient of By. If n = 3 then by Lemma 4.9,
G is a quotient of By xCy, A3y, As2, Bs1 or Bsy. Nevertheless from the hypothesis (G /Z(G)) = 3 we
deduce that the first case does not hold. Finally assume that n > 4. By Lemma 4.15, r(G') = n—1
and we may choose the z;’s such that G’ = (ti2,...,t1,) and t;; = 1 for 2 <4, j < n. The relations
8 = [xz,atf] = [zi,ti;] = 1 are deduced from Lemma 4.5. By Lemma 4.7 we have that z} € (t;)
for all 2 < ¢ < n. Then we only have to prove that either a:;1 =1forall 2 <i<mnor azf = 114
for all 2 < i < n. Otherwise, we may assume that x% =1 and $§ = t13. However, in this case

(mow3)t = t13 & ([w1, xox3]) which contradicts Lemma 4.7.

5 Two examples

In this section we are going to show how to use methods on Kleinian groups to obtain presentations
of the group of units of ZD and ZDI%. We present the method with all the details for D and avoid
the technical details for Dfﬁ.

By [7] ZD* = G x £D where G is the subgroup of PSLy(Z[i]) represented by the matrices of

the form
a 203
I1+2 < v 5 > (5.2)

with a, 3,7,0 € Z[i]. Moreover the action of D on G can be described by identifying D with a
subgroup of GLa(Z[i]) via the following identifications:

1 2 -1 0 .
a-(o _1>,b—< 1 1),0-1[.

Thus to obtain a presentation of ZD* it only remains to produce a presentation of the group G.
In order to do that we use Poincaré’s method (see Section 2), so we need to obtain a fundamental
polyhedron of G. We use Poincaré’s model H? of the 3-dimensional hyperbolic space and follow
the method explained in Chapter 7 of [3], which is a variation of Ford Method [5]. Namely if
F is a fundamental polyhedron of the stabilizer G, of co then the intersection of Fi, with the
outside part of the isometric half spheres of G \ G is a fundamental polyhedron of G. Recall
that g = ( CCL Z > € SLy(C) stabilizes oo if and only if ¢ = 0. If g does not stabilizes co then
the isometric circle of g is the circle of C = R? given by |cz + d| = 1, that is the circle centred at
—d/c of radius 1/|c|, and the isometric half sphere of g is the intersection with H? of the sphere of
R? having the same centre and radius than the isometric circle of g, where C is identified with the
boundary of H? in the obvious way. Since

oo (3 (54)

a fundamental polyhedron of G is the infinite strip Fi, = [~2,2]? x RT. The radius of the
isometric spheres of the elements of G \ G are of the form 1/2|y| for 0 # ~ € Z[i]. Therefore the
maximum value taken by these radius is 1/2 and this maximum radius is reached by the elements
of the form (5.2) with v = £1 or +i. The centres of these isometric spheres are the elements of
C = (1/2 + Z[i]) U (i/2 + Z[i]). Let I} be the subset of H? formed by the external to the spheres
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of radius 1/2 with centre in C. Consider the lattice L of Q[i] generated by 3 and 5%, It is not
difficult to see that each element of L belongs to the border of exactly four of the spheres that form
the border of F} and extending the geodesics of H® to its border (that is C U {oo0}) and abusing
slightly of the notation one can describe Fj as the hull of L in H3. Using this fact now we can see
that the isometric spheres of the elements of G of the form (5.2) with v # 1 do not intersect the
interior of F; and therefore F' = F,, N F} is the searched fundamental polyhedron of GG. Indeed, the
isometric circle of an element as in (5.2) with v # 0 is given by the equation |[2vz + (1 + 20)| = 1.
If this circle intersects the interior of Fj then it contains an element z € L because F} is the hull
of L. Thus |1 +2(yz +0)| < 1. Let 2,y € Z such that z = 21 — y1=t = (2 + yi)2E:. Then
|14+ (y(x+yi)(1+1i) +20)| < 1. Therefore —1 = y(z +yi)(1+4) +2d € Z[i](1+1), a contradiction.
Resuming

Proposition 5.1 The set
F={P=z+rj=(z,y,r) € H®: |z|, |y <2,[1 +2(yz2+ &>+ <1,y =1 ori,d € Z[i]}

is a fundamental polyhedron of the subgroup of PSLo(Z[i]) formed by the elements represented by
the matrices of the form (5.2) with o, 3,7,0 € Z][i].

The boundary of the fundamental polyhedron F' is formed by parts of forty four geodesics
planes of H3 (four half planes and forty half spheres), called sides. Figure 1 represents F' and the
orthogonal projection of F' on the plane z = 0, where the four sides embedded in half planes project
into the four external sides of the square and the forty sides embedded in half spheres projects into
either squares or triangles. Each side is of the form s, = F N g~ 1(F) for some g € G. The bold
diagonals in Figure 1 emphasize the fact that F' is invariant under a rotation of 7/2 degrees around
the line z = 0. This rotation can be realized by the action of the matrix

(% e)
0 &
where & = /i is a primitive 8-th root of unity. The invariance of F with respect to this rotation
reflects the fact that G is invariant under conjugation by a.

In order to identify the g’s such that s, is a side we introduce some notation. For a g € G
and i € Z, let us denote g; = a"*ga’. Note that if 54 is a side, then sg, is another side and can
be obtained rotating sy, clock counterwise i degrees. Then all the sides are of the form s, with
g=DM;org= M{l for  =0,1,2 or 3 and M is equal to one of the following elements:

) (A e (3 )

3-2i -4 —1-2 4 3+4i 12
W_<—2i —1+2¢> X‘< —2 3+2i) Y‘( 2i 3—4i>
1+4i —8i
Z = < 2 1—4i>

The legend in each side s of the picture above represents the element g € G such that s = s,. Note
that the legend in the sides that are planes is displayed “at” rather than “in” the side.
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Ax = At

Ys Z3 z3t Yyt
v, ! X3 C3 =07t Qs =Wyt Yo
Q2:W3_1 WB P3:X0_1 Xo
z;! Py=X31! B3z = By} Wi Z
2 2= Ag 3 = Dy 0 0
Cy = C(;l By = 51 Bo Co
Zs W By Py=Xx;" zZyt
Xy P=X5"! Wi Qo=w;!
Y Qu=Ww;"! Ch X vy
vyt zt Z1 Yi
Aq
Figure 1

Now a generating set of G readily follows [1]:

G = <AzaBzchaW]>X]7Y7>Zjvl = Oalaj = 0717273>
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From now on we call generators to the elements in the previous list of generators of G. Since no
side is paired with itself there are not reflection relations. In order to produce a presentation of G
now we need to compute the cycles of edges of F.

The fundamental polyhedron has eighty four edges, sixty four edges are the intersection of two
isometric spheres, sixteen edges are the intersection of one of the four vertical planes in the border of
F with one isometric circle and the remaining four edges are the intersection of two vertical planes.
Of course one in principal can construct infinitely many cycles. However, some of the relations
obtained from cycles can be dropped according to the following three principles. Firstly, clearly
cyclic permutations of even order of the cycles give rise to new cycles with equivalent associated
relation. Therefore these two cycles are considered as equal. Secondly, we only need irreducible
lists, that is, g;11 should be different than g; ! for each i. Finally we only need to consider cycles
so that e; # eq for ¢ = 2,...,n. Indeed, a cycle C not satisfying this condition can be obtained by
merging two shorter cycles C7 and Cs. It is not difficult to see that the group G is torsionfree and
therefore the cycle relation associated to C' is a consequence cycle relations associated to C7 and
Cs.

Notice that if e is an edge of the side s, then g(e) is an edge of the side g(s). If f is another
edge (of any side) such that g(f) is embedded in F then the hull of g(e) and g(f) is embedded in
g(s) = FNg(F). Hence the closure containing e and f is embedded in the side s, and therefore
f is one of the edges of s,. In other words, if g is a generator and f is an edge such that g(f)
is another edge then f is one of the edges of precisely s,. Thus in a cycle, each g; should be the
generators associated to one of two sides containing e;.

We are going to explode the symmetry associated to the invariancy by the action of « to classify
the cycles in 9 kind of cycles. Figure 2 displays one representative of each kind of cycle. (In the
first picture the small circle correspond to the vertical edges.)

Figure 2

The first three pictures are invariant under the action of v and hence each picture gives rise to
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exactly one cycle. The three corresponding relations associated are:
[Ao, A1] = [Bo, B1] = Y3Y2Y1Yp = 1.

The next three pictures are invariant by the action of a? but not by the action of «, so that each
of them corresponds to two cycles and accordingly to two cycle relations. One of these relations
can by obtained by conjugating by « the other relation. The corresponding six relations are:

Cy ' Z2CoZy = Ayt ZoA0Zy = Ay Yo AgYy =
CI' 23017y = AT 23 A0 71 = ATV A0y = L.

Finally the group generated by « acts faithfully on the last three pictures and therefore each of the
last three cycles represents four cycles and so gives rise to four cycle relations. So we have twelve
more relations:

Wo, Xo] = BIW, ' Zo Xyt = X 1O W Yy =

[

(W1, X1] = BoW, ' 21X P = X[ 1OoWy 'y =
(Wa, Xo] = BiWy ' Zo X, = X, 'O Wy, =
(W3, X3] = BoWy ' 25X = X 'CoWy 'Ys = 1.

We conclude that
Theorem 5.2 The group of trivial units of ZD for
D = (a,b,cla®* =1 =1%c* = 1,ba = 2ab, ¢ central.)

has a normal complement in the group of units of ZD isomorphic to the group given by the following
presentation:

Ay, A1, [Ao, A1 = [Bo, Bi] = 3oV =

By, B, Cy'Z:CoZy = Ay'Z2A0Zy = Aj'Y2ApY

Co, C1, Cr'Z3C12) = A7'Z3A, 7 = AT'V3A1 Y =
<W0,W1,W2,W3, [(Wo, Xo] = BiW;'ZyX,! = X;'loowly, = >

Xo, X1, Xo, X3, [Wl,Xl] = BWy'Z1X{' = X['CoWy'vy =

Yo, Y1, Y2, Y3, (W2, Xo] = BiW;'Z:,X,' = XyloOwyly, =

2o, Zv, Z3, Z3 W3, X3] = BoW,'Z3X;! = X;'CoW,'vs = 1

Now we consider the group Diy. By [7] D has a normal complement on the group of units of
ZDs which is isomorphic to the image G in PSLy(C) of the subgroups of SLy(Z]i]) given by the

matrices of the form
1+ 2a 2b
2¢c 1+2d

with a, b, ¢, d € Z[i] and bi + ¢ € 2Z[i]. Using the same method shown in the previous example one
shows that G has the same fundamental polyhedron F' as in the previous example but the basic
generators of the previous example should be replaced by the following:

(1 -4 B —1—4i 2 [ —3—4i 4+6i
te o) e (RN A) e (M)

C( -3-2i 244 (32 244
ro= ( 2 1—2z’> 5 = ( 2i —1—2z’>
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Az = AT!

Vs =Pyt Wi =Q5*
_ -1 _ p-1 _g-1
Wy = Q] T3 = Ry, Qs Us = 5,
UQZSfl Rs3 S3 TO:Rfl
Vo =Pt Sy P3 Ro
Ao
Q2 Py Py Qo
Ay = At
Ry Py So Vo=P;!
T, = Ry Sa Ry Uo =S5
U =551 Q1 T =Ry" Wo =Q3"
Wi =Qgt vi=pPt
Ay
Figure 3

In this example it is convenient to change slightly the fundamental polyhedron by “cutting” some
of the external triangles of the projection of F' and replace them by the image of these triangle by
the action of either Ag or A;. Then the projection of the fundamental polyhedron in Figure 1 now
take the form of the picture of Figure 3. Using the same method as in the previous example one

obtains the following.

Theorem 5.3 The group of trivial units of ZD;F6 for

Dy = (a,bla® = 1 = b? ba = a’b)

has a normal complement in the group of units of ZDT6 isomorphic to the group given by the

following presentation:

Ag, A
Ao, Ax, {9—01]%1}9—1]%

3 2901 0
Py, Py, P, P, L1 =11 4—1

P3 Ao Qz Ao Q1P
Q07Q17Q27Q37 P—lA—l —IA—I P
R07R17R2aR37 O—1 1—162?11 1—1622 !
So, 51,52, 53 h 1A2 1(020 1A2 1QBP2

Py A3 Qr Ay Qobs

Ri1RsR3Ry
Sy ‘R3S, 'Ry

Ry'A1Q0Sy ! Py
R ' A:Q:571 Py
Ry'A3Q28, 1 Py
R A0Q385 1 Py
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