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Abstract 
 
A numerical procedure is proposed in this paper for achieving the minimum cost 
design of reinforced concrete rectangular sections under compression and biaxial 
bending by using biologically-inspired meta-heuristic optimization algorithms. The 
problem formulation includes the costs of concrete, reinforcement and formwork, 
obtaining the detailed optimum design in which the section dimensions and the 
reinforcement correspond to values used in practice. The formulation has been 
simplified in order to reduce the computational cost while ensuring the rigor 
necessary to achieve safe designs. The numerical procedure includes the possibility 
of using high-strength concrete and several design constraints, such as minimum 
reinforcement and limiting the neutral axis depth. Two numerical examples are 
presented, drawing comparisons between the results obtained by ACI318 and EC2 
standards. 
 
Keywords: optimization, meta-heuristic algorithms, reinforced concrete structures, 
cross section dimensioning, biaxial bending. 
 
Nomenclature 
 
 Ac,i = area of concrete cross section for the individual i 
 As,i =  area of tension reinforcement for the individual i 
 As,min,i =  minimum area of tension reinforcement for the individual i 
 A´s = area of compression reinforcement 
 A´s,i =  area of compression reinforcement for the individual i 
 A´s,min,i = minimum area of compression reinforcement for the individual i 
 Ast,i =  total area of reinforcement for the individual i 
 Ast,min,i = minimum total area of reinforcement for the individual i 
 b = width of rectangular cross section 
 bi = width of rectangular cross section for the individual i. Design 
   variable 

 b max,i = maximum width of rectangular cross section for the individual i 
 b U = upper bound for the design variable bi 
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 b(y*k) = width of the k-th fiber at distance y*k from centre of gravity of 
section about x*-axis 

 cc = the clear cover of tension reinforcement (mm) 
C1 = first coefficient for load eccentricity strength constraint  gs2,i 
C2 = second coefficient for load eccentricity strength constraint  gs2,i 

 d = effective height 
 d i = effective height for the individual i 
 dx = distance from left face of cross section to centroid of the closest 

reinforcing bars (x-axis) 
 d'x = distance from right face of cross section to centroid of the closest 

reinforcing bars (x-axis) 
 dy = distance from bottom face of cross section to centroid of the closest 

reinforcing bars (y-axis) 
 d'y = distance from top face of cross section to centroid of the closest 

reinforcing bars (y-axis) 
 Es = modulus of elasticity of reinforcement (in EC2) 
 f = objective function to be minimized 

 f  =  global optimum of f 
 fi = objective function for the individual i 
 f i* = normalized objective function for the individual i 
 f ´c = specified compressive strength of concrete 
 fcd = design compressive strength of concrete (in EC2) 
 fck = characteristic compressive strength of concrete (in EC2) 
 fctm =  mean value of axial tensile strength of concrete (in EC2) 
 fy = specified yield strength of reinforcement 
 fyd = design yield strength of reinforcement (in EC2) 
 fyk = characteristic yield strength of reinforcement (in EC2) 
 Fi = fitness function for the individual i 
 F´i = modified fitness function for the individual i 
 gAs,i = minimum tension reinforcement constraint for the individual i 
 gA´s,i = minimum compression reinforcement constraint for the individual i 
 gAst,i = minimum total reinforcement constraint for the individual i 
 gduct,i = ductility constraint for the individual i 
 gj = violated constraint 
 gsp,max,i = maximum spacing of reinforcement constraint for the individual i 
 gsp,min,i = minimum spacing of reinforcement constraint for the individual i 
 gs1,i = resistance constraint against combined flexure and axial load for the 

individual i 
 gs2,i = load eccentricity strength constraint for the individual i 
 g i* = sum of violated constraints multiplied by (-1) for the individual i 
 h = height of rectangular cross section 
 hi = height of rectangular cross section for the individual i. Design 

variable 
 k = current iteration 
 kmax = maximum number of iterations 

 Lf,i =  length of form for the individual i 
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 m = integer for attractiveness β 
 mvi = number of violated constraints for the individual i 
 MRd = design moment resistance of cross section (in EC2) 
 Mu = factored moment at cross section (in ACI318) 
 Mx = moment about x-axis 
 Mx* = moment about x*-axis 
 Mx,Ed = design value of the applied internal bending moment about x-axis 

(in EC2) 
 Mx,n = nominal moment about x-axis at cross section (in ACI318) 
 Mx,n,i = nominal moment about x-axis at cross section for the individual i 
 Mx,Rd = design moment resistance of cross section about x-axis (in EC2) 
 Mx,Rd,i = design moment resistance of cross section about x-axis for the 

individual i 
 Mx,u = factored moment about x-axis at cross section 
 My = moment about y-axis 
 My* = moment about y*-axis 
 My,Ed = design value of the applied internal bending moment about y-axis 

(in EC2) 
 My,n = nominal moment about y-axis at cross section (in ACI318) 
 My,n,i = nominal moment about y-axis at cross section for the individual i 
 My,Rd = design moment resistance of cross section about y-axis (in EC2) 
 My,Rd,i = design moment resistance of cross section about y-axis for the 

individual i 
 My,u = factored moment about y-axis at cross section 
 n = exponent for calculation of σc (in EC2)  
 nf = number of fibers in cross section  
 nr = number of reinforcing bars in cross section  
 nx,i = number of bars at the bottom side of the section. Design variable  
 n'x,i = number of bars at the top side of the section. Design variable  
 ny,i = number of bars at the left side of the section. Design variable  
 n'y,i = number of bars at the right side of the section. Design variable  
 NEd = design value of the normal applied axial compression load to cross 

section (in EC2) 
 NF = population size of fireflies 
 NRd = design axial resistance of cross section (in EC2) 
 NRd,i = design axial resistance of cross section for the individual i 
 Nz = axial compression load about z-axis 
 Nz* = axial compression load about z*-axis 
 pk

i = spatial coordinate vector of the i-th firefly at the k-th iteration 
 pk

j = spatial coordinate vector of the j-th firefly at the k-th iteration 
 pk+1

i = spatial coordinate vector of the i-th firefly at the (k+1)-th iteration 
 pk

i,l = l-th spatial coordinate of the i-th firefly at the k-th iteration 
 pk

j,l = l-th spatial coordinate of the j-th firefly at the k-th iteration 
 Pc = price of concrete, used in objective function (€/m3) 
 Pf = price of formwork, used in objective function (€/m2) 
 Pn = nominal axial load normal to cross section (in ACI318) 
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 Pn,i = nominal axial load normal to cross section for the individual i 
 Ps = price of steel, used in objective function (€/kg) 
 Pu = factored axial force normal to cross section (in ACI318) 
 q = exponent for load eccentricity strength constraint gs2,i 
 r = distance between two fireflies (or individuals) 
 rij = Cartesian distance between the i-th firefly and the j-th firefly 
 rand = random number generator 
 R = coordinate transformation matrix from x*-y* axes system to x-y axes 

system 
 s = function for randomization parameter α 
 smax,i = maximum spacing of reinforcing bars for the individual i 
 smin,i = minimum spacing of reinforcing bars for the individual i 
 t = variable for function s 
 tc = parameter for function t 
 ûn,i = normalized vector of nominal loads (or design resistance) at cross 

section for the individual i 
 ûu = normalized vector of factored loads (or design loads) at cross 

section 
 x*k  = distance from centre of gravity of the k-th fiber to centre of gravity 

of section about x*-axis 
 x*l  = distance from centroid of the l-th reinforcing bar to centre of gravity 

of section about x*-axis  
 Xi = 12-dimensional optimization variable vector for the individual i  
 XU = 12-dimensional optimization variable upper bound vector  
 XL = 12-dimensional optimization variable lower bound vector  
 y*k  = distance from centre of gravity of the k-th fiber to centre of gravity 

of section about y*-axis  
 Δy*k  = width of the k-th fiber  
 y*l  = distance from centroid of the l-th reinforcing bar to centre of gravity 

of section about y*-axis  
 z  = depth of neutral axis from extreme compression fiber 
 z i = depth of neutral axis from extreme compression fiber for the 

individual i. Design variable 
 z max,i = maximum neutral axis depth for the individual i 
 z U = upper bound for the design variable zi 
 α = randomization parameter 
 α0 = constant value for randomization parameter α 
 β = attractiveness for a couple of flashing fireflies (or individuals) 
 β0 = attractiveness at r = 0 
 βi = optimization variable for the design variable bi 
 βk

i = optimization variable for the design variable bi at the k-th iteration 
 βU = upper bound for the optimization variable βi 
 γ = absorption coefficient for a given medium 
 γ 0 = constant value for absorption coefficient γ 
 εc = strain at extreme concrete compression fiber 
 εc2 = limit strain at extreme concrete compression fiber, cross section 
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under pure compression (in EC2) 
 εcu2 = limit strain at extreme concrete compression fiber, cross section 

under bending (in EC2) 
 εs = strain in tension reinforcement 
 εsu = limit strain in tension reinforcement (in EC2) 
 ε´s = strain in compression reinforcement 
 ζ i = optimization variable for the design variable θ i 
 ζ k

i = optimization variable for the design variable θ i at the k-th iteration 
 ζ U = upper bound for the optimization variable ζ i 
 ηi = optimization variable for the design variable hi 
 ηk

i = optimization variable for the design variable hi at the k-th iteration 
 η U = upper bound for the optimization variable ηi 
 θ = angle of the neutral fiber 
 θ i = angle of the neutral fiber for the individual i. Design variable 
 θ max,i = maximum angle of the neutral fiber for the individual i 
 θ U = upper bound for the design variable θ i 
 νx,i = optimization variable for the design variable nx,i 
 νk

x,i = optimization variable for the design variable nx,i at the k-th iteration 
 νU

 x = upper bound for the optimization variable νx,i 
 ν´x,i = optimization variable for the design variable n'x,i 
 ν´k

x,i = optimization variable for the design variable n'x,i at the k-th iteration 
 ν´U

 x = upper bound for the optimization variable ν´x,i 
 νy,i = optimization variable for the design variable ny,i 
 νk

y,i = optimization variable for the design variable ny,i at the k-th iteration 
 νU

 y = upper bound for the optimization variable νy,i 
 ν´y,i = optimization variable for the design variable n'y,i 
 ν´k

y,i = optimization variable for the design variable n'y,i at the k-th iteration 
 ν´U

 y = upper bound for the optimization variable ν´y,i 
 ξi = optimization variable for the design variable zi 
 ξk

i = optimization variable for the design variable zi at the k-th iteration 
 ξU = upper bound for the optimization variable ξi 
 ρs  = steel density used in objective function (kg/m3) 
 σc = stress in concrete 
 σc,k = concrete stress at k-th fiber  
 σc,l = concrete stress (virtual) at location of centroid of the l-th reinforcing 

bar 
 σs = stress in reinforcement 
 σs,l = stress in the l-th reinforcing bar 
  = strength reduction factor (in ACI318) 
 i = strength reduction factor for the individual i 
 φi = diameter of the reinforcing bar to which the spacing constraint is 

calculated 
 φx,i = bar diameter of the bottom side reinforcement for the individual i. 

Design variable 
 φ max,x,i = maximum bar diameter of the bottom side reinforcement for the 

individual i 
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 φ U
x = upper bound for the design variable φx,i 

 φ'x,i = bar diameter of the top side reinforcement for the individual i. 
Design variable 

 φ' max,x,i = maximum bar diameter of the top side reinforcement for the 
individual i 

 φ' Ux = upper bound for the design variable φ'x,i 
 φy,i = bar diameter of the left side reinforcement for the individual i. 

Design variable 
 φ max,y,i = maximum bar diameter of the left side reinforcement for the 

individual i 
 φ U

y = upper bound for the design variable φy,i 
 φ'y,i = bar diameter of the right side reinforcement for the individual i. 

Design variable 
 φ' max,y,i = maximum bar diameter of the right side reinforcement for the 

individual i 
 φ' Uy = upper bound for the design variable φ'y,i 
 ψi = angle between applied factored load and design resistance of cross 

section for the individual i 
 ωx,i = optimization variable for the design variable φx,i 
 ωk

x,i = optimization variable for the design variable φx,i at the k-th iteration 
 ωU

 x = upper bound for the optimization variable ωx,i 
 ω´x,i = optimization variable for the design variable φ'x,i 
 ω´k

x,i = optimization variable for the design variable φ'x,i at the k-th iteration 
 ω´U

 x = upper bound for the optimization variable ω´x,i 
 ωy,i = optimization variable for the design variable φy,i 
 ωk

y,i = optimization variable for the design variable φy,i at the k-th iteration 
 ωU

 y = upper bound for the optimization variable ωy,i 
 ω´y,i = optimization variable for the design variable φ'y,i 
 ω´k

y,i = optimization variable for the design variable φ'y,i at the k-th iteration 
 ω´U

 y = upper bound for the optimization variable ω´y,i 

 
 

1  Introduction 
 

Optimization procedures involve, in most cases, complex calculations that require 
adequate computer methods. Modern meta-heuristic algorithms were developed to 
carry out global searches seeking to increase computational efficiency, to solve 
larger problems, and implement robust optimization codes. Biologically-inspired 
algorithms are one of the main categories of the nature-inspired meta-heuristic 
algorithms. They can be grouped in two categories: evolution-based and swarm-
based methods [1]. 
 

Evolution-based methods are based on the selection of the fittest in biological 
systems which have evolved by natural selection over millions of years. The search 
process starts with a population that is randomly defined in the design space. 
Generation after generation the population evolves by recombination of characters 
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between individuals and by random mutation of these characters. The individuals of 
the population that best meet a certain criterion are selected and replace those which 
least meet that criterion. Thus, the population is optimized after several generations. 
The most popular algorithms based on evolution are Genetic Algorithms (GA) [2,3]. 
Other popular methods belonging to this group are Evolution Strategy (ES) [4,5], 
Differential Evolution (DE) [6] and Genetic Programming (GP) [7,8]. 

 
Swarm-based methods mimic the social behaviour of groups of animals. The best 

known of this group is Particle Swarm Optimization (PSO), which is inspired by the 
behaviour of flocks of birds in flight [9]. These methods use particles that represent 
different designs. The position of each particle is located in the design space by the 
values of the variables. The flight or movement of the particles allows the best 
position or better design to be located. The paths traced by the particles contain 
information that helps to find the best solution. Other methods belonging to this 
group include Ant Colony Optimization (ACO) [10], Cuckoo Search (CS) [11], Bat-
Inspired Algorithm (BA) [12], Firefly Algorithm (FA) [1,13], Hunting Search (HS) 
[14], Krill Herd (KH) [15], Dolphin Echolocation (DE) [16] and Whale 
Optimization Algorithm (WOA) [17]. 

 
In addition to these two groups of biologically-inspired algorithms, the physics-

based methods, which belong to the nature-inspired meta-heuristic algorithms, are 
inspired by the physical laws of the universe. The best known is Simulated 
Annealing (SA) [18] but other methods exist, such as Big Bang Big Crunch (BBBC) 
[19], Central Force Optimization (CFO) [20] and Black Hole (BH) algorithm [21]. 

 
Besides the nature-inspired meta-heuristic algorithms, the human-based 

algorithms exist. The best known is Harmony Search (HS) [22], although others may 
also be mentioned, such as Tabu Search (TS) [23], Group Search Optimizer (GSO) 
[24], League Championship Algorithm (LCA) [25], Interior Search Algorithm (ISA) 
[26], Mine Blast Algorithm (MBA) [27] and Exchange Market Algorithm (EMA) 
[28], among others. 

 
The optimum design of concrete structures is one of the research fields in which 

meta-heuristic algorithms are useful. In recent years, considerable effort has been 
made to adapt and improve the above-mentioned methods to specific problems. 
Coello et al [29] used a simple GA for the design of rectangular reinforced concrete 
(RC) beams. The method minimizes the cost of the beam on strength design 
procedures, whilst also considering the costs of concrete, steel and formwork. 
Rajeev and Krishnamoorthy [30] applied a simple GA to the cost optimization of 
two-dimensional RC frames. Koumousis and Arsenis [31] used GA for the detailed 
design of RC members. The method decides the detailed design on the basis of a 
multicriterion objective that represents a compromise between a minimum weight 
design, a maximum uniformity, and the minimum number of bars for a group of 
members. Rafiq and Southcombe [32] used GA for the detailed design of biaxial 
columns reinforcement. The method ensures that the optimum reinforcement is 
detailed properly and the section is capable of carrying the design loads safely. 
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Camp et al. [33] used GA by constructing a database for beams and columns which 
contains the sectional dimensions and the reinforcement data in the practical range 
to optimize for the optimum design of plane frames. Lee and Ahn [34] used GA to 
optimize RC plane frames subject to gravity loads and lateral loads. Lepš and 
Šejnoha [35] used GA to design RC cross sections. Including the effect of shear 
reinforcement, however, caused this algorithm to fail as it became prohibitively 
expensive. This work overcomes this obstacle by implementing a version of the 
Augmented SA method [36]. Kwak and Kim [37,38] used the Direct Search Method 
and GA to optimize RC plane frames. In their study, pre-determined section 
databases of RC columns and beams are constructed and arranged in order of 
resisting capacity. Govindaraj and Ramasamy [39,40] used GA for the optimum 
detailed design for RC frames based on Indian Standard specifications. The 
dimensions and reinforcement arrangement of column, and the dimensions of beam 
members alone are considered as design variables, and the detailing of 
reinforcements in the beam members is carried out as a sub-level optimization 
problem. Martínez et al. [41] used the ACO algorithm, the GA and the Threshold 
Acceptance Algorithm for economic optimization of RC bridge piers with hollow 
rectangular sections. The method followed consisted in developing an evaluation 
computer module in which cross-section dimensions, materials and steel 
reinforcement are taken as discrete variables. This module computes the cost of a 
solution and checks all the relevant limit states. Heuristic algorithms are then used to 
search the solution space. Jahjouh et al. [42] used an Artificial Bee Colony 
Algorithm to obtain the optimum design (optimum cross section dimensions and 
reinforcement details) for singly RC continuous beams. Akin and Saka [43,44] 
presented an optimum design algorithm based on the HS method for the detailed 
design of special seismic moment RC plane frames considering the provisions of 
ACI318-05 [45] and ASCE 7-05 [46].  

 
Among different biologically-inspired meta-heuristic optimization methods 

proposed by several authors, the FA has proved better than the GA and PSO in terms 
of efficiency [47]. The research by Gandomi et al. [48] uses different chaotic 
systems to replace the FA parameters, observing some improvement in its 
efficiency. It is interesting to mention the work by Fister et al. [49] about the impact 
of this algorithm in recent years, since it has been applied in solving design 
problems in several engineering fields. In the field of structural design, the works by 
Gandomi et al. [50,51] and Talatahari et al. [52] are particularly noteworthy. 

 
Any option for solving complex problems, such as the design of reinforced 

concrete structures [43], must be focused to those algorithms that are efficient, to 
thus reduce the computational cost. Although significant achievements have been 
made in solving the design of sections, elements and reinforced concrete structures 
subjected to loads in a plane, less research has been made in solving the cases under 
biaxial bending, in which the computational cost increases if the equivalent 
rectangular compressive stress block is not used for calculating stresses in the 
compressed zone of the section [53]. This increased complexity of the problem 
requires algorithms with proven efficiency [54], among which the FA is a suitable 
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choice. Other methods arising in recent years present noteworthy behaviour, 
although they can only become candidates to be selected once their efficiency to 
solve actual problems with constraints has been sufficiently tested. 

 
The formulation proposed to solve the optimum design problem can be 

implemented in any meta-heuristic algorithm. In this paper the FA algorithm has 
been chosen, in which a numerical strategy has been implemented to achieve safe 
designs with a reasonable computational cost. The formulation includes the 
following design considerations:  

 
i) high-strength concrete, which means adopting a characteristic compressive 

cylinder strength of concrete at 28 days fck > 50 MPa in Eurocode 2 (EC2) 
[55], and specified compressive strength of concrete 41.37 MPa < f'c < 82.74 
MPa in ACI318 [56], 

 
ii) minimum area of reinforcement according to the standards ACI318 or EC2, 
 
iii) constructive requirements according to the standards ACI318 or EC2, and 
 
iv) constraining the neutral axis depth in order to comply with a certain ductility 

criterion.  
 
To show the applicability in different meta-heuristic algorithms, this formulation 

has been implemented in two of them: a GA and the original FA by Yang [1,47,50]. 
Besides, a modification in Yang’s FA is also included to improve the computational 
efficiency when the algorithm is searching the global optimum. Two numerical 
examples are presented for the optimization of the whole cross section (concrete, 
steel and formwork) using the ACI318 and EC2 standards. 

 

2  Optimization of concrete rectangular cross sections 
 
2.1 Optimum design problem 

 
A question arises about whether the values obtained for the reinforcement are the 
most appropriate or not. This question is not only from the point of view of 
resistance, since these values are obtained from the equilibrium equations, but from 
the perspective of optimum reinforcement, which affects not only cost, but also the 
environmental aspects related to the reduction of resources consumed for the 
production of steel for reinforcement. Due to the infinite number of solutions, an 
optimization problem to obtain the optimum reinforcement in the cross section can 
be proposed as an ideal method of solving the equations system [57-61]. Moreover, 
it would be interesting to obtain not only the optimum reinforcement but also the 
optimum width and depth values of the rectangular cross section.  

 
In the design of members under combined flexure and axial load it is common to 

use conventional methods to obtain the reinforcement with symmetrical distribution. 
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This may be appropriate when flexural moments with different signs and similar 
values are present. However, in other situations this distribution may result in 
uneconomical constructive simplification and be environmentally inadequate, with it 
being more interesting not to use the symmetrical distribution, but to search for 
another distribution with optimum reinforcement. This is the case, for example, of 
retaining walls with a vertical load at the top (the soil pressure is causing single sign 
flexure in the wall) [51], or circular piers for retaining walls, in which longitudinal 
reinforcement can be reduced by more than 50 % compared with traditional designs 
[62]. Admittedly, the probability of positioning error increases in this case of 
asymmetrical reinforcement, but it can be prevented with more careful control of 
this phase of the construction. 

 
In this section of the paper, the problem of calculating the optimum geometry and 

reinforcement in a rectangular concrete cross section subjected to biaxial bending 
and axial force is studied. A simple optimization method is implemented that allows 
considering high-strength concrete, with a minimum area of reinforcement 
according to ACI318 or EC2, and a ductility constraint on the neutral axis depth to 
guarantee certain curvature. 

 
It should be highlighted that the physical sense of the problem can be visualized 

when observing the results, particularly the position of the neutral axis, since the 
stress-strain state of the cross section is known instantly. 

 
2.2 Variables 
 
The total population is stated by a matrix with the individuals located in rows. Each 
row or individual consists of twelve design variables. The design variables that have 
been taken into account for each individual i are (Fig. 1): the depth of neutral axis zi, 
the angle of the neutral fiber θi, the width bi, the height hi, the bar diameter of the 
right side reinforcement φ'y,i, the number of bars on the right side of the section n'y,i, 
the bar diameter of the left side reinforcement φy,i, the number of bars on the left side 
of the section ny,i, the bar diameter of the top side reinforcement φ'x,i, the number of 
bars on the top side of the section n'x,i, the bar diameter of the bottom side 
reinforcement φx,i, and the number of bars on the bottom side of the section nx,i. 
 

Although the design variables zi and θi are continuous, the rest of the variables are 
discrete. All of them can adopt any value within the limits imposed by the designer. 
The variables bi and hi adopt values of 5 by 5 mm. The variables n'y,i, ny,i, n'x,i and 
nx,i take integer values. Finally, the variables φ'y,i, φy,i, φ'x,i and  φx,i adopt values 
corresponding to commercial diameters of reinforcing steel bars. 

 
The proposed formulation considers optimization variables instead of design 

variables. These optimization variables are chosen to improve the performance of 
the algorithm. For instance, it is easy to define lower and upper bounds for the 
design variables θi, bi, hi, φ'y,i, n'y,i, φy,i, ny,i, φ'x,i, n'x,i, φx,i and nx,i. However, it is 
difficult to define lower and upper bounds for the design variable zi that can reach 
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high positive or negative values (with low eccentricity and compressive or tensile 
axial load, respectively). A simple solution to this problem is to take into account a 
new optimization variable ξi instead of the design variable zi as follows 
 

  ii zarctan
2


   (1) 

 
High values for zi correspond to values close to 1 for ξi. The upper bound ξ U = 1 

corresponds to the upper bound z U = ∞.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cross section geometry and design variables for the individual i. 
 
Moreover, the design variables θi, bi, hi, φ'y,i, n'y,i, φy,i, ny,i, φ'x,i, n'x,i, φx,i, nx,i have 

been normalized by dividing their values by their upper bounds to obtain the 
optimization variables: ζi, βi, ηi, ω'y,i, ν'y,i, ωy,i, νy,i, ω'x,i, ν'x,i, ωx,i, νx,i, respectively. In 
this way the optimization variables adopt values which have the same order of 
magnitude, within the interval of values [0,1]. Normalizing the variables in this way 
ensures that they have the same relative importance when used in the design 
algorithm, thus favouring its efficiency. 

 
2.3 Fitness function 
 
In this paper the following fitness function is proposed: 
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where Xi = (ξi, ζi, βi, ηi, ω'y,i, ν'y,i, ωy,i, νy,i, ω'x,i, ν'x,i, ωx,i, νx,i) is the 12-dimensional 
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optimization variable vector for the individual i; UX  is the 12-dimensional 

optimization variable upper bound vector; f(Xi) is the objective function to be 
minimized, and mvi is the number of violated constraints (gj < 0) for the individual i.  
 

This fitness function does not take into account a coefficient to penalize the 
constraints, which is usually dependent on the problem, having shown a good 
response in all the designs that have been tested. The reason for this good response 
can be easily explained. To do so, Eq. (2) is taken as the sum of the three terms: 
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Denominating 
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Eq. (3) can be expressed as 
 

            i
iiiii f

gfgfF
X

XXXXX
*

1
****   (6) 

 
Or in a simplified manner 
 

 
*

1
****

i
iiiii f

gfgfF   (7) 

 

It has been checked that normalized values for the constraints gj produce a good 
performance. As the constraints which are to be considered are all normalized, so 
 if X  has also been normalized, as can be seen in Eq. (4). Therefore, *if  acquires 

values of an order of magnitude similar to *ig . 

 
If only the 1st and the 2nd terms of Eq. (7) are considered 

 

 ***' iiii gffF   (8) 

 
then the sum of the violated constraints *ig  is being penalized with the objective 
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function *if  in such a way that as *if  acquires greater values then *ig  is 

increasingly penalized. However, in this last case the disadvantage exists of 
penalizing *ig  little when values of *if  would have been reduced, which would 

provide good values of the fitness function 'iF with invalid designs for which *ig  

could even have high unacceptable values. This problem is resolved by adding a 
third term as follows 
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That is to say, the violated constraints *ig  are now penalized by 
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The fitness function that takes into account the penalization (10) is plotted in Fig. 

2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Fitness function Fi. 
 

2.4 Objective function 
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   iffistssiccii LPAPAPff ,,,  X  (11) 

 
where Pc is the price of concrete per unit volume, Ps is the price of steel per 
kilogram, ρs is the density of steel and Pf is the price of formwork per unit area, Ac,i 
is the area of the concrete cross section for the individual i, Ast,i is the total area of 
steel reinforcement for the individual i and Lf,i is the length of form for the 
individual i. 
 
 The objective function (11) can also be expressed for beams as 
 
      iifistssistiicii hbPAPAhbPff 2,,  X  (12) 

 
or for columns as 
 
      iifistssistiicii hbPAPAhbPff 22,,  X  (13) 

 
2.5 Constraints 
 
2.5.1  Reinforcement constraints 
 
The option of considering minimum reinforcement according to ACI318 or EC2 
may be activated before starting the calculation of the optimum reinforcement.  
 
 According to ACI318, the amount of steel in the tension reinforcement As,i for the 
individual i shall not be less than the amount 
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(14) 

 
where fy is the specified yield strength of reinforcement and cf '  is the specified 

compressive strength of concrete. 
 
 For low eccentricity, the minimum total area of reinforcement Ast,min,i for the 
individual i is 
 
 istiiist AhbA min,,, 01.0   (15) 

 
 According to EC2, the amount of steel in the tension reinforcement As,i for the 
individual i shall not be less than the amount 
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(16) 

 
where fctm is the mean value of axial tensile strength of concrete and fyk is the 
characteristic yield strength of reinforcement. 
 
 In the case of combined flexure and axial load, the amount of steel in the 
compression reinforcement A's,i  for the individual i shall not be less than the amount 
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where NEd is the design value of the applied axial compression load and fyd is the 
design yield strength of reinforcement. 
 
 For low eccentricity, the minimum total area of reinforcement Ast,min,i  for the 
individual i is 
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  (18) 

 
 In the case of flexural moment and tensile axial force, the total area of 
reinforcement Ast,i for the individual i must satisfy 
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 The normalized reinforcement constraints are the following: 
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2.5.2 Ductility constraint  
 
If greater ductility in the cross section is required, the neutral axis depth zi for the 
individual i should be constrained to a certain maximum value [63-66]. For this 
purpose, ACI318 recommends using a strain in the tension reinforcement of at least 
0.005. This limitation may be used as ductility constraint by using a maximum 
neutral axis depth zmax,i for the individual i  (Fig. 3)  
 

 i
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ii d
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1

max, 


  (23) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Maximum neutral axis depth zmax,i according to ACI318. 
 

 EC2 recommends the following limitation 
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 The normalized form of the ductility constraint for the individual i is 
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2.5.3 Steel reinforcement spacing constraints 
 
To ensure that there is the necessary spacing si between steel bars of reinforcement 
spacing constraints are defined for the individual i. For this purpose, ACI318 
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recommends a minimum spacing smin,i  for the individual i   
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and a maximum spacing smax,i  closest to the tension faces for the individual i   
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where φi is the diameter [mm] of the reinforcing bar to which the spacing constraint 
is calculated, adopting the value φ'y,i, φy,i, φ'x,i or φx,i for the right, left, upper or 
bottom side of the section, respectively; fy [MPa] is the specified yield strength of 
reinforcement; and cc is the clear cover [mm] of tension reinforcement, which is 
used to calculate the value of dx or dy for the bars in the bottom or left side, 

respectively. 

 EC2 recommends a minimum spacing smin,i  for the individual i 
 
 )mm 20 ,max(min, iis   (28) 

 
 The normalized form of the spacing constraints for the individual i are 
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2.5.4 Strength constraints 
 
To ensure that the cross section resists the design loads two strength constraints are 
defined for the individual i. Both constraints produce satisfactory results in all the 
examples tested. The first constraint ensures resistance against combined flexure and 
axial load. The second assures that load eccentricity is the same as the strength 
eccentricity of cross section. The first of the two constraints in normalized form for 
the individual i is 
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or  
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where Pu is the factored axial force, Mx,u is the factored moment about x-axis at cross 
section, My,u is the factored moment about y-axis at cross section, i  is the strength 
reduction factor for the individual i, Pn,i is the nominal axial load normal to cross 
section for the individual i, Mx,n,i is the nominal moment about x-axis at cross section 
for the individual i, My,n,i is the nominal moment about y-axis at cross section for the 
individual i, Mx,Ed is the design value of the applied internal flexural moment about 
x-axis at cross section, My,Ed is the design value of the applied internal flexural 
moment about y-axis at cross section, NRd,i is the design axial resistance of cross 
section for the individual i, Mx,Rd,i is the design moment resistance of cross section 
about x-axis for the individual i, My,Rd,i is the design moment resistance of cross 
section about y-axis for the individual i.  
 

The Fiber Method has been used in this work to obtain (Pn,i ; Mx,n,i ; My,n,i ) or 
(NRd,i ; Mx,Rd,i ; My,Rd,i). The formulation of the method that has been used by the 
authors is detailed in the Appendix. 

 
According to ACI318 the strength reduction factor i for the individual i can be 

obtained as follows: 
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The second of the two constraints in normalized form for the individual i is (Fig. 

4) 
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Figure 4: Strength constraint gs2,i. 
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or with  
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Figure 5: Interaction diagram M-P and strength of the individual i. 
 

It can be seen that the constraint gs2,i is different to the others since it never 
reaches positive or null values. The algorithm seeks to obtain values close to zero 
for gs2,i in order to reduce the value of iF .  

 

As can be appreciated in Fig. 4 the constraint gs2,i has an appearance that depends 
on the values we adopt for the coefficients C1 and C2. This fact affects the way in 
which the algorithm progresses in searching for the optimum. 

 
For values C1 = 2 and C2 = 5 the constraint gs2,i adopts the appearance of an 

almost linear function. This means that the designs will all be taken into account 
almost proportionally to the value of icos that they have. Therefore, the less valid 

designs are not excessively penalized, which increases the probability of finding in 
the process a global optimum, although finally a design with a value of gs2,i not null, 
but small, may be obtained. 

 
On the other hand, for values C1 = 1 and C2 = 50 the constraint gs2,i penalizes the 

designs differently. In Fig. 4 it can be observed that for these values, the constraint 
gs2,i strongly penalizes those designs which have a value of icos below -0.4. It is 

also observed that it penalizes considerably, and more or less similarly, designs with 
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values of icos between -0.4 and 0.6. Finally, it is observed that the penalization 

drops rapidly for values of icos greater than 0.6. This major distinction, of certain 

designs as opposed to others, favours the finding of one with an almost null value of 
gs2,i, but has the disadvantage of increasing the probability of obtaining a local 
optimum.  

 
The ranges of values commented for the coefficients C1 and C2 (Fig. 4) have 

produced satisfactory results in an extensive series of cases which have been taken 
into account to check the validity of the proposed design method.  
 
2.6 Optimization methodology 

 
2.6.1 Firefly Algorithm (FA) 
 
The majority of optimization problems in structural design are highly non-linear and 
include many variables (discrete and/or continuous) and complex constraints [54]. 
Among meta-heuristic optimization algorithms, Yang’s FA can efficiently deal with 
this type of problems [1,67]. 
 

The FA belongs to the so-called swarm-based methods. The search process for 
the optimum depends on two main components: exploration and exploitation. 
Exploration is the part of the process that focuses on searching for solutions that are 
candidates to global optimum within the design space. Exploitation is the part of the 
process which, using the information available, focuses on searching for solutions 
around the best found thus far. Both components depend on the control parameters 
of the algorithm.  

 
The FA reproduces, in a simple and idealized manner, the social behaviour of 

fireflies. Fireflies communicate with each other, seek prey, and find a partner using 
different patterns of bioluminescent flashes. The characteristics of these flashes are 
idealized to achieve the development of this algorithm. To start with, three rules are 
followed: 

 
(i)  All fireflies have only one gender, so any firefly may be attracted to 

another. 
 
(ii) The attractiveness that one firefly generates on another is directly 

proportional to the brightness of its luminescence and decreases as the distance 
between them increases. If we observe only a pair of fireflies we can see that only 
the less bright one moves toward the brighter one. In the event that there were no 
brighter fireflies than a specific one, then this one would move around the space 
randomly.  

 
(iii) The brightness of a firefly is related with the value the fitness function 

adopts for it. In a minimization problem the brightness of a firefly may be chosen as 
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being inversely proportional to the value adopted from the fitness function.  
 
The attractiveness β for a couple of flashing fireflies is defined by 
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where γ is the absorption coefficient for a given medium, m is an integer so that m > 
1, r is the distance between these two fireflies and β0 is the attractiveness at r = 0. 
 

The movement of a firefly i is attracted to another more attractive (brighter) 
firefly j as determined by 
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where k is the current iteration, k

ip is the spatial coordinate vector of the i-th firefly 

at the k-th iteration, k
jp is the spatial coordinate vector of the j-th firefly at the k-th 

iteration, α is the randomization parameter, rand is a random number generator 
uniformly distributed in [0, 1], LX  is the optimization variable lower bound vector, 

and rij is the Cartesian distance 
 

 k
j

k
iijr pp   (39) 

 
Although the formulation of the FA is very efficient, an oscillatory behaviour at 

the end of the search process can arise. This problem can be avoided by reducing the 
randomization parameter α as the process progresses. The research by Gandomi, 
Yang and Alavi [50] has indicated that, for most cases,  1 , 01.0 can be taken. 

 
The absorption coefficient γ characterizes the variation of the attractiveness, and 

its value is important in determining the speed of the convergence and how the FA 
behaves. In theory,   ,0 , but in practice,  10 , 01.0  [1,49]. When γ tends to 
zero the attractiveness is constant: therefore, a firefly can be seen by all other 
fireflies. On the other hand, when γ is very large, then the attractiveness decreases 
dramatically, and all fireflies are short-sighted or equivalent to flying in a deep 
foggy sky. This means that all fireflies move almost randomly, which corresponds to 
a random search technique. In general, the FA corresponds to the situation between 
these two limit states. 

 
The basic operations of the FA [1,47,50] are summarized in Fig. 6. 
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____________________________________________________________________ 
begin 
   Define size of population NF 
   Generate random population [X1, X2, ... , Xi, ... , XNF] 
   Evaluate fitness functions [F1, F2, ... , Fi, ... , FNF]  
   for k = 1 : kmax 
      Evaluate randomization parameter α(k/kmax) 
      for i = 1 : NF 
         for j = 1 : i 
            if Fi > Fj 
               Evaluate Cartesian distance rij 
               Evaluate attractiveness βi 
               Move individual i towards individual j 
            end if 
            Evaluate Fi 
         end for j 
      end for i 
      Find the current best min( [F1, F2, ... , Fi, ... , FNF] ) 
      Rank the fireflies [F1, ... , FNF] = [FMIN, ... , FMAX]  
   end for k 
   Post-process results and visualization 
end 
____________________________________________________________________ 
 

Figure 6: Pseudo-code of FA. 
 
 
2.6.2 Implementation. Modified version of Yang’s Firefly Algorithm (MFA) 

 
The 12-dimensional spatial coordinate k

ip adopted is  
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and the Cartesian distance is 
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i) First modification of the FA 

 
The Yang’s FA toolbox [1] implemented in code MATLAB® [68] has been used in 
this research and modified by reducing not only the randomization parameter α (an 
original feature of the FA) but also the absorption coefficient γ as optimization 
progresses. This strategy involves gradually reducing exploration and increasing 
exploitation, more intensely at each iteration k. If kmax is the maximum number of 
iterations, the variable t = k / kmax can be used to define the function (Fig. 7)  
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Figure 7: Function s(t) with tc = 0.2. 
 

and the new randomization parameter α(t) and the absorption coefficient γ(t) are 
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    tst 0   (43) 

 
    tst 0   (44) 

 

The simplest yet efficient strategy is to set L/1 , where L is the typical 
length of design variables. Moreover, the randomization parameter α should ideally 
be related to the actual scale of each design variable [50]. For that reason and 
because optimization variables are being normalised in this work, values of 0  and 

0  around the unit can be adopted in the expressions (43) and (44). 

 
ii) Second modification of the FA 

 
The authors have modified the FA algorithm by Yang [1,47,50] also in order to 
improve the process of seeking the optimum. To do so, the flight of each firefly is 
directed only toward the subset of fireflies that shine more brightly than it does, 
making its approach towards the one which shines least brightly of the subset and 
ending its approach toward the one that shines most. Thus, each firefly in its flight 
adopts values of the variables which tend to increase its brightness.  

 
Moreover, there is the possibility that within the firefly’s flight values may be 

found which make it shine brighter than the firefly which was the brightest until that 
moment. Under that circumstance, the firefly occupies the position of the brightest 
of them all. Then this firefly develops a small random displacement 
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This small random displacement increases the firefly’s mobility, but also that of 

the whole population, which follows its movements. Thus, exploration improves and 
the probability for the process to end at a local minimum reduces. These basic 
operations have been implemented in MATLAB® and are summarized in Fig. 8. 
____________________________________________________________________ 
begin 
   Define size of population NF 
   Generate random population [X1, X2, ... , Xi, ... , XNF] 
   for k = 1 : kmax 
      Evaluate randomization parameter α(k/kmax) 
      Evaluate absorption coefficient γ (k/kmax)  
      Evaluate fitness functions [F1, F2, ... , Fi, ... , FNF]  
      Find the current best min( [F1, F2, ... , Fi, ... , FNF] ) 
      Rank the fireflies [F1, ... , FNF] = [FMIN, ... , FMAX]  
      for i = NF : -1 : 2 
         for j = i-1 : -1 : 1 
            if Fi > Fj 
               Evaluate Cartesian distance rij 
               Evaluate attractiveness βi 
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               Move individual i towards individual j 
               Evaluate Fi 
               if Fi < F1 
                  Individual i is the current best (i=1) 
                  Rank the fireflies 
                  Move individual 1 randomly 
                  Break for j 
               end if 
            end if 
         end for j 
      end for i 
   end for k 
   Post-process results and visualization 
end 
____________________________________________________________________ 
 

Figure 8: Pseudo-code of MFA. 
 

2.6.3 Tuning of parameters 
 

The meta-heuristic algorithms have several parameters that should be tuned. In 
particular, the FA has the following parameters: 0, m, γ, α, NF and kmax. The MFA 
adopts a new parameter (tc) according to the expression (42). The parameters of each 
algorithm are included in Table 1. 
 
algorithm parameters 

FA 
0  m γ α0 NF kmax  

MFA 
0  m γ0 α0 NF kmax tc 

 
Table 1. FA and MFA parameters to be tuned. 

 
The parameters 0, m and γ affect the attractiveness, with 0 being that which 

affects in a more direct and simpler way. A constant value of 0 = 1 has been 
adopted in this work, since this value has been proven to be suitable in most design 
examples studied in the literature [1,50,52]. 

 
The procedure followed in the examples section for tuning the parameters m, γ0, 

α0, NF, kmax and tc is: 
 
i) Two parameters are chosen, assigning each a certain value within a wide 

range. 
 
ii) The algorithm is executed Nall times, obtaining a sample of Nall values of 

the objective function. 
 
iii) The mean and standard deviation of the objective function are calculated 

using these Nall values. 
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iv) The success rate of the objective function is calculated from the following 
expression 

 

 
all

successful
r N

N
S 100  (46) 

 
where Nsuccessful is the number of times that a value fi of the objective 

function very close to the global optimum f  has been obtained. In this 
work, that value fi is the one that meets 
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v) New values of the parameters are chosen and return to step ii). 

 
vi) Finally, those values that provide both a low standard deviation and a high 

success rate are adopted. 
 

3  Examples 
 
Two numerical examples are presented, drawing comparisons between the results 
obtained by ACI318 and EC2 standards. In both examples the strength of steel is fy = 
500 MPa. The clear cover of reinforcement is 40 mm and the stirrup diameter is 10 
mm. The cost is calculated using a price of Pc = 100 €/m3 for concrete and Ps = 1.2 
€/kg for steel. The optimization variable ξ is constrained in the interval [-0.7, 0.7], 
the angle of the neutral fiber θ in [0, π/2] rad, the width of the cross section b in 
[0.30, 0.50] m and the height h in [0.30, 0.90] m. The parameters of the Eq. (34) are 
C1 = 2 and C2 = 5.  
 
3.1 Cross section under flexure 
 

A cross section under a factored flexural moment Mx,u = 400 kNm is studied. The 
strength of concrete is fc’ = 30 MPa. The cost for formwork is Pf = 30 €/m2. The 
length of form is b + 2h. The reinforcement bar diameters φ'x, φx are constrained in 
the interval [6, 32] mm, the number of reinforcement bars n'y, ny in [0, 0] and n'x, nx 
in [2, 10]. The constraints (20) to (22), (25), (29) to (32) and (34) are considered in 
this example. 
 
3.1.1 Tuning of parameters 
 
The standard deviation for the cost using the MFA and considering ACI318, with 
Nall = 20 and varying the parameter m in the interval [0.1, 4] and tc in the range [0.1, 
0.9], is shown in Table 2. The constant values for the rest of the parameters 
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considered during tuning are: NF = 150, kmax = 1000, α0 = 1 and γ0 = 1. The values 
in bold are the lowest. 

 
 m

 0.100 1.075 2.050 3.025 4.000 

tc 

0.1 0.691 1.350 0.495 1.283 2.822 
0.3 1.457 0.807 3.102 0.968 1.245 
0.5 1.758 2.496 2.326 2.872 3.025 
0.7 2.412 2.605 3.929 2.206 3.886 
0.9 4.828 4.216 5.225 5.158 4.208 

 
Table 2. Standard deviation for the cost depending on m and tc. 

 
 The success rate is shown in Table 3 where the values in bold are the highest. It 
can be observed that with m = 2.050 and tc = 0.1, a low standard deviation and a 
high success rate values are obtained simultaneously. 

 
 m

 0.1 1.075 2.05 3.025 4.0 

tc 

0.1 65 55 70 75 65 
0.3 40 55 50 50 65 
0.5 60 40 50 50 40 
0.7 30 35 35 45 40 
0.9 5 15 5 25 5 

 
Table 3. Success rate for the cost depending on m and tc. 

 
The standard deviation for the cost using the MFA and considering ACI318, with 

Nall = 20, the parameter α0 varying in the interval [0.01, 1] and γ0 in the range [0.01, 
100], is shown in Table 4. The constant values for the rest of the parameters 
considered during the tuning process are NF = 150, kmax = 1000, m = 2.05 and tc = 
0.1. The values in bold are the lowest.   

 
  γ0 

  0.01 0.10 1.00 10.00 100.00 

α0 

0.0100 8.724 7.133 9.876 9.078 5.272 
0.0316 9.624 8.837 7.269 1.946 2.704 
0.1000 4.181 3.636 4.113 2.971 1.882 
0.3162 0.864 0.823 0.600 1.106 2.741 
1.0000 0.778 0.530 0.869 0.768 1.869 

 
Table 4. Standard deviation values depending on α0 and γ0. 

 
The success rate is shown in Table 5 where the values in bold are the highest. It 

can be observed that with α0 = 1 and γ0 = 10, a low standard deviation and a high 
success rate values are obtained simultaneously.   
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  γ0 
  0.01 0.10 1.00 10.00 100.00 

α0 

0.0100 0 0 0 0 0 
0.0316 0 0 0 0 0 
0.1000 0 5 10 40 15 
0.3162 65 70 55 75 25 
1.0000 70 65 55 80 15 

 
Table 5. Success rate values depending on α0 and γ0. 

 
The standard deviation for the cost using the MFA and considering ACI318, with 

Nall = 20, the parameter NF varying in the interval [50, 300] and kmax in the range 
[300, 1000], is shown in Table 6. The constant values for the rest of the parameters 
considered during the tuning process are α0 = 1.0, γ0 = 10, m = 2.05 and tc = 0.1. The 
values in bold are the lowest. 

 
  NF 
  50 100 150 200 250 300 

kmax 

300 7.03 3.33 3.11 2.03 1.76 2.88 
400 4.41 4.42 1.40 1.44 0.87 0.62 
500 4.52 3.08 2.08 1.77 1.45 0.65 
600 4.27 4.11 1.99 0.64 1.46 0.61 
700 5.64 2.95 0.81 0.36 0.51 0.49 
800 5.61 2.68 2.37 1.40 0.66 0.59 
900 4.24 3.17 1.26 0.85 0.48 0.46 
1000 4.06 1.09 1.07 0.91 0.49 0.67 

 
Table 6. Standard deviation values depending on NF and kmax. 

 
The success rate is shown in Table 7 where the values in bold are the highest. It 

can be observed that with NF = 200 and kmax = 700, a low standard deviation and a 
high success rate values are obtained simultaneously.   

 
3.1.2 Comparison of results obtained from the GA, FA and MFA 

 
A Matlab® GA toolbox has been modified by the authors to adapt it to the features 
of the problem. Details of the method can be found in the literature [69]. The GA 
parameters that have been considered are: stochastic universal sampling; multipoint 
crossover; mutation rate linearly decreasing from 1.0 to 0.0 with the population 
convergence; migration rate between subpopulations of 50 % each 50 generations; 
and elitism with 50 % of the new offspring reinserted into the old population. The 
above parameters have provided satisfactory results in previous work by the authors 
[70,71]. Other parameters used in the GA, such as number of subpopulations (10), 
constant population size per subpopulation (1000) and maximum number of 
generations (380), have been selected in order to provide a number of objective 
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function assessments similar to that by the MFA. The FA parameters considered are 
m = 2.05, γ = 10, α0 = 1, NF = 200 and kmax = 700. The MFA parameters considered 
are m = 2.05, γ0 = 10, α0 = 1, NF = 200, kmax = 700 and tc = 0.1.  

 
  NF 
  50 100 150 200 250 300 

kmax 

300 0 20 35 70 65 70 
400 0 40 45 60 75 55 
500 5 25 55 40 65 70 
600 10 55 50 65 55 75 
700 30 45 50 85 80 80 
800 15 30 65 40 45 75 
900 10 30 50 55 70 75 
1000 30 60 40 65 75 60 

 
Table 7. Success rate values depending on NF and kmax. 

 
The best solution obtained from 10 runs of each algorithm is considered to be the 

optimal design solution of such algorithm. The optimal design solutions obtained 
considering ACI318 and EC2 standards are shown in Table 8. 
 

 GA FA MFA 
 ACI318 EC2 ACI318 EC2 ACI318 EC2 

z (mm) 148.1 136.0 139.3 138.1 154.5 136.0 
θ (rad) 0 0 0 0 0 0 
b (mm) 325 345 370 350 300 320 
h (mm) 575 605 475 595 585 605 
φ'x  (mm) 6 6 14 16 6 8 

n'x  2 7 4 3 2 7 
φx  (mm) 25 20 32 25 32 20 

nx 5 6 4 4 3 6 
Cost (€/m) 86.34 86.93 92.90 90.95 84.66 86.11 

 
Table 8. Optimal design solutions obtained using the GA, FA and MFA. 

 
After 10 runs of each algorithm, the values obtained for mean cost, standard 

deviation of cost, success rate, number of objective function assessments and 
relative time, are shown in Table 9. 

 
The evolution of the objective function depending on variables b and h and the 

global optimum achieved are shown in Fig. 9. The MFA has been used to optimize 
the reinforcement for each pair of constant values (b, h) assigned initially. The 
designs obtained in 10 runs using the GA, FA and MFA are also shown in Fig. 9. 
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 GA FA MFA 
 ACI318 EC2 ACI318 EC2 ACI318 EC2 

Mean cost 
(€/m) 88.24 87.84 112.71 116.67 85.31 87.09 

Standard 
deviation 

(€/m) 
1.67 0.67 14.85 12.21 1.56 0.59 

Success rate 
(%) 0 0 0 0 80 10 

Objective 
function 

assessments  
3.80 107 3.80 107 1.41 108 1.41 108 3.78 107 3.72 107 

Relative 
time (%) 100 85.2 218 214 76.3 75.6 

 
Table 9. Performance comparison for the GA, FA and MFA. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Objective function evolution depending on variables b and h and designs 
obtained in 10 runs. ACI318. 

 

The objective function evolution of the best solution considering ACI318 
standard and using MFA is shown in Fig. 10. 
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Figure 10: Objective function evolution. MFA. ACI318. 
 

3.2 Cross section under biaxial bending 
 

A rectangular cross section under biaxial bending [62] using MFA is studied. The 
design loadings considered are Pu = 200 kN, Mx,u = 300 kNm and My,u = 250 kNm. 
The strength of concrete is fc’ = 25.5 MPa. The cost for formwork is Pf = 15 €/m2. 
The length of form is 2b + 2h. The reinforcement bar diameters φ'y, φy, φ'x, φx are 
constrained in the interval [6, 32] mm, the number of reinforcement bars n'y, ny in [0, 
10] and the number of reinforcement bars n'x, nx in [2, 10]. The constraints (20) to 
(22), (29) to (32) and (34) are considered in this example. The MFA parameters are 
number of fireflies NF = 200, maximum number of iterations kmax = 700, 
randomization parameter α0 = 1, absorption coefficient γ0 = 10, m = 2.05 and tc = 
0.1. The best solution generated over a sequence of 10 runs using different random 
initial firefly populations is considered as the optimal design solution. The optimal 
design solutions obtained considering EC2 and ACI318 standards are shown in 
Tables 10 to 13. 
 

Savings in reinforcement and cost are shown in Tables 10 to 13. Considering 
Case 1 as the reference, lower savings are obtained in Case 2 than in Case 3. The 
average savings in Case 2 are of 2.5 % for the cost and of 7 % for the reinforcement. 
Higher savings are obtained if EC2 is used. The highest average savings are 
obtained in Case 3: 14 % (ACI318) or 12 % (EC2) for the cost and 37 % (ACI318) 
or 30 % (EC2) for the reinforcement. The highest reinforcement saving of 43.5 % is 
achieved when using ACI318 and that b and h may vary along the process (Table 
13). 
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 Case 1 Case 2 Case 3 

 
φ'y  = φy = φ'x  = φx 

n'y  = ny 
n'x  = nx 

φ'y  = φy  
φ'x  = φx 
n'y  = ny 
n'x  = nx 

 

 
Gil-Martín 
et al. [62] 

MFA MFA MFA 

z (mm) - 251.8 216.4 288.6 
θ (rad) - 1.0819 1.2205 1.0826 
b (mm) 400 400 400 400 
h (mm) 700 700 700 700 
φ'y (mm) 14.4 20 8 6 

n'y 6 5 8 2 
φy (mm) 14.4 20 8 20 

ny 6 5 8 7 
φ'x (mm) 14.4 20 32 12 

n'x 8 2 2 2 
φx (mm) 14.4 20 32 16 

nx 8 2 2 3 
Ast (mm2) 4560.1 4398.2 4021.2 3085.0 

Relative Ast (%) 103.7 100.0 91.4 70.1 
Cost (€/m) 103.5 102.0 98.5 89.8 

Relative cost (%) 101.5 100.0 96.6 88.0 

 
Table 10. Optimal design solutions with invariant section. EC2. 

 
 

 Case 1 Case 2 Case 3 

 
φ'y  = φy = φ'x  = φx 

n'y  = ny 
n'x  = nx 

φ'y  = φy  
φ'x  = φx 
n'y  = ny 
n'x  = nx 

 

 
Gil-Martín 
et al. [62] 

MFA MFA MFA 

z (mm) - 267.0 254.7 304.3 
θ (rad) - 0.9251 0.9326 0.9768 
b (mm) - 470 490 450 
h (mm) - 610 605 620 
φ'y (mm) - 12 6 6 

n'y - 10 2 2 
φy (mm) - 12 6 14 

ny - 10 2 10 
φ'x (mm) - 12 32 8 

n'x - 8 2 2 
φx (mm) - 12 32 12 

nx - 8 2 10 
Ast (mm2) - 4071.5 3330.1 2827.4 

Relative Ast (%) - 100.0 81.8 69.4 
Cost (€/m) - 99.0 93.5 86.4 

Relative cost (%) - 100.0 94.4 87.3 

 
Table 11. Optimal design solutions with variable section. EC2. 
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 Case 1 Case 2 Case 3 

 
φ'y  = φy = φ'x  = φx 

n'y  = ny 
n'x  = nx 

φ'y  = φy  
φ'x  = φx 
n'y  = ny 
n'x  = nx 

 

 
Gil-Martín 
et al. [62] 

MFA MFA MFA 

z (mm) - 215.3 221.3 278.4 
θ (rad) - 1.1956 1.1636 0.9914 
b (mm) - 400 400 400 
h (mm) - 700 700 700 
φ'y (mm) - 16 16 6 

n'y - 8 9 4 
φy (mm) - 16 16 20 

ny - 8 9 10 
φ'x (mm) - 16 14 6 

n'x - 5 5 3 
φx (mm) - 16 14 8 

nx - 5 5 5 
Ast (mm2) - 5227.6 5158.5 3590.8 

Relative Ast (%) - 100.0 98.7 68.7 
Cost (€/m) - 109.7 109.1 94.5 

Relative cost (%) - 100.0 99.5 86.1 

 
Table 12. Optimal design solutions with invariant section. ACI318. 

 
 Case 1 Case 2 Case 3 

 
φ'y  = φy = φ'x  = φx 

n'y  = ny 
n'x  = nx 

φ'y  = φy  
φ'x  = φx 
n'y  = ny 
n'x  = nx 

 

 
Gil-Martín 
et al. [62] 

MFA MFA MFA 

z (mm) - 253.7 244.4 266.9 
θ (rad) - 0.7638 0.9840 0.8247 
b (mm) - 495 495 485 
h (mm) - 575 575 640 
φ'y (mm) - 14 8 6 

n'y - 9 8 4 
φy (mm) - 14 8 16 

ny - 9 8 8 
φ'x (mm) - 14 20 6 

n'x - 6 6 3 
φx (mm) - 14 20 16 

nx - 6 6 4 
Ast (mm2) - 4618.1 4574.2 2610.7 

Relative Ast (%) - 100.0 99.0 56.5 
Cost (€/m) - 103.6 103.2 89.1 

Relative cost (%) - 100.0 99.6 86.0 

 
Table 13. Optimal design solutions with variable section. ACI318. 
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4  Conclusions and final remarks 
 
A numerical procedure is proposed in this paper for achieving the minimum cost 
design of reinforced concrete rectangular sections under compression and biaxial 
bending by using biologically-inspired meta-heuristic optimization algorithms.  
 

The problem formulation (variables, fitness function and constraints) has been 
simplified in order to reduce the computational cost yet ensuring the rigor necessary 
to achieve safe designs. The formulation includes the costs of concrete, 
reinforcement and formwork, obtaining the detailed optimum design in which the 
section dimensions and the reinforcement correspond to values used in practice. The 
procedure includes the possibility of using high-strength concrete and several design 
constraints, such as minimum reinforcement and limiting the neutral axis depth.  

 
Yang’s FA algorithm has been chosen to solve the optimum design problem since 

its efficiency has been sufficiently tested in solving actual problems with constraints. 
A numerical strategy has been implemented to improve the FA performance. The 
problem formulation and the algorithm (MFA) are both validated by applying them 
to two numerical examples. 

 
The simple problem of reinforced concrete cross sections under flexural loading 

has been chosen for parameter tuning. Moreover, performance comparisons using 
the GA, FA and MFA have been made. The results show that the proposed 
numerical procedure is capable of obtaining the global optimum with a lower 
computational cost, even in the complicated situation of the optimum being in the 
frontier of design space [50].  

 
The more complicated problem of designing rectangular sections subjected to 

compression and biaxial bending has also been selected [62]. The proposed 
numerical procedure proves adequate to obtain realistic detailed designs. Savings in 
longitudinal reinforcement and in total cost prove the potential of the procedure. 
Those savings not only reduce construction costs but also the carbon footprint, 
making the method interesting for sustainability. 

 

 
Appendix 
 
The Fiber Method has been used in this work to obtain the resistance of the section 
(ACI: ϕPn , ϕMx,n , ϕMy,n ; EC2: NRd , Mx,Rd , My,Rd) depending on the design 
variables (z, θ, b, h, φ'y, n'y, φy, ny, φ'x, n'x, φx, nx). In this method, the compatibility, 
behaviour and equilibrium equations of materials at section level have been 
considered simultaneously. The x-y axes are principal axes of the section and about 
them Nz, Mx and My internal forces and moments are defined. 
 

Compatibility equations are based on the Bernoulli assumption that sections 
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remain plane after deformation. For biaxial bending, only two variables are needed 
to know the deformation distribution in the section: z and θ, besides requiring the 
maximum deformation εcu2 for concrete and εsu for steel (Fig. A1). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A1: Compatibility of deformations, stresses and forces in the section. 

 
The behaviour equations of materials are defined in Eurocode 2 [55]. 

Compression forces are considered positive and tension forces negative. Parabola-
rectangle diagram for concrete is defined by the following expressions (Fig. A2) 
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Figure A2: Parabola-rectangle diagram for concrete under compression. 
 

 The idealized diagram defined by the following expressions is adopted for 
steel (Fig. A3) 
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where fyd is the design yield strength of reinforcement and Es the modulus of 
elasticity of reinforcing steel. 
 

The equilibrium equations about x*-y* axes are defined by the following 
expressions (Fig. A4) 
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where nf is the number of fibers considered and nr is the number of reinforcing bars 
in the section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3: Idealised design diagram for reinforcing steel. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4: Forces in the section. 
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The equilibrium equations (A5) to (A7) about x-y axes are the following (Fig. 
A5) 
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where R is the coordinate transformation matrix from x*-y* axes system to x-y axes 
system. 
 

Alternative methods to that used in this paper (Fiber Method) and a discussion of 
their stability and computation speed can be found in the literature [72,73]. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure A5: Coordinate axes systems. 
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