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A Novel Design of a Robust Ten-Port Microwave
Reflectometer With Autonomous Calibration
by Using Neural Networks

Juan Monzo6-Cabrera, Juan L. Pedrefio-Molina, Antonio Lozano-Guerrero, and Ana Toledo-Moreo

Abstract—1In this study, a novel ten-port waveguide microwave
sensor is designed, implemented, calibrated and tested in order
to obtain the reflection coefficient magnitude and phase. This re-
flectometer is based on the well known six-port structure but the
number of detectors has been increased to eight in order to im-
prove the sampling procedure of the standing wave present within
the waveguide. In addition, a learning method based on neural net-
works’ usage has been implemented for autonomous calibration
from the data collected by a vector network analyzer. An auto-
mated procedure consisting of a moving sample within a multi-
mode cavity has enabled different reflection coefficients to be ob-
tained. Neural networks have been employed in order to learn the
relationship between the actual reflection parameter and the ac-
quired signals from eight power detectors. This novel device has
been calibrated with a neural architecture based on radial basis
functions and the error of device measurements has been analyzed.
This new design and the incorporated neural network calibration
allow one to avoid problems caused by fault or nonlinearity of the
detectors, and to get robustness, flexibility and adaptability char-
acteristics for the presented device.

Index Terms—Autonomous calibration, neural networks, scat-
tering parameters, six-port, ten-port microwave reflectometer.

I. INTRODUCTION

IFFERENT alternatives have been proposed to estimate
D the scattering parameters in microwave-heating pro-
cesses. Traditional methods for these techniques [1] are based,
for instance, on slotted lines or impedance bridges [2] or circuit
designs based on directional couplers [3]. Another possibility
is the so-called six-port reflectometer [4], [5], as well as the
employment of conventional network analyzers. However, in
the case of the six-port, several advantages are found versus
network analyzers such as portability, lower price and simple
structure. Additionally, for high-power signals, power mea-
surement devices of six-port are much easier to design than the
circuits which are used in traditional network analyzers.
The six-port methodology, designed by Hoer in 1972, is an
inexpensive solution that avoids the use of network analyzers.
It is based on the employment of simple power detectors (like

Manuscript received April 15, 2008; revised July 30, 2008. First published
November 18, 2008; current version published December 05, 2008.

J. Monz6-Cabrera, J. L. Pedrefio-Molina, and A. Lozano-Guerrero are with
the Departamento de Tecnologias de la Informacién y las Comunicaciones, Uni-
versidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain (e-mail:
Juan.Monzo@upct.es; Juan.PMolina@upct.es; Antonio.Lozano@upct.es).

A. Toledo-Moreo is with the Departamento de Tecnologia Electrénica, Uni-
versidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain (e-mail:
Ana.Toledo@upct.es).

Digital Object Identifier 10.1109/TMTT.2008.2007318

LOAD

a a
( )—> SIX-PORT —
by
%
Fig. 1. Six-port reflectometer structure.

diodes or thermistors). Due to noise presence and the nonlinear
characteristics of the power detectors, a calibration procedure
has to be carried out for the six-port within the working band-
width to ensure the accuracy of the measurements.

A. Operation Principle of a Six-Port Reflectometer

A waveguide six-port reflectometer consists of a simple
waveguide with six ports: one of them connected to the mi-
crowave source, the other one to the unknown load and four
coaxial ports loaded with power detectors. The coaxial ports
extract samples of the waveguide incident and reflected waves
by using the central conductor of the coaxial ports as an an-
tenna or probe. From the outputs of the detectors, a numerical
relationship can be theoretically obtained to determine the
reflection coefficient [2]. This numerical expression combines
the value of nine parameters, which are very sensitive to noise
effects in the measurements, when trying to determine the
desired reflection coefficient value defined as I' = by /a9, as
shown in Fig. 1.

The six-port calibration procedure is based on finding the nu-
merical solution for the system of equations shown, as follows
in (1), with M; and N; being complex constants; therefore, eight
equations must be evaluated in order to infer M; and N; values:

b3 =Ms - as + N3 - by
bs =My -as+ Ny-bo
bs =Ms-az + N5 - by
bs = My - as + Ng - by. 1)

The most extended techniques for solving this system are
based on terminating the six-port with at least four standard
loads [2], sliding terminations [6] or the thru-reflect-line (TRL)
method [7]. Another possibility is described in [8] where five
loads with the same module are used for the calibration, elimi-
nating ill-conditioned configurations.

The numerical solution can be graphically represented in the
complex impedances plane by means of three circles, whose
intersections provide the desired solution for I', and techniques
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to decrease the number of parameters in (1) can be found in [6]
by exploiting circular symmetries with respect to the complex
axes.

B. Six-Port Calibration Techniques

The main problems of the previous calibration methodology
are due to error in the measurements such as noise and non-
linearity effects. As a consequence, the intersection point in
the complex plane is extended to a wider region in which sev-
eral solutions are possible. In this way, efforts have been made
to numerically find the solution in presence of noise such as
methods based on least squares algorithms for mean power error
Gaussian distributions [9] or techniques based on Fourier anal-
ysis of the six-port parameters [10].

However, in all these methods the nonlinearity of the diodes
and the presence of noise are not considered. Additionally, un-
certainty of connectors, transmission lines or diodes, may in-
crement the final error in measurements, which is more relevant
when high power levels are considered. Other techniques for
the calibration of diodes’ effects have been proposed, such as
linear approximation around the working frequency [8], [11],
inclusion of a correction factor depending on temperature [12]
or sliding terminations for the calibration of both the diode and
the six-port [13].

Finally, methods based on artificial neural networks are used
in [12] or [14] for both the six-port and diode calibration by
using electromagnetic simulation platforms. Neural networks in
those works avoid numerical modeling of the physical behavior
of all the components at the six-port device.

From those works, measurement based on neural network
learning procedures seems to be the best solution for the cali-
bration of a reflectometer device because they are able to estab-
lish a precise relationship between the outputs of diodes and the
S11 parameter by means of an adaptive process. This learning
procedure is able to counteract effects such as noise or nonlin-
earity of the diodes. Additionally in [15], both |Sy1| training
and validation data are extracted by a simple procedure of irra-
diating a sample of any material at different distances from the
microwave source.

In this study, a novel ten-port microwave sensor for both Sq1
magnitude and phase measurement, which is calibrated with
neural networks, has been developed in order to improve the six-
port performance. Six-port internal characteristics have been
modified and a neural process has been implemented for cali-
bration and S7; measurement.

Thus, a ten-port structure incorporating neural-network
calibration has been designed and subsequently manufactured.
Aspects such as accuracy, adaptability and robustness in the
measurement procedure have been tested by using a microwave
heating multimode cavity as impedance generator. All the
tests have validated the proposed mechanical design, electronic
assembly and the neural calibration and measurement methods
for low microwave power levels.
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Fig. 2. Scheme of the ten-port structure with port numeration.

II. METHODS AND EXPERIMENTAL SETUP

A. Ten-Port Reflectometer Implementation

In this study, the microwave reflectometer (Fig. 2) is formed
by a WR-340 rectangular waveguide with ten ports, two of them
corresponding to the input and output ports of the waveguide.
Eight coaxial ports have been placed at the centre of the biggest
face of the waveguide, in order to sample the standing wave of
the TE o mode at its maximum value.

The central conductor of the SMA coaxial connectors pen-
etrates inside the rectangular cross section with a length of
16 mm, which provides a power coupling of —23 dB. This
value has been chosen in order to ensure that the power detec-
tors are never saturated since the output power of the network
analyzer, which was used in this study as the microwave source
and reference instrument, was set to 27 dBm and the saturation
power level of the power detectors is 10 dBm. The distance
between each coaxial port is selected as a function of the TE;
wavelength, resulting in d = 22 mm, with separations of 35 mm
from the extremes. The final length of the ten-port is 224 mm.

The selection of eight sampling ports instead of the four
probes used in the six-port has been considered to improve
the accuracy of the final result since a neural network is used
for the ten-port calibration. In fact, if the network is designed
appropriately, the prediction process is more precise when
much information about the same function is acquired.

Moreover, this redundancy and the proposed neural-network
method for the calibration permits the modification of the be-
havior of the ten-port sensor to scenarios in which the detection
process in whatever port is damaged. In contrast, the six-port
structure employs the minimal number of samples necessary
to solve the numerical equation, which impedes adaptability to
changes in the system such as detector failure.

As previously commented, the ten-port device presented in
this paper has been designed to estimate the complex value
of S11 at 2.45 GHz, when low microwave power is supplied
from the microwave source, a ZVRE Rohde & Schwarz vector
network analyzer (VNA) in this case. The WR-340 rectangular
waveguide has been manufactured with aluminum of 8 mm
thickness. The eight SMA coaxial connectors have been loaded
with microwave integrated circuits containing the power de-
tectors, and one data acquisition device has been employed to
multiplex the outputs of the power-meter boards and convert
them to a digital format. Both the calibration and the measure-
ment procedures are computed by means of neural networks
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Fig. 3. Experimental scenario for microwave ten-port operation.

in a personal computer. Fig. 3 shows the experimental setup
employed in all tests.

As it can be observed in Fig. 3, the load connected to the
ten-port reflectometer consists of a microwave 60 cm x 60 cm x
60 cm multimode cavity. Within this cavity, a nylon computer-
controlled cartload moves a dielectric sample to different posi-
tions in order to achieve different reflection coefficients for the
learning mode or calibration stage.

The ZVRE VNA is connected to the computer in order to ac-
quire the reference measurements for S7; in each sample posi-
tion. In this way, the VNA acts both as the microwave source and
calibrated sensor during the calibration stage. In this case the op-
erating frequency for all the measurements was set to 2.45 GHz
and the power delivered by the VNA was 0.5 W. The VNA was
calibrated by using a WCK-340-HP waveguide calibration kit
from Continental Microwave. This calibration kit uses short,
matched loads and through connection as reference measure-
ments.

It must be remarked that the S11 values measured by the VNA
were only used to train the neural networks during the ten-port
calibration stage. After that stage the ten-port was able to predict
S11 without the need of any VNA. Although other approaches
were possible, such as the use of theoretically known imped-
ances, this one was chosen since it allowed computer control
and high precision reference measurements.

All the detectors employed at the coaxial ports in this exper-
imental setup were LTC5530 nonlinear power detectors, whose
input working range is from —30 to 10 dBm and its operating
bandwidth covers from 300 MHz to 7 GHz. The typical output
voltage range covers from 100 mV to 3.6 V. Since the curve for
the output voltage versus the input power was not provided by
the manufacturer at 2.45 GHz, this relationship was experimen-
tally determined by using the VNA as an RF signal generator
and a conventional multimeter for measuring the output voltage.
Fig. 4 shows the detector output voltage versus the input power
at 2.45 GHz and 25 °C.

Finally, the working methodology of this experimental setup
is as follows. The VNA irradiates electromagnetic energy that
is propagated across the ten-port reflectometer. This energy
reaches a loaded multimode oven so that a part of the mi-
crowave power is absorbed by the dielectric sample and the rest
is reflected towards the analyzer that measures the reference
complex value of the reflection coefficient. Thus, inside the
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Fig. 4. Output voltage versus input power for LTC5530 nonlinear power de-
tectors at 2.45 GHz.

Fig.5. Scheme of the neural network for S1; magnitude and phase prediction,
where x;, G; and = represent the levels for the input, hidden and output, respec-
tively.

ten-port waveguide section a standing wave is generated. Eight
coaxial probes sample this standing wave and the microwave
power detectors measure the power at each of these eight
locations. Each input power at the detectors is converted to
an output voltage signal and this voltage is captured by a data
acquisition board. Both the VNA reference measurement and
the eight output voltages are supplied to the computer in order
to train the neural network, which is dedicated to find the
relationship of the VNA-measured S1; parameter and the eight
voltages of the power detectors for different positions of the
sample inside the oven.

B. Neural Network Training Methodology

The well-known radial basis function neural network [16] has
been selected to estimate both the magnitude and phase of S1;
from the eight voltage values provided by the power detectors.
Fig. 5 shows the neural architecture used in this study.

This neural architecture consists of a nonlinear hidden level
and other linear output level in which the contribution of the
signals pondered by the GG; Gaussians activation functions of
the neurons, are combined to provide the S1; parameter at the
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Fig. 6. Calibration procedure scheme of the ten-port by using the radial basis
function (RBF) neural network.

working frequency. These functions are defined by the ¢; adap-
tive centroids and a constant variance value for all the Gaussians
expressions.

The ¢; centroids determine the segmentation of the input
space of the = input vector. The components x; of the x vector
form the input level of the neural network, while G; form the
hidden level. The output of the network is obtained by means
of the vectorial expression W X G in the output linear level.
In this case, the input vector is formed by the eight voltage
values provided by the LTC5530 detectors, whereas the output
of the network estimates |S1]|. A similar scheme is used for the
estimation of Sq1 phase.

As it is shown in Fig. 5, these inputs are projected over the
hidden level by means of the evaluated Euclidean distance. In
this level, the radial basis functions, given by G;, evaluate the
contribution of each z-component with respect to the ¢; cen-
troids. Finally the outputs of each Gaussian function are pon-
dered by the w; neural weights, and projected toward the output
linear level in which all the contributions are summed to the es-
timation for the S;; parameter.

In order to design a calibration procedure for this ten-port, it
is necessary to acquire as many values as possible for | S| and
its correspondent eight-length voltage output vector from the
power detector circuits. To do this, a system of variable loads
must be implemented to ensure that values for S; cover all
the multimode oven range of impedances. This is a requirement
for the correct training procedure of the neural network weights
(w;). In this study, the proposed solution for the ten-port cali-
bration is based on the use of a multimode microwave oven as
an impedance generator.

Figs. 6 and 7 show the online procedure diagram, which con-
sists of sweeping the impedance space by displacing a high-loss
dielectric sample inside the cavity over a nylon cartload along
the main axis of the oven as described in [17]. Then, for each
position of the cartload, both the |S1| measured with the VNA
and the eight sampled voltage values corresponding to standing
wave inside the ten-port are recorded at the computer. Fig. 7(b)
shows the multimode oven and the PTFE carrying system di-
mensions.

Once the VNA and power detector measurements have been
acquired, the neuron weights of the neural structure are obtained
by an adaptive procedure, which is able to estimate the actual
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60 cm

Fig. 7. (a) Impedance variation generated by displacements of a water sample
inside the oven. (b) Multimode oven and PTFE carrying system dimensions.

values for magnitude and phase of S1; from the power detectors’
values. We refer in this case to the identification level.

Both the training and identification levels were implemented
in MATLAB by using its Neural Network Toolbox.

III. EXPERIMENTAL RESULTS

The described calibration method, the waveguide reflec-
tometer configuration, the electronic boards containing the
power meters and the acquisition system were implemented
and tested.

For the design of the network parameters, the number of both
centroids and adaptive variances for each Gaussian function has
matched the number of training steps or load iterations. The least
mean square optimization algorithm has been implemented to
find the weights that minimize the mean quadratic error during
the training or calibration procedure. The number of faulty de-
tectors has been varied in order to perform an analysis of the
ten-port behavior under unusual conditions of the device.

A. Training Procedure and Analysis of the Neural Structure

The variable impedance generation needed for the training
stage has been implemented in this study by using a 0.6 m X
0.6 m x 0.6 m cubic microwave oven with a movable dielec-
tric load, as shown in Fig. 7(a), since sample position modifi-
cation is capable of providing high impedances variations [17].
In this case, the dielectric load has consisted of a 1.5 L sample,
which has provided |S11]| values ranging from 0.1 to 0.8. Five
mm steps have been used for the position of the water load and,
in this case, the sample has moved all along the axis shown in
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Fig. 8. Train and test data used for Figs. 10 and 11.

Fig. 7(a) by starting from the nearest point to the microwave
source. This procedure has provided enough points to train the
neural structure and to establish the relationship between the
VNA and ten-port measurements.

Once the weights of the neural network have been calculated,
the ten-port is calibrated and can autonomously measure magni-
tude and phase of S1;. Consequently, in the measurement stage,
the network analyzer is no longer necessary although it has been
used here for validation purposes.

B. Estimation of S11 by the Ten-Port Reflectometer

Once the training data were acquired, the neural weights were
learned by the neural network by using 100 neurons and 100
different values of |S11| from the VNA. Fig. 8 shows the com-
parison between the values of S1; used to train the ten-port and
the ones employed to test the sensor behavior.

Figs. 9 and 10 show the behavior, in module and phase, of the
ten-port reflectometer versus VNA performance when values
for S7; that were not considered during the training process
are used. The correspondence between both data is very high
and therefore, the figures roughly follow a straight line with
slope 1. Mean squared error was found to be in this case around
5.2 x 10 — 5. This indicates that the training procedure was suc-
cessfully performed.

In order to evaluate the behavior of the ten-port when some
detectors are operating in an inaccurate way, several tests have
been carried out by using only a reduced number of diodes as
valid sensors. The output of the faulty detectors is defined as
a constant value for all the training positions. In the case of
using just two valid detectors, the considered valid sensors were
that placed at ports 5 and 8 in Fig. 2. When using only four
detectors, the valid ones were that located at ports 3, 5, 7, and 9.
The results are represented in Fig. 11, where 175 training steps
and 59 validation measurements have been considered.

From curves in Fig. 11, one can observe that the proposed
neural ten-port structure is able to predict the Sq; function with
only four detectors, obtaining a low error level in the process.
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As it has been demonstrated, this is one of the advantages of the
ten-port, which is able to adapt its behavior when some detectors
are broken. It can also be appreciated that a minimum of four



MONZO-CABRERA et al.: NOVEL DESIGN OF ROBUST TEN-PORT MICROWAVE REFLECTOMETER

06
0,4 1
@
T 02
L
0,0 4
Prd ——— 80 Training Data
Pl -+-+ 40 Training Data
g ——— 20 Training Data
//
-0,2 T T T T T T
-0,1 0,0 0,1 02 0,3 04 05 0,6
Desired |S,|

Fig. 12. Behavior of the ten-port as a function of the number of S, training
data.

detectors is needed for a proper behavior since the result for two
detectors is not acceptable.

A study of the required number of training data for a proper
estimation of S7; has been carried out. Fig. 12 shows the dif-
ferent behavior of the ten-port employed in this study as a func-
tion of the number of training data. In all cases, the number
of neurons that has been employed is equal to the number of
training Sy; values. However, in all cases, the number of test
points was equal to 100. One can conclude from Fig. 12 that the
bigger the number of training data, the better the estimation of
the reflection coefficient.

IV. CONCLUSIONS

This study is focused on the design of a microwave reflec-
tometer based on a waveguide ten-port structure and a calibra-
tion method that uses radial basis functions neural networks. To
do this, a rectangular waveguide that contains eight power de-
tectors for transforming the electromagnetic energy of the prop-
agated TE7¢ mode into dc signals, a digital acquisition system
and one neural network process have been implemented and
tested.

The experimental trials have been carried out at low power
and at 2.45 GHz. However, this method can be readily extended
when high power is considered, by properly diminishing the
coupling of the coaxial ports to the waveguide. Additionally,
some other aspects should be considered such as frequency and
power pulling when using magnetron as the microwave source.
In this way, the device should identify the working frequency
and therefore the neural architecture should be redefined.

The calibration has been performed at a fixed power and fre-
quency and therefore the developed device can only work for
these fixed values. However, the procedure can be extended for
different values of frequency and power level since the network
is capable of online adapting to new situations provided that they
are properly trained. To do this, only a training process must be
carried out for the specified frequency.

The performance of this device for a range of frequencies is
proposed as a future work. It is important to remark that the
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different characteristics of the power detectors, the transmis-
sion lines and the manufactured board, introduce errors in the
theoretical model of a reflectometer. However, in the proposed
robust device, this fact is solved by the over-sampling of the
standing wave inside the guide as well as the calibration proce-
dure based on neural-network learning methods. In fact, it has
been shown that the device is capable of adjusting its behavior
when a power meter is not considered due to failure or satura-
tion.

As a drawback, it must be pointed out that the training pro-
cedure requires a high number of load impedances to achieve a
good performance of the neural network. However, this problem
can be avoided by using automated procedures similar to the one
employed in this study.

Finally, new studies are envisaged in order to extend the de-
vice performance for wider frequency bands and higher power
levels.
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