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[1] In this paper a surface integral equation technique is employed for the analysis of
inductive waveguide problems containing metallic or dielectric objects of arbitrary shape,
focusing on the case where these objects are connected to the waveguide walls. Using the
extinction theorem, the main problem is split into two problems. In the first one the
parallel plate waveguide Green’s functions are used. Because of the choice of these
functions, the side of the object touching the waveguide wall is not considered for
discretization in a method of moments analysis. The second problem is applied inside
the dielectric object, and uses the free space Green’s functions. It is shown that an
additional spatial image is needed to impose the proper boundary conditions for the fields
on the side touching the waveguide wall in the original problem. Results show the
importance of including this additional image in the formulation for the correct behavior
of the fields. With the proposed technique, the paper explores some alternatives for
designing specific filter responses using dielectric posts inside cavity filters. Comparisons
with a commercial finite elements tool demonstrate the accuracy of the proposed integral

equation formulation.
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1. Introduction

[2] Surface integral equation (IE) formulations are one
of the most well known techniques for computing
electromagnetic fields in scattering problems involving
conducting bodies. These formulations also allow for the
analysis of homogeneous dielectric or magnetic objects
applying the surface equivalence principle [Peterson et
al., 1998; Arvas and Sarkar, 1989; Harrington, 1989].
Even though the main usage of these formulations in
previous references is the calculation of radar cross
sections (RCS) of arbitrarily shaped objects, the scattered
fields can be used for other important applications [Reiter
and Arndt, 1995; Catina et al., 2005]. For instance, Pérez-
Soler et al. [2007] employed a surface IE formulation for
the analysis of inductive multiport microwave compo-
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nents containing obstacles. By means of the extinction
theorem, the method considers two equivalent problems
separated by a ground plane imposed on the excitation
port. Also, Quesada-Pereira et al. [2006b] combined the
Kummer and Ewald transformations in a surface,
i.e., formulation for the analysis of metallic and dielectric
objects. These techniques were used for the acceleration
of the series involved in the parallel plate waveguide
(PPW) Green’s functions calculations. Finally, Reiter and
Arndt [1995] and Catina et al. [2005] combined an
integral equation formulation with a mode matching
technique for the analysis of waveguide components.
[3] A common feature of the previous techniques is
that they fail if special care is not taken when a dielectric
object is touching one of the waveguide walls. This is
because the waveguide walls introduce special boundary
conditions for the fields, which are not appropriately
imposed by these formulations. In this context, this paper
presents an integral equation technique, specializing the
formulation for the case of inductive waveguides which
contain metallic or dielectric obstacles with one side
touching one of the walls of the waveguide. Therefore
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Figure 1. Original problem under study: a rectangular
waveguide of width a with different metallic and
homogeneous bodies connected to the walls.
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the most important new feature of the proposed tech-
nique, with respect to previous works, is that the
obstacles under consideration are attached to one of the
waveguide walls, where some important considerations
must be taken into account.

[4] It is important to notice that the formulation
derived can be used for the analysis of practical inductive
waveguide components. Inductive devices are widely
used in satellite and other high power applications, thus
the interest in their analysis. In inductive waveguide
devices, the obstacles are all uniform along the height
of the waveguide. This symmetry is exploited in the
formulation presented, in order to reduce the computa-
tional cost. Another advantage of using this symmetry is
that the two-dimensional (2-D) parallel plate Green’s
functions of infinite line sources can be used in the
kernel of the integral equation. In this way, efficient
formulations available for these Green’s functions can be
exploited [Quesada-Pereira et al., 2006b]. The use of
these parallel plate Green’s functions is convenient, since
then the lateral walls of the waveguide are automatically
included in the kernel of the integral equation. Therefore
they do not need to be discretized during the numerical
solution of the integral equation, thus reducing the size of
the linear systems to be inverted.

[5] On the contrary, the main drawback of the formu-
lation is that nonuniform posts along the height of the
waveguide cannot be studied directly with this approach,
due to the infinite line sources Green’s functions used in
the kernel of the integral equation. The extension of the
formulation, however, to full 3-D obstacles inside wave-
guide structures is possible by modifying the kernel with
full 3-D waveguide Green’s functions due to elementary
point sources.

[6] The formulation is first presented in full detail in
section 2, and it is then illustrated with some example
results. The possibility of performing an accurate anal-

PEREZ-SOLER ET AL.: OBSTACLES ATTACHED TO WAVEGUIDE WALLS

RS6002

ysis of dielectric objects attached to the walls is exploited
for the study of new inductive filters that present inter-
esting bandpass frequency responses. Also, important
properties such as the reduction of multipactor risk for
space applications can be obtained with dielectric objects
attached to the waveguide walls, as it was pointed out by
Quesada-Pereira et al. [2006a]. All the presented results
prove the efficiency and the accuracy of the proposed
new integral equation technique, when applied to the
design of inductive waveguide microwave problems
containing dielectric objects attached to the walls.
Results obtained with a commercial finite elements tool
(HFSS©) are also included for validation of the new
technique.

2. Theoretical Outline

[7] The problem under study consists of a rectangular
waveguide which contains metallic and dielectric ele-
ments, as shown in Figure 1. By means of the surface
equivalence principle, this original structure can be
replaced with two different equivalent coupled problems.
The first one, called external, considers the presence of
electric and magnetic current densities which radiate
inside an empty waveguide as showed in Figure 2a.
On the other hand, the second equivalent problem,
known as internal, considers the radiation of electric
and magnetic currents of opposite signs inside an
unbounded homogeneous medium with constitutive
parameters (e, 1) (Figure 2b). Because of the fact that
the fields are zero inside a perfect conducting area, the
electromagnetic problem need not to be explicitly for-
mulated inside metallic obstacles.

[8] For the external problem, the total electric and
magnetic fields E€*, H® are expressed as follows:

ECY = E (J;,My,J.) + E (1)

H(ext) -

ext

(Ja, Mg, J.) + H' (2)
where the incident fields (E', H') are generally derived
from an incident TE, fundamental mode, and (E°, H")
are the fields scattered by the inductive obstacles.

[9] For the internal problem, as the excitation is not
present, the total fields are

B = B} (—J4,—My) (3)

H(inl) — Hé

nt

(—Ja, —Ma) (4)
The integral equation formulation continues with the
imposition of the boundary conditions for the fields
inside the structure. First, the tangential electric field on
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Figure 2. Decomposition of the problem in Figure 1, in
two equivalent problems by means of the surface
equivalence principle. (a) External problem. (b) Internal
problem.

conducting surfaces is null (EFIE), and second, the total
tangential electric and magnetic fields must be contin-
uous across the dielectric post surfaces (PMCHWT
formulation [Lloyd et al., 2004]). In that reference, it was
shown that the PMCHWT formulation is one of the most
robust from the numerical point of view, since it is free
from internal resonances. Therefore this is our selection
for the surface, i.e., implemented in this paper.

[10] Combining these conditions, a set of coupled
integral equations is obtained, as explained by Quesada-
Pereira et al. [2006b]. It is important to point out that the
Green'’s functions employed for each one of the equivalent
problems are different: for the inner problem, unbounded
homogeneous Green’s functions are used (see Figure 2b),
whereas the external problem is treated with the parallel
plate waveguide Green’s functions (see Figure 2a), which
have been efficiently calculated by a combination of
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several acceleration techniques of Quesada-Pereira et
al. [2006b].

2.1. Treatment of Surfaces Attached to the
Waveguide Walls

[11] First, let us consider the case of a metallic post
attached to one of the waveguide walls. This situation
does not have any implication for the internal problem,
as conducting objects are not considered there. However,
for the external problem, the parallel plate waveguide
Green’s functions will short-circuit any electric current
density placed on the side attached to the waveguide
wall. We can take this situation into account in an easy
way, by discretizing only the inner sides of the objects
when applying method of moments (MoM) for solving
the surface integral equation, as shown in Figure 3.

[12] Next, we consider a more complex case formed by
a homogeneous dielectric and/or magnetic object (€1, ;)
with one side touching one of the waveguide walls (see
Figure 1). This obstacle leads to the presence of both
electric and magnetic current densities defined on its
surface. As we have already pointed out, the external
problem is formulated in terms of the parallel plate
waveguide Green’s functions (see Figure 2a). These
Green’s functions impose particular boundary conditions
to the side of the obstacle touching the waveguide wall. In
fact, the waveguide wall is a perfect electric conductor, so
that it will short-circuit again the equivalent electric
currents on the side of the dielectric object attached to
this wall. In addition, the waveguide wall imposes the
nullity of the tangent electric field in the original problem.
Since the magnetic current density defined on the surface
of the object is related to the tangent electric field, this
means that the magnetic currents must also be zero on the
touching side of the object.

[13] Since the magnetic currents are zero on the wave-
guide wall due to the boundary conditions of the tangent

=2

Discretized walls

%

Figure 3. Conducting object attached to the lower
plate. As surface electric current J. does not exist on the
plate, only the internal walls are discretized for a MoM
analysis.

>
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Figure 4. Homogeneous object with constitutive para-
meters (e, p1) attached to the lower plate. In this case,
for each interaction between two points (x, z) and (x', '),
a spatial image with respect to the plate (—x', Z') is also
considered.

electric field, and the boundary conditions for the tangent
magnetic field are already imposed by the Green’s func-
tions, then we do not need to consider equivalent currents
on the side of the dielectric object touching the waveguide
wall. The easiest way to proceed, then, is not to mesh this
side of the dielectric object during the numerical solution
of the integral equation by the MoM. We observe that, for
this external problem, the treatment of the dielectric
objects is the same as of the metallic objects touching
one of the waveguide walls.

[14] The main difference when treating dielectric
objects is that an internal problem, as shown in Figure 2b,
must be formulated inside the object. For this internal
problem the Green’s functions for an unbounded homo-
geneous medium of constitutive parameters (e, fi;) are
used. However, if one side of the object touches one of the
waveguide walls, the equivalent electric and magnetic
current densities are removed from this side due to the
boundary conditions imposed by the walls in the external
problem. If we just use the homogeneous medium
Green’s functions, as usual, then the boundary conditions
for the fields are not imposed on the touching side for this
internal problem. Normally, the equivalent electric and
magnetic currents are used to take care of this boundary
conditions. However, we are not considering these cur-
rents on this side of the object, due to the considerations
made in the external problem. Therefore another mech-
anism for imposing the boundary conditions on this side
must be investigated.

[15] The right way to proceed for the internal problem
is to use different more complex Green’s functions,
which can automatically account for the boundary con-
ditions of the fields on the side of the object touching, in
the original problem, one of the waveguide walls. This

PEREZ-SOLER ET AL.: OBSTACLES ATTACHED TO WAVEGUIDE WALLS

RS6002

can be easily done by using Green’s functions composed
of the original source placed in a semi-infinite medium,
radiating in the presence of an infinite ground plane,
located at the position of the intervening waveguide wall
in the original problem. This situation is illustrated in
Figure 4. In this way, the boundary conditions for the
fields on the side of the object attached to the wall will
also be automatically enforced. Using these new Green’s
functions, electric and magnetic current densities on this
side of the object are also removed for this internal
problem. With this formulation, then, only the remaining
sides of the dielectric object need to be discretized during
the numerical solution of the integral equation using
MoM, simplifying considerably this last step. Also, the
efficiency of the technique is increased, since the strict
minimum unknowns are used during the numerical
solution.

[16] Using the proposed approach, the Green’s func-
tions for the internal problem can be finally written as

For lower plate

G (x,x,z—2) = G(x,x,z—2)

+ 5, G(x, —x',z — 2/), (5a)
For upper plate
G (x,x z—2) = G(x,x,z—2)
+ 5, G(x,2a —x',z—2), (5b)
G xoz—2) = = HO(k
(x,x',z—2) j4 o (ko p),
p= \/(xfx’)2+(zfz’)2 (5¢)

where the factor £ and the sign operator s, = =1 depend
on the kind of dyadic component, and are also defined by
Quesada-Pereira et al. [2006b]. Figure 4 shows an
example for an object joined to the lower plate. By
adding an spatial image located in the other side of the
plate, the new Green’s functions force the right boundary
conditions, which were obviated by the absence of
equivalent currents on the connected wall. The con-
sideration of these new Green’s functions for the internal
problem is essential in order to obtain the right solution,
as it will be shown with an example in section 3.

2.2. Numerical Considerations

[17] In addition, another important consideration must
be taken into account when dealing with homogenous
objects. It is known that, on this kind of surfaces, the
singular interactions associated to the curl integrals must
be extracted in the Cauchy sense [Peterson et al., 1998].
Because we are using the PMCHWT formulation, the
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Figure 5. A single cavity filter with a dielectric post
connected to one of the walls and placed between
the two inductive windows. The waveguide width is
a=19.05 mm. The dimensions have been setto d="7.5 mm,

=42 mm, w. =4 mm, h; = w; =6 mm. The value of
the relative permittivity is ¢, = 4.

Cauchy principal value is cancelled out between the
external and the internal problems. However, this can-
cellation only occurs for the original source in free space.
However, in the internal problem we now have an
additional spatial image in the Green’s functions. The
resulting situation is that the singular interaction for the
curl operator gives rise to two terms. The first is due to
the original source, which only exists in the Cauchy
sense, and it is annihilated by the external problem in the
PMCHWT formulation. The second one is due to the
spatial image, and it is not annihilated. Fortunately
enough, this term is not singular, since the spatial image
is always placed outside the observation region. Then,
the resulting term can be easily evaluated using standard
integration techniques.

[18] The general form of these singular curl integrals is

L L
L= / (1) / f(7') XV{GOm)(x,x/,zfz/)
0 0

G, ¥,z — z’)} dl' di (6)
where f is a general basis or test function previously
chosen for the MoM procedure, and G™™ and G were
shown in (5). In equation (6), the expression (G'™ — G)
refers to the internal problem. Here, the term —G only
compensates the source contribution in (5), but not the
one corresponding to the spatial image, which remains in the
curl integral. However, the overall function (G™ — G) is
not singular and can be easily evaluated with standard
numerical integration cubature rules [Cools, 1999].

[19] The curl integrals are due to the cross interactions
between electric and magnetic currents and fields. A part
from these cross interactions, we will also have to face
the traditional singular situation for the noncross inter-
actions (electric field with electric source or magnetic
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field with magnetic source). For these interactions, the
curl operator is not present in the kernel of the integral
equation. Consequently, these interactions lead to the
well known weak singularity of the mixed potential
Green’s functions. The treatment of this singularity
follows the extraction of the typical logarithmic asymp-
totic term of the Hankel function for small arguments
[Peterson et al., 1998].

[20] For the numerical solution of the formulated
integral equation we have implemented a MoM algo-
rithm using triangular basis and test functions (Galerkin
technique). An interesting question that must be
addressed, is how to model the currents at the contact
points between the dielectric posts and the waveguide
wall. In particular, we must study whether we need to
consider or not the presence of half triangular functions
in the segments of the objects that are just in contact to
the waveguide walls. If we do not include half triangular
functions, then the currents will be forced to be zero at
the contact point. On the contrary, the use of half
triangular functions will allow the currents to flow
through the contact point toward the waveguide wall.

[21] To answer this question, we must think what
happens to the electric and magnetic currents on the
attached side of the object. First, the electric current,
which is always tangent to the waveguide wall, will be
forced to be zero by the spatial image added to the
Green’s functions. Therefore this current will naturally
tend to go to zero at the contact point. Second, the
magnetic current must also be zero. This magnetic
current can have two components, one tangent and one
normal to the waveguide wall. The tangent component of
the magnetic current is related to the tangent component
of the electric field, which must be zero on the wave-
guide wall to satisfy its boundary condition. On the other
hand, the normal component of the magnetic current will
be forced to be zero, again by the action of the spatial
image added to the Green’s functions. As a conclusion,
both electric and magnetic currents will tend to be zero at
the contact point. This conditions can be easily imposed
in the formulation, by terminating the mesh of the sides
of the dielectric objects without half triangular basis
functions.

3. Results

[22] In order to show the importance of the correct
treatment of the internal problem when dealing with
dielectric objects attached to the waveguide walls, let
us consider a useful example consisting in a single cavity
filter with a square dielectric inductive post connected to
the lower plate, as shown in Figure 5.

[23] Figure 6 shows the simulated scattering parame-
ters obtained by using different theoretical models.
First, in Figure 6a we consider the case of the dielectric
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Figure 6. Scattering parameters of the filter shown in
Figure 5, using different theoretical models. (a) Using
free space Green’s functions. (b) Using an additional
spatial image in the internal problem.

post close to the waveguide wall, but not attached to it
(a 0.1 mm distance is considered). In this case all the four
sides of the dielectric object are discretized during the
MoM application, and the standard Green’s functions of
a simple homogeneous medium are used. The results
obtained in this situation are correct, and they are shown
in Figure 6a with the label ““0.1 mm sep.”
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[24] Next, we attach the square dielectric post to the
wall, still considering discretization of the four sides of
the post. In this case, the tangent electric field is zero on
this wall, so the equivalent magnetic currents must also
be zero on the touching side of the object. Since this
boundary condition is not explicitly imposed by the
PMCHWT formulation, the computed scattered fields
are wrong, as it can be noticed in the results of Figure 6a
for the “closed” case. The next test is to analyze the
dielectric post discretizing only the three internal sides.
Again, the standard free space Green’s functions are used
for the internal problem. Since no equivalent currents are
considered in the side touching the wall, the appropriate
boundary conditions for the fields must be imposed
inside the Green’s functions. However, the free space
Green’s functions used do not satisfy the proper bound-
ary conditions in the internal problem along the side of
the object attached to the waveguide wall. The results are
presented in Figure 6a (“open” case), showing again a
wrong behavior. This is because the proper boundary
conditions are not imposed in the internal problem along
the side of the object attached to the waveguide wall.

[25] In the next test we analyze the dielectric post
attached to the wall, discretizing only the three internal
sides, but using the new Green’s functions shown in
equation (5). Still, we do not take into account the singular
integrals of the curl operator given in equation (6). The
results for this test are shown in Figure 6b (““‘no Cauchy”
case). We observe that the results are closer to the right
solution, but still the transmission and reflection levels are
wrong. Finally, Figure 6b shows the results using the new
Green’s functions, and the correct singular curl integrals
(Cauchy case in Figure 6b). Results obtained with the
finite elements software HFSS are also included for
validation. We can observe that in this last case the
agreement with HFSS is excellent. It is also worth
noticing, that the right results obtained in Figure 6b when
the dielectric post is attached to the wall, are very similar
to the results obtained in Figure 6a when the dielectric is
close (but not attached) to the waveguide wall. This
additional result also validates the general theory pre-
sented in this paper. In addition, all these results show the
necessity of applying the right Green’s functions for
the internal problem in order to compute the right values
of the fields, and therefore for obtaining exact scattering
parameters when analyzing filter responses. For all cases,
the MoM has been solved employing triangular basis and
testing functions (Galerkin approach).

[26] Once proved that structures with dielectric objects
connected to the walls can be analyzed correctly, it is
possible to obtain interesting filter responses using these
oft-centered dielectrics. The first filter is based on the
structure shown in Figure 5, and its response is opti-
mized by adjusting the height of the dielectric post 4, to
4 mm. Results for the filter using the integral equation
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Figure 7. Scattering parameters of the same filter
presented in Figure 5, when 4, is changed to 4 mm.

developed in this paper are compared in Figure 7 with
results obtained with HFSS. The filter was analyzed
employing 44 basis functions for each inductive window
and 56 basis functions for the dielectric post (a total of
144 unknowns). The new software tool takes 1.4 s per
frequency point on a computer with a 3.2 GHz processor.
The results agree with those obtained with HFSS, which
needs 31 s per frequency point on the same computer. It
is worth noticing that the response synthesized with this
structure is of the same type as those presented by
Guglielmi et al. [2001] for elliptic inductive filters. Only
in our case it is not necessary to change the volume of
the initial structure, while it is still possible to implement
transmission zeros in the insertion loss response of the
filter.

[27] It is important to point out that to obtain the HFSS
results, a full 3-D waveguide structure must be analyzed.
This is because the finite elements technique imple-
mented in this software needs to discretize the whole
volume of the structure. In this case we have taken as
the base waveguide the standard WR-75 waveguide (a =
19.05 mm, » = 9.525 mm). Therefore, in the HFSS
model all inductive obstacles have a fixed height equal to
b =9.525 mm (along the y axis shown in Figure 1). On
the contrary, with the formulation presented in this paper
the invariance of the structure along this axis is
exploited. In this way it is possible to reduce the real
3-D waveguide structure to a 2-D problem, thus gaining
in efficiency. The good agreement obtained with HFSS
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results shows the capability of the new formulation to
study practical inductive waveguide devices.

[28] More interesting filter responses can be obtained
by adding more dielectric objects, and by adjusting their
dimensions and distances from the inductive windows.
Figure 8 shows the case of two dielectric posts of
different heights placed asymmetrically inside the cavity.
For this example, a convergence study in terms of the

ds

=
N

/.

[S3%

§$>
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S Parameters (dB)

3
; : : :
3 {5-IE 0.1 +——
?' : i So1-1IE 0.1\ ------
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: : So1-HFSS -k
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11 12 13 14 15 16
Frequency (GHz)
(b)

Figure 8. Analysis of a single cavity inductive filter
with two rectangular dielectric posts attached to the
walls. The waveguide width is @ = 19.05 mm. The
dimensions have been set to d = 7.5 mm, A, = 4.2 mm,
w. =4 mm, w; =6, hy; = 4.05 mm, and /1, = 5.05 mm.
Distances from the diclectric objects to inductive
windows are d; = d, = 3.4 mm, and the distance
between inductive windows is d; = 21 mm. The value of
the relative permittivity is €. = 4. (a) Geometry of the
structure. (b) Convergence study of the scattering
parameters of the proposed filter in terms of the number
of basis functions used in the integral equation, as
compared to HFSS results.
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Figure 9. Analysis of a two-pole inductive filter loaded
with inductive dielectric triangular posts attached to the
walls. The waveguide width is a = 19.05 mm. Dimensions
of the inductive windows are w; = w, = 2 mm, h; =
4.675 mm, and A, = 6.125 mm. All triangles are equal
sized with 4, = 8 mm and b, = 2 mm. Distance between
object centers is d = 4 mm. The relative permittivity
constant is ¢, = 11. (a) Geometry of the structure.
(b) Scattering parameters of the proposed filter as
compared to HFSS results.

number of basis functions employed is also included.
The first result has been obtained by using the common
rule of using one basis function per tenth of the wave-
length. This is the common criterion followed in the
method of moments (MoM) problems to assure good
convergence, for point matching formulations. Since we
use a Galerkin formulation with triangular basis and test
functions, we expect that lower number of basis func-
tions will be needed to achieve convergence. In this case
we use a total of 100 unknowns, taking into account that

PEREZ-SOLER ET AL.: OBSTACLES ATTACHED TO WAVEGUIDE WALLS

RS6002

on the dielectric surfaces the electrical length is greater
than in the metallic areas because of the reduction of the
wavelength by the permittivity. The agreement obtained
with HFSS is very good in this case. The finite elements
technique employed 54.3 s per frequency point, whereas
the IE approach needed 1.6 s on the same computer.

[29] To show the convergence properties of the method
with the mesh density, we have next considered two less
strict discretization criteria. The first uses a cell size of
0.25 X\ (with a total of 48 unknowns), and the second
uses a larger cell size of 0.5 A (with a total of only 28
unknowns). The results obtained show that even in these
cases the numerical convergence is good. Only a small
frequency shift can be observed for the large cell size of
0.5 A. These results show that the choice of triangular
basis functions in the MoM procedure allows to use a
limited number of unknowns, for achieving acceptable
accuracy. Even in the third case, using a cell size of
0.5 ), the response still offers a reasonable agreement
with HFSS. Even though the overall structure is electri-
cally large, the walls of the waveguide are not discre-
tized, since they are included inside the Green’s
functions of the problem. The only objects that need to
be discretized are the steps and posts placed inside the
waveguide, and these are of small electrical size, ranging
from 0.22 ) for the metallic steps to 0.64 \ in the case of
the dielectric posts. Because of this fact, reasonable
convergence is attained even using only 28 basis func-
tions. We can observe from the results, that the obtained
scattering parameters exhibit a response with two poles
and two zeros within the frequency band between 13 and
15.5 GHz. This behavior is obtained by means of the
asymmetry of the dielectric obstacles attached to the
walls. This structure can be used to implement two
transmission zeros on both sides passband, for maximum
selectivity.

[30] Another interesting application concerning the
placement of dielectric obstacles connected to the wave-
guide walls is the possibility of reducing multipactor risk
for space applications. Multipactor phenomenon is a
serious problem for space devices, where the vacuum
conditions and the usage of high power levels may cause
electrons to bounce from one side of the cavities to the
other, therefore severely damaging electrical devices
[Vicente et al., 2005]. Quesada-Pereira et al. [2006a]
performed a serious study on the influence of several
factors in multipactor risk in inductive filters (i.e.,
bandwidth, shape of inductive windows, order of the
filter). Their study showed that the presence of dielectric
posts inside the filters, wisely placed on the waveguide
walls, can reduce the multipactor risk. Figure 9 presents
the case of a two-pole inductive filter with triangular
dielectric posts attached to the walls, which has been
analyzed with the formulation proposed in this paper.
Quesada-Pereira et al. [2006a] showed that this struc-
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ture can reduce the multipactor risk in 30%, as compared
to a filter with similar response and no dielectric posts.
For the analysis of this structure, a total of 259 basis
functions were employed. The IE took 3.9 s per frequency
point, whereas HFSS needed 63.75 s on the previously
mentioned computer.

4. Conclusions

[31] In this paper a new surface integral equation
formulation for the analysis of inductive structures with
dielectric and metallic obstacles attached to the walls has
been proposed. By means of the surface equivalence
principle, it is possible to split the main problem into two
equivalent problems, namely, the external and the inter-
nal, where different kinds of Green’s functions are used.
Because of the properties of the parallel plate waveguide
Green’s functions used in the external problem, only the
inner walls of the attached objects are considered for
meshing in a MoM analysis. Besides, special emphasis
has been put in the case of dielectric obstacles touching
the waveguide walls. It is shown the importance to
include a spatial image with respect to an infinite ground
plane in the internal problem, to properly impose the
boundary conditions for the fields in the touching side.
The necessity of these special considerations, in order to
obtain correct results, has been stressed. The possibility
of analyzing filters with dielectric objects connected to
the walls allows to obtain interesting filter responses
employing simple geometries. In addition, the study of
this kind of structures is also important for the reduction
of multipactor risk for space applications. The presented
results prove that the CAD tool developed using the
proposed method allows to analyze all these structures
with the same accuracy as finite element methods, saving
computational cost and, consequently, designing time.

[32] Acknowledgments. This work has been developed
with support from the Spanish National Project (CICYT) with
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