
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 576–585

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.041

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.041 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

between their bodies. The study of these relationships is known as kinematic modeling and
analysis of the multibody system. Large and complex multibody systems require the use of
computational methods to solve their kinematics, which is the basis for the design, simulation,
control, optimization and dynamic analysis of the multibody system. All these tasks must either
be performed for real time applications, like the simulation, control and dynamic analysis, or
repeated a large number of times, for design and optimization processes. In both cases, efficient
kinematic formulations are needed together with the selection of the most appropriate solvers
and the best exploitation of the computer resources.

With regard to the kinematic modeling and analysis of a MBS, the analyst must select a
vector q of coordinates that defines the position and orientation of each body of the MBS in
the space. Then, these coordinates are related by means of a nonlinear system of constraint
equations Φ(q) = 0. Different formulations use different sets of coordinates, types of constraint
equations and methods to solve the kinematic problem. Global formulations, on the one hand,
select as many coordinates as needed to define the position of each body independently of
the other bodies, and then all these coordinates are related by using the constraint equations
associated to each type of mechanical joint in the MBS. These formulations use a large number
of coordinates and constraint equations, and their size increases with the complexity of the
MBS. On the other hand, topological formulations exploit the topology of the MBS to reduce the
dimension of the problem by relating the position of each body with respect to its preceding one,
which reduces the size of q, or by dividing the MBS into an ordered set of simpler subsystems
(known as the kinematic structure of the MBS), whose kinematics can be solved in the specific
sequence in which they have been ordered [11].

The topological approach based on Group Equations has proved to be more efficient than
global formulations, with reductions in the execution times of up to 50% in the kinematic
analysis of 2D and 3D MBS [12]. One drawback of that work is that the results have been
obtained for small subsystems, and one advantage is that, depending on the kinematic structure
of the MBS, the kinematic analysis of some of the subsystems can be performed independently,
which allows us a better exploitation of the computer resources by applying parallelism to
reduce the execution time in real-time applications or for highly demanding computations.

The two aforementioned considerations (limitation in the number of subsystems and possi-
bility of exploitation of parallelism) motivate the present work, which aims to develop a sim-
ulator for the computational kinematic analysis of multi-body systems to allow us to analyze
the efficiency of the group equations approach and to identify the most efficient parallelization
strategy, depending on the topology of the system to be analyzed.

The remainder of the paper is organized as follows. Section 2, briefly shows the main ideas
of the kinematic analysis based on Group Equations. The case study (Stewart platform) used
is introduced in Section 3. The parallel implementations of the simulator based on Group
Equations are discussed in Section 4. The experimental results obtained with the application
of these parallel implementations are summarized in Section 5. Experiments are conducted in
different computational systems (multicore, Raspberry Pi and GPU) to analyze the preferred
system depending on our goal: reduction of time or energy consumption, or use for control in
real-time or for simulation. The use of various linear algebra libraries is also analyzed. Finally,
Section 6 concludes the paper and outlines some possible research directions.

2 Computational Kinematics Based on Group Equations

The topological approach based on Group equations has been shown to be more efficient than
a global formulation, using the same type and size of the vector of coordinates q. This result

2

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.041&domain=pdf

 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585 577

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

This space is reserved for the Procedia header, do not use it

Exploiting Hybrid Parallelism in the Kinematic Analysis of

Multibody Systems Based on Group Equations

Gregorio Bernabé1, José-Carlos Cano2, Javier Cuenca1, Antonio Flores1,
Domingo Giménez2, Mariano Saura-Sánchez3, and Pablo Segado-Cabezos3

1 Department of Engineering and Technology of Computers, University of Murcia, Spain
{gbernabe,jcuenca,aflores}@um.es

2 Department of Computing and Systems, University of Murcia, Spain
{josecarlos.canol,domingo}@um.es

3 Department of Mechanical Engineering, Technical University of Cartagena, Spain
{msaura.sanchez,pablo.segado}@upct.es

Abstract
Computational kinematics is a fundamental tool for the design, simulation, control, optimization
and dynamic analysis of multibody systems. The analysis of complex multibody systems and
the need for real time solutions requires the development of kinematic and dynamic formulations
that reduces computational cost, the selection and efficient use of the most appropriated solvers
and the exploiting of all the computer resources using parallel computing techniques. The
topological approach based on group equations and natural coordinates reduces the computation
time in comparison with well-known global formulations and enables the use of parallelism
techniques which can be applied at different levels: simultaneous solution of equations, use
of multithreading routines, or a combination of both. This paper studies and compares these
topological formulation and parallel techniques to ascertain which combination performs better
in two applications. The first application uses dedicated systems for the real time control of
small multibody systems, defined by a few number of equations and small linear systems, so
shared-memory parallelism in combination with linear algebra routines is analyzed in a small
multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The
second application studies large multibody systems in which the kinematic analysis must be
performed several times during the design of multibody systems. A simulator which allows us
to control the formulation, the solver, the parallel techniques and size of the problem has been
developed and tested in more powerful computational systems with larger multicores and GPU.

Keywords: Multibody systems, group equations, Stewart platform, hybrid parallelism

1 Introduction

Multibody systems (MBS) are mechanical systems formed by rigid and flexible bodies which
are connected by means of mechanical joints in such a way that there is relative movement

1

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

between their bodies. The study of these relationships is known as kinematic modeling and
analysis of the multibody system. Large and complex multibody systems require the use of
computational methods to solve their kinematics, which is the basis for the design, simulation,
control, optimization and dynamic analysis of the multibody system. All these tasks must either
be performed for real time applications, like the simulation, control and dynamic analysis, or
repeated a large number of times, for design and optimization processes. In both cases, efficient
kinematic formulations are needed together with the selection of the most appropriate solvers
and the best exploitation of the computer resources.

With regard to the kinematic modeling and analysis of a MBS, the analyst must select a
vector q of coordinates that defines the position and orientation of each body of the MBS in
the space. Then, these coordinates are related by means of a nonlinear system of constraint
equations Φ(q) = 0. Different formulations use different sets of coordinates, types of constraint
equations and methods to solve the kinematic problem. Global formulations, on the one hand,
select as many coordinates as needed to define the position of each body independently of
the other bodies, and then all these coordinates are related by using the constraint equations
associated to each type of mechanical joint in the MBS. These formulations use a large number
of coordinates and constraint equations, and their size increases with the complexity of the
MBS. On the other hand, topological formulations exploit the topology of the MBS to reduce the
dimension of the problem by relating the position of each body with respect to its preceding one,
which reduces the size of q, or by dividing the MBS into an ordered set of simpler subsystems
(known as the kinematic structure of the MBS), whose kinematics can be solved in the specific
sequence in which they have been ordered [11].

The topological approach based on Group Equations has proved to be more efficient than
global formulations, with reductions in the execution times of up to 50% in the kinematic
analysis of 2D and 3D MBS [12]. One drawback of that work is that the results have been
obtained for small subsystems, and one advantage is that, depending on the kinematic structure
of the MBS, the kinematic analysis of some of the subsystems can be performed independently,
which allows us a better exploitation of the computer resources by applying parallelism to
reduce the execution time in real-time applications or for highly demanding computations.

The two aforementioned considerations (limitation in the number of subsystems and possi-
bility of exploitation of parallelism) motivate the present work, which aims to develop a sim-
ulator for the computational kinematic analysis of multi-body systems to allow us to analyze
the efficiency of the group equations approach and to identify the most efficient parallelization
strategy, depending on the topology of the system to be analyzed.

The remainder of the paper is organized as follows. Section 2, briefly shows the main ideas
of the kinematic analysis based on Group Equations. The case study (Stewart platform) used
is introduced in Section 3. The parallel implementations of the simulator based on Group
Equations are discussed in Section 4. The experimental results obtained with the application
of these parallel implementations are summarized in Section 5. Experiments are conducted in
different computational systems (multicore, Raspberry Pi and GPU) to analyze the preferred
system depending on our goal: reduction of time or energy consumption, or use for control in
real-time or for simulation. The use of various linear algebra libraries is also analyzed. Finally,
Section 6 concludes the paper and outlines some possible research directions.

2 Computational Kinematics Based on Group Equations

The topological approach based on Group equations has been shown to be more efficient than
a global formulation, using the same type and size of the vector of coordinates q. This result

2

578 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

is achieved because, instead of solving the whole system of constraint equations Φ(q) = 0
as the global formulations do, the topological formulation divides the MBS into a number of
subsystems, called Structural Groups (SG), which can be modeled and solved by using a reduced
set of group coordinates (qG) and the corresponding vector of group constraint equations which,
considering a holonomous and scleronomous MBS, can be expressed as Φ(qG) = 0. In order to
solve the kinematics of a certain SG, the vector qG is split into a vector of independent group
coordinates h, whose values are known from the kinematic analysis of previous SG, and a vector
of dependent group coordinates, ϕ, whose values have to be calculated by solving the group
constraint equations by means of the iterative Newton-Raphson method, equation 1, where Φϕ

represents the Jacobian matrix of the constraint equations with respect to the vector ϕ, and k
identifies the number of the iteration.

Φ(qG) = 0 → (Φϕ)k−1 · (ϕk −ϕk−1) = −Φ(qG)k−1 (1)

The obtained dependent coordinates are used to solve the linear system of equations for the
dependent velocities, ϕ̇, which are generated by deriving the constraint equations with respect
to time, equation 2, where Φh represents the Jacobian matrix with respect to the independent
coordinates.

Φ̇(qG) = 0 → Φϕ · ϕ̇ = −Φh · ḣ (2)

Finally, the linear system of equations for the dependent accelerations is obtained by deriving
the vector of velocity constraints in relation to time, equation 3, where q̇G represents the
time derivative of the Jacobian matrix of the constraint equations with respect to the group
coordinates, qG.

Φ̈ (qG) = 0 → Φϕ · ϕ̈ = −
(
Φh · ḧ+ Φ̇qG · q̇G

)
(3)

The kinematic analysis of the whole mechanical system can be carried out by solving each
SG in the order given by its kinematic structure, which determines the dependencies between
the SGs and the order in which they have to be solved. In addition, the kinematic structure
guides the parallelization strategy.

3 Case Study: Stewart Platform

The Stewart platform MBS is used as case study to analyze the application of parallelism
techniques for speeding up the kinematic analysis based on Group Equations. Figure 1 shows
the structure of a Stewart platform and its decomposition in SGs. The general structure is
shown in Figure 1a, and 1b shows the decomposition in SGs. The platform is a parallel robot
with six degrees of freedom, composed of six handles, moved by their corresponding rotatory
actuators, and which are connected by spherical joints to six sticks (rockers) each one of which
is connected to the terminal by cardan joints. The mechanism works through inverse kinematics
(input movement to the terminal), and the structural analysis of the mechanism determines
seven structural groups: the terminal (SG-T), with 12 dependent coordinates; and six SGs
composed of handle-stick pairs (SG-HS), with 15 dependent coordinates each. The terminal
element must be solved before the six SG-HS can be solved (Figure 1c). The groups SG-HS are
independent, and they can be solved in parallel.

Simulations for the Stewart platform depend on the parameters in Table 1. Simulations can
be carried out in four modes: global with dense matrices, global with sparse matrices, based on
structural groups with dense matrices, based on structural groups with sparse matrices. The
number of non-zero elements is approximately three times the dimension of the matrix, so the

3

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

(a) Stewart platform (b) Decomposition into SGs (c) Dependencies between SGs

Figure 1: Stewart platform and its decomposition and dependencies between SGs

matrices are highly sparse. When the matrices are dense, the library used for the solution of
linear algebra problems is LAPACK [2], in some cases in the MKL implementation [9] or with
MAGMA [1], and when the matrices are sparse, the MA27 solver from HSL is used [8].

parameter explanation
tEnd a maximum execution time is established
dt time step

tEnd2 number of iterations for the position problem
nSG number of structural groups
nSG-T dimension of the SG-T matrix
nSG-HS dimension of the SG-HS matrix

Table 1: Parameters for simulations of the Stewart platform

4 Parallel Implementations of the Method Based on
Group Equations

The results obtained when using the Group Equations method are compared with those with
the global formulation. In the latter case the matrices to work with are larger, and the matricial
routines work with large, sparse matrices. We call the global approach solved with the MKL
library GMKL, which works with dense matrices, and the same approach solved with MA27 is
called GMA27, which exploits the sparse structure of the matrices. The parallel routines for
the Group Equations method are called GEXXX, where XXX correspond to different ways of
explotation of the parallelism:

• GEMKL: the parallelism is exploited just by using the multithreading version of MKL. So,
the SGs are solved consecutively, using parallelism only to solve each group.

• GEOMP+MKL: OpenMP is used to start threads which work simultaneously in the solution
of different groups, one thread per group. Nested parallelism can be used for fuller exploita-
tion of the parallelism [5]. The matrix problems for each group are solved by calling MKL,
which can be sequential or multithreading. Two levels of parallelism are exploited, OpenMP
and MKL, and different combinations of OpenMP and MKL threads should be considered to
find the best combination.

4

 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585 579Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

is achieved because, instead of solving the whole system of constraint equations Φ(q) = 0
as the global formulations do, the topological formulation divides the MBS into a number of
subsystems, called Structural Groups (SG), which can be modeled and solved by using a reduced
set of group coordinates (qG) and the corresponding vector of group constraint equations which,
considering a holonomous and scleronomous MBS, can be expressed as Φ(qG) = 0. In order to
solve the kinematics of a certain SG, the vector qG is split into a vector of independent group
coordinates h, whose values are known from the kinematic analysis of previous SG, and a vector
of dependent group coordinates, ϕ, whose values have to be calculated by solving the group
constraint equations by means of the iterative Newton-Raphson method, equation 1, where Φϕ

represents the Jacobian matrix of the constraint equations with respect to the vector ϕ, and k
identifies the number of the iteration.

Φ(qG) = 0 → (Φϕ)k−1 · (ϕk −ϕk−1) = −Φ(qG)k−1 (1)

The obtained dependent coordinates are used to solve the linear system of equations for the
dependent velocities, ϕ̇, which are generated by deriving the constraint equations with respect
to time, equation 2, where Φh represents the Jacobian matrix with respect to the independent
coordinates.

Φ̇(qG) = 0 → Φϕ · ϕ̇ = −Φh · ḣ (2)

Finally, the linear system of equations for the dependent accelerations is obtained by deriving
the vector of velocity constraints in relation to time, equation 3, where q̇G represents the
time derivative of the Jacobian matrix of the constraint equations with respect to the group
coordinates, qG.

Φ̈ (qG) = 0 → Φϕ · ϕ̈ = −
(
Φh · ḧ+ Φ̇qG · q̇G

)
(3)

The kinematic analysis of the whole mechanical system can be carried out by solving each
SG in the order given by its kinematic structure, which determines the dependencies between
the SGs and the order in which they have to be solved. In addition, the kinematic structure
guides the parallelization strategy.

3 Case Study: Stewart Platform

The Stewart platform MBS is used as case study to analyze the application of parallelism
techniques for speeding up the kinematic analysis based on Group Equations. Figure 1 shows
the structure of a Stewart platform and its decomposition in SGs. The general structure is
shown in Figure 1a, and 1b shows the decomposition in SGs. The platform is a parallel robot
with six degrees of freedom, composed of six handles, moved by their corresponding rotatory
actuators, and which are connected by spherical joints to six sticks (rockers) each one of which
is connected to the terminal by cardan joints. The mechanism works through inverse kinematics
(input movement to the terminal), and the structural analysis of the mechanism determines
seven structural groups: the terminal (SG-T), with 12 dependent coordinates; and six SGs
composed of handle-stick pairs (SG-HS), with 15 dependent coordinates each. The terminal
element must be solved before the six SG-HS can be solved (Figure 1c). The groups SG-HS are
independent, and they can be solved in parallel.

Simulations for the Stewart platform depend on the parameters in Table 1. Simulations can
be carried out in four modes: global with dense matrices, global with sparse matrices, based on
structural groups with dense matrices, based on structural groups with sparse matrices. The
number of non-zero elements is approximately three times the dimension of the matrix, so the

3

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

(a) Stewart platform (b) Decomposition into SGs (c) Dependencies between SGs

Figure 1: Stewart platform and its decomposition and dependencies between SGs

matrices are highly sparse. When the matrices are dense, the library used for the solution of
linear algebra problems is LAPACK [2], in some cases in the MKL implementation [9] or with
MAGMA [1], and when the matrices are sparse, the MA27 solver from HSL is used [8].

parameter explanation
tEnd a maximum execution time is established
dt time step

tEnd2 number of iterations for the position problem
nSG number of structural groups

nSG-T dimension of the SG-T matrix
nSG-HS dimension of the SG-HS matrix

Table 1: Parameters for simulations of the Stewart platform

4 Parallel Implementations of the Method Based on
Group Equations

The results obtained when using the Group Equations method are compared with those with
the global formulation. In the latter case the matrices to work with are larger, and the matricial
routines work with large, sparse matrices. We call the global approach solved with the MKL
library GMKL, which works with dense matrices, and the same approach solved with MA27 is
called GMA27, which exploits the sparse structure of the matrices. The parallel routines for
the Group Equations method are called GEXXX, where XXX correspond to different ways of
explotation of the parallelism:

• GEMKL: the parallelism is exploited just by using the multithreading version of MKL. So,
the SGs are solved consecutively, using parallelism only to solve each group.

• GEOMP+MKL: OpenMP is used to start threads which work simultaneously in the solution
of different groups, one thread per group. Nested parallelism can be used for fuller exploita-
tion of the parallelism [5]. The matrix problems for each group are solved by calling MKL,
which can be sequential or multithreading. Two levels of parallelism are exploited, OpenMP
and MKL, and different combinations of OpenMP and MKL threads should be considered to
find the best combination.

4

580 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• GEOMP+MA27: OpenMP parallelism is exploited, with calls to the routine MA27 for the
solution of the matrix problems for each equation.

• GEMAGMA: GPU parallelism is exploited by solving the matrix problems with MAGMA
[1].

A scheme of the Group Equations method is shown in Algorithm 1. The number of external
iterations is determined by the time step and the maximum execution time (dt and tEnd

in Table 1). It is normally high, while few iterations are required for the position problems
(line 4 in Algorithm 1 and tEnd2 in Table 1). Parallelism can be exploited with the use of
parallel linear algebra routines in the solution of the kinematic problems. These routines can
exploit parallelism at different levels, inside a multicore system (MKL) or with calls to Graphic
Processing Units (MAGMA). But parallelism can be exploited in the Group Equations approach
by simultaneously solving the problems for the SG in the system (for all loop in line 3 of
Algorithm 1).

Algorithm 1 Scheme of the Group Equations method

1: for number of external iterations (tEnd*dt) do
2: Solve kinematic of terminal (size nSG-T) //MKL parallelism
3: for all structural components (nSG) do
4: for number of internal iterations (tEnd2) do
5: Solve kinematic of structural component (size nSG-HS) //MKL parallelism
6: end for
7: end for
8: end for

5 Experimental Results

Experiments are conducted for matrices of various sizes and in various computational systems
(multicore, Raspberry Pi and GPU). Initial experiments are carried out for the dimensions
corresponding to the Stewart platform. These experiments analyze the application of parallelism
to the control problem. Larger configurations are considered in order to analyze the use of
parallelism for bigger multibody systems and how the parallelization techniques scale.

5.1 Global Formulation versus Group Equations Method

The use of MKL and MA27 (dense and sparse solvers) is compared initially for the global
formulation. They correspond to versions GMKL and GMA27. The multithreading parallelism
of MKL is also analyzed. A second group of experiments corresponds to the Group Equations
approach. The use of OpenMP to exploit shared-memory parallelism is analyzed, as is also
the combination of OpenMP parallelism with MKL (sequential and parallel, versions GEMKL
and GEOMP+MKL) and MA27 (version GEOMP+MA27). Experiments are carried out in a
CPU Intel Core i5-2400 3.10 GHz with 4 cores, without Hyper-Threading, 16 GB RAM, and
Windows7 SP1 64 bits.

Table 2 compares the execution times obtained with the global formulation with exploita-
tion of parallelism through MKL (GMKL) and taking advantage of sparsity (GMA27), and
with the Group Equations method with shared-memory parallelism using OpenMP in combi-
nation with multithreading MKL (GEOMP+MKL) and MA27 (GEOMP+MA27). The version
GEMKL corresponds to GEOMP+MKL with 1 OpenMP thread. Experiments are carried out
with the number of groups of the Stewart platform (nSG=6), and with sizes nSG-T=12 and

5

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

nSG-HS=15 for the smallest problem, and nSG-T is fixed to 24 and nSG-HS takes the values
{30, 60, 120, 240, 360, 480, 720} for the other problems. “Total size” represents the size of the
matrices for the global formulation. We are comparing the performance of the different ap-
proaches, without considering the precision of the results, so the parameters corresponding to
the outer and inner iterations are fixed to tEnd=200 and time step dt=0.01, with a total of
20000 iterations, and tEnd2=1 (immediate convergence of the Newton-Raphson method). Each
value corresponds to the mean of three executions. For each version exploiting parallelism, ex-
periments were carried out for 1 to 4 threads (the number of cores in the system) and with
all the possible combinations of OpenMP and MKL threads. The number of threads which
gives the lowest execution time is also shown. The speed-up achieved with respect to GMA27
is shown in Figure 2. Some conclusions can be drawn:

GMKL GMA27 GEOMP+MKL GEOMP+MA27
Total size nSG-HS time th. time time th.×th. time th.

102 15 2.52 1 4.19 0.53 3×1 0.74 3
204 30 9.11 3 9.02 1.13 3×1 1.40 3
384 60 32.43 3 13.45 2.39 3×1 2.84 3
744 120 151.94 4 25.29 8.40 3×1 5.71 3
1464 240 1127.25 4 48.26 42.33 3×1 12.23 3
2184 360 3579.63 4 71.27 147.41 3×1 18.23 3
2904 480 7149.04 4 94.19 323.77 3×1 24.35 3
4344 720 22840.51 4 140.13 828.97 1×4 36.59 3

Table 2: Comparison of the execution times (in seconds) and combination of threads with which
they are obtained for the four versions considered, in multicore

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

total size

S
p
ee
d
-u
p

GMA27 / GMKL

GMA27 / GEOMP+MKL

GMA27 / GEOMP+MA27

Figure 2: Speed-up of parallel versions in relation with the global formulation approach with
MA27. The combinations of threads which give the lowest execution times (Table 2) are con-
sidered in all cases

• Multithreading MKL is preferable to MA27 for small sizes (those corresponding to the case
study), for which it is preferable not to exploit sparsity.

• When the matrix size increases, the exploitation of sparsity through MA27 is advisable, with
a clear advantage over MKL for large matrices. This is due to the O (n) cost of MA27
compared to O

(
n3

)
for MKL without exploitation of the sparsity.

• The Group Equations method clearly outperforms the global formulation, with a speed-up
of close to four for the largest problems considered.

6

 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585 581Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• GEOMP+MA27: OpenMP parallelism is exploited, with calls to the routine MA27 for the
solution of the matrix problems for each equation.

• GEMAGMA: GPU parallelism is exploited by solving the matrix problems with MAGMA
[1].

A scheme of the Group Equations method is shown in Algorithm 1. The number of external
iterations is determined by the time step and the maximum execution time (dt and tEnd

in Table 1). It is normally high, while few iterations are required for the position problems
(line 4 in Algorithm 1 and tEnd2 in Table 1). Parallelism can be exploited with the use of
parallel linear algebra routines in the solution of the kinematic problems. These routines can
exploit parallelism at different levels, inside a multicore system (MKL) or with calls to Graphic
Processing Units (MAGMA). But parallelism can be exploited in the Group Equations approach
by simultaneously solving the problems for the SG in the system (for all loop in line 3 of
Algorithm 1).

Algorithm 1 Scheme of the Group Equations method

1: for number of external iterations (tEnd*dt) do
2: Solve kinematic of terminal (size nSG-T) //MKL parallelism
3: for all structural components (nSG) do
4: for number of internal iterations (tEnd2) do
5: Solve kinematic of structural component (size nSG-HS) //MKL parallelism
6: end for
7: end for
8: end for

5 Experimental Results

Experiments are conducted for matrices of various sizes and in various computational systems
(multicore, Raspberry Pi and GPU). Initial experiments are carried out for the dimensions
corresponding to the Stewart platform. These experiments analyze the application of parallelism
to the control problem. Larger configurations are considered in order to analyze the use of
parallelism for bigger multibody systems and how the parallelization techniques scale.

5.1 Global Formulation versus Group Equations Method

The use of MKL and MA27 (dense and sparse solvers) is compared initially for the global
formulation. They correspond to versions GMKL and GMA27. The multithreading parallelism
of MKL is also analyzed. A second group of experiments corresponds to the Group Equations
approach. The use of OpenMP to exploit shared-memory parallelism is analyzed, as is also
the combination of OpenMP parallelism with MKL (sequential and parallel, versions GEMKL
and GEOMP+MKL) and MA27 (version GEOMP+MA27). Experiments are carried out in a
CPU Intel Core i5-2400 3.10 GHz with 4 cores, without Hyper-Threading, 16 GB RAM, and
Windows7 SP1 64 bits.

Table 2 compares the execution times obtained with the global formulation with exploita-
tion of parallelism through MKL (GMKL) and taking advantage of sparsity (GMA27), and
with the Group Equations method with shared-memory parallelism using OpenMP in combi-
nation with multithreading MKL (GEOMP+MKL) and MA27 (GEOMP+MA27). The version
GEMKL corresponds to GEOMP+MKL with 1 OpenMP thread. Experiments are carried out
with the number of groups of the Stewart platform (nSG=6), and with sizes nSG-T=12 and

5

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

nSG-HS=15 for the smallest problem, and nSG-T is fixed to 24 and nSG-HS takes the values
{30, 60, 120, 240, 360, 480, 720} for the other problems. “Total size” represents the size of the
matrices for the global formulation. We are comparing the performance of the different ap-
proaches, without considering the precision of the results, so the parameters corresponding to
the outer and inner iterations are fixed to tEnd=200 and time step dt=0.01, with a total of
20000 iterations, and tEnd2=1 (immediate convergence of the Newton-Raphson method). Each
value corresponds to the mean of three executions. For each version exploiting parallelism, ex-
periments were carried out for 1 to 4 threads (the number of cores in the system) and with
all the possible combinations of OpenMP and MKL threads. The number of threads which
gives the lowest execution time is also shown. The speed-up achieved with respect to GMA27
is shown in Figure 2. Some conclusions can be drawn:

GMKL GMA27 GEOMP+MKL GEOMP+MA27
Total size nSG-HS time th. time time th.×th. time th.

102 15 2.52 1 4.19 0.53 3×1 0.74 3
204 30 9.11 3 9.02 1.13 3×1 1.40 3
384 60 32.43 3 13.45 2.39 3×1 2.84 3
744 120 151.94 4 25.29 8.40 3×1 5.71 3
1464 240 1127.25 4 48.26 42.33 3×1 12.23 3
2184 360 3579.63 4 71.27 147.41 3×1 18.23 3
2904 480 7149.04 4 94.19 323.77 3×1 24.35 3
4344 720 22840.51 4 140.13 828.97 1×4 36.59 3

Table 2: Comparison of the execution times (in seconds) and combination of threads with which
they are obtained for the four versions considered, in multicore

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

total size

S
p
ee
d
-u
p

GMA27 / GMKL

GMA27 / GEOMP+MKL

GMA27 / GEOMP+MA27

Figure 2: Speed-up of parallel versions in relation with the global formulation approach with
MA27. The combinations of threads which give the lowest execution times (Table 2) are con-
sidered in all cases

• Multithreading MKL is preferable to MA27 for small sizes (those corresponding to the case
study), for which it is preferable not to exploit sparsity.

• When the matrix size increases, the exploitation of sparsity through MA27 is advisable, with
a clear advantage over MKL for large matrices. This is due to the O (n) cost of MA27
compared to O

(
n3

)
for MKL without exploitation of the sparsity.

• The Group Equations method clearly outperforms the global formulation, with a speed-up
of close to four for the largest problems considered.

6

582 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• OpenMP parallelism achieves higher speed-ups than MKL from the smallest size, and only for
the largest size experimented with (size 4344 in Table 2) is the MKL parallelism preferable.

• The best results are obtained with three OpenMP threads, which is not surprising given that
six group equations are solved simultaneously.

The results shown so far are with six equations, in line with the Stewart platform. The
influence of the topological structure of the system (the number of equations) is analyzed with
experiments with three numbers of structural groups, nSG=6, 16, 22, and with four numbers
of coordinates, nSG-HS=15, 30, 60, 120. nSG-T takes value 12 for nSG-HS=15 and 24 in the
other cases. The variations in the number of groups and the size of the matrices allow us to
analyze the application of parallelism for multibody systems larger than our case study. The
Group Equations method allows us to exploit parallelism so reducing the execution time with
respect to sequential executions. The improvement increases with the number of groups and
the number of coordinates. The exploitation of the sparsity is advantageous from between 60
and 120 coordinates (see again Table 2).

nSG nSG-HS MKL MA27 GEOMP+MKL GEOMP+MA27
6 15 0.85 1.9 0.65 0.76

30 2.13 3.33 1.42 1.79
60 5.54 7.24 2.72 3.13
120 20.18 15.96 9.61 6.49

16 15 2.07 4.86 0.98 1.66
30 4.91 8.61 2.35 3.07
60 14.02 18.69 4.65 5.68
120 52.71 41.43 16.16 13.23

22 15 3.00 7.18 1.35 2.19
30 7.15 12.96 2.62 4.27
60 20.77 27.95 6.53 8.02
120 78.89 61.01 23.47 19.38

Table 3: Comparison of the execution times for several combinations of number of structural
groups (nSG) and number of coordinates of each group (nSG-HS), for sequential MKL and MA27,
and combining them with OpenMP parallelism with four threads

Two-level parallelism can be used for a better exploitation of the parallelism in larger mul-
ticore systems [5]. Figure 3 shows the speed-up achieved for various combinations of OpenMP
and MKL threads. The experiments were carried out in a system with two hexa-cores Intel
Xeon E5-2620 at 2 GHz and 32 GB of RAM. For small problems OpenMP parallelism clearly
outperforms MKL, but for larger sizes it is preferable to use hybrid OpenMP+MKL parallelism.

5.2 Raspberry Pi versus Multicore Systems

Raspberry Pi are small, cheap systems with low energy consumption [10], so they are appro-
priate for control environments, for example, the Stewart platform. Parallel algorithms and
libraries are being adapted for these systems [4]. Experiments were carried out in a Raspberry
Pi 2 Model B (RP2) and a Raspberry Pi 3 Model B (RP3), with four cores each, and processor
architecture ARMv8 quad core 64Bit (RP3) and ARMv7 quad core 32Bit (RP2). MKL is not
available, and LAPACK without multithreading is used for linear algebra routines.

Table 4 compares the execution times in RP2 and RP3 with those obtained in the multicore
systems in the previous subsection, the Core i5-2400 (i5) and the Xeon E5-2620 (E5). The times
correspond to executions with four (RP2, RP3 and i5) or six (E5) OpenMP threads. MKL is

7

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

7

matrix size

S
p
ee
d
-u
p

1x12

2x6

3x4

4x3

6x2

12x1

Figure 3: Speed-up with different OpenMP×MKL threads, with 12 cores

used in multicore, and reference LAPACK without parallelism in Raspberry Pi. The numbers of
external and internal iterations and the number of groups are 300, 20 and 6, respectively. Better
results are obtained in RP3 than in RP2, but the difference decreases with larger problem sizes.
Lower times are obtained in multicore, and the difference increases with the problem size. The
table also shows the energy consumption with the four systems, considering a Thermal Design
Power (TDP) of 4 W for Raspberry Pi, 15 W for the i5 and 95 W for the E5. The lowest values
of TDP are obtained with i5, which is a laptop with much lower power consumption than the
desktop, and also slower. Raspberry Pi has the lowest TDP for the smallest size (that of the
Stewart platform) and so is competitive with general purpose multicore systems for control
problems, due to low power consumption, price and size.

Execution time Energy consumption
nSG-T nSG-HS RP2 RP3 i5 E5 RP2 RP3 i5 E5
12 18 1.15 0.68 0.40 0.11 4.6 3.4 6.0 10.5
24 36 5.90 4.08 1.46 0.26 23.6 20.4 21.9 24.7
36 54 15.67 11.67 1.94 0.48 62.7 58.4 29.1 45.6
48 72 31.11 26.72 2.95 0.69 124.4 133.6 44.3 65.6
60 90 58.84 53.36 5.14 1.09 235.4 266.8 77.1 103.4
72 108 93.38 89.17 7.17 1.48 373.5 445.9 107.6 140.6
84 126 148.42 137.69 9.64 2.10 593.7 688.5 144.6 199.5
96 144 214.06 204.77 12.85 2.67 856.2 1023.9 192.8 253.7

Table 4: Comparison of the execution times (in seconds) and the energy consumption (multi-
plying TDP by execution time) in Raspberry Pi 2, Raspberry Pi 3 and two multicore systems,
for six structural groups and several sizes of the equations of the terminal (nSG-T) and of the
equations of the handle-stick pairs (nSG-HS)

5.3 Experiments on GPU

In contrast to Raspberry Pi, GPUs are especially useful for large problems [6, 3, 7], and there
are efficient linear algebra libraries for GPU [1]. Table 5 compares the execution times obtained
with MKL in the two hexa-cores Intel Xeon E5-2620 of subsection 5.1 and MAGMA in a GPU
GTX950. The sizes corresponding to the terminal and the handle-stick are divided in three
groups. Six structural groups are used and the outer and inner loops are run 10 times each.

8

 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585 583Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• OpenMP parallelism achieves higher speed-ups than MKL from the smallest size, and only for
the largest size experimented with (size 4344 in Table 2) is the MKL parallelism preferable.

• The best results are obtained with three OpenMP threads, which is not surprising given that
six group equations are solved simultaneously.

The results shown so far are with six equations, in line with the Stewart platform. The
influence of the topological structure of the system (the number of equations) is analyzed with
experiments with three numbers of structural groups, nSG=6, 16, 22, and with four numbers
of coordinates, nSG-HS=15, 30, 60, 120. nSG-T takes value 12 for nSG-HS=15 and 24 in the
other cases. The variations in the number of groups and the size of the matrices allow us to
analyze the application of parallelism for multibody systems larger than our case study. The
Group Equations method allows us to exploit parallelism so reducing the execution time with
respect to sequential executions. The improvement increases with the number of groups and
the number of coordinates. The exploitation of the sparsity is advantageous from between 60
and 120 coordinates (see again Table 2).

nSG nSG-HS MKL MA27 GEOMP+MKL GEOMP+MA27
6 15 0.85 1.9 0.65 0.76

30 2.13 3.33 1.42 1.79
60 5.54 7.24 2.72 3.13
120 20.18 15.96 9.61 6.49

16 15 2.07 4.86 0.98 1.66
30 4.91 8.61 2.35 3.07
60 14.02 18.69 4.65 5.68
120 52.71 41.43 16.16 13.23

22 15 3.00 7.18 1.35 2.19
30 7.15 12.96 2.62 4.27
60 20.77 27.95 6.53 8.02
120 78.89 61.01 23.47 19.38

Table 3: Comparison of the execution times for several combinations of number of structural
groups (nSG) and number of coordinates of each group (nSG-HS), for sequential MKL and MA27,
and combining them with OpenMP parallelism with four threads

Two-level parallelism can be used for a better exploitation of the parallelism in larger mul-
ticore systems [5]. Figure 3 shows the speed-up achieved for various combinations of OpenMP
and MKL threads. The experiments were carried out in a system with two hexa-cores Intel
Xeon E5-2620 at 2 GHz and 32 GB of RAM. For small problems OpenMP parallelism clearly
outperforms MKL, but for larger sizes it is preferable to use hybrid OpenMP+MKL parallelism.

5.2 Raspberry Pi versus Multicore Systems

Raspberry Pi are small, cheap systems with low energy consumption [10], so they are appro-
priate for control environments, for example, the Stewart platform. Parallel algorithms and
libraries are being adapted for these systems [4]. Experiments were carried out in a Raspberry
Pi 2 Model B (RP2) and a Raspberry Pi 3 Model B (RP3), with four cores each, and processor
architecture ARMv8 quad core 64Bit (RP3) and ARMv7 quad core 32Bit (RP2). MKL is not
available, and LAPACK without multithreading is used for linear algebra routines.

Table 4 compares the execution times in RP2 and RP3 with those obtained in the multicore
systems in the previous subsection, the Core i5-2400 (i5) and the Xeon E5-2620 (E5). The times
correspond to executions with four (RP2, RP3 and i5) or six (E5) OpenMP threads. MKL is

7

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

7

matrix size

S
p
ee
d
-u
p

1x12

2x6

3x4

4x3

6x2

12x1

Figure 3: Speed-up with different OpenMP×MKL threads, with 12 cores

used in multicore, and reference LAPACK without parallelism in Raspberry Pi. The numbers of
external and internal iterations and the number of groups are 300, 20 and 6, respectively. Better
results are obtained in RP3 than in RP2, but the difference decreases with larger problem sizes.
Lower times are obtained in multicore, and the difference increases with the problem size. The
table also shows the energy consumption with the four systems, considering a Thermal Design
Power (TDP) of 4 W for Raspberry Pi, 15 W for the i5 and 95 W for the E5. The lowest values
of TDP are obtained with i5, which is a laptop with much lower power consumption than the
desktop, and also slower. Raspberry Pi has the lowest TDP for the smallest size (that of the
Stewart platform) and so is competitive with general purpose multicore systems for control
problems, due to low power consumption, price and size.

Execution time Energy consumption
nSG-T nSG-HS RP2 RP3 i5 E5 RP2 RP3 i5 E5
12 18 1.15 0.68 0.40 0.11 4.6 3.4 6.0 10.5
24 36 5.90 4.08 1.46 0.26 23.6 20.4 21.9 24.7
36 54 15.67 11.67 1.94 0.48 62.7 58.4 29.1 45.6
48 72 31.11 26.72 2.95 0.69 124.4 133.6 44.3 65.6
60 90 58.84 53.36 5.14 1.09 235.4 266.8 77.1 103.4
72 108 93.38 89.17 7.17 1.48 373.5 445.9 107.6 140.6
84 126 148.42 137.69 9.64 2.10 593.7 688.5 144.6 199.5
96 144 214.06 204.77 12.85 2.67 856.2 1023.9 192.8 253.7

Table 4: Comparison of the execution times (in seconds) and the energy consumption (multi-
plying TDP by execution time) in Raspberry Pi 2, Raspberry Pi 3 and two multicore systems,
for six structural groups and several sizes of the equations of the terminal (nSG-T) and of the
equations of the handle-stick pairs (nSG-HS)

5.3 Experiments on GPU

In contrast to Raspberry Pi, GPUs are especially useful for large problems [6, 3, 7], and there
are efficient linear algebra libraries for GPU [1]. Table 5 compares the execution times obtained
with MKL in the two hexa-cores Intel Xeon E5-2620 of subsection 5.1 and MAGMA in a GPU
GTX950. The sizes corresponding to the terminal and the handle-stick are divided in three
groups. Six structural groups are used and the outer and inner loops are run 10 times each.

8

584 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

OpenMP×MKL
nSG-T nSG-HS 6×2 2×6 MAGMA 6×2/2×6 6×2/MAGMA
12 18 0.006 0.010 0.331 0.60 0.02
24 36 0.008 0.013 0.336 0.62 0.02
36 54 0.010 0.021 0.373 0.48 0.03
48 72 0.025 0.057 0.417 0.44 0.06
60 90 0.034 0.067 0.492 0.51 0.07
72 108 0.047 0.077 0.563 0.61 0.08
400 400 0.721 0.697 3.638 1.03 0.20
600 600 1.819 2.023 5.995 0.90 0.30
800 800 3.211 4.399 8.808 0.73 0.36
1000 1000 6.928 7.376 13.470 0.94 0.51
2000 2000 43.728 40.588 53.038 1.08 0.82
3000 3000 143.072 115.185 138.463 1.24 1.03
4000 4000 328.249 253.709 293.713 1.29 1.12

Table 5: Comparison of the execution times (in seconds) with OpenMP and MKL and MAGMA
for several sizes of the equations of the terminal (nSG-T) and of the equations of the handle-stick
pairs (nSG-HS)

OpenMP parallelism is the best option for the small sizes of control problems, but for
medium sizes the hybrid OpenMP+MKL parallelism is preferred. The CPU-GPU comparison
depends on the characteristics of the CPU and the GPU on hand, but, due to the high latency of
the CPU-GPU transfers, exploiting the manycore capacity of the GPU would be advantageous
only for large problems. The Thermal Design Power of each hexa-core is 95 W, while for the
GTX960 it is 365 W. Thus, the use of GPU is not advisable for this problem for low execution
times or power consumption.

6 Conclusions and Future Work

The computational kinematic formulation based on group equations is a topological approach
that exploits the kinematic structure of a multi-body system to divide it in several subsystems
or structural groups of smaller sizes. The kinematics are solved in a more efficient way than for
the whole system, and parallel programming techniques can be applied to solve the subsystems
independently.

An analysis of the exploitation of the parallelism for the Group Equations formulation
has been carried out on various computational platforms and basic linear algebra libraries.
The Stewart platform was initially used to analyze the Group Equations formulation and the
exploitation of sparsity and parallelism. The scalability to larger configurations is analyzed by
varying the number of groups and coordinates. The general conclusions are:

• Lower execution times are obtained with the Group Equations method in comparison with the
global formulation. In addition, the former method facilitates the application of parallelism,
which can be combined with efficient linear algebra routines for low execution times.

• The exploitation of the sparsity of the matrices gives lower execution times for large matrices,
but for small matrices it is preferable to use dense routines.

• The preferred method depends on the number of structural groups and of coordinates, and
the speed-up achieved with respect to the global formulation is between four and eight.

• Raspberry Pi seems to be a good alternative to general purpose multicores for small control
problems, with similar times and lower price, power consumption and space.

9

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• The massive parallelism of GPUs is not appropriate for the small sizes of the control problem
considered.

The use of other computational libraries, dense and sparse, is being analyzed. Other par-
allelization strategies need to be analyzed. For example, the equations could be grouped in
a number of steps so that the computational load at each step is equally distributed to the
cores in the system and multilevel parallelism can be exploited in a different way at each step.
Auto-tuning techniques should be included in the routines so that they select automatically
the best parallel strategy and library together with the values of some parameters (numbers
of threads, number of steps). For large multi-body systems or for distributed combinations of
such systems, the use of message-passing parallelism needs to be analyzed.

Acknowledgements

This work was supported by the Spanish MINECO, as well as European Commission FEDER
funds, under grant TIN2015-66972-C5-3-R.

References

[1] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem
Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180(1), 2009.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Grenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.

[3] Gregorio Bernabé, Javier Cuenca, Luis-Pedro Garćıa, and Domingo Giménez. Tuning basic linear
algebra routines for hybrid CPU+GPU platforms. In ICCS, 2014.

[4] Gregorio Bernabé, Raúl Hernndez, and Manuel E. Acacio. Parallel implementations of the 3D fast
wavelet transform on a Raspberry Pi 2 cluster. Journal of Supercomputing, 2016.

[5] Jesús Cámara, Javier Cuenca, Luis-Pedro Garćıa, and Domingo Giménez. Auto-tuned nested
parallelism: A way to reduce the execution time of scientific software in NUMA systems. Parallel
Computing, 40(7):309–327, 2014.

[6] Massimiliano Fatica. Accelerating Linpack with CUDA on heterogenous clusters. In Proceedings
of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-2, pages
46–51, New York, NY, USA, 2009. ACM.

[7] Azzam Haidar, Chongxiao Cao, Asim YarKhan, Piotr Luszczek, Stanimire Tomov, Khairul Kabir,
and Jack Dongarra. Unified development for mixed Multi-GPU and Multi-coprocessor environ-
ments using a lightweight runtime environment. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 491–500, 2014.

[8] HSL. A collection of fortran codes for large-scale scientific computation,
http://www.hsl.rl.ac.uk.

[9] Intel MKL web page. http://software.intel.com/en-us/intel-mkl/.

[10] Raspberry Pi. https://www.raspberrypi.org/.

[11] M. Saura, A. I. Celdrán, D. Dopico, and J. Cuadrado. Computational structural analysis of planar
multibody systems with lower and higher kinematic pairs. Mechanism and Machine Theory, 71:79–
92, 2014.

[12] M. Saura, P. Segado, B. Muñoz, and D. Dopico. Multibody kinematics. A topological formula-
tion based on structural-group coordinates. In ECCOMAS Thematic Conference on Multibody
Dynamics, June 2015.

10

 Gregorio Bernabé et al. / Procedia Computer Science 108C (2017) 576–585 585Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

OpenMP×MKL
nSG-T nSG-HS 6×2 2×6 MAGMA 6×2/2×6 6×2/MAGMA
12 18 0.006 0.010 0.331 0.60 0.02
24 36 0.008 0.013 0.336 0.62 0.02
36 54 0.010 0.021 0.373 0.48 0.03
48 72 0.025 0.057 0.417 0.44 0.06
60 90 0.034 0.067 0.492 0.51 0.07
72 108 0.047 0.077 0.563 0.61 0.08
400 400 0.721 0.697 3.638 1.03 0.20
600 600 1.819 2.023 5.995 0.90 0.30
800 800 3.211 4.399 8.808 0.73 0.36
1000 1000 6.928 7.376 13.470 0.94 0.51
2000 2000 43.728 40.588 53.038 1.08 0.82
3000 3000 143.072 115.185 138.463 1.24 1.03
4000 4000 328.249 253.709 293.713 1.29 1.12

Table 5: Comparison of the execution times (in seconds) with OpenMP and MKL and MAGMA
for several sizes of the equations of the terminal (nSG-T) and of the equations of the handle-stick
pairs (nSG-HS)

OpenMP parallelism is the best option for the small sizes of control problems, but for
medium sizes the hybrid OpenMP+MKL parallelism is preferred. The CPU-GPU comparison
depends on the characteristics of the CPU and the GPU on hand, but, due to the high latency of
the CPU-GPU transfers, exploiting the manycore capacity of the GPU would be advantageous
only for large problems. The Thermal Design Power of each hexa-core is 95 W, while for the
GTX960 it is 365 W. Thus, the use of GPU is not advisable for this problem for low execution
times or power consumption.

6 Conclusions and Future Work

The computational kinematic formulation based on group equations is a topological approach
that exploits the kinematic structure of a multi-body system to divide it in several subsystems
or structural groups of smaller sizes. The kinematics are solved in a more efficient way than for
the whole system, and parallel programming techniques can be applied to solve the subsystems
independently.

An analysis of the exploitation of the parallelism for the Group Equations formulation
has been carried out on various computational platforms and basic linear algebra libraries.
The Stewart platform was initially used to analyze the Group Equations formulation and the
exploitation of sparsity and parallelism. The scalability to larger configurations is analyzed by
varying the number of groups and coordinates. The general conclusions are:

• Lower execution times are obtained with the Group Equations method in comparison with the
global formulation. In addition, the former method facilitates the application of parallelism,
which can be combined with efficient linear algebra routines for low execution times.

• The exploitation of the sparsity of the matrices gives lower execution times for large matrices,
but for small matrices it is preferable to use dense routines.

• The preferred method depends on the number of structural groups and of coordinates, and
the speed-up achieved with respect to the global formulation is between four and eight.

• Raspberry Pi seems to be a good alternative to general purpose multicores for small control
problems, with similar times and lower price, power consumption and space.

9

Hybrid parallelism for kinematic Group Equations Bernabé, Cano, Cuenca, Flores, Giménez, Saura, Segado

• The massive parallelism of GPUs is not appropriate for the small sizes of the control problem
considered.

The use of other computational libraries, dense and sparse, is being analyzed. Other par-
allelization strategies need to be analyzed. For example, the equations could be grouped in
a number of steps so that the computational load at each step is equally distributed to the
cores in the system and multilevel parallelism can be exploited in a different way at each step.
Auto-tuning techniques should be included in the routines so that they select automatically
the best parallel strategy and library together with the values of some parameters (numbers
of threads, number of steps). For large multi-body systems or for distributed combinations of
such systems, the use of message-passing parallelism needs to be analyzed.

Acknowledgements

This work was supported by the Spanish MINECO, as well as European Commission FEDER
funds, under grant TIN2015-66972-C5-3-R.

References

[1] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem
Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180(1), 2009.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Grenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.

[3] Gregorio Bernabé, Javier Cuenca, Luis-Pedro Garćıa, and Domingo Giménez. Tuning basic linear
algebra routines for hybrid CPU+GPU platforms. In ICCS, 2014.

[4] Gregorio Bernabé, Raúl Hernndez, and Manuel E. Acacio. Parallel implementations of the 3D fast
wavelet transform on a Raspberry Pi 2 cluster. Journal of Supercomputing, 2016.

[5] Jesús Cámara, Javier Cuenca, Luis-Pedro Garćıa, and Domingo Giménez. Auto-tuned nested
parallelism: A way to reduce the execution time of scientific software in NUMA systems. Parallel
Computing, 40(7):309–327, 2014.

[6] Massimiliano Fatica. Accelerating Linpack with CUDA on heterogenous clusters. In Proceedings
of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-2, pages
46–51, New York, NY, USA, 2009. ACM.

[7] Azzam Haidar, Chongxiao Cao, Asim YarKhan, Piotr Luszczek, Stanimire Tomov, Khairul Kabir,
and Jack Dongarra. Unified development for mixed Multi-GPU and Multi-coprocessor environ-
ments using a lightweight runtime environment. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 491–500, 2014.

[8] HSL. A collection of fortran codes for large-scale scientific computation,
http://www.hsl.rl.ac.uk.

[9] Intel MKL web page. http://software.intel.com/en-us/intel-mkl/.

[10] Raspberry Pi. https://www.raspberrypi.org/.

[11] M. Saura, A. I. Celdrán, D. Dopico, and J. Cuadrado. Computational structural analysis of planar
multibody systems with lower and higher kinematic pairs. Mechanism and Machine Theory, 71:79–
92, 2014.

[12] M. Saura, P. Segado, B. Muñoz, and D. Dopico. Multibody kinematics. A topological formula-
tion based on structural-group coordinates. In ECCOMAS Thematic Conference on Multibody
Dynamics, June 2015.

10

