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Abstract

We explore a method to obtain presentations of the group of units of an integral group ring
of some finite groups by using methods on Kleinian groups. We classify the nilpotent finite
groups with central commutator for which the method works and apply the method for two
concrete groups of order 16.

1 Introduction

We denote by R∗ the group of units of a ring R (with identity). Let G be a finite group. The
problem of studying the structure of the group of units ZG∗ of the integral group ring ZG has
attracted the attention of many authors. The last chapter of the book of Sehgal [17] contains a list
of open problems. One of these problems asks for giving presentations by generators and relations
of ZG∗ for some finite groups G. In this paper we explore a method to obtain presentations of
ZG∗ for some finite groups G by using techniques on Kleinian groups, that is discrete subgroups of
PSL2(C). In order to present the main idea it is convenient to consider a more general situation.

Let A be a finite dimensional semisimple rational algebra and R an order in A. (By an order,
we always mean a Z-order.) It is well known that R∗ is commensurable with the group of units of
every order in A and with Z(R)∗×R1, where R1 denotes the group of elements of reduced norm 1
of R. Recall that two groups G and H are said to be commensurable if there are subgroups G1 of G
and H1 of H such that [G : G1] < ∞, [H : H1] < ∞ and G1 and H1 are isomorphic. In particular,
if A =

∏
x∈X Ax where each Ax is a simple algebra then R∗ is commensurable with

∏
x∈X Z(Rx)∗×∏

x∈X(Rx)1, where Rx is an order in Ax, for each x ∈ X. Since Z(Rx)∗ is well understood by
the Dirichlet’s Unit Theorem, the difficulty in understanding R∗ up to commensurability relies on
understanding the groups of elements of reduced norm 1 of orders in the simple components of the
Wedderburn decomposition of A. If each simple component S of A can be embedded in M2(C)
so that the image of (RS)1 is a discrete subgroup of SL2(C), for RS an order of S, then one can
describe R∗ up to commensurability by using methods on Kleinian groups to describe the groups
of (RS)1, for S running on the simple algebras of the Wedderburn decomposition of A. In case
A = QG, the rational group algebra of a finite group G, then this method could be used to study
the group of units of the integral group ring ZG which is an order in QG. This is the motivation
of the following definition.

∗D.G.I. of Spain and Fundación Séneca of Murcia. AMS classification index: Primary 16U60, Secondary 11R27,
16A26.
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Definition 1.1 A finite dimensional semisimple rational algebra A is said to be of Kleinian type
if for every simple quotient S of A there is an embedding φ : S → M2(C) such that φ(R1) is a
discrete subgroup of SL2(C) for some order R of S.

A finite group G is said to be of Kleinian type if and only if the rational group algebra QG is
of Kleinian type.

Recall that a presentation of a Kleinian group can be derived from a fundamental polyhedron by
using methods that go back to Poincaré and Bianchi [15, 2]. Thus if G is a finite group of Kleinian
type then in principle one can obtain a presentation of a group commensurable with ZG∗ as follows:
firstly computing the Wedderburn decomposition

∏n
i=1 Ai of the rational group algebra QG and

an order Ri of Ai for each i; secondly applying Dirichlet’s Unit Theorem to obtain presentations
of Z(Ri)∗; thirdly computing a fundamental polyhedron of (Ri)1 for every i; fourthly using these
fundamental polyhedrons to derive presentations of (Ri)1 for each i and finally putting all the
information together, namely ZG∗ is commensurable with a direct product of the groups for which
presentations have been obtained.

Once we have explained the main idea we are leaded to several problems in order to come true
the hope of obtaining concrete presentations of ZG∗ for many groups. The first problem is to
understand what is the scope of the method, that is to classify the finite groups of Kleinian type.
The second, but not easier, problem is to obtain fundamental polyhedrons for the discrete groups
appearing along the process. In this paper we deal with these two problems but most of the space
is devoted to the first one. Notice that if G is of Kleinian type then all the reduced degrees of G
are at most 2. This implies that if G is not nilpotent then G has a nilpotent subgroup of index 2
[6]. This suggest to concentrate at a first instance on the classification of the nilpotent groups of
Kleinian type.

Now we explain the contents of the several sections of the paper. In Section 2 we establish
the basic notation and explain Poincaré’s method to obtain a presentation of a Kleinian group
from a fundamental polyhedron. In Section 3 we first characterize the simple algebras of Kleinian
type. (Notice that A is of Kleinian type if and only if every simple quotient of A is of Kleinian
type.) Then we use this characterization and results from [8] to characterize the finite nilpotent
groups of Kleinian type in terms of the Wedderburn decomposition of the corresponding rational
group algebra. Using this characterization we obtain the complete list of the finite nilpotent groups
of Kleinian type that are not 2-groups. Another consequence of the characterization of the finite
nilpotent groups of Kleinian type in terms of its Wedderburn decomposition is that every nonabelian
finite nilpotent group of Kleinian type is of the form G1×A where G1 is an indecomposable 2-group
(of Kleinian type) and A is an abelian group of exponent a divisor of 4 or 6. Thus the difficulty
on describing the finite nilpotent groups of Kleinian type relies on the 2-groups. In Section 4 we
describe explicitly the 2-groups of Kleinian type that satisfy the additional condition that every
commutator is central. We finish the paper by obtaining, in Section 5, presentations of a normal
complement of ±G in ZG∗, for two concrete finite groups of Kleinian type of order 16. There are
nine non abelian groups of order sixteen: Q8 × C2, D4 × C2, D8, Q16, D+

16, D−
16, D, P and H (see

Section 2 for the notation). The only one that is not of Kleinian type is D8. It is well known that all
the units of Z(Q8×C2) are trivial. A description of ZG∗ in terms of matrices has been obtained for
the remaining eight groups in [7] and [10]. If G = D4×C2, Q16, P or H then ZG∗ has a subgroup of
finite index which is a direct product of free groups. Such a subgroup with minimal index in ZG∗

has explicitly computed in [16] (see also [7, 13]). We obtain presentations for normal complements
of the trivial units in ZD∗ and (ZD+

16)
∗. Since D−

16 is also of Kleinian type, the method explained
above is available for this group but the computations seem to be much more complicated than for
D and D+

16.
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2 Preliminaries

The group of units of an arbitrary ring B is denoted by B∗ and if B is embedded in a finite
dimensional rational algebra, then B1 denotes the subgroup of B∗ formed by the elements of reduce
norm 1.

For every positive integer n, Cn denotes the cyclic group of order n, Dn the dihedral group of
order 2n and Q4n the quaternion group of order 4n, that is Dn and Q4n are given by the following
presentations:

Dn = 〈a, b|an = b2 = 1, ba = a−1b〉
Q4n = 〈a, b|a2n = anb2 = 1, ba = a−1b〉

We also need the following groups

D+
16 = 〈a, b|a8 = a2 = 1, ba = a5b〉

D−
16 = 〈a, b|a8 = a2 = 1, ba = a3b〉

D = 〈a, b, c|a2 = 1 = b2, c4 = 1, ac = ca, bc = cb, ba = c2ab〉
P = 〈a, b|a4 = b4 = 1, ba = a3b〉
H = 〈a, b|a4 = b4 = (ab)2 = [a2, b] = 1〉
D+ = 〈a, b, c|a4 = b2 = c4, ac = ca, bc = cb, ba = ca3b〉

If R is a commutative ring and a and b are two non zero elements of R then
(

a,b
R

)
denotes the

quaternion R-algebra defined by a and b, that is the R-algebra given by the following presentation:(
a, b

R

)
= R[i, j|i2 = a, j2 = b, ji = −ij].

In case a = b = −1, then the previous ring is denoted by H(R).
If G is a group and X is a finite subset of G then X̂ denotes the element of QG given by

X̂ = 1
|X|

∑
x∈X x. Notice that if X is a subgroup of G then X̂ is idempotent which is central in

QG if and only if X is normal in G.
We finish this section by recalling some basic facts on groups acting on 3-dimensional hyperbolic

space. We refer to [1], [3] and [4]. We are going to use Poincaré’s model of the 3-dimensional
hyperbolic space, that is the upper half space H3 = {(x, y, r) ∈ R3 : r > 0}. The projective
special linear group PSL2(C) can be identified with the group Isom+(H3) of orientation preserving
isometries of H3. Recall that a subgroup of SL2(C) is discrete (in the obvious Euclidean topology)
if and only if its image in PSL2(C) acts discontinuously on H3. Such groups are known as Kleinian
groups.

If G is a Kleinian group and D is a fundamental polyhedron of G then a presentation of G can
be derived from D. This is explained in [1] for Fuchsian groups and in [4] and [12] for Fuchsian
and Kleinian groups. For the convenience of the reader we explain how to obtain a presentation
of G from a fundamental polyhedron D of G. The main ingredients of the method are the sides
and the edges of D. The sides are the subsets of H3 of the form sg = D ∩ g(D) with g ∈ G which
have dimension 2 (that is, contained in an hyperplane of H3 but not in a line) and the edges are
the sets of the form eg,h = sg ∩ sh of dimension 1 (that is contained in a line but not in a point).
The sides are congruent in pairs under G (namely if sg is a side, then sg−1 is another side and
g(sg−1) = sg), and the side pairing transformations generate G. Let X ⊆ G such that {sg : g ∈ X}
is a set of representatives of the pairs of sides. A full set of relations of G is formed by the reflection
relations and the cycle relations. One side sg is paired with itself if and only if g2 = 1. These are
the reflection relations. A cycle is a list of even length

[e1, g1, e2, g2, e3, . . . , en, gn]
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where for each i = 1, . . . , n, ei is an edge, gi ∈ X or g−1
i ∈ X, and gi(ei) = ei+1 where en+1 = e1.

Each cycle gives rise to a relation (gn · · · g1)k = 1 where k is the order of gn · · · g1. These are the
cycle relations. The value of k can be also computed using geometrical information [1, 4, 12].

3 Finite Groups of Kleinian type

In this section we firstly classify the simple algebras of Kleinian type. Note that a finite dimensional
semisimple rational algebra is of Kleinian type if and only if its simple quotients are of Kleinian
type. Then we use the classification of the simple algebras of Kleinian type to obtain a precise
characterization of the finite nilpotent groups of Kleinian type in terms of the Wedderburn de-
composition of the corresponding rational group algebra. Finally we use this characterization to
describe explicitly all the finite nilpotent groups of Kleinian type that are not 2-groups.

Notice that the condition on an order R of a simple finite dimensional rational algebra S in
Definition 1.1 does not depend on the particular order selected (see [4, Theorem 2.2.6]). The clue of
the proof of next proposition, that is the use of the Strong Approximation Theorem, was suggested
by Fritz Grunewald in a private communication.

Proposition 3.1 A finite dimensional rational simple algebra S is of Kleinian type if and only if
one of the following conditions hold:

1. S is a number field,

2. S is a totally definite quaternion algebra,

3. S = M2(Q),

4. S = M2(Q(
√

d)) where d is a negative square free integer or

5. S is a division quaternion algebra over a number field K with exactly one pair of complex
embeddings such that S is ramified at all the real embeddings of K.

Proof. If S satisfies condition 1 or 2 then R1 is finite for every order in S and so it is of Kleinian
type. Obviously S is of Kleinian type if it satisfies condition 3 or 4. Finally, if S satisfies condition
6 then it is of Kleinian type by [3, Theorem 10.1.2].

Conversely, assume that S is of Kleinian type. Since S embeds in M2(C), then necessarily S is
either a number field, and therefore condition 1 holds, or S is a quaternion algebra over its centre.
In the remainder of the proof we assume that S is a quaternion algebra over its centre K.

Let σ1, . . . , σn be representatives up to conjugation of the non real embeddings of K in C,
τ1, . . . , τk the real embeddings of K at which S does not ramify and µ1, . . . , µm the real embeddings
of R at which S ramifies. Then there are natural embeddings fσi : S ↪→ M2(C), fτi : S ↪→ M2(R)
and fµi : S ↪→ H(R). By hypothesis fρ(R1) is a discrete subgroup of SL2(C) for some embedding
ρ : K → C and we may assume that ρ is either σn, τk or µm.

Assume first that ρ = τk. Then fτk
(R1) is a Fuchsian group and therefore every free abelian

subgroup of fτk
(R1) is cyclic. This implies that K = Q, because fτk

(R1) contains a lattice of

dimension [K : Q] formed by the elements of the form
(

1 τk(x)
0 1

)
with x in the centre of R.

Thus either condition 2 or 3 holds.
Assume now that ρ = σn or ρ = µm. By the Strong Approximation Theorem (see [14] or [18]),

if k ≥ 1 then fσ1 × · · · × fσn × fτ2 × · · · × fτk
× fµ1 × · · · × fµm maps R1 into a dense subgroup of
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SL2(C)n × SL2(R)k−1×H(R)m
1 and if n ≥ 2 then fσ2 × · · · × fσn × fτ1 × · · · × fτk

× fµ1 × · · · × fµm

maps R1 into a dense subgroup of SL2(C)n−1 × SL2(R)k × H(R)m
1 . The first statement and the

hypothesis implies that k = 0. The second one implies that n ≤ 1 and if ρ = τm, then n = 0. Thus,
if ρ = µm, then condition 2 holds. It only remain to consider the case ρ = σ1. If S is not a division
algebra then m = 0 and hence condition 4 holds. Otherwise condition 5 holds.

The following lemma is a direct consequence of the obvious fact that the class of algebras of
Kleinian type is closed under quotients and subalgebras.

Lemma 3.2 The class of finite groups of Kleinian type is closed under subgroups and quotients.

Of course Proposition 3.1 provides a characterization of when a finite group G is of Kleinian
type in terms of the Wedderburn decomposition of QG. The following theorem is more precise and
provides the simple algebras that occurs as quotients of the rational group algebras of groups of
Kleinian type.

Theorem 3.3 The following conditions are equivalent for a finite nilpotent group G:

(a) G is of Kleinian type.

(b) Every noncommutative simple quotient of QG is isomorphic to either H(K), with K = Q or
Q(
√

2), or M2(K), with K = Q, Q(
√
−1), Q(

√
−2) or Q(

√
−3).

In this case if e is a primitive central idempotent of QG then one of the following cases hold:

1. If QGe ∼= H(Q) then Ge ∼= Q8.

2. If QGe ∼= H(Q(
√

2)) then Ge ∼= Q16.

3. If QGe ∼= M2(Q) then Ge ∼= D4.

4. If QGe ∼= M2(Q(
√
−1)) then Ge ∼= D+

16,D or D+.

5. If QGe ∼= M2(Q(
√
−2)) then Ge ∼= D−

16.

6. If QGe ∼= M2(Q(
√
−3)) then Ge ∼= D4 × C3 or Ge ∼= Q8 × C3

Proof. (b) implies (a) is a direct consequence of Proposition 3.1.
Let G be a finite nilpotent group of Kleinian type and e a primitive central idempotent of QG

such that QGe is not commutative. Notice that Ge is of Kleinian type by Lemma 3.2. Assume first
that QGe is not a division ring. Then by Proposition 3.1, QGe ∼= M2(Q(

√
d)) for d a non positive

integer. By Theorem [8, Theorem 2.2], Ge and QGe satisfy one of the conditions 3-6.
Assume now that QGe is a division ring. Then, by [8, Theorem 2.3], either Ge ∼= Q2n for n ≥ 3

or Ge ∼= Q8 ×Cn for an odd integer n > 1 such that the multiplicative order of 2 module n is odd.
In the latter case H(Q(ξn)) is isomorphic to a simple quotient of QGe. By Proposition 3.1, Q(ξn)
has at most one pair of complex embeddings. Thus φ(n) ≤ 2, where φ denotes the Euler function.
Since n is odd, this implies that n = 3, contradicting the fact that the order of 2 module n should
be odd. Therefore Ge ∼= Q2n for n ≥ 3. Let K = Q(ξ2n−2 +ξ−1

2n−2). Since one of the simple quotients
of Q2n is isomorphic to M2(K) and K is totally real, then K = Q, by Proposition 3.1. Thus n = 3
or 4. We conclude that Ge ∼= Q8 and QGe ∼= H(Q) or Ge = Q16 and QGe ∼= H(Q(

√
2)).

We close this section with two corollaries of Theorem 3.3 on the structure of the finite nilpotent
groups of Kleinian type. The first one shows that the difficulty relies on the identification of the
2-groups of Kleinian type and the second lists explicitly the nilpotent groups of Kleinian type that
are not 2-groups.
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Corollary 3.4 Let G be a a finite non abelian nilpotent group of Kleinian type. Then G = G1×A
where G1 is an indecomposable non abelian 2-group of Kleinian type and A is abelian of exponent
a divisor of 4 or 6.

Proof. If G1 and G2 are two nilpotent non abelian groups such that G1 ×G2 is of Kleinian type
then, by Theorem 3.3, Q(G1 ×G2) ∼= QG1 ⊗Q QG2 has a simple quotient in common with one of
the following algebras

H(Q)⊗Q H(Q) ∼= H(Q)⊗Q M2(Q) ∼= M2(H(Q))
H(Q)⊗Q H(Q(

√
2)) ∼= M2(H(Q(

√
2)))

H(Q)⊗Q M2(Q(
√
−n)) ∼= M2(Q)⊗Q M2(Q(

√
−n)) ∼= M4(Q(

√
−n))

M2(Q(
√
−n))⊗Q M2(Q(

√
−n)) ∼= 2M4(Q(

√
−n))

M2(Q(
√
−n))⊗Q M2(Q(

√
−m)) ∼= M4(Q(

√
−n,

√
−m))

for n and m equal to either 1, 2 or 3 and n 6= m. This contradict Theorem 3.3.
Therefore, if G is a nilpotent non abelian group of Kleinian type, then G = G1 × A with G1

an indecomposable non abelian group and A an abelian group. Furthermore, by Theorem 3.3, the
order of G1 is even. If n divides the exponent of A then G has a subgroup H = G1 × Cn, which
is of Kleinian type by Lemma 3.2. Then QH has a non commutative simple quotient S such that
Z(S) contains Q(ξn), where ξn is a primitive n-th root of unity. By Theorem 3.3, φ(n) ≤ 2 and
hence n is a divisor of 4 or 6.

Corollary 3.5 Let G be a finite nilpotent group which is not a 2-group. Then G is of Kleinian
type if and only if G is either abelian or isomorphic to H ×A with A an abelian group of exponent
3 or 6 and H one of the groups given by the following presentations:

(a) 〈x, y | x4 = y4 = [x2, y] = [x, y2] = [x, [x, y]] = [y, [x, y]] = 1〉,

(b) 〈x, y1, . . . , yn | x4 = y2
i = [yi, yj ] = [x2, yi] = [[x, yi], yj ] = [[x, yi], x] = 1〉,

(c) 〈x, y1, . . . , yn | x4 = y4
i = y2

i [x, yi] = [yi, yj ] = [x2, yi] = [y2
i , x] = 1〉,

(d) 〈x, y1, . . . , yn | x2 = y2
i = [yi, yj ] = [[x, yi], yj ] = [x, yi]2 = 1〉,

(e) 〈x, y1, . . . , yn | x2 = y4
i = y2

i [x, yi] = [yi, yj ] = [[x, yi], x] = 1〉,

(f) 〈x, y1, . . . , yn | x4 = y4
i = x2y2

1 = y2
i [x, yi] = [yi, yj ] = [y2

i , x] = 1〉,

Proof. By [9], the following conditions are equivalent for a finite nilpotent group G:

1. Every non commutative simple quotient of QG is isomorphic to either M2(Q) or H(Q).

2. G is either abelian or isomorphic to H ×B with B an elementary abelian 2-group and H one
of the groups given by the presentations (a)-(f). (Warning: The list in [9] is displayed in a
different way.)

Assume that G = H × A where H is one of the groups (a)− (f) and A is an abelian group of
exponent 3 or 6. Set A = B × C where B is an elementary abelian 2-group and C a non trivial
elementary abelian 3-group. By the previous paragraph, every non commutative simple component
of Q(H × B) is isomorphic to either H(Q) or M2(Q). Since the simple quotients of QA are all
isomorphic to either Q or Q(

√
−3), every non commutative simple quotient of QG is isomorphic to
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either H(Q),M2(Q) or H(Q)⊗Q(
√
−3) ∼= M2(Q(

√
−3)) ∼= M2(Q)⊗Q(

√
−3). By Theorem 3.3, G

is of Kleinian type.
Conversely, assume that G is a non abelian nilpotent group of Kleinian type which is not a

2-group. By Corollary 3.4, G ∼= H × B × C where B is a elementary abelian 2-group, C is a
non trivial elementary abelian 3-group and H is an indecomposable 2-group of Kleinian type. If
H(Q(

√
2)),M2(Q(i)) or M2(Q(

√
−2)) is isomorphic to a quotient of QH, then QG has a simple

quotient isomorphic to either H(Q(
√

2))⊗QQ(
√
−3) ∼= M2(Q(

√
2,
√
−3)) or M2(Q(i))⊗QQ(

√
−3) ∼=

M2(Q(
√

3, i)) or M2(Q(
√
−2))⊗QQ(

√
−3) ∼= M2(Q(

√
−2,

√
−3)), contradicting Theorem 3.3. Thus,

by Theorem 3.3, every simple quotient of QH is isomorphic to either H(Q) or M2(Q). By the first
paragraph of this proof and the indecomposability of H one deduce that H is isomorphic to one of
the groups (a)-(f).

4 2-Groups with Central Commutator.

In the previous section we have characterized the finite nilpotent groups of Kleinian type in terms of
its Wedderburn decomposition. Using this characterization we have obtained a complete description
of those which are not 2-groups and have shown that in order to describe all the finite nilpotent
groups of Kleinian type it is enough to describe those that are 2-groups. In this section we deal
with this problem. Unfortunately we have not been able to obtain a full description of these groups.
Nevertheless we are going to describe all the 2-groups of Kleinian type for which the centre contains
the commutator. Namely we prove the following theorem.

Theorem 4.1 Let G be a finite non abelian 2-group such that G′ ⊆ Z(G). Then G is of Kleinian
type if and only if G is isomorphic to a quotient of H ×Cm

4 where m ≥ 0 and H is the group given
by one of the following presentations.

B2 = 〈x1, x2|x8
i = [xi, x

4
j ] = [xi, [xj , xk]] = 1, i, j, k = 1, 2〉

A31 = 〈x1, x2, x3|x4
i = [xi, x

2
j ] = [xi, [xj , xk]] = 1, 1 ≤ i, j, k ≤ 3〉

A32 = 〈x1, x2, x3|x4
1 = x4

2[x1, x2] = x4
3[x1, x3] = [xi, x

2
j ] = 1, 1 ≤ i, j, k ≤ 3〉

Bn1 = 〈x1, x2, . . . , xn|x8
1 = x4

k = [xi, x
2
j ] = [xk, xl] = [xi, [x1, xk]] = 1, 1 ≤ i, j ≤ n, 2 ≤ k, l ≤ n〉

Bn2 = 〈x1, x2, . . . , xn|x8
1 = x4

k[x1, xk] = [xi, x
2
j ] = [xk, xl] = [xi, [x1, xk]] = 1, 1 ≤ i, j ≤ n,

2 ≤ k, l ≤ n〉

We denote by G the class of finite 2-groups of Kleinian type G such that G′ ⊆ Z(G).
The following two lemmas are easy consequences of Lemma 3.2 and Theorem 3.3.

Lemma 4.2 The class G is closed under subgroups and homomorphic images.

Lemma 4.3 If G ∈ G and e is a primitive central idempotent of QG, such that QGe is noncom-
mutative then one of the following cases hold:

1. QGe ∼= H(Q) and Ge ∼= Q8.

2. QGe ∼= M2(Q) and Ge ∼= D4.

3. QGe ∼= M2(Q(i)) and Ge ∼= D+
16 or D.

Therefore both (Ge)′ and Ge/Z(Ge) are elementary abelian 2-groups.
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Lemma 4.4 If G ∈ G, then G× C4 ∈ G.

Proof. The noncommutative simple quotients of QG are of the form H(Q),M2(Q) and M2(Q(i)),
and therefore the noncommutative simple quotients of Q(G× C4) also are of this form.

The following lemma provides a first approach to the description of the elements of G.

Lemma 4.5 If G is a non abelian element of G, then Z(G) has exponent a divisor of 4 and both
G/Z(G) and G′ are elementary abelian 2-groups.

Proof. Let e1, e2, . . . , en be the primitive central idempotent of QG. Each Gei is a multiplicative

subgroup of QGei and the map f : G →
n∏

i=1
Gei defined by f(g) = (ge1, ge2, . . . , gen) is an injective

homomorphism of groups such that the composition of f with the projection on each component
is surjective.

Assume that Ge1, . . . , Gek are abelian and Gek+1, . . . , Gen are not abelian. By Lemma 4.3,
for each i > k, (Gei)′ and Gei/Z(Gei) are elementary abelian 2 groups. The first implies that the
exponent of G′ is 2. Let H = Ge1×· · ·×Gek and K = Gek+1×· · ·×Gen. Then f(Z(G)) ⊂ H×Z(K)

and therefore f induces an homomorphism f ′ : G/Z(G) →
n∏

i=k+1

K/Z(K) =
n∏

i=k+1

Gei/Z(Gei).

Furthermore f ′ is injective because the composition of f with the projection on every component
is surjective. Thus G/Z(G) is elementary abelian.

Let g ∈ Z(G). Then g(1− Ĝ′) is a central unit of QG(1− Ĝ′). By Lemma 4.3, QG(1− Ĝ′) ∼=
H(Q)m × M2(Q)s × M2(Q(i))r for some r, s,m ≥ 0. Since the central periodic units of order a
power of 2 of H(Q), M2(Q) and M2(Q(i)) have order a divisor of 4, g4(1 − Ĝ′) = (1 − Ĝ′). As G
is nonabelian we have that G′ 6= 1 and comparing coefficients it follows that g4 ∈ G′ and in fact
g4 = 1. Therefore the order of g is a divisor of 4.

We are going to call the rank of a finite group G, denoted r(G), to the minimum of the
cardinalities of the generating subsets of G. As a consequence of Lemma 4.5, if G is a nonabelian
element of G and r(G) = n then G is a quotient of a group of the form

Bn = 〈x1, x2, . . . , xn|x8
i = [xi, x

2
j ] = [xi, [xj , xk]] = 1, 1 ≤ i, j, k ≤ n〉

The following proposition proves that the group B2 belongs to G and therefore by Lemma 4.2,
the non abelian groups in G of rank 2 are precisely the non abelian quotients of B2.

Lemma 4.6 B2 ∈ G.

Proof. The central primitive idempotents e of QB2(1− B̂′
2) are the following:

e1 = (1− B̂′
2)x̂

2
1x̂

2
2 e6 = (1− B̂′

2)(1− x̂2
1)x̂

4
1(1− x̂4

2)
e2 = (1− B̂′

2)x̂
2
1x̂

4
2(1− x̂2

2) e7 = (1− B̂′
2)(1− x̂4

1)x̂
4
2x̂

2
2

e3 = (1− B̂′
2)(1− x̂2

1)x̂
4
1x̂

2
2 e8 = (1− B̂′

2)(1− x̂4
1)x̂

4
2(1− x̂2

2)

e4 = (1− B̂′
2)(1− x̂2

1)x̂
4
1(1− x̂2

2)x̂
4
2 e9 = (1− B̂′

2)(1− x̂4
1)(1− x̂4

2)x̂
2
1x

2
2

e5 = (1− B̂′
2)x̂

2
1(1− x̂4

2) e10 = (1− B̂′
2)(1− x̂4

1)(1− x̂4
2)(1− x̂2

1x
2
2)

The corresponding simple algebra QGei is isomorphic to M2(Q) if i < 4, isomorphic to H(Q) if
i = 4 and isomorphic to M2(Q(i)) if i > 4. The Proposition now follows from Theorem 3.3.

If Bn ∈ G were true for every n then the elements of G would be the groups isomorphic to
quotients of the Bn’s. Unfortunately Bn 6∈ G if n ≥ 3. This is a consequence of next lemma.
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Lemma 4.7 Let G ∈ G such that G = 〈x1, x2, . . . , xn, Z(G)〉. Fix i = 1, 2, . . . , n and let T = Ti =
〈[xi, xj ]| j 6= i〉. If G′ 6= T , then x4

i ∈ T .

Proof. If x4
i 6∈ T , then the image of xi in G/T is central element of a nonabelian element of G

whose order does not divide 4, contradicting Lemma 4.5.

Notation 4.8 For the rest of the section, each time we consider a non abelian element G of G we
assume that G is a quotient of Bn. We are going to abuse frequently of the notation by denoting
by xi both the generators of Bn and its image in G. We also denote tij = [xi, xj ], both in Bn and
G.

By Lemma 4.5, tij and x2
i are central elements for all i, j. This implies that t2ij = 1 and hence

tij = tji.
Frequently we are going to claim that one may assume some relation on the xi’s to hold. In that

case we mean that the corresponding assumption is possible after some changing on the xi’s. For
example, assume that G = 〈x1, x2, x3〉 and r(G′) = 2. Then we may assume that t23 = 1. Indeed, if
tij = 1 for some i 6= j, then the claim follows after reordering the generators. If t13t23 = 1, then the
claim follows after replacing x2 by x1x2 in the list of generators. A combination of this change of
generators with a reordering deals with the cases t12t13 = 1 and t12t23 = 1. Finally if t12t13t23 = 1,
then the desired conclusion follows after replacing x2 and x3 by x1x2 and x1x3, respectively.

From Lemma 4.7 we deduce additional conditions for the groups of rank 3 in G.

Lemma 4.9 If G ∈ G and r(G) = 3 then G is a quotient of one of the following five groups

B2 × C4, B31 = B3/〈t23, x4
2, x

4
3〉, B32 = B3/〈t23, x4

2t12, x
4
3t13〉,

A31 = B3/〈x4
1, x

4
2, x

4
3〉, A32 = B3/〈x4

1, x
4
2t12, x

4
3t13〉.

Proof. If r(G′) = 1, then we may assume that one of the xi is central, for instance x3, and
hence t13 = t23 = 1. From Lemma 4.5 we obtain that x4

3 = 1 and therefore G is a quotient of
B2 × C4 = B3/〈t13, t23, x4

3〉.
If r(G′) = 2, then we may assume that t23 = 1 and that t12, t13 and t12t13 are all different to 1.

By Lemma 4.7, x4
2 ∈ 〈t12〉, x4

3 ∈ 〈t13〉 and (x2x3)4 ∈ 〈t12t13〉. This implies that either x4
2 = x4

3 = 1
or x4

2 = t12 and x4
3 = t13, that is to say, G is a quotient of B31 or B32.

Finally, assume that r(G′) = 3. Using Lemma 4.7 once more we have that there exist α2, α3,
β1, β3, γ1 and γ2 in {0, 1} such that

x4
1 = tα2

12 tα3
13 , x4

2 = tβ1
12t

β3
23 and x4

3 = tγ1
13t

γ2
23

Then
(x1x2)4 = tα2+β1

12 tα3
13 tβ3

23 ∈ 〈t12, t13t23〉
(x1x3)4 = tα2

12 tα3+γ1
13 tγ2

23 ∈ 〈t13, t12t23〉
(x2x3)4 = tβ1

12t
γ1
13t

β3+γ2
23 ∈ 〈t23, t12t13〉

and this implies that α3 = β3, α2 = γ2 and β1 = γ1. Put a1 = β1, a2 = α2 y a3 = α3 for a more
friendly notation. Then

x4
1 = ta2

12t
a3
13

x4
2 = ta1

12t
a3
23

x4
3 = ta1

13t
a2
23

and

(x1x2)4 = ta1+a2
12 ta3

13t
a3
23

(x1x3)4 = ta2
12t

a1+a3
13 ta2

23

(x2x3)4 = ta1
12t

a1
13t

a2+a3
23

(x1x2x3)4 = ta1+a2
12 ta1+a3

13 ta2+a3
23 .

(4.1)
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Considering the eight possible values of (a1, a2, a3), it follows that at least one of the seven elements
in (4.1) is equal to 1. Thus we may assume that x4

1 = 1, and hence a2 = a3 = 1. Then x4
2 = ta1

12

and x4
3 = ta1

13. We conclude that G is a quotient of A31 (if a1 = 0) or A32 (if a1 = 1).

In the proof of the Theorem 4.1 we will see that the 5 groups of Lemma 4.9 belong to G. This
will completes the description of the nonabelian elements of G of rank at most 3 as quotients of 5
groups. To describe the groups of rank greater than 3 the following lemma will be helpful.

Lemma 4.10 If G ∈ G then r(G/Z(G)) = 2 if and only if r(G′) = 1.

Proof. Let G be an arbitrary finite group and p a prime integer. By [11, Lemma 1.4] G/Z(G) ∼=
Cp × Cp if and only if |G′| = p and every non linear irreducible complex representation of G has
degree p. Then the Lemma follows noticing that if G ∈ G then every irreducible nonlinear complex
representation of G has degree 2.

We are going to consider an elementary abelian 2-group of rank s as an n-dimensional vector
space over the field F2 with 2 elements. The elements 0 and 1 will be interpreted both as integers
and as elements of F2.

Now we are going to introduce some notation. Let G ∈ G such that G′ = 〈t〉 ∼= C2. To every
list x1, x2, . . . , xn of elements of G such that G = 〈x1, x2, . . . , xn, Z(G)〉 we associate a symmetric
matrix A = (αij)ij ∈ Mn(F2) defined by the following formula tij = tαij .

Consider now the element x = xα1
1 · · ·xαn

n with αi ∈ {0, 1}. Then x is a central element of G if
and only if (α1, · · · , αn) belongs to the null space of the matrix A. From Lemma 4.10 we obtain
that this matrix has rank 2. This trivial observation is going to be used several times without
specific mention.

Lemma 4.11 If a finite group G has 4 elements x1, x2, x3, x4 such that [x1, x2] 6= 1, [x3, x4] 6= 1
and [xi, xj ] = 1 for all 1 ≤ i ≤ 2 < j ≤ 4, then G 6∈ G.

Proof. By Lemma 4.2 we may assume that G = 〈x1, x2, x3, x4〉. Then G′ = 〈[x1, x2]〉 = 〈[x3, x4]〉 =
C2 and the matrix associated to x1, x2, x3, x4 is

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


which has rank 4. Thus G 6∈ G.

We now prove two Lemmas for groups of rank 4 module its centre.

Lemma 4.12 If G ∈ G and r(G/Z(G)) = 4 then r(G′) = 3.

Proof. By Lemma 4.2 we may assume that r(G) = 4 and therefore G is a quotient of B4, say
G = B4/T . Then T ⊆ Z(B4) because otherwise r(G/Z(G)) ≤ 3. Moreover G′ ∼= B′

4/(T ∩B′
4).

For every permutation ijkl of {1, 2, 3, 4} let Mij−kl = 〈tik, til, tjk, tjl, tijtkl〉.
Claim 1: T ∩B′

4 6⊆ Mij−kl for any permutation ijkl of {1, 2, 3, 4}
We argue by contradiction. By symmetry we may assume that T ∩ B′

4 ⊆ M12−34. Then
t12 6∈ TM12−34 because otherwise we have that t12 = tm with t ∈ T and m ∈ M12−34. Hence
t ∈ T ∩ B′

4 ⊆ M12−34 and therefore t12 ∈ M12−34, a contradiction. Analogously t34 6∈ TM12−34.
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Then the quotient H = B4/TM12−34 verifies the conditions of Lemma 4.11 and therefore H 6∈ G
which contradicts Lemma 4.2 because H is isomorphic to a quotient of G. This proves Claim 1.

Claim 2: If r(B′
4 ∩ T ) ≤ 2 then tij 6∈ T for any 1 ≤ i, j ≤ 4 with i 6= j.

Claim 2, follows from Claim 1, if r(T ∩B′
4) ≤ 1. Therefore assume that r(T ∩B′

4) = 2 and that
tij ∈ T for some i 6= j. By symmetry we may assume that t12 ∈ T , hence

T ∩B′
4 = 〈t12, t

α1
13 tα2

14 tα3
23 tα4

24 tα5
34 〉

for some αi ∈ {0, 1}, not all 0. Since T ∩B′
4 6⊆ M13−24 and T ∩B′

4 6⊆ M14−23 we have that α1 6= α4

and α2 6= α3. By symmetry one may assume that α1 = 1 and therefore α4 = 0. If α2 = 1 then
T ∩ B′

4 = 〈t12, t13t14t
α5
34 〉. Replacing x3 by x3x4 we have that T ∩ B′

4 = 〈t12, t13tα5
34 〉 ⊆ M14−23, a

contradiction. Therefore α2 = 0, and hence T ∩B′
4 = 〈t12, t13t23tα5

34 〉. If α5 = 0, replacing x1 by x1x2

we have that T ∩B′
4 ⊆ M14−23 and if α5 = 1 replacing x4 by x1x2x4 we have that T ∩B′

4 ⊆ M13−24

a contradiction. This proves Claim 2.
Claim 3: r(B′

4 ∩ T ) ≥ 3
Assume that r(B′

4 ∩ T ) ≤ 2 and therefore tij 6∈ T for all i 6= j, by Claim 2. Then one may
assume that t12t

α1
13 tα2

14 tα3
23 tα4

24 tα5
34 ∈ T for some αi ∈ {0, 1}, not all 0. Replacing x2 and x1 by x2x

α1
3 xα2

4

and x1x
α3
3 xα4

4 respectively we may assume that t12t
α5
34 ∈ T . Since tij 6∈ T we have that α5 = 1, that

is to say, t12t34 ∈ T . Therefore there are (new) αi’s such that

T ∩B′
4 = 〈t12t34, t = tα1

12 tα2
13 tα3

14 tα4
23 tα5

24 tα6
34 〉

Since T ∩B′
4 6⊆ M12−34, necessarily α1 6= α6. By symmetry, we may assume that α1 = 1 and α6 = 0

obtaining that T ∩ B′
4 = 〈t12t34, t12t

α2
13 tα3

14 tα4
23 tα5

24 〉. Arguing similarly α2 6= α5 and α3 6= α4. Again
taking advantage of the symmetry we may assume that α2 = 1 and therefore α5 = 0. If α3 = 1
then T ∩ B′

4 = 〈t12t34, t12t13t14〉. Replacing x2 by x2x3x4 we obtain that t12 ∈ T , a contradiction.
If α3 = 0 then T ∩B′

4 = 〈t12t34, t12t13t23〉. Replacing x1 by x1x2x4 we obtain that t13 ∈ T , again a
contradiction. This proves Claim 3.

As a consequence of Claim 3 and Lemma 4.10 one conclude that 2 ≤ r(G′) ≤ 3 and it only
remains to prove that r(G′) 6= 2. By means of contradiction we assume that r(G′) = 2.

So far in this proof we have used tij to denote commutators in B4. Now we are going to change
the notation and put G = 〈x1, x2, x3, x4〉 and adopt the conventions of Notation 4.8.

Claim 4: One may assume that G′ = 〈t12, t13〉.
Proving Claim 4 is equivalent to prove that one may assume that G′ = 〈tax, tay〉 for some

a, x, y ∈ {1, 2, 3, 4}. We may assume that t12 6= 1. Let H = 〈t12, t13, t14, t23, t24〉. If r(H) = 2 we
may assume that t12 and t13 are linearly independent. Otherwise we have that H = 〈t12〉 and since
r(G′) = 2 we deduce that G′ = 〈t12, t34〉. By Lemma 4.11, there exist 1 ≤ i ≤ 2 < j ≤ 4 such that
tij 6= 1. Since tij ∈ H, tij = t12 and hence G′ = 〈tij , t34〉. This finishes the proof of Claim 4.

Therefore one may assume that G′ = 〈t12, t13〉 and so one may assume also that t23 = 1,
as explained in Notation 4.8. Let us write ti4 = tαi

12t
βi
13 with i = 1, 2, 3. If H = G/〈t12〉 then

H ′ = t13 ∼= C2 and the associated matrix is (see paragraph before Lemma 4.11)


0 0 1 β1

0 0 0 β2

1 0 0 β3

β1 β2 β3 0

 .
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As the rank of this matrix has to be 2, β2 = 0. By a similar argument with H = G/〈t13〉 we obtain
the associated matrix 

0 1 0 α1

1 0 0 α2

0 0 0 α3

α1 α2 α3 0


from which we deduce that α3 = 0. Consider now H = G/〈t12t13〉, obtaining the associated matrix

0 1 1 α1 + β1

1 0 0 α2

1 0 0 β3

α1 + β1 α2 β3 0


and therefore α2 = β3. Summarizing

t14 = tα1
12 tβ1

13 , t24 = tα2
12 , t34 = tα2

13

Replacing x4 by xα2
1 x4 we may assume that α2 = 0. Then xα1

2 xβ1
3 x4 is a central element of G

contradicting the initial hypothesis. In conclusion r(G′) = 3, finishing the proof of this Lemma.

Lemma 4.13 If G ∈ G and r(G/Z(G)) = 4 then there exist four elements x1, x2, x3, x4 ∈ G such
that G = 〈x1, x2, x3, x4, Z(G)〉, G′ = 〈t12, t13, t14〉 ∼= C3

2 and t23 = t24 = t34 = 1.

Proof. By assumption there are x1, x2, x3, x4 such that G = 〈x1, x2, x3, x4, Z(G)〉. We adopt the
conventions of Notation 4.8. We start proving that one may assume that G′ = 〈t12, t13, t14〉 ∼=
C3

2 . Assume the contrary. Then by Lemma 4.12, tax, tay, taz are linearly dependent for every
permutation axyz of {1, 2, 3, 4}. Since r(G′) = 3 we may assume that t12 and t13 are linearly
independent.

Assume that G′ = 〈t12, t13, t23〉. Since tax, tay, taz are linearly dependent for every permutation
axyz of {1, 2, 3, 4}, necessarily t14 ∈ 〈t12, t13〉, t24 ∈ 〈t12, t23〉 and t34 ∈ 〈t13, t23〉. If t14 = ta12t

b
13,

then by replacing x4 by xa
2x

b
3x4, we may assume that t14 = 1. Let us write

t24 = tα1
12 tα3

23 and t34 = tβ1
13t

β2
23 .

Arguing as in the proof of Lemma 4.12 with the quotients G/〈t12, t13t23〉, G/〈t13, t12t23〉 and
G/〈t23, t12t13〉 we obtain that the three matrices

0 0 1 0
0 0 1 α3

1 1 0 β1 + β2

0 α3 β1 + β2 0




0 1 0 0
1 0 1 α1 + α3

0 1 0 β2

0 α1 + α3 β2 0




0 1 1 0
1 0 0 α1

1 0 0 β1

0 α1 β1 0


have rank 2. Therefore α3 = β2 = 0 and α1 = β1. This implies that xα1

1 x4 is central, which yields
to a contradiction.

We have proved that G′ 6= 〈t12, t13, t23〉 and therefore either G′ = 〈t12, t13, t24〉 or G′ =
〈t12, t13, t34〉. Since x2 and x3 play symmetric roles, we may assume that G′ = 〈t12, t13, t24〉. More-
over, as we are assuming that tax, tay, taz are linearly dependent for every permutation axyz of
{1, 2, 3, 4} we have that t23 ∈ 〈t12, t13〉 ∩ 〈t12, t24〉 = 〈t12〉. We may assume that t23 = 1, by re-
placing x3 by x1x3 if necessary. Besides t14 ∈ 〈t12, t13〉, hence t14 = ta12t

b
13 and replacing x4 by
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xa
2x

b
3x4 we obtain that t14 = 1. The derived subgroup of the groups G/〈t12, t13t24〉 has rank 2 and

its associated matrix is 
0 0 1 0
0 0 0 1
1 0 0 b + c
0 1 b + c 0


which has rank 4, a contradiction.

Therefore we have proved that we may assume that G′ = 〈t12, t13, t14〉. Let us see that we also
may assume that t23 = t24 = t34 = 1.

If t23 6∈ 〈t12, t13〉 by considering G/〈t12, t13〉 we obtain a matrix of the form
0 0 0 1
0 0 1 ∗
0 1 0 ∗
1 ∗ ∗ 0


which has rank 4. Therefore t23 ∈ 〈t12, t13〉 and by similar arguments we have that t24 ∈ 〈t12, t14〉
and t34 ∈ 〈t13, t14〉. If t23 = ta12t

b
13, replacing x2 and x3 by xb

1x2 y xa
1x3 respectively we may assume

that t23 = 1. Let us write
t24 = ta1

12t
c1
14, t34 = tb213t

c2
14

with ai, bi, ci ∈ {0, 1}. Replacing x4 by xa1
1 x4 we may assume that a1 = 0. By considering the

following quotients G/〈t12t14, t13〉, G/〈t12, t13t14〉 and G/〈t12t13, t14〉 we obtain the following three
matrices 

0 1 0 1
1 0 0 c1

0 0 0 c2

1 c1 c2 0




0 0 1 1
0 0 0 c1

1 0 0 b2 + c2

1 c1 b2 + c2 0




0 1 1 0
1 0 0 0
1 0 0 b2

0 0 b2 0


and deduce that c2 = c1 = b2 = 0, that is to say, t24 = t34 = 1 which finishes the proof.

The next step is generalizing Lemma 4.13 to groups of rank at least 4. We will argue by
induction and for the inductive step we need the following Lemma.

Lemma 4.14 Let G ∈ G such that r(G/Z(G)) = n ≥ 3. Then there exist a subgroup H of G such
that r(H/Z(H)) = r(G/Z(G))− 1.

Proof. We argue by induction in n. The result is trivial for n = 3. Assume that n ≥ 4 and the
induction hypothesis. Let H be a subgroup of G such that

r(H/Z(H)) = max{r(K/Z(K)) : K a subgroup of G such that Z(G) ⊆ K and r(K/Z(K)) 6= n}

Clearly Z(G) ⊆ H and 2 ≤ r(H/Z(H)) < n. Let {x1Z(H), x2Z(H), . . . , xkZ(H)} be a basis of
H/Z(H). Then {x1Z(G), x2Z(G), . . . , xkZ(G)} are linearly independent. Let {x1Z(G), x2Z(G), . . . ,
xnZ(G)} be a basis of G/Z(G). Assume that k ≤ n − 2. For every k < i ≤ n let Ki = 〈H,xi〉.
Then k ≤ r(Ki/Z(Ki)) ≤ k + 1 < n. Thus r(Ki/Z(Ki)) = k, by the maximality of k, and H = Ki,
by the maximality of H. Thus G = 〈x1, . . . , xk, Z(G)〉, which yields to a contradiction. Thus
r(H/Z(H)) = n− 1 and the Lemma follows.

We can now generalize Lemma 4.13
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Lemma 4.15 Let G ∈ G such that r(G/Z(G)) = n ≥ 4. Then r(G′) = n − 1 and there exist
x1, x2, . . . , xn ∈ G such that G = 〈x1, x2, . . . , xn, Z(G)〉, G′ = 〈t12, t13, . . . , t1n〉 and tij = 1 for
2 ≤ i < j ≤ n.

Proof. We argue by induction on n with the case n = 4 being Lemma 4.12. Assume that n > 4
and the induction hypothesis.

By Lemma 4.14, G has a subgroup H such that r(H/Z(H)) = n − 1. By the induction
hypothesis there exist x1, x2, . . . , xn−1 ∈ H such that H = 〈x1, x2, . . . , xn−1, Z(H)〉, tij = 1 for
every 2 ≤ i ≤ n− 1 and t12, . . . , t1(n−1) are linearly independent. In particular r(G′) ≥ n− 2. Then
there exists an element xn ∈ G such that G = 〈x1, x2, . . . , xn, Z(G)〉. We adopt the conventions of
Notation 4.8.

Notice that the induction hypothesis implies that if S ∈ G with r(S/Z(S)) = n then r(S′) ≥
n− 2.

Claim 1: If r(G′) = n− 2 then tin ∈ 〈t1i〉 for every 1 < i < n.
Assume that r(G′) = n − 2. Then G′ = 〈t12, . . . , t1(n−1)〉 and hence t1n = ta2

12 . . . t
an−1

1(n−1) for
some ai ∈ {0, 1}. We argue by contradiction and taken advantage of the symmetry we may
assume that t2n 6∈ 〈t12〉. Let S = G/〈t12〉 and adopt the conventions of Notation 4.8 in the group
S. With this notation we have that t13, . . . , t1(n−1) are linearly independent and t12 = 1 6= t2n.
Let y = xa1

1 . . . xan
n ∈ Z(S) with ai ∈ {0, 1}. Then 1 = [x2, y] = tan

2n and therefore an = 0.
Moreover 1 = [x1, y] = ta3

13 . . . t
an−1

1(n−1) and since t13, . . . , t1(n−1) are linearly independent we have that
a3 = · · · = an−1 = 0. Finally 1 = [x3, y] = ta1

13, hence a1 = 0. This proves that x1Z(S), . . . , xnZ(S)
are linearly independent and therefore r(S/Z(S)) = n. This yields to a contradiction because
r(S′) = n− 3 and Claim 1 follows.

Claim 2: r(G′) ≥ n− 1.
Otherwise G′ = 〈t12 . . . t1(n−1)〉 ∼= Cn−2

2 and hence t1n = ta2
12 . . . t

an−1

1(n−1) for some ai ∈ {0, 1}. Then
replacing xn by xa2

2 . . . x
an−1

n−1 xn we may assume that t1n = 1. By Claim 1, for every 1 < i < n, either
tin = 1 or tin = t1i. Since xn is not central there exists a 2 ≤ i < n such that tin = t1i. Moreover,
as x1xn is not central there exists 2 ≤ i < n such that tin 6= t1i and therefore tin = 1. By reordering
the x′is, if necessary, we may assume that t3n = t13 and t2n = 1. Now we obtain a contradiction
by showing that the group S = G/〈t12t13〉 satisfies r(S′) = n− 3 and r(S/Z(S)) = n. The former
equality is obvious. To prove the latter equality notice that (adopting Notation 4.8 for the group
S) t12 = t13 = t3n 6= 1. Let y = xa1

1 . . . xan
n ∈ Z(S) with ai ∈ {0, 1}. Then 1 = [x2, y] = ta1

12 and
hence a1 = 0. Besides 1 = [x3, y] = tan

3n, hence an = 0. Moreover 1 = [x1, y] = ta2+a3
13 ta4

14 . . . t
an−1

1(n−1)
and since t13, . . . , t1(n−1) are linearly independent we have that a4 = · · · = an−1 = 0 and a2 = a3.
Finally 1 = [xn, y] = ta3

3n, hence 0 = a3 = a2. This finishes the proof of Claim 2.
Claim 3: r(G′) = n− 1.
Recall that tij = 1 for 2 ≤ i < j ≤ n− 1 and so G′ = 〈t1i, tin, t1n : 2 ≤ i < n〉.
Assume that t12, . . . , t1(n−1), t1n are linearly independent. Let 1 < i, j < n with i 6= j. By

the case n = 4 we have that r(〈x1, xi, xj , xn〉′) ≤ 3 and therefore tin ∈ 〈t1i, t1j , t1n〉, thus G′ =
〈t12, . . . , t1(n−1), t1n〉 and hence r(G′) = n− 1.

Otherwise, that is, if t12, . . . , t1(n−1), t1n are linearly dependent, then there exists 1 < i < n
such that t12, . . . , t1(n−1), tin are linearly independent, by Claim 2. Let 1 < j < n with j 6= i.
By the case n = 4 we have that r(〈x1, xi, xj , xn〉′) ≤ 3 and therefore t1n, tjn ∈ 〈t1i, t1j , tin〉. Thus
G′ = 〈t12, . . . , t1(n−1), tin〉 and hence r(G′) = n− 1. This finishes the proof of Claim 3.

Claim 4: tin ∈ 〈t1i〉 for every 1 < i < n.
For simplicity take i = 2. If t2n 6∈ 〈t12〉 let S = G/〈t12〉. Clearly r(S′) = n − 2 and proving

that r(S/Z(S)) = n we obtain a contradiction with Claim 3. Let y = xa1
1 . . . xan

n ∈ Z(S) with

14



ai ∈ {0, 1}. Then 1 = [x2, y] = tan
12 and therefore an = 0. We also have that 1 = [x3, y] = ta1

13, hence
a1 = 0. Besides 1 = [x1, y] = ta3

13 . . . t
an−1

1(n−1), hence a3 = · · · = an−1 = 0. Finally 1 = [xn, y] = ta2
2n

thus a2 = 0. Thus Claim 4 follows.
To finish the proof consider the quotient S = G/〈t1it1j〉 for 1 < i < j < n. Arguing as before

we show that the assumptions tin = 1 and t1j = tnj implies that r(S/Z(S)) = n and r(S′) = n− 2
yielding a contradiction with Claim 3. Thus tin = 1 for all 1 < i < n or tin = t1i for all 1 < i < n.
The second case reduces to the first one by changing x1 by x1xn and this finishes the proof of this
Lemma.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We start proving that if G is a quotient of H × Cm
4 with m ≥ 0 and

H = B2, A31, A32, Bn1 or Bn2 with n ≥ 3 then G ∈ G. By Lemmas 4.2 and 4.4 it is enough to show
that H ∈ G for the five possible values of H. We have already seen in Lemma 4.6 that B2 ∈ G. So
let G = A31, A32, Bn1 or Bn2, with n ≥ 3.

Let H be the set of maximal subgroups of G′. We claim that it is enough to show that G/S ∈ G
for every S ∈ H. Indeed, if X is a noncommutative simple quotients of QG then X is a quotient
of QG(1 − Ĝ′). Since {Ŝ(1 − Ĝ′)|S ∈ H} is a complete set of orthogonal central idempotents of
QG(1 − Ĝ′), X is a QGŜ(1 − Ĝ′) for some S ∈ H, and hence X is a quotient of QGŜ. Since
QGŜ ∼= Q(G/S), X is isomorphic to a simple quotient of Q(G/S). Thus, if G/S ∈ G then X is of
Kleinian type and so G ∈ G.

So fix S ∈ H and prove that G/S ∈ G.
Suppose first that G = A31 or A32. Then S is of one of the following forms: 〈tij , tik〉, 〈tij , tiktjk〉,

〈t12t13, t13t23〉. Since Z(G/S) contains strictly Z(G)/S, r((G/S)/Z(G/S)) = 2. Let x, y ∈ G/S
be two elements linearly independent modulo Z(G/S). Then G/S = 〈x, y〉 × C4 where 〈x, y〉 is
isomorphic to a quotient of B2 and therefore G/S ∈ G, by Lemma 4.4.

Suppose now that G = Bn1 or Bn2. Consider the map ϕ : G′ → G given by ϕ(ta2
12 ·· · ··t

an
1n) = xa2

2 ·
· · ··xan

n for (a2, . . . , an) ∈ {0, 1}n−1. Notice that [x1, ϕ(x)] = x, for every x ∈ G′. Let {c3, . . . , cn} be
a basis of S and {c2, c3, . . . , cn} a basis of G′. Let yi = ϕ(ci). Then {x1Z(G), y2Z(G), . . . , ynZ(G)}
is a basis for G/Z(G) and therefore G = 〈x1, y2, . . . , yn〉. We may assume, without loss of generality,
that yi = xi, that is to say, [x1, xi] ∈ S for i ≥ 3 and [x1, x2] ∈ G′ \ S. Therefore

G/S ∼= 〈x1, x2〉 × 〈x3, . . . , xn〉 ∼= 〈x1, x2〉 × Cn−2
4

and 〈x1, x2〉 is isomorphic to a quotient of B2. By Lemma 4.4 G/S ∈ G and this finishes the first
part of the proof.

Conversely, let G be a nonabelian element of G and set n = r(G/Z(G)). Select elements
x1, x2, . . . , xn of G such that {x1Z(G), x2Z(G), . . . , xnZ(G)} is a basis of G/Z(G). Let Z(G) =
〈z1〉 × · · · × 〈zm〉 with zi of order ki. If H = 〈x1, x2, . . . , xn〉 then H has a presentation of the form
〈x1, x2, . . . , xn|R〉 for some set of relations R. Moreover

Z(G) = 〈z1, . . . , zm|zki
i = [zi, zj ] = 1, 1 ≤ i, j ≤ m〉

is a presentation of Z(G). Then G has a presentation of the form

〈x1, . . . , xn, z1, . . . , zm|R, zki
i = [zi, zj ] = [zi, xk] = 1, h = z, (h, z) ∈ T 〉

where T = {(h, z) ∈ H ×Z(G) : h = z, in G}. By Lemma 4.5, ki divides 4 for each i = 1, 2, . . . ,m
and therefore G is isomorphic to a quotient of

〈x1, . . . , xn, z1, . . . , zm|R, z4
i = [zi, zj ] = [zi, xk] = 1〉 = H × Cm

4 .
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Since r(H) = R(H/Z(H)) = n, we have proved that we may assume without loss of generality that
n = r(G) = r(G/Z(G)).

Since G is nonabelian, n ≥ 2. If n = 2, then G is a quotient of B2. If n = 3 then by Lemma 4.9,
G is a quotient of B2×C4, A31, A32, B31 or B32. Nevertheless from the hypothesis r(G/Z(G)) = 3 we
deduce that the first case does not hold. Finally assume that n ≥ 4. By Lemma 4.15, r(G′) = n−1
and we may choose the xi’s such that G′ = 〈t12, . . . , t1n〉 and tij = 1 for 2 ≤ i, j ≤ n. The relations
x8

i = [xi, x
2
j ] = [xi, tij ] = 1 are deduced from Lemma 4.5. By Lemma 4.7 we have that x4

i ∈ 〈t1i〉
for all 2 ≤ i ≤ n. Then we only have to prove that either x4

i = 1 for all 2 ≤ i ≤ n or x4
i = t1i

for all 2 ≤ i ≤ n. Otherwise, we may assume that x4
2 = 1 and x4

3 = t13. However, in this case
(x2x3)4 = t13 6∈ 〈[x1, x2x3]〉 which contradicts Lemma 4.7.

5 Two examples

In this section we are going to show how to use methods on Kleinian groups to obtain presentations
of the group of units of ZD and ZD+

16. We present the method with all the details for D and avoid
the technical details for D+

16.
By [7] ZD∗ = G o ±D where G is the subgroup of PSL2(Z[i]) represented by the matrices of

the form

I + 2
(

α 2β
γ δ

)
(5.2)

with α, β, γ, δ ∈ Z[i]. Moreover the action of D on G can be described by identifying D with a
subgroup of GL2(Z[i]) via the following identifications:

a =
(

1 2
0 −1

)
, b =

(
−1 0
1 1

)
, c = iI.

Thus to obtain a presentation of ZD∗ it only remains to produce a presentation of the group G.
In order to do that we use Poincaré’s method (see Section 2), so we need to obtain a fundamental
polyhedron of G. We use Poincaré’s model H3 of the 3-dimensional hyperbolic space and follow
the method explained in Chapter 7 of [3], which is a variation of Ford Method [5]. Namely if
F∞ is a fundamental polyhedron of the stabilizer G∞ of ∞ then the intersection of F∞ with the
outside part of the isometric half spheres of G \ G∞ is a fundamental polyhedron of G. Recall

that g =
(

a b
c d

)
∈ SL2(C) stabilizes ∞ if and only if c = 0. If g does not stabilizes ∞ then

the isometric circle of g is the circle of C = R2 given by |cz + d| = 1, that is the circle centred at
−d/c of radius 1/|c|, and the isometric half sphere of g is the intersection with H3 of the sphere of
R3 having the same centre and radius than the isometric circle of g, where C is identified with the
boundary of H3 in the obvious way. Since

G∞ = 〈
(

1 4
0 1

)
,

(
1 4i
0 1

)
〉

a fundamental polyhedron of G∞ is the infinite strip F∞ = [−2, 2]2 × R+. The radius of the
isometric spheres of the elements of G \G∞ are of the form 1/2|γ| for 0 6= γ ∈ Z[i]. Therefore the
maximum value taken by these radius is 1/2 and this maximum radius is reached by the elements
of the form (5.2) with γ = ±1 or ±i. The centres of these isometric spheres are the elements of
C = (1/2 + Z[i]) ∪ (i/2 + Z[i]). Let F1 be the subset of H3 formed by the external to the spheres
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of radius 1/2 with centre in C. Consider the lattice L of Q[i] generated by 1+i
2 and 1−i

2 . It is not
difficult to see that each element of L belongs to the border of exactly four of the spheres that form
the border of F1 and extending the geodesics of H3 to its border (that is C ∪ {∞}) and abusing
slightly of the notation one can describe F1 as the hull of L in H3. Using this fact now we can see
that the isometric spheres of the elements of G of the form (5.2) with γ 6= 1 do not intersect the
interior of F1 and therefore F = F∞∩F1 is the searched fundamental polyhedron of G. Indeed, the
isometric circle of an element as in (5.2) with γ 6= 0 is given by the equation |2γz + (1 + 2δ)| = 1.
If this circle intersects the interior of F1 then it contains an element z ∈ L because F1 is the hull
of L. Thus |1 + 2(γz + δ)| < 1. Let x, y ∈ Z such that z = x1+i

2 − y 1−i
2 = (x + yi)1+i

2 . Then
|1+ (γ(x+ yi)(1+ i)+2δ)| < 1. Therefore −1 = γ(x+ yi)(1+ i)+2δ ∈ Z[i](1+ i), a contradiction.
Resuming

Proposition 5.1 The set

F = {P = z + rj = (x, y, r) ∈ H3 : |x|, |y| ≤ 2, |1 + 2(γz + δ)|2 + r2| < 1, γ = 1 or i, δ ∈ Z[i]}

is a fundamental polyhedron of the subgroup of PSL2(Z[i]) formed by the elements represented by
the matrices of the form (5.2) with α, β, γ, δ ∈ Z[i].

The boundary of the fundamental polyhedron F is formed by parts of forty four geodesics
planes of H3 (four half planes and forty half spheres), called sides. Figure 1 represents F and the
orthogonal projection of F on the plane z = 0, where the four sides embedded in half planes project
into the four external sides of the square and the forty sides embedded in half spheres projects into
either squares or triangles. Each side is of the form sg = F ∩ g−1(F ) for some g ∈ G. The bold
diagonals in Figure 1 emphasize the fact that F is invariant under a rotation of π/2 degrees around
the line z = 0. This rotation can be realized by the action of the matrix

α =
(

ξ−1
8 0
0 ξ8

)

where ξ8 =
√

i is a primitive 8-th root of unity. The invariance of F with respect to this rotation
reflects the fact that G is invariant under conjugation by α.

In order to identify the g’s such that sg is a side we introduce some notation. For a g ∈ G
and i ∈ Z, let us denote gi = α−igαi. Note that if sg is a side, then sgi is another side and can
be obtained rotating sg, clock counterwise iπ

2 degrees. Then all the sides are of the form sg with
g = Mi or g = M−1

i for i = 0, 1, 2 or 3 and M is equal to one of the following elements:

A =
(

1 −4
0 1

)
B =

(
1 0
−2 1

)
C =

(
3 −4
−2 3

)
W =

(
3− 2i −4
−2i −1 + 2i

)
X =

(
−1− 2i 4i
−2 3 + 2i

)
Y =

(
3 + 4i −12i

2i 3− 4i

)
Z =

(
1 + 4i −8i

2i 1− 4i

)
The legend in each side s of the picture above represents the element g ∈ G such that s = sg. Note
that the legend in the sides that are planes is displayed “at” rather than “in” the side.
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2
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0
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Z−1
2

Z−1
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Figure 1

Now a generating set of G readily follows [1]:

G = 〈Ai, Bi, Ci,Wj , Xj , Yj , Zj ; i = 0, 1; j = 0, 1, 2, 3〉
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From now on we call generators to the elements in the previous list of generators of G. Since no
side is paired with itself there are not reflection relations. In order to produce a presentation of G
now we need to compute the cycles of edges of F .

The fundamental polyhedron has eighty four edges, sixty four edges are the intersection of two
isometric spheres, sixteen edges are the intersection of one of the four vertical planes in the border of
F with one isometric circle and the remaining four edges are the intersection of two vertical planes.
Of course one in principal can construct infinitely many cycles. However, some of the relations
obtained from cycles can be dropped according to the following three principles. Firstly, clearly
cyclic permutations of even order of the cycles give rise to new cycles with equivalent associated
relation. Therefore these two cycles are considered as equal. Secondly, we only need irreducible
lists, that is, gi+1 should be different than g−1

i for each i. Finally we only need to consider cycles
so that ei 6= e1 for i = 2, . . . , n. Indeed, a cycle C not satisfying this condition can be obtained by
merging two shorter cycles C1 and C2. It is not difficult to see that the group G is torsionfree and
therefore the cycle relation associated to C is a consequence cycle relations associated to C1 and
C2.

Notice that if e is an edge of the side sg then g(e) is an edge of the side g(s). If f is another
edge (of any side) such that g(f) is embedded in F then the hull of g(e) and g(f) is embedded in
g(s) = F ∩ g(F ). Hence the closure containing e and f is embedded in the side sg and therefore
f is one of the edges of sg. In other words, if g is a generator and f is an edge such that g(f)
is another edge then f is one of the edges of precisely sg. Thus in a cycle, each gi should be the
generators associated to one of two sides containing ei.

We are going to explode the symmetry associated to the invariancy by the action of α to classify
the cycles in 9 kind of cycles. Figure 2 displays one representative of each kind of cycle. (In the
first picture the small circle correspond to the vertical edges.)

Figure 2

The first three pictures are invariant under the action of α and hence each picture gives rise to
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exactly one cycle. The three corresponding relations associated are:

[A0, A1] = [B0, B1] = Y3Y2Y1Y0 = 1.

The next three pictures are invariant by the action of α2 but not by the action of α, so that each
of them corresponds to two cycles and accordingly to two cycle relations. One of these relations
can by obtained by conjugating by α the other relation. The corresponding six relations are:

C−1
0 Z2C0Z0 = A−1

0 Z2A0Z0 = A−1
0 Y2A0Y0 =

C−1
1 Z3C1Z1 = A−1

1 Z3A1Z1 = A−1
1 Y3A1Y1 = 1.

Finally the group generated by α acts faithfully on the last three pictures and therefore each of the
last three cycles represents four cycles and so gives rise to four cycle relations. So we have twelve
more relations:

[W0, X0] = B1W
−1
1 Z0X

−1
0 = X−1

0 C1W
−1
1 Y0 =

[W1, X1] = B0W
−1
2 Z1X

−1
1 = X−1

1 C0W
−1
2 Y1 =

[W2, X2] = B1W
−1
3 Z2X

−1
2 = X−1

2 C1W
−1
3 Y2 =

[W3, X3] = B0W
−1
0 Z3X

−1
3 = X−1

3 C0W
−1
0 Y3 = 1.

We conclude that

Theorem 5.2 The group of trivial units of ZD for

D = 〈a, b, c|a2 = 1 = b2, c4 = 1, ba = c2ab, c central.〉

has a normal complement in the group of units of ZD isomorphic to the group given by the following
presentation:

〈
A0, A1,
B0, B1,
C0, C1,
W0,W1,W2,W3,
X0, X1, X2, X3,
Y0, Y1, Y2, Y3,
Z0, Z1, Z2, Z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[A0, A1] = [B0, B1] = Y3Y2Y1Y0 =
C−1

0 Z2C0Z0 = A−1
0 Z2A0Z0 = A−1

0 Y2A0Y0 =
C−1

1 Z3C1Z1 = A−1
1 Z3A1Z1 = A−1

1 Y3A1Y1 =
[W0, X0] = B1W

−1
1 Z0X

−1
0 = X−1

0 C1W
−1
1 Y0 =

[W1, X1] = B0W
−1
2 Z1X

−1
1 = X−1

1 C0W
−1
2 Y1 =

[W2, X2] = B1W
−1
3 Z2X

−1
2 = X−1

2 C1W
−1
3 Y2 =

[W3, X3] = B0W
−1
0 Z3X

−1
3 = X−1

3 C0W
−1
0 Y3 = 1

〉

Now we consider the group D+
16. By [7] D+

16 has a normal complement on the group of units of
ZD+

16 which is isomorphic to the image G in PSL2(C) of the subgroups of SL2(Z[i]) given by the
matrices of the form (

1 + 2a 2b
2c 1 + 2d

)
with a, b, c, d ∈ Z[i] and bi + c ∈ 2Z[i]. Using the same method shown in the previous example one
shows that G has the same fundamental polyhedron F as in the previous example but the basic
generators of the previous example should be replaced by the following:

A =
(

1 −4
0 1

)
P =

(
−1− 4i 2i

2 −1

)
Q =

(
−3− 4i 4 + 6i

2 −3

)
R =

(
−3− 2i 2 + 4i

2i 1− 2i

)
S =

(
3− 2i −2 + 4i

2i −1− 2i

)
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3
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0
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1
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0
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0
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1

T1 = R−1
2
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3
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S1

S2
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0
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1

U3 = S−1
2

U0 = S−1
3

Figure 3

In this example it is convenient to change slightly the fundamental polyhedron by “cutting” some
of the external triangles of the projection of F and replace them by the image of these triangle by
the action of either A0 or A1. Then the projection of the fundamental polyhedron in Figure 1 now
take the form of the picture of Figure 3. Using the same method as in the previous example one
obtains the following.

Theorem 5.3 The group of trivial units of ZD+
16 for

D+
16 = 〈a, b|a8 = 1 = b2, ba = a5b〉

has a normal complement in the group of units of ZD+
16 isomorphic to the group given by the

following presentation:

〈 A0, A1,
P0, P1, P2, P3,
Q0, Q1, Q2, Q3,
R0, R1, R2, R3,
S0, S1, S2, S3

∣∣∣∣∣∣∣∣∣∣∣∣

[A0, A1] = R1R2R3R0 = S3S2S1S0 =
S−1

3 R2S
−1
1 R0 = S−1

0 R3S
−1
2 R1 =

P−1
3 A−1

0 Q−1
2 A−1

0 Q1P0 = R−1
0 A1Q0S

−1
0 P0 = S−1

0 Q0R
−1
0 A1P0 =

P−1
0 A−1

1 Q−1
3 A−1

1 Q2P1 = R−1
1 A2Q1S

−1
1 P1 = S−1

1 Q1R
−1
1 A2P1 =

P−1
1 A−1

2 Q−1
0 A−1

2 Q3P2 = R−1
2 A3Q2S

−1
2 P2 = S−1

2 Q2R
−1
2 A3P2 =

P−1
2 A−1

3 Q−1
1 A−1

3 Q0P3 = R−1
3 A0Q3S

−1
3 P3 = S−1

3 Q3R
−1
3 A0P3 = 1

〉
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