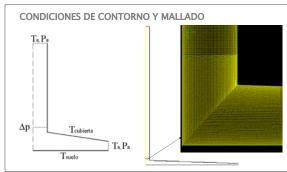
Modelización numérica del proceso de transferencia de calor, del flujo convectivo inducido y de la potencia generada en una central eólico solar

Hurtado F.J., Kaiser A.S., Zamora B., Lucas M., Viedma A.

Área de Mecánica de Fluidos. Departamento de Ingeniería Térmica y de Fluidos. Escuela Técnica Superior de Ingeniería Industrial Antiguo Hospital de Marina, c/ Doctor Fleming s/n, 30202. Cartagena E-mails: antonio.kaiser@upct.es, fran.hurtado@hotmail.com, blas.zamora@upct.es y

E-mails: antonio.kaiser@upct.es, fran.nurtado@notmail.com, bias.zamora@ ruth.herrero@upct.es

Universidad Politécnica de Cartagena


Descripción del objeto de estudio

La chimenea eólico solar tiene por objeto producir energía eléctrica a partir de la energía del sol. La radiación solar incide sobre el colector que, a modo de invernadero, calienta el aire que hay en su interior. El aire caliente asciende por flotación a través de la chimenea, accionando y haciendo girar mediante este movimiento ascendente la turbina que se encuentra en la base de la chimenea. Esta turbina se conecta a un generador eléctrico que produce la corriente. El sistema está formado por un colector con forma cónica de radio de base 122 m, y altura en el centro y los extremos 6 y 2 m respectivamente, una chimenea en el centro del colector de 194,6 m de altura y 5 m de radio, y una turbina de 4 álabes y 5 m de radio girando a 100 rpm. En este trabajo se ha desarrollado un modelo numérico de los flujos convectivos inducidos por flotación dentro de la chimenea solar.

Características de la simulación

MODELO NUMÉRICO

Malla \rightarrow estruct. 150.000 celdas

 $Solver \rightarrow Segregado$

 $Espacio \rightarrow 2D$

Régimen→ Estacionario

Fluido → Aire

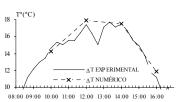
Discretización → Upwind 2° orden

Modelo turbulento \rightarrow k-epsilon

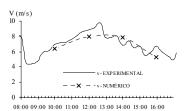
Propiedades \rightarrow Constantes, aprox. de Boussinesq

Modelo de la turbina $\rightarrow \Delta p = -(\frac{1}{2} \cdot C_2 \cdot \rho \cdot v^2 + \frac{\mu}{\alpha} \cdot v) \cdot \Delta m$ δm -espesor de la capa porosa (m)

V.23.V.5


XIV CONGRESO IBÉRICO

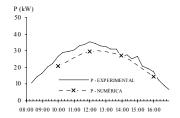
Vigo, Galicia, España. 17 – 21 junio 2008


Y IX IBEROAMERICANO DE ENERGÍA SOLAR

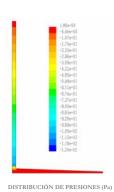
c2 -coef. de salto de presión (m-1) α -perm. de la superficie (m2).

Validación experimental

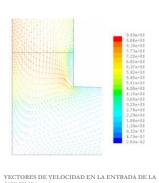
Incremento de temperatura entre la entrada del colector y la entrada a la chimenea en función de la hora del día.


Velocidad del aire a la entrada de la chimenea en función de la hora del día.

Salto de presión producido por la turbina en función de la hora del día.


m (kg/s) 650 600 550

450 400 350



Potencia genera da en función de la

Resultados

123-41
124-41
124-41
124-41
124-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
134-41
13

X SUELO 4 h(W/m²-K) X X
+ CUBIERTA 3 X X
-20 -15 -10 -5 0 5 10 15 20 25 30 35 AT=(T_{PLACA} - T_{media})

25 ∆T=(T_{PLACA} - T_m Gasto Másico en Función de la Diferencia de Temperatura entre la Superficie del Suelo y el Fluido

Coeficientes de Transferencia de Calor para el Suelo y para la Cubierta Colectora en Función de la Diferencia de Temperatura de cada superficie y el Fluido