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A B S T R A C T

Traditionally, inertia in power systems has been determined by considering all the rotating masses directly con-
nected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic in-
stallations and wind power plants, has led to a significant dynamic characteristic change in power systems. This
change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall
impact on stability and reliability analysis of power systems is very significant. The power systems become more
dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renew-
able generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the
grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia
created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new
power system with high penetration renewables, where the lack of rotating masses directly connected to the grid
must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in
terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the
rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addi-
tion, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms
of frequency control strategies is included in the paper.

Nomenclature

DFIG Double Fed Induction Generator
EU European Union
FSWT Fixed Speed Wind Turbine
HAWT Horizontal Axis Wind Turbine
PMSG Permanent Magnet Synchronous Generator
PV Photovoltaic
RES Renewable energy sources
ROCOF Rate Of Change Of Frequency
SCIG Squirrel Cage Induction Generator
VSWT Variable Speed Wind Turbine
WPP Wind Power Plant

1. Introduction

Presently, power system stability relies on synchronous machines
connected to the grid. They are synchronized to the grid and

their stored kinetic energy is automatically extracted in response to a
sudden power imbalance. For example, a sudden additional large load
or a loss of a large generation unit from the grid, will slow down the
machines on the grid and subsequently reduce grid frequency [1]. How-
ever, the power systems generation fleet is changing from conventional
generation to renewable energy sources (RES) [2]. Limited fossil fuel re-
serves and the importance of reducing greenhouse gases emissions are
the main reasons for this transition in the electrical generation [3]. For
instance, wind, solar and biomass generations overtook coal power in
the EU for the first time during the year 2017 [4]. However, some au-
thors consider that only half of the overall electricity demand can be
provided by RES [5,6], despite the fact that it is expected that future
electrical grids will be based on RES, distributed generation and power
electronics [7]. As an example, in Europe, it is expected that 323 and
192GW of wind and PV will be installed in 2030, which will cover up to
30% and 18% of the demand, respectively [8,9].

Among the different renewable sources available, PV and wind (es-
pecially doubly fed induction generators, DFIG [10]) are the two most
promising resources for generating electrical energy [11]. Apart from
their intermittency, they are connected through power convert
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ers which decouple them from the power system grid [12,13]. There-
fore, the effective inertia of the electrical grid is reduced when conven-
tional generators are replaced by RES [14,15], affecting the system sta-
bility and reliability [16]. This fact is considered as one of the main
drawbacks of integrating a large amount of non-synchronous generators
(i.e. RES) into the grid [17], as the frequency stability and its transient
response is compromised [18]. Actually, low system inertia is related
with a faster rate of change of frequency (ROCOF) and larger fre-
quency deviations (lower frequency nadir during frequency dips) within
a short-time frame [19].

In this work, we conduct an extensive literature review focusing on
the inertia values for power systems and wind power plants. The av-
eraged inertia values are estimated by different countries for the last
two decades, by considering the ‘effective’ rotating masses directly con-
nected to the grid. In addition, the damping factor evolution is also in-
cluded in the paper based on most of technical contributions and analy-
sis found in the literature. The rest of the paper is organized as follows:
inertia and damping factor analysis for power systems is discussed in de-
tail in Section 2, determining the averaged inertia estimation for differ-
ent countries; control strategies and contributions to integrate RES into
grid frequency response is described in Section 3; finally, the conclusion
is given in Section 4.

2. Inertia analysis in power systems

2.1. Modeling the inertial response of a rotational synchronous generator:
inertia constant analysis

The group turbine-synchronous generator rotates due to two oppo-
site torques: mechanical torque of the turbine, and electromag-
netic torque of the generator, . The motion equation is [20,21]:

(1)

where both the and the are expressed in pu and H the inertia con-
stant in s. H is given by:

(2)

being J the moment of inertia, the base frequency and the
base power. H determines the time interval during which the generator
can supply its rated power only using the kinetic energy stored in the
rotational masses of the generator. In Table 1, a review of H values for
different types of generation units and rated power is shown.

Expressing Eq. (1) in terms of power, and considering the initial
status as 0, . For small deviations,
the second order terms are neglected due to their small values, thus

, being and .
Furthermore, in steady-state and pu. Hence,

.
Therefore, if small variations around the steady-state conditions are

considered, Eq. (1) can be written as Eq. (3) in the time domain, or as
Eq. (4) if the Laplace transform is applied.

(3)

(4)

Some loads (especially inverter-based loads) can also be modified
to work as a load resource (demand response capability) under fre-
quency deviations (e.g., motors driving compressors, pumps, industry
loads, HVAC-heating ventilation air conditioning …). This fact can be
modeled by including the damping factor D. As an example, for a syn-
chronous machine, the electrical power can be then expressed as fol-
lows,

Table 1
Summary of inertia values (H) for different generation types.

Type of generating unit Rated power H (s) Reference Year

Thermal MW [22] 2008
Thermal 1000MW [23] 2011
Thermal 10MW 4 [24] 2007
Thermal Not indicated [25] 2012
Thermal (2 poles) Not indicated [26] 1994
Thermal (4 poles) Not indicated [26] 1994
Thermal (steam) 130MW 4 [12] 2012
Thermal (steam) 60MW 3.3 [12] 2012
Thermal (combined cycle) 115MW 4.3 [12] 2012
Thermal (gas) MW 5 [12] 2012
Thermal Not indicated [27] 2011
Hydroelectric rpm MW [22] 2008
Hydroelectric rpm MW [22] 2008
Hydroelectric rpm MW [22] 2008
Hydroelectric rpm MW [22] 2008
Hydroelectric Not indicated [28] 2013
Hydroelectric 200rpm Not indicated [29] 1994
Hydroelectric 200rpm Not indicated [29] 1994
Hydroelectric Not indicated [26] 1994

(5)
where represents the load independent from frequency excursions.

Substituting Eq. (5) into Eq. (4), the mathematical representation of
the motion of a synchronous generator is obtained. It is commonly re-
ferred to as swing equation, see Eq. (6). It can be expressed in the form
of a block diagram as shown in Fig. 1. Hence, the initial response of a
synchronous generator to a frequency event is governed by its stored ki-
netic energy at the rated frequency [30],

(6)

2.2. Aggregated swing equation: equivalent inertia constant and damping
factor analysis

In order to apply the swing equation to a power system, Eq. (6) is
rewritten. All synchronous generators are reduced to an equivalent ro-
tating mass with an equivalent inertia ,

(7)

being the number of generators coupled to the power system
[31], such as conventional power plants and FSWTs. In the past, it was
considered that the equivalent inertial constant of a power system
was constant and time-independent. However, due to the RES integra-
tion and the variation in their generation throughout the day, the sea-
son of the year, etc., it is understood that changes with time. An
example of this variation is presented for the German power system
during 2012 in Ref. [32], see Fig. 2. From these data, the cumula

Fig. 1. Block diagram representation of the swing equation.
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Fig. 2. Histogram of equivalent inertia in the German power system during 2012
[32].

tive frequency curve is obtained and depicted in Fig. 3. It can be seen
that during 50% of the year 2012, the equivalent inertia was under 5.7 s;
10% of the year, was under 5 s; and only 1% of the year, its value
was under 4 s.

Fig. 3. Cumulative frequency of the equivalent inertia in the German power system
during 2012.

Table 2
Damping factor values. Literature review.

Ref.
Value (

) Analysis Year

[26] 1–2 Power system stability 1994
[35] 0.83 Two areas with non-reheat thermal units 2011
[36] 1.66 Two areas with thermal units 2011
[37] 1–1.8 Three areas with non-reheat thermal units 2012
[38] 2 One area with nuclear, thermal, wind and PV 2012
[39] 0.5–0.9 Three areas with non-linear thermal units 2013
[40] 0.83 Two areas non-reheat thermal units 2013
[41] 0.83 Two areas with thermal units 2013
[42] 0.83 Two areas with reheat units 2015
[43] 0.8 IEEE 9 bus system with hydro-power, gas and

wind turbines
2016

[44] 1–1.8 One and three areas with non-reheat thermal
units

2017

[45] 1–1.8 Three areas with non-reheat thermal units 2018
[46] 1 Two areas with non-reheat thermal units 2018

In the same way as synchronous generators, all loads are grouped in
an equivalent one with an equivalent damping factor . As stated in
Ref. [33], the impact of an inaccurate value of is relatively small
if the power system is stable, but this can be a major contribution un-
der disturbances. Moreover, it is expected to decrease accordingly to the
use of variable frequency drives [34]. Table 2 summarizes the differ-
ent values proposed for the damping factor in the literature over recent
decades.

By using Eq. (7), an estimation of the equivalent inertia of sev-
eral parts of the world has been carried out by the authors. The Inter-
national Energy Agency (IEA) provides global statistics about energy
[47]. By considering the annual averaged electricity, an averaged equiv-
alent inertia constant ( ) provided by such conventional power plants
—Table1— can be estimated. Note that for this estimation, S of Eq. (7)
is replaced by the annual electricity value ( ). The expression used to
estimate the inertia is then Eq. (8), being the total electricity sup-
plied (conventional + RES generation) within a year.

(8)

Fig. 4 shows a significant change in the averaged generation mix
between 1996 and 2016. The total electricity consumption has been in-
creased by more than 80% within these two decades. However, RES
generation has only increased by 4% in the same two decades. More-
over, the share of the different renewable sources has changed sig-
nificantly. Indeed, the contribution share from hydro-power has been
surpassed by biomass, biofuels, wind, and PV. Based on the approach
previously described, Fig. 5 depicts the differences between the iner-
tia constant for different continents in 1996 and in 2016. EU has re

Fig. 4. Generation mix in the world: change between 1996 and 2016.

3



UN
CO

RR
EC

TE
D

PR
OO

F

A. Fernández-Guillamón et al. Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx

Fig. 5. Equivalent inertia constants estimated in the world by continent. Change between 1996 and 2016.

duced the equivalent inertia constant by nearly 20%. In contrast, the re-
duction of inertia in Asia, USA, and South America lies between 2.5 and
3%.

A more extensive analysis is conducted for the EU, where an aver-
age inertia reduction of 0.6 s can be estimated. In Fig. 6, an overview
of the evolution of the equivalent inertia in some EU countries is sum-
marized. Similar information is given in Fig. 7, where the reduction

Fig. 6. Equivalent inertia constants estimated in EU-28. Change between 1996 and 2016.

Fig. 7. Equivalent inertia reduction in EU-28 between 1996 and 2016.

of the equivalent inertia is illustrated for those EU countries which have
suffered a reduction larger than 15% ( ). Fig. 8 repre-
sents the equivalent inertia evolution of EU, as well as in three different
countries (Ireland, Spain, and Denmark). For the EU, RES supply has in-
creased nearly by 20%, in line with the reduction of its inertia constant
(refer to Fig. 9). Similar to the generation mix in the world, wind, bio-
mass, biofuels, and PV have surpassed the development of hydro-power,
which has drastically slowed down in recent years.

2.3. Modified equivalent inertia analysis: emulating hidden and virtual
inertia from RES

To obtain the maximum power from the natural resource, both wind
and PV power plants are controlled by power converters using the max-
imum power point tracking (MPPT) technique [48]. This power con-
verter prevents wind and PV power plants to directly contribute to
the inertia of the system, being thus referred to as ‘decoupled’ from
the grid [49]. As a consequence, to effectively integrate RES into the
grid, frequency control strategies have been developed [50–52]. Such
methods are commonly named as synthetic, emulated or virtual iner-
tia [53]. If this emulation of inertia coming from RES was included in
power systems, it would have to be considered to estimate the equiva-
lent inertia. Then, this modified equivalent inertia would have two dif-
ferent components: synchronous inertia coming from conventional
generators, and emulated/virtual inertia coming from RES,
[34,54–57], modifying Eq. (7) to Eq. (9). is the number of

Fig. 8. Evolution of equivalent inertia in EU-28 and some countries between 1996 and
2016.
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Fig. 9. Generation mix in Europe: change between 1996 and 2016.

RES connected to the grid through emulation/virtual control methods,
and is the inertia constant of the emulated/virtual generation unit.

(9)

This modified equivalent inertia expressed in Eq. (9) is graphically
illustrated in Fig. 10, based on [58]. Note the different representa-
tion between the coupling of VSWT and PV to the grid. The reason
to this is that WPP has ‘hidden’ deployable inertia based on the ki-
netic energy stored in their blades, drive train and electrical generators,
whereas PV has no stored kinetic energy due to the absence of rotat-
ing masses. Actually, modern VSWT have rotational inertia constants
comparable to those of conventional generators [30,59,60]. However,
this inertia is ‘hidden’ from the power system point of view due to the
converter [61]. For instance, in Table 3 and Fig. 11, the inertia con-
stant of several types of wind turbines are summarized, and most of
them are within the range s, in line with values presented for con-
ventional units in Table 1. As a consequence, it is commonly consid-
ered that VSWT provide ‘emulated hidden inertia’, as rotational inertia
could be provided by them [62–65]. On the other hand, PV installa-
tions don't have any rotating masses [11,66], having an inertia constant

[67]. Therefore, due to this absence of rotational masses and, sub-
sequently, absence of inertia, the specific literature refers to the ‘emu

Fig. 10. Power system with synchronous, hidden and virtual inertia.

Table 3
Wind turbines inertia constants H according to rated power and reference.

Type of wind turbine Rated power H (s) Reference Year

Not indicated Not indicated [12] 2012
Not indicated 2MW 4.45 [72] 2007
Not indicated 2MW 2.5 [73] 2003
Not indicated kW 3.7 [74] 2003
HAWT with SCIG 200kW 1.2 [75] 2010
FSWT kW 3.2 [76] 2005
FSWT Not indicated 3.5 [77] 2005
VSWT 2MW 6 [78] 2006
VSWT 3.6MW 5.19 [79] 2008
Types 1, 2, 3 1–5MW [80] 2005
DFIG 2MW 3.5 [81] 2003
DFIG 660kW 4 [82] 2006
DFIG 1.5MW 6.35 [83] 2009
DFIG 1.5MW 4.41 [83] 2009
DFIG 3.6MW 4.29 [84] 2011
DFIG 2MW 3.5 [85] 2003
DFIG 2MW 2.5 [86] 2004
DFIG 660kW 4 [24] 2007
DFIG (WPP) 300MW 1 [87] 2007
DFIG 750MW 5.4 [88] 2005
DFIG 2MW 3 [89] 2013
DFIG 1.5MW 3 [90] 2012
DFIG 2MW 0.5 [91] 2006
DFIG 2MW 3.5 [92] 2003
PMSG 455kW 2.833 [93] 1996

lated synthetic/virtual inertia’ provided by such PV power plants
[68–71].

With regard to the equivalent inertia estimation for the EU, and con-
sidering the averaged hidden inertia of WPP depicted in Table 3, the in-
ertia change is reduced around 0.3 s, corresponding to 50% of the value
determined in Section 2.2. Fig. 12 presents the evolution of the equiva-
lent inertia in the same EU countries of Fig. 6, being the dark blue val-
ues those due to the hidden inertia provided by VSWTs. As can be seen,
by considering the hidden inertia of VSWT leads to a smaller reduction
of the equivalent inertia.

3. RES frequency control strategies

3.1. Preliminaries

Generation and load in the power systems must be continuously
balanced to maintain a steady frequency. Under any generation-load
mismatch, grid frequency changes [94]. Moreover, significant devia-
tions from the nominal value may cause under/over frequency relay op-
erations, and even lead to the disconnection of some loads from the
grid [95]. Consequently, frequency stability is related to the ability of
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Fig. 11. Inertia constant values (H) for different wind turbine technologies.

Fig. 12. Equivalent averaged inertia constants estimated in EU-28 considering emulated
inertia provided by WPPs (1996–2016).

a power system to maintain the operating frequency close to its nominal
value (i.e., 50 or 60Hz, depending on the region) when an imbalance
situation occurs [96]. Hence, frequency control is an essential compo-
nent of a secure and robust electrical power system [97].

Frequency control is traditionally implemented by adjusting real
power generation to balance the load. This traditional scheme has a hi-
erarchical structure, and in Europe it is usually composed of three lay-
ers: primary, secondary and tertiary, from fast to slow timescales [98].
The primary and secondary controls are automatic, while tertiary con-
trol is manually executed by the transmission system operator [99].

The primary frequency control (PFC) operates at a timescale up
to low tens of seconds and uses a governor to adjust the mechanical
power input around a set-point based on the local frequency deviation
[100]. It is the automatic response of the turbine governors in response
to the deviations of the system frequency and depends on the setting

of the speed-droop characteristics of each power plant [101]. Therefore,
each generating unit can be modeled with its speed governing system
[102]. However, it does not restore grid frequency to its nominal value
[103]. In Europe, primary control is triggered before the frequency de-
viation exceeds mHz [104].

Secondary frequency control or automatic generation control (AGC)
removes the steady-state frequency deviation generated by the PFC
[105]. An integral controller modifies the turbine governor set-point to
bring the frequency back to its nominal value [106]. It also keeps the
scheduled exchanges between the different areas of an interconnected
power system to their expected values [107]. In Europe, the time-frame
is from seconds up to typically 15min after an incident [104]. Fig. 13
gives an example of a typical frequency excursion, where primary fre-
quency control and AGC time intervals are shown.

Finally, the main objective of the tertiary frequency control is to per-
form an economically efficient generation-dispatch (economic dispatch)
[108]. Moreover, it is also intended to relieve transmission congestions
and restoring the secondary control reserves [109]. This is also called
security-constrained-economic dispatch (SCED).

An increase in the penetration level of RES addresses a decreasing
of the number of synchronous generators, leading to an initial decline
in system inertia and power reserves for primary and secondary control
[110]. Subsequently, low inertia is related to larger frequency devia-
tions after a generation-load mismatch event [111], having implications
on frequency related power systems dynamics [112]. It is important to
note that the rate of change of frequency (ROCOF) is strongly affected by
the inertia available in the system [113]. By this means, it is necessary
that RES become an active role in grid frequency regulation, providing
active power support under disturbances [114]. The different technolo-
gies proposed to give additional inertia and frequency control from RES
are usually classified as summarized in Fig. 14.

3.2. PV power plant frequency control strategies

PV power plants can use ESS such as batteries [115–117], super-ca-
pacitors [118,119] and flywheels [117] in order to provide additional
active power in an imbalanced situation.

A different strategy to be considered is the ‘de-loading technique’
of the PV plant. It is based on operating these generating units be-
low their optimal generation point, in order to have a certain amount
(headroom) of active power to supply real power to the grid in case
of a frequency-dip contingency [120]. In general, PV power plants op-
erate at the maximum power point tracking mode according to cer-
tain meteorological conditions (i.e., temperature T and irradiation G),
maximizing the revenues from selling energy [121]. Contributions fo-
cused on this technique can be found in Refs. [122–127]. By curtail-
ment, we are operating the PV plant at a de-loaded point , below

, so that the PV plants are able to support system frequency, as
some power reserves are available. As depicted in Fig.
15, involves two different voltages: over the maximum power
point voltage, and under the maximum power point volt

Fig. 13. Frequency response after an imbalance.
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Fig. 14. Inertia and frequency control techniques for RES.

Fig. 15. Deloading techniques for PV.

age, . Due to stability concerns, the de-loaded voltage corre-
sponds to the higher value [128].

3.3. Wind power plant frequency control strategies

As in the PV power plants, wind power plants can also use ESS to
provide additional power boost during an imbalanced situation (i.e.,
frequency dips). Batteries [116], super-capacitors [118,129] and fly-
wheels [130] are proposed in the literature review.

Wind turbines have two possibilities to operate with the de-load-
ing technique: pitch angle control and over-speed control [61].
The pitch angle control consists of increasing the pitch angle from to

for a constant wind speed , keeping the rotor speed at the max-
imum power point (Fig. 16). This way, the power supplied
is below the maximum available aerodynamic power . Therefore,
a certain amount of active power reserve is available to supply addi-
tional generation in case of a frequency deviation occurs [131–134].
The over-speed control shifts the de-loaded power towards the
right of the maximum power , maintaining the pitch angle for
a constant wind speed , see Fig. 17(a). When frequency response
is provided, rotor speed has to be reduced from to , re-
leasing kinetic energy to the system [135–138]. As depicted in Fig.
17(b), a third possibility could be to set the turbine to operate the rotor
speed below the rotor speed for MPPT operation. In that case, the rotor
speed must increase from to utilizing some power extracted
from the turbine. As a consequence, the frequency response is reduced,

Fig. 16. Pitch control.

and could even be opposite to the desired behavior during the first sec-
onds. Because of this, it is usually considered as a ‘detrimental strategy’
[139,140].

With regard to providing an inertial response from wind power
plants, the main idea is to increase the output power of the VSWT for a
few seconds. One or more supplementary loops are introduced into the
active power control, which are only activated under frequency devia-
tions. Both blades and rotor inertia are then used to provide primary fre-
quency response under power imbalance situations. The kinetic energy
stored in the rotating masses is supplied to the grid as an additional ac-
tive power [141].
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Fig. 17. Over-speed and under-speed control.

The droop control emulates the behavior of a governor in a conven-
tional synchronous generator, responding to the changes in the system
frequency. The active power supplied by the VSWTs changes proportion-
ally to the frequency deviation as illustrated in Fig. 18(a), where

is the droop control setting (speed adjustment rate). Subsequently,
the variation of power is defined as Eq. (10), where is the signal
given to the power converter to release the stored kinetic energy. The in-
crease of the active power output results in a decrease in the rotor speed
[142–145[146]].

(10)

Hidden inertia emulation for wind turbines is characterized by an
emulation of the inertial response of a traditional synchronous gener-
ator. There are two types of hidden inertia emulation controls: one
loop and two loops. In the first case, an additional power based
on the ROCOF is added to after a generation deficit, thus, reduc-
ing the generator speed and releasing the stored kinetic energy of the
rotating blades [147–149]. The drawback of this control strategy is that
frequency is not restored to its nominal value [150]. An additional loop
proportional to the frequency deviation is then added, as indicated
in Fig. 19(b). This second loop lasts until the frequency is restored to

[78,151]. Fig. 20 compares the frequency responses by considering
one or two loops controllers.

The fast power reserve technique is based on supplying the kinetic
energy stored in the rotating masses of the wind turbine to the grid as
additional active power. Afterward, the energy extracted is recovered
through an under-production period. When the frequency deviation sur-
passes the predefined threshold value, the additional active power is
provided, decreasing the rotational speed of the rotor. Overproduction
power was initially defined as a constant value [79,152–156]. How-
ever, new approaches consider it as variable [157–159] by considering
other limits (e.g. toque limit, the current limit of the power electronic
switches, etc). The recovery period is used to restore both power and ro-
tational speed to their pre-event values. Different techniques have also
been proposed in the references listed. Fig. 21 shows the fast power re-
serve emulation control indicated in Ref. [152].

Table 4 presents an overview of the application of some of the tech-
niques. It includes the integration of wind power plants (WPP) and the
power imbalance ; both in the percentage of the total capacity of the
system. As can be seen, some strategies are combined, in order to im-
prove the frequency deviation after the generation-load mismatch.

4. Conclusion

An extensive literature review focused on inertia estimation for
power systems and wind power plants is conducted by the authors. The
contribution of PV power plants as a ‘virtual inertia’ is also discussed
in the paper, as well as a detailed analysis of the damping factor evolu

Fig. 18. Droop control for VSWTs.

Fig. 19. Hidden inertia emulation controllers.
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Fig. 20. Frequency response of the one loop and two loops controllers.

tion. Averaged inertia values are estimated for different regions and
countries for the last two decades. Conventional generation units are
considered accordingly, summarizing their inertia constant values

in accordance with each type of technology and rated power. Our find-
ings indicate that, nowadays, Europe presents a significant averaged in-
ertia decreasing –around 20% in the last two decades–, mainly due to
the renewable integration decoupled from the grid –from 14% in 1996
to 31% in 2016–. With regard to wind turbines, they present inertia val-
ues similar to conventional generation units –between 2 and 6s depend-
ing on technologies–, which is commonly considered as ‘emulated hid-
den inertia’. The paper provides significant information for wind tur-
bines frequency control strategies and studies of current power systems
with high renewable energy source integration.

Funding

This work was supported by the Spanish Education, Culture and Sports Min-
istry [FPU16/04282].

[].

Fig. 21. Fast power reserve emulation technique [152].
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Table 4
Wind turbines frequency control proposals.

Ref. Type of control
WPP
(%) (%) Year

[160] Droop 46 14 2012
[160] Hidden inertia 46 14 2012
[160] Droop + Hidden inertia 46 14 2012
[161] Variable droop 30 – 2011
[162] De-loading by pitch 24 3 2016
[162] De-loading by pitch 50 4 2016
[163] Fast power reserve 57 8.5 2017
[164] Hidden inertia 25 1.7 2012
[165] Dynamic droop + Hidden inertia 10 8.5, 10,

11
2016

[166] Droop + Hidden inertia 15 2 2016
[166] Droop + Hidden inertia 50 2 2016
[167] Fast power reserve 12.5 6.25 2015
[168] Hidden inertia 20 8.33 2015
[168] Droop 20 8.33 2015
[168] Droop 20 8.33 2015
[169] Hidden inertia 30 2.5 2013
[170] Hidden inertia 38 2.3 2012
[170] De-loading by pitch + Over-speed 38 2.3 2012
[170] Hidden inertia + Pitch + Over-

speed
38 2.3 2012
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