DISEÑO DE UNA EMBARCACIÓN RÁPIDA MONOCASCO ESCALONADO PARA 40 NUDOS

TRABAJO FINAL DE ESTUDIOS DE MÁSTER DE INGENIERÍA NAVAL Y OCEÁNICA

Autor: Álvaro González Castellano

Tutor: Dr. José Enrique Gutiérrez Romero

Cartagena, 2020

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Índice:

1.	. Introduc	eción	. 18
2.	. Base de	datos	. 20
3.	. Dimens	ionamiento preliminar	. 24
	3.1. Re	gresiones	. 24
	3.2. Cá	lculo preliminar de los centros de gravedad	. 27
4.	. Estimac	ión del trimado y solución del equilibrio de un barco escalonado	. 34
	4.1. Ba	rcos de planeo	. 34
	4.2. Cá	lculo del trimado	. 38
	4.3. Eq	uilibrio en las fuerzas y en el momento de cabeceo	. 40
	4.3.1.	Coeficiente de sustentación en la superficie	. 40
	4.3.2.	Coeficiente de sustentación en la línea base	. 40
	4.3.3.	Coeficiente de velocidad	. 41
	4.3.4.	Ratio eslora-manga	. 41
	4.3.5.	Longitud mojada en proa	. 41
	4.3.6.	Distancia longitudinal a ¼ del step	. 42
	4.3.7.	Distancia longitudinal entre la estela y el escalón	. 42
	4.3.8.	Ángulo de trimado local del área de planeo en popa	. 42
	4.3.9.	Ángulo de astilla muerta local del área de planeo en popa	. 43
	4.3.10.	Diferencia entre las longitudes de quilla y pantoque en la superficie del agua	. 44
	4.3.11.	Longitud de la quilla mojada en popa	. 44
	4.3.12.	Manga local del área de planeo en popa	. 44
	4.3.13.	Diferencia entre las longitudes de la quilla mojada y el pantoque mojado en p 44	roa
	4.3.14.	Relación media local del ratio entre la eslora y la manga mojada en popa	. 45
	4.3.15.	Coeficiente de velocidad en la popa	. 45
	4.3.16.	Coeficiente de sustentación en el área de planeo de popa	. 45
	4.3.17.	Coeficiente de sustentación en la superficie en el área de planeo de popa	. 45
	4.3.18.	Componente normal de la fuerza hidrodinámica en popa a la línea de agua lo 45	ocal
	4.3.19.	Componente vertical de la fuerza N2	. 45
	4.3.20.	Componente vertical de la fuerza N1	. 46
	4.3.21.	Componente vertical de las fuerzas totales aplicadas en el casco	. 46
	4.3.22.	Velocidad media en la proa sobre la superficie de planeo	. 46
	4.3.23.	Velocidad media en la popa sobre la superficie de planeo	. 46
	4.3.24.	Número de Reynolds en proa	. 46

5.

6.

4.3.2	Número de Reynolds en popa	47
4.3.2	6. Coeficiente de fricción en proa	47
4.3.2	7. Número de Reynolds en popa	47
4.3.2	3. Fuerza friccional del buque en proa	47
4.3.2	P. Fuerza friccional del buque en popa	48
4.3.3). Fuerza inducida total horizontal en proa	48
4.3.3	. Fuerza inducida total horizontal en popa	48
4.3.3	2. Fuerza inducida total	48
4.3.3	3. Distancia entre la fuerza friccional en proa con el centro de gravedad de 49	del buque
4.3.3	Distancia entre la fuerza friccional en popa con el centro de gravedad de 49	del buque
4.3.3	5. Distancia entre el empuje de la hélice y el centro de gravedad	49
4.3.3	6. Centro de presiones que actúa en la quilla de proa	49
4.3.3	7. Centro de presiones que actúa en la quilla de popa	49
4.3.3	3. Distancia entre fuerza hidrodinámica N1 al centro de gravedad del buqu	e 49
4.3.3	Distancia entre fuerza hidrodinámica N2 al centro de gravedad del buqu	e 50
4.3.4). Empuje horizontal de la hélice	50
4.3.4	. Momento de equilibrio en el cabeceo	50
4.4.	Resultados numéricos obtenidos	51
4.4.2	Definición de la longitud del escalón	51
4.4.2	. Definición del trimado	52
4.4.2	2. Definición de la altura del escalón	53
4.4.2	B. Desarrollo numérico para la obtención del equilibrio	55
Gen	ación de formas	59
5.1.	Estudio de formas	59
5.1.1	Formas de cuadernas	59
5.1.2	Conclusiones	59
Pote	cia y motorización	64
6.1.	Consideraciones previas	64
6.2.	Cálculo de la potencia necesaria	65
6.2.1	Método de Savitsky	65
6.	1.1. Coeficiente de velocidad	65
6.	1.2. Coeficiente de sustentación para una placa plana	65
6.	1.3. Superficie mojada	65
6.	1.4. Resistencia de fricción	66

	6.2.1.5.	Resistencia al avance	66
	6.2.1.6.	Potencia necesaria	66
	6.2.2. S	Savitsky mediante Maxsurf Resistance	67
	6.2.3. N	Método de CAHI	68
	6.2.3.1.	Factor del momento hidrodinámico	68
	6.2.3.2.	Coeficiente de velocidad	68
	6.2.3.3.	Ratio eslora-manga superficie plana	69
	6.2.3.4.	Coeficiente de sustentación	69
	6.2.3.5		69
	6.2.3.6.	Ratio eslora-manga con astilla muerta	69
	6.2.3.7.	Superficie mojada	69
	6.2.3.8.	Velocidad de fondo	69
	6.2.3.9.	Reynolds	69
	6.2.3.10	. Coeficiente de fricción	69
	6.2.3.11	. Resistencia de fricción	69
	6.2.3.12	. Resistencia al avance	70
	6.2.4. I	Resultados y elección del motor	70
(5.3. Select	ción del motor	72
7.	Análisis C	FD	75
•	7.1. Cálcu	lo de la resistencia al avance mediante TDYN COMPASS	76
	7.1.1. I	Datos iniciales del problema	76
	7.1.2. I	Discretización espacial	77
	7.1.2.1.	Geometría	77
	7.1.2.2.	Volumen de control o Volumen de Fluido (VDF)	78
	7.1.3.	Campo de velocidades y presiones	79
		Parámetros de cálculos	
	7.1.5. I	Discretización temporal	82
	7.1.6.	Creación de la malla y selección del modelo de turbulencia	83
	7.1.6.1.	Mallados	83
	7.1.6.2.	Selección modelo turbulencia	
•		lo de la resistencia al viento mediante TDYN COMPASS	
		Cálculo teórico de la resistencia al viento	
		Datos iniciales del problema	
	7.2.3. I	Discretización espacial	
	7.2.3.1.	Geometría	
	7.2.3.2.	Volumen de control o Volumen de Fluido (VDF)	93

,	7.2.4.	Campo de velocidades y presiones	94
•	7.2.5.	Parámetros de cálculos	95
,	7.2.6.	Discretización temporal	96
,	7.2.7.	Creación de la malla y selección del modelo de turbulencia	96
7.3	3. Res	istencia al avance total	100
,	7.3.1.	Comparación de resultados embarcación con escalón & embarcacion 100	ón sin escalón
8.	Escantill	onado	104
8.1	. Dis ₁	oosición general	104
8.2	2. Mat	eriales	107
8	8.2.1.	Tejidos de fibra de vidrio	107
8	8.2.2.	Resinas	108
9	8.2.3.	Materiales de núcleo	109
8.3	B. Esca	antillonado	110
8	8.3.1.	Datos iniciales	110
8	8.3.2.	Evaluación de las propiedades del laminado	111
8	8.3.3.	Cálculo de las presiones mínimas de diseño	113
8	8.3.4.	Escantillonado del fondo	115
8	8.3.5.	Escantillonado del costado	120
8	8.3.6.	Escantillonado de la cubierta	124
8	8.3.7.	Escantillonado de los mamparos	128
8	8.3.8.	Refuerzos	133
	8.3.8.1	Cuadernas de fondo	135
	8.3.8.2	2. Cuadernas de costado	137
	8.3.8.3	3. Longitudinales de fondo	139
	8.3.8.4	Longitudinales de costado	141
	8.3.8.5	5. Esloras de cubierta	143
	8.3.8.6	5. Baos	144
8.4	. Plar	108	147
9.	Disposic	ión General	152
9.1	. Cub	ierta interior	154
ģ	9.1.1.	Camarote doble de proa	154
Ç	9.1.2.	Baño de proa	154
Ģ	9.1.3.	Recibidor y escaleras de acceso a la cubierta superior	155
Ģ	9.1.4.	Cocina y salón	156
(9.1.5.	Baño de popa	157

9.1.6.	Camarote doble de popa	
9.1.7.	Sala de máquinas	158
9.2. Cu	pierta superior	160
9.2.1.	Solarium proa	160
9.2.2.	Superestructura	161
9.2.3.	Terraza	162
9.3. Pla	nos de disposición general	164
10. Cálcu	lo de Arquitectura Naval	169
10.1. Arc	ueo	169
10.2. I	Estimación de pesos y cálculo del centro d	e gravedad171
10.2.1.	Estimación de pesos y cálculo del centro	de gravedad inicial171
10.2.1	.1. Peso de la estructura	171
10.2.1	.2. Peso de la maquinaria	172
10.2.1	.3. Fondeo y amarre	173
10.2.1	.4. Servicios	174
10.2.1	.5. Habilitación Proa	174
10.2.1	.6. Cocina	175
10.2.1	.7. Baño maestra	176
10.2.1	.8. Habitación maestra	176
10.2.1	.9. Cubierta exterior	176
10.2.1	.10. Carga	177
	Estimación de pesos y cálculo del centro 79	de gravedad incluyendo la resistencia al
10.3.1.	Cálculo del traslado de pesos debido a la	a resistencia al viento179
10.3.2. Resisten		ntro de gravedad teniendo en cuenta la
10.3.2	.1. Peso de la maquinaria	181
10.3.2	.2. Carga	
10.4. I	Estabilidad	185
10.4.1.	Condiciones de carga	185
10.4.1	.1. MLDC	185
10.4.1	.2. MOC	186
10.4.1	.3. MLA	186
10.4.2.	Aberturas inundables	187
10.4.3.	Ensayo de la altura de inundación	188
10.4.4.	Ensayo de compensación de pesos	189

	10.4.4.	1.	Ensayo de compensación de pesos (LC1)	191
	10.4.4.	2.	Ensayo de compensación de pesos (LC2)	192
10	45	Dete	ección y achique de agua	194

Índice de tablas:

Tabla 1. Rangos de barcos por esloras	. 20
Tabla 2. Base de datos 1	. 21
Tabla 3. Base de datos 1	. 21
Tabla 4. Base de datos 2	. 22
Tabla 5. Base de datos 2	. 22
Tabla 6. Pesos y centros de gravedad de la estructura	
Tabla 7. Centros de gravedad de la estructura	. 29
Tabla 8. Pesos y centros de gravedad de la maquinaria	. 29
Tabla 9. Centros de gravedad de la maquinaria	
Tabla 10. Pesos y centros de gravedad de los equipos	. 29
Tabla 11. Centros de gravedad de los equipos	. 30
Tabla 12. Pesos y centros de gravedad de la habilitación	. 30
Tabla 13. Centros de gravedad de la habilitación	. 30
Tabla 14. Resumen peso en Rosca y centros de gravedad	. 30
Tabla 15. Peso en rosca y centros de gravedad preliminares	. 30
Tabla 16. Pesos y centros de gravedad del peso muerto	.31
Tabla 17. Centros de gravedad del peso muerto	.31
Tabla 18. Resumen pesos y centros de gravedad	
Tabla 19. Centros de gravedad del buque	. 32
Tabla 20. Dimensionamiento preliminar	
Tabla 21. Datos para el trimado preliminar	. 38
Tabla 22. Parámetros fijos para los cálculos	. 51
Tabla 23. Parámetros fijados en la definición de la L.E	. 51
Tabla 24. Datos obtenidos en la definición de la L.E	. 52
Tabla 25. Parámetros fijados en la definición del trimado	. 52
Tabla 26. Datos obtenidos en la definición del trimado	. 52
Tabla 27. Parámetros fijados en la definición de la altura del escalón	. 53
Tabla 28. Datos obtenidos en la definición de la altura del escalón	. 53
Tabla 29. Datos definitivos para el cálculo del equilibrio	. 54
Tabla 30. Resultados definitivos en el equilibrio de fuerzas	
Tabla 31. Resultados definitivos en el equilibrio del momento de cabeceo	. 56
Tabla 32. Resultados potencia necesaria	. 57
Tabla 33. Características hidroestáticas de la embarcación escalonada	. 61
Tabla 34. Potencia Savitsky Teórico	. 66
Tabla 35. Savitsky mediante Maxsurf Resistance	. 67
Tabla 36. Potencia Método de CAHI	
Tabla 37. Datos de entrada. TDYN, resistencia al avance	.76
Tabla 38. Datos de entrada para el modelo ".igs"	.77
Tabla 39. Datos de entrada para la creación de la piscina	. 78
Tabla 40. Coordenadas volumen de control	
Tabla 41. Valores para la modelización de la turbulencia	. 82
Tabla 42. Valores para el tratamiento de pared	
Tabla 43. Valores discretización temporal	
Tabla 44. Nº de elementos, tiempo y Resistencia total para una elección de malla adecuada	
Tabla 45. Error relativo en la elección de malla	
Tabla 46 Valor de tamaño de malla seleccionado	

Tabla 47. Simulacion	nes variando "Fix Beta"	86
Tabla 48. Valores de	la simulación elegida para el cálculo de Resistencia al avance	86
Tabla 49. Comparaci	ón Rt teórica con Rt CFD	90
Tabla 50. Calculo ted	órico de la resistencia al viento	91
Tabla 51. Datos de e	ntrada. TDYN, resistencia al viento	92
Tabla 52. Datos de es	ntrada para la creación de la piscina	93
Tabla 53. Coordenad	las volumen de control	93
Tabla 54. Valores pa	ra la modelización de la turbulencia	95
Tabla 55. Valores pa	ra el tratamiento de pared	95
Tabla 56. Valores dis	scretización temporal	96
Tabla 57. Diferentes	mallado para el cálculo de la resistencia al viento	96
	ión Rt teórica con Rt CFD	
	ón Resistencia total teórica con la Resistencia total CFD	
	ión de potencias en la velocidad de diseño (40 nudos)	
_	ón de potencias mediante simulaciones	
_	iciales para el escantillonado	
	e evaluación de las propiedades del material utilizado en el escan	
	1 1	
Tabla 64. Contenido	de gramaje	112
	t/w en función del contenido de gramaje	
	es físicas del laminado de fibra de vidrio E	
_	ínimos del factor de reducción de presión	
	relación de aspectos para paneles	
	corrección de curvatura Kc	
	diseño para FRP	
	mínima y base de fondo	
	del fondo	
	es del laminado de fondo	
_	queridos para el peso de fibra mínimo de laminado	
	s wminfondo	
	ínimos del factor de reducción de presión	
	relación de aspectos para paneles	
	corrección de curvatura Kc	
	e diseño para FRP	
	mínima y base de costado	
	del costadodel costado	
	es del laminado de fondo	
	ueridos para el peso de fibra mínimo de laminado	
	wmin costado	
	ínimos del factor de reducción de presión	
	relación de aspectos para paneles	
	corrección de curvatura Kc	
	e diseño para FRP	
	mínima y base de cubierta	
	de la cubierta	
•	es del laminado de la cubierta	
	ínimo en el laminado de cubierta	
Tabla 93. Peso mínir	no seco en el laminado de la cubierta	128

Tabla 94. Resultados <i>Wmin</i> de la cubierta	
Tabla 95. Masas mínimas del laminado obtenido	. 131
Tabla 96. Laminado propuesto para los mamparos	. 131
Tabla 97. Propiedades laminado de mamparos	. 131
Tabla 98. Propiedades mecánicas de los materiales para el núcleo de los paneles sándwich	. 132
Tabla 99. Propiedades del panel tipo sándwich	. 132
Tabla 100. Valores mínimos exigidos para los mamparos	
Tabla 101. Relaciones de espesores para el laminado propuesto	
Tabla 102. Valores mínimos exigidos en los mamparos	
Tabla 103. Valores del factor de superficie de cizalla del refuerzo	
Tabla 104. Laminado de los refuerzos	
Tabla 105. Propiedades laminado de los refuerzos	
Tabla 106. Propiedades mecánicas de los materiales para el núcleo de los paneles sándwich.	
Tabla 107. Valores mínimos de área y momentos de las cuadernas de fondo	
Tabla 108. Valores más desfavorables de las cuadernas de fondo	
Tabla 109. Valores de momentos y de inercia. Refuerzo 100x80	
Tabla 110. Características cuadernas de fondo	
Tabla 111. Valores mínimos de área y momentos de las cuadernas de costado	
Tabla 112. Valores más desfavorables de las cuadernas de costado	
Tabla 113. Valores de momentos y de inercia. Refuerzo 50x40	
Tabla 114. Características cuadernas de costado	
Tabla 115. Valores mínimos de área y momentos de los longitudinales de fondo	
Tabla 116. Valores más desfavorables de los longitudinales de fondo	
Tabla 117 Valores de momentos y de inercia. Refuerzo 130x130	
Tabla 118. Características longitudinales de fondo	
Tabla 119. Valores mínimos de área y momentos de los longitudinales de costado	
Tabla 120. Valores más desfavorables de los longitudinales de costado	
Tabla 121. Valores de momentos y de inercia. Refuerzo 90x100	
Tabla 122. Características longitudinales de costado	
Tabla 123. Valores mínimos de área y momentos de las esloras de cubierta	
Tabla 124. Valores más desfavorables de las esloras de cubierta	
Tabla 125. Valores de momentos y de inercia. Refuerzo 70x60	
Tabla 126. Características de las esloras de cubierta	
Tabla 127. Valores mínimos de área y momentos de los baos	
Tabla 128. Valores más desfavorables de los baos	
Tabla 129. Valores de momentos y de inercia. Refuerzo 60x50	
Tabla 130. Características de los baos	
Tabla 131. Desglose del cálculo del arqueo para los espacios de cubierta	
Tabla 132. Pesos y centros de gravedad de la estructura inicial I	
Tabla 133. Centros de gravedad de la estructura inicial I	
Tabla 134. Pesos y centros de gravedad de la estructura inicial II	
Tabla 135. Centros de gravedad de la estructura inicial II	
Tabla 136. Pesos y centros de gravedad de la maquinaria	
Tabla 137. Centros de gravedad de la maquinaria	. 173
Tabla 138. Pesos y centros de gravedad de Fondeo y amarre	. 173
Tabla 139. Centros de gravedad de Fondeo y amarre	. 173
Tabla 140. Pesos y centros de gravedad de Servicios	. 174
Tabla 141. Centros de gravedad de Servicios	. 174

Tabla 142. Pesos y centros de gravedad de Habilitación proa	1/5
Tabla 143. Centros de gravedad de Habilitación proa	175
Tabla 144. Pesos y centros de gravedad de la Cocina	
Tabla 145. Centros de gravedad de la Cocina	175
Tabla 146. Pesos y centros de gravedad del Baño de maestra	176
Tabla 147. Centros de gravedad del Baño de maestra	176
Tabla 148. Pesos y centros de gravedad de Habilitación maestra	176
Tabla 149. Centros de gravedad de Habilitación maestra	176
Tabla 150. Pesos y centros de gravedad de Cubierta exterior	177
Tabla 151. Centros de gravedad de Cubierta exterior	177
Tabla 152. Pesos y centros de gravedad de la Carga	
Tabla 153. Estimación de pesos y centros de gravedad	178
Tabla 154. Valores del momento creado por el viento y el GML	180
Tabla 155. Error producido debido a la resistencia al viento	180
Tabla 156. Pesos y centros de gravedad de la maquinaria	181
Tabla 157. Centros de gravedad de la maquinaria	182
Tabla 158. Pesos y centros de gravedad de la Carga	182
Tabla 159. Estimación de pesos y centros de gravedad	183
Tabla 160. Centro de gravedad longitudinal ajustado	183
Tabla 161. Condición de carga MLDC	186
Tabla 162. Condición de carga MOC	186
Tabla 163. Condición de carga MLA	187
Tabla 164. Puntos de inundación	188
Tabla 165. Altura de inundación obtenida mediante Maxsurf Stability	188
Tabla 166. Curva GZ indicando el punto de inundación	189
Tabla 167. Condición de carga LC1	190
Tabla 168. Condición de carga LC2	190
Tabla 169. Ángulo máximo de escora autorizado durante los ensayos de compensación	ı de
pesos, para diferentes esloras de casco	191
Tabla 170. Resultado de Maxsurf Stability compensación de pesos, condición de carga LC1	192
Tabla 171. Resultado de Maxsurf Stability compensación de pesos, condición de carga LC2	194

Índice de figuras:

Figura 1. Gráfico posición vertical del CG	
Figura 2. Barco escalonado con popa abierta	
Figura 3. Cálculo del calado mediante la relación eslora - calado (L - T)	. 24
Figura 4. Cálculo de la manga mediante la relación eslora - manga (L - B)	. 25
Figura 5. Cálculo del desplazamiento mediante la relación desplazamiento - eslora (D - L)	. 25
Figura 6. Cálculo de la potencia mediante la relación potencia – eslora (P – L)	. 26
Figura 7. Buque Base exterior	. 27
Figura 8. Buque Base interior	. 27
Figura 9. Casco de planeo	. 34
Figura 10. Resistencia inducida	. 34
Figura 11. Equilibrio en una embarcación de planeo	. 35
Figura 12. Equilibrio en una embarcación escalonada de planeo	
Figura 13. Mapa conceptual. Equilibrio de un barco escalonado	. 37
Figura 14. Coeficiente de sustentación creado por Savitsky en 1964	
Figura 15. distancia local desde el step hasta 1/4 de su longitud	
Figura 16. Ángulo local detrás del escalón	. 43
Figura 17. Comparación del nivel de agua con el nivel de agua local en popa	
Figura 18. Ángulo de la astilla muerta local	. 43
Figura 19. Gráfico de la fuerza friccional	
Figura 20. Casco escalonado diseñado en Maxsurf Modeler	. 60
Figura 21. Vista del escalón en Maxsurf Modeler	. 60
Figura 22. Casco de planeo sin escalón diseñado en Maxsurf Modeler	
Figura 23. Fuerzas sobre el casco. LARSSON L., E ELIASSON R	
Figura 24. Gráfico Savitsky Teórico	
Figura 25. Gráfico Método de Savitsky mediante Maxsurf Resistance	. 68
Figura 26. Gráfico Método de CAHI	
Figura 27. Gráfico comparación de diversas formas de obtener el valor de la potencia	
Figura 28. Elección del modelo IPS	
Figura 29. Esquema de las dimensiones del motor	
Figura 30. Modelo Volvo Penta IPS	. 73
Figura 31. Características de los modelos Volvo Penta IPS	
Figura 32. Versión de TDYN utilizada	
Figura 33. Definición del problema en la ventana de inicio de TDYN	
Figura 34. Modelo inclinado con su trimado correspondiente	.77
Figura 35. Vista de perfil del casco a analizar en TDYN	.77
Figura 36. Superficies y Volumen de control	
Figura 37. Entidades geométricas	. 79
Figura 38. Volumen del fluido generado	. 79
Figura 39. Esquema modelos de turbulencias	
Figura 40. Mallado del casco en TDYN	. 84
Figura 41. Mallado en la zona del escalón del buque	. 84
Figura 42. Mallado de las superficies cercana y lejana del casco en TDYN	
Figura 43. Gráfico de Número de elementos frente a la Resistencia obtenida	
Figura 44. Elevación del oleaje. Cálculo resistencia al avance	
Figura 45. Contorno velocidades. Cálculo resistencia al avance	
Figura 46. Velocidades en la dirección X. Cálculo resistencia al avance	

Figura 47. Campo de presiones. Cálculo resistencia al avance	88
Figura 48. Gráfico Fuerza de Presión en X	89
Figura 49. Gráfico Fuerza Viscosa en X	89
Figura 50. Definición del problema en la ventana de inicio de TDYN	92
Figura 51. Vista de perfil de la obra muerta a analizar en TDYN	
Figura 52. Superficies y Volumen de control	
Figura 53. Entidades geométricas	
Figura 54. Gráfico Resistencia al viento	
Figura 55. Contorno velocidades. Cálculo resistencia al viento	
Figura 56. Velocidades en la dirección X. Cálculo resistencia al viento	
Figura 57. Campo de presiones. Cálculo resistencia al viento	
Figura 58. Gráfico Fuerza de Presión en X	
Figura 59. Gráfico Fuerza Viscosa en X	
Figura 60. Gráfico comparación de valores de la resistencia total	
Figura 61. Gráfico comparación de diversas formas de obtener el valor de la potencia	
Figura 62. Gráfico comparación de potencia de la embarcación a diseñar con y sin escalón	
Figura 63. Disposición de los refuerzos	
Figura 64. Disposición general de los refuerzos. Vista 3D	
Figura 65. Disposición general de los refuerzos. Vista perfil	
Figura 66. Disposición general de los refuerzos. Vista planta	
Figura 67. Disposición general de los refuerzos. Vista caja de cuadernas	
Figura 68. Disposición general de los mamparos.	
Figura 69. Tejido mat de hilos cortados	
Figura 70. Tejido Roving	
Figura 71. Formas de cascos para la obtención de la manga y el semiángulo del diedro del	
11 gara 71.1 ormas de cascos para la obtención de la manga y el semiangalo del dicaro del	
Figura 72. Factor de categoría de diseño.	
Figura 73. Configuración de paneles.	
Figura 74. Laminado tipo sándwich	
Figura 75. Refuerzo omega 100x80 cuadernas de fondo	
Figura 76. Refuerzo omega 50x40 cuadernas de costado	
Figura 77 Refuerzo omega 130x130 longitudinales de fondo	
Figura 78. Refuerzo omega 90x100 longitudinales costado	
Figura 79. Refuerzo omega 70X60 esloras de cubierta	
Figura 80. Refuerzo omega 60x50 baos.	
Figura 81. Dimensiones escaleras I	
Figura 82. Dimensiones escaleras II	
Figura 83. Camarote doble en proa	
Figura 84. Baño de proa	
Figura 85. Recibidor principal en la entrada a la cubierta interior	
Figura 86. Escaleras de acceso a la cubierta superior	
Figura 87. Distribución cocina y salón	
Figura 88. Baño de popa	
Figura 89. Camarote de popa	
Figura 90. Sala de máquinas	
Figura 91. Yate Antonio yachts "D46 cruiser"	
Figura 92. Solárium proa 4 x 4 metros	
Figura 93. Superestructura vista del bar, cama de descanso y sofá	1.00

Figura 94 Terraza vista desde popa	163
Figura 95. Condición del trimado dinámico	179
Figura 96. Condición del trimado dinámico con un desfase debido al viento	179
Figura 97. Altura mínima de inundación exigida	188
Figura 98. Curva de momentos para el ensayo de compensación de pesos (LC1)	191
Figura 99. Curva GZ, concidición de carga LC1	192
Figura 100. Curva de momentos para el ensayo de compensación de pesos (LC2)	193
Figura 101. Curva GZ, concidición de carga LC2	193

Nomenclatura:

$CL\beta_1$	Coeficiente de sustentación en la superficie
CL_0	Coeficiente de sustentación en la línea base
CV_1	Coeficiente de velocidad
λ_1	Ratio eslora-manga
LK_1	Longitud mojada en proa (m)
$x_{1/4}$	Distancia longitudinal a ¼ del step (m)
x_{CL}	Distancia longitudinal entre la estela y el escalón (m)
$ au_{2L}$	Ángulo de trimado local del área de planeo en popa (radianes)
eta_{2L}	Ángulo de astilla muerta local del área de planeo en popa (radianes)
L_{22}	Diferencia entre las longitudes de quilla y pantoque en la superficie del agua (m)
L_{K2}	Longitud de la quilla mojada en popa (m)
b_{2L}	Manga local del área de planeo en popa (m)
L ₁₂	Diferencia entre las longitudes de la quilla mojada y el pantoque mojado en proa (m)
λ_{2L}	Relación media local de ratio entre la eslora y la manga mojada en popa
CV_2	Coeficiente de velocidad en la popa
CL_{02L}	Coeficiente de sustentación en el área de planeo de popa
$CL_{\beta 2}$	Coeficiente de sustentación en la superficie en el área de planeo de popa
F_{L2L}	Componente normal de la fuerza hidrodinámica en popa a la línea de agua local (N)
F_{L2}	Componente vertical de la fuerza (N)
F_{L1}	Componente vertical de la fuerza (N)
↑	Componente vertical de las fuerzas totales aplicadas en el casco (N)
V_{m1}	Velocidad media en la proa sobre la superficie de planeo (m/s)
V_{m2}	Velocidad media en la popa sobre la superficie de planeo (m/s)
Re_1	Número de Reynolds en proa
Re_2	Número de Reynolds en popa
C_{ftot1}	Coeficiente de fricción en proa
C_{ftot2}	Número de Reynolds en popa
D_{f1}	Fuerza friccional del buque en proa (N)
$D_{\epsilon 2}$	Fuerza friccional del huque en popa (N)

T

M

Empuje horizontal de la hélice (N)

Momento de equilibrio en el cabeceo (N*m)

Fuerza inducida total horizontal en proa (N) D_1 Fuerza inducida total horizontal en popa (N) D_2 D Fuerza inducida total (N) Distancia entre la fuerza friccional en proa con el centro de gravedad del buque (m) a_1 Distancia entre la fuerza friccional en popa con el centro de gravedad del buque (m) a_2 f Distancia entre el empuje de la hélice y el centro de gravedad (m) Centro de presiones que actúa en la quilla de proa C_{p1} C_{p2} Centro de presiones que actúa en la quilla de popa Distancia entre fuerza hidrodinámica N1 al centro de gravedad del buque (m) c_1 c_2 Distancia entre fuerza hidrodinámica N2 al centro de gravedad del buque (m)

Agradecimientos

La vida del estudiante y más la del Ingeniero Naval no es nada fácil, ha sido un largo y costoso camino. Termino una etapa estudiantil la cual me ha ayudado a desarrollarme en un ámbito tan específico como el mundo naval.

Agradezco y dedico este proyecto a mis padres, por su comprensión, motivación y apoyo que me han brindado a lo largo de mi vida. Por ayudarme a impulsar mis metas y conseguir que poco a poco se estén haciendo realidad.

A mi hermana, mis abuelas, mis tíos y mis amigos por todas esas llamadas a cualquier hora y hacerme sentir el calor del hogar a pesar de la distancia.

A mi tutor Dr. José Enrique Gutiérrez Romero por confiar en mí en un momento en el que ha tenido que hacer un esfuerzo bastante considerable para poder ser mi tutor. Por atenderme en cualquier ocasión y brindarme su apoyo en mis momentos de flaqueza. También, al *Aula CIMNE-ETSINO* por poner a mi disposición todo tipo de material informático para el desarrollo del presente proyecto.

Por último y no menos importante, agradecer al destino por ser así de caprichoso. Llegué a Cartagena con una maleta y me voy con una familia que me ha apoyado y me ha hecho crecer como persona. Llegamos siendo seis jóvenes con nada en común, y conseguimos hacer de un lugar pequeño grandes vivencias. Hermanos, gracias por haberme hecho la vida más fácil todos estos años.

CAPÍTULO 1

INTRODUCCIÓN

1. Introducción

En los últimos tiempos, el mundo naval ha evolucionado con pasos agigantados, ha sido un verdadero desarrollo tecnológico. Actualmente, existen diversos modelos de artefactos propulsados que sirven como transporte tanto de mercancía como de personas.

El objetivo principal de este proyecto es el desarrollo de un tipo de embarcación capaz de alcanzar altas velocidades con un consumo de combustible inferior a la media existente en el mercado. Para ello, se le realizará una reducción de la superficie mojada a través de la colocación de un escalón en su obra viva.

El análisis del funcionamiento del escalón colocado se realizará a través de software "Tdyn CFD" además de "Rhinoceros 5.0" y "Maxsurf".

A partir del número de Froude se puede determinar el régimen de desplazamiento de la embarcación.

- <u>Desplazamiento</u>: son aquellas embarcaciones en las que el número de Froude se encuentra comprendido entre 0 y 0,6. La posición vertical del centro de gravedad va disminuyendo a medida que aumenta el número de Froude. En este caso, la sustentación hidrodinámica es totalmente despreciable.
- <u>Semidesplazamiento:</u> el número de Froude está comprendido entre 0,6 y 1,3. El centro de gravedad recupera su nivel estático y las fuerzas hidrodinámicas empiezan a ser positivas.
- <u>Planeo:</u> son aquellas embarcaciones en las que el número de Froude es mayor que 1,3. La posición del centro de gravedad aumenta y la fuerza sustentadora aumenta a paso agigantados.

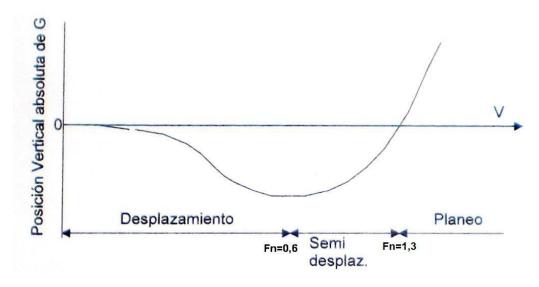


Figura 1. Gráfico posición vertical del CG

CAPÍTULO 2

BASE DE DATOS

2. Base de datos

Este capítulo se basa en la búsqueda de datos históricos de embarcaciones similares a la del barco que se quiere diseñar. Al tratarse de un buque muy específico, la información encontrada es más bien escasa, pero ha sido suficiente para obtener unas dimensiones preliminares. Debemos definir en todo momento el tipo de embarcación que se desea.

Los barcos escalonados destacan por la capacidad que tiene en adquirir altas velocidades con un consumo menor que barcos con sus mismas dimensiones, pero sin "step". Es conocido como "step" al corte producido en la obra viva del buque, con el fin de reducir la superficie mojada del buque.

A la hora de definir este proyecto, se ha optado por diferenciar tres prototipos de diseños:

- a) Embarcaciones sin habilitación.
- b) Embarcaciones con una pequeña habilitación.
- c) Embarcaciones con una habilitación completa.

A esta diferenciación se le suma los rangos de esloras:

Tabla 1. Rangos de barcos por esloras

7 m < Embarcaciones sin habilitación < 12 m

12 m < Embarcaciones con una pequeña habilitación < 22 m

22 m < Embarcaciones con una pequeña habilitación < 40 m

Para este proyecto se ha elegido diseñar una embarcación escalonada con una pequeña habilitación por lo que la base de datos ha sido acotada con barcos de eslora entre 12 y 22 metros. El criterio que se ha tomado para la selección de buques ha sido el valor de su velocidad, fijando una velocidad de 40 nudos.

Una vez aclarado todos estos aspectos se procede a la creación de la base de datos, la cual será mostrada a continuación.

Figura 2. Barco escalonado con popa abierta

Tabla 2. Base de datos 1

MARCA	MODELO	L (m)	Lwl (m)	B (m)	D (m)	T(m)	DESPLAZAMIENTO (kg)
Brooklin boat yard	Sport Boat Open	19	15	5	1	1,1	24948
Flying Flipper	Super GT 42	13,09	11,03	3,35	1	0,65	5000
Frauscher	1414 Demon	13,9	-	3,8	-	0,8	10000
OTAM	OTAM 45' Restyled	15,25	13,45	4,12	1	1,08	18000
Pershing	Pershing 70	21,44	17,14	5	ı	1,35	45170
Antonio Yachts	D46	13,9	-	4,4	1	0,7	11000
EVOYACHTS	EVO CC	13,04	-	4,52	-	0,75	8200
Azimut	VERVE 47	14,5	-	4,5	-	1,02	17500
Hunton yachts	H43	13,13	-	3,3	-	1	7500
Hunton yachts	H55	16,7	-	4,4	-	1,15	16000
Wally	Power 58	17,66	-	5,8	-	1,4	23000
Intrepid Powerboats	475 Sport Yacht	14,63	14,48	4,17	-	1,1	9752
Alen Yacht	Alen 68	20,32	-	6,3	-	1,25	45000

Tabla 3. Base de datos 1

POTENCIA (CV)	CAPACIDAD COMBUSTIBLE (I)	CAPACIDAD AGUA (I)	VELOCIDAD CRUCERO (nudos)	VELOCIDAD MÁXIMA (nudos)	PERSONAS
2500	2555,15	378,541	45	60	7
1254	900	150	43	55	8
1040	1250	-	44	70	10
2000	2000	300	45	54	12
3246	3500	900	40	46	16
1600	1200	450	30	49	12
1200	1000	400	38	48	12
1800	2500	300	35	45	11
1100	900	225	45	68	-
2000	2200	875	40	55	-
1800	2500	400	40	52	-
2508	1828,35	378,541	45	65	-
3100	4500	1000	41	45	-

Como se puede apreciar en la "Tabla 1 Base de datos 1" los buques escalonados encontrados rondan entre 12 y 22 metros de eslora. Sus rangos de velocidades de crucero oscilan entre 30 nudos y 45 nudos, se establece 40 nudos como un valor aceptable a la hora del diseño. La velocidad máxima será la obtenida de acuerdo con la potencia instalada, sustentación generada por el casco, pesos y posición del centro de masas. Al diseñar el buque para los 40 nudos de velocidad, es más que suficiente para obtener la principal RPA ya que se definirá con la propia potencia del barco.

Se ha realizado un filtro en la base de datos para obtener una base de datos donde la velocidad de crucero sea válida a partir de 40 nudos.

Tabla 4. Base de datos 2

MARCA	MODELO	L (m)	Lwl (m)	B (m)	D (m)	T(m)	DESPLAZAMIENTO (kg)
Brooklin boat yard	Sport Boat Open	19	15	5	-	1,1	24948
Flying Flipper	Super GT 42	13,09	11,03	3,35	-	0,65	5000
Frauscher	1414 Demon	13,9	-	3,8	-	0,8	10000
OTAM	OTAM 45' Restyled	15,25	13,45	4,12	ı	1,08	18000
Pershing	Pershing 70	21,44	17,14	5	-	1,35	45170
Hunton yachts	H43	13,13	-	3,3	-	1	7500
Hunton yachts	H55	16,7	1	4,4	-	1,15	16000
Wally	Power 58	17,66	-	5,8	-	1,4	23000
Intrepid Powerboats	475 Sport Yacht	14,63	14,48	4,17	-	1,1	9752
Alen Yacht	Alen 68	20,32	-	6,3	-	1,25	45000

Tabla 5. Base de datos 2

POTENCIA (CV)	CAPACIDAD COMBUSTIBLE (l)	CAPACIDAD AGUA (l)	VELOCIDAD CRUCERO (nudos)	VELOCIDAD MÁXIMA (nudos)	PERSONAS
2500	2555,15	378,541	45	60	7
1254	900	150	43	55	8
1040	1250	-	44	70	10
2000	2000	300	45	54	12
3246	3500	900	40	46	16
1100	900	225	45	68	-
2000	2200	875	40	55	-
1800	2500	400	40	52	-
2508	1828,35	378,541	45	65	-
3100	4500	1000	41	45	-

Siendo esta, la tabla de base de datos definitiva se procede a realizar las correspondientes regresiones para obtener las dimensiones preliminares.

CAPÍTULO 3

DIMENSIONAMIENTO PRELIMINAR

3. Dimensionamiento preliminar

En este capítulo se mostrarán las gráficas que relacionan entre sí diversas características físicas del buque, con el fin de obtener un conocimiento previo de las dimensiones utilizadas. Todo ello, se consigue gracias a la obtención de rectas de regresión.

Los datos de la tabla "Base de datos 2" son resultados técnicos posibles de una serie de embarcaciones similares a la del proyecto.

Cabe destacar que el estudio mediante regresiones se ha dado por válido en aquellas rectas en el que el coeficiente de correlación ha sido superior a 0,6, con el propósito de garantizar una cierta fiabilidad en los datos obtenidos.

Como la velocidad es la RPA fundamental en este proyecto, es cierto que dicho valor no puede ser utilizado para empezar en las regresiones ya que los datos históricos de velocidades de la tabla están en intervalos. Para solventar este inconveniente, se ha decidido que el buque tendrá una eslora de 15 metros. Dicho valor ha sido elegido en función del buque base elegido para obtener el centro de gravedad longitudinal preliminar, siendo explicado con más detalle posteriormente.

3.1. Regresiones

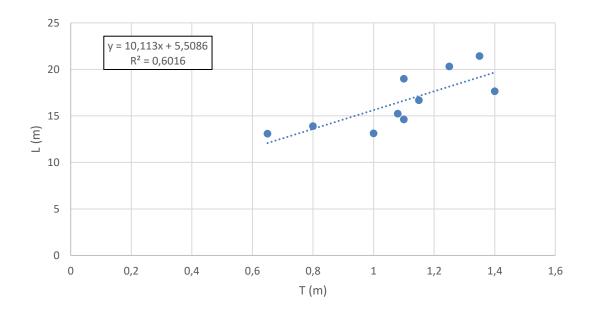


Figura 3. Cálculo del calado mediante la relación eslora - calado (L - T)

$$L = 10,11*T + 5,508$$

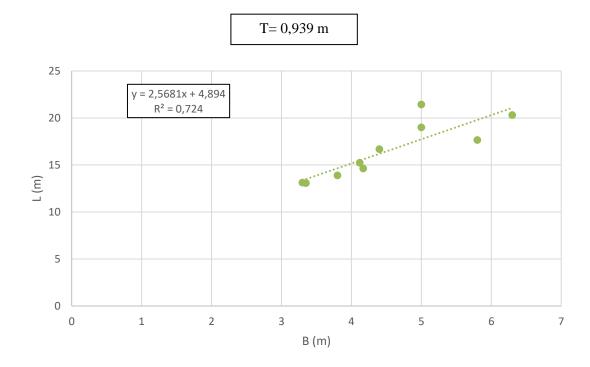


Figura 4. Cálculo de la manga mediante la relación eslora - manga $(L\mbox{ -}B)$

$$L = 2,568*B + 4,894$$

$$15 = 2,568 * B + 4,894$$

$$B = 3,935 \text{ m}$$

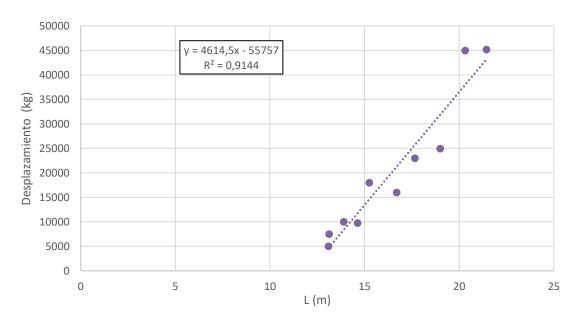


Figura 5. Cálculo del desplazamiento mediante la relación desplazamiento - eslora (D - L) $\,$

Desplazamiento = 4614*L - 55757

Desplazamiento = 4614*15 - 55757

Desplazamiento = 13453 kg

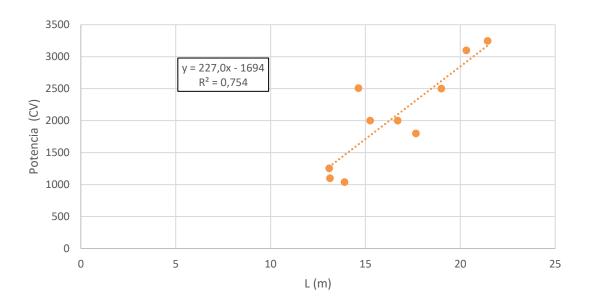


Figura 6. Cálculo de la potencia mediante la relación potencia — eslora (P-L)

Potencia = 227*L - 1694

Potencia = 227*15 - 1694

Potencia = 1711 CV

3.2. Cálculo preliminar de los centros de gravedad

Para proceder al desarrollo del proyecto solo falta conocer el centro de gravedad longitudinal preliminar para poder hallar el trimado.

En este tipo de embarcaciones es necesario definir de forma rigurosa el trimado. La condición de equilibrio para que la embarcación navegue a la velocidad de 40 nudos, depende fundamentalmente de este valor y del centro de gravedad.

El cálculo del centro de gravedad se ha realizado mediante una colocación de pesos preliminares los cuales han sido ubicados a partir de un buque base, en concreto, "OTAM 45' Restyled" cuya eslora es muy similar a la establecida en el proyecto.

A continuación, se adjunta los planos utilizados para distribución de pesos.

Figura 7. Buque Base exterior

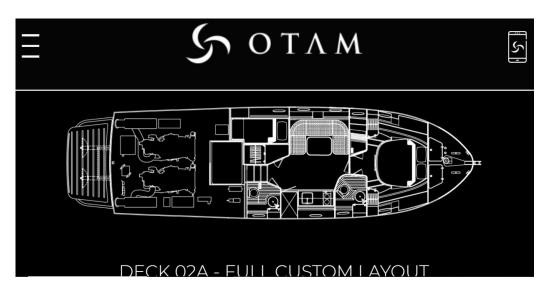


Figura 8. Buque Base interior

Con la ayuda de estos planos, se ha podido obtener un valor aproximado del centro de gravedad longitudinal y vertical. Se define como peso en rosca a la suma de todos los pesos del barco cuando este está listo para su navegación. Excluyendo todo tipo de carga.

El centro de gravedad se divide en tres componentes según los ejes de referencia:

- Centro de gravedad longitudinal (XG)
- o Centro de gravedad vertical (ZG)
- Centro de gravedad transversal (YG)

El punto "0" del eje de referencia de la embarcación, está situado en la intersección de la línea base (fondo del casco) con la perpendicular de popa (intersección de la flotación con el casco en la popa).

Para el cálculo de la posición del centro de gravedad se seguirá los siguientes criterios de signos:

- 1. Desde la línea base hacia arriba se toman los valores positivos y hacia abajo los valores negativos.
- 2. Desde la perpendicular de popa hacia popa se toman los valores negativos y hacia proa los positivos.
- 3. Desde el plano de crujía hacia babor se toman los valores positivos y a estribor los negativos.

El peso en rosca del artefacto oceánico y su centro de gravedad se ha calculado diferenciando cinco grupos de pesos:

- i. Peso de la estructura.
- ii. Peso de la maquinaria.
- iii. Peso de los equipos.
- iv. Peso de la habilitación.

Las características técnicas incluyendo los pesos, de las siguientes tablas se han determinado a partir de datos obtenidos de los suministradores u obtenido de otros proyectos similares. Cabe destacar que la distribución utilizada ha sido la del buque base nombrado anteriormente. Y para finalizar, recalcar de que los valores obtenidos son preliminares.

i. Peso de la estructura.

Para la obtención del peso del escantillonado, se ha optado por aplicar los valores extraídos de embarcaciones con características similares.

Tabla 6. Pesos y centros de gravedad de la estructura

Peso Estructura						
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)	
Laminados	4400	6,975	30690,000	1,500	6600,000	
Refuerzos	269,06	6,975	1876,693	1,500	403,590	
Total	4669,06		32566,693		7003,590	

Tabla 7. Centros de gravedad de la estructura

XG (m)	6,975
ZG (m)	1,500

ii. Peso de la maquinaria.

Tabla 8. Pesos y centros de gravedad de la maquinaria

	Peso Maquinaria						
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)		
Motor	3000	3,750	10500	0,500	1500		
Hélice	7	0,682	4,773	-0,020	-0,140		
Eje	25	1,091	27,273	0,140	3,500		
Baterías de Servicio	295	9,325	2750,875	0,510	150,450		
Baterías de Arranque	60	3,412	204,750	0,233	13,980		
Generador	263	6,387	1679,912	0,760	199,880		
Pala del timón	25	0,053	1,343	-0,014	-0,350		
Mecha del timón	21,50	3,412	73,368	0,150	3,225		
Calentador	50	3,937	196,875	0,300	15		
Ancla	25	14,462	361,562	2,016	50,400		
Cadena	95	14,462	1373,937	2,016	191,520		
Molinete	63	13,787	868,612	2,130	134,190		
Electrónica de navegación	27	7,125	192,375	1,200	32,400		
Accesorios de navegación	30	7,462	223,875	1,400	42		
Total	3986,50		18459,533		2336,055		

Tabla 9. Centros de gravedad de la maquinaria

XG (m)	4,631
ZG (m)	0,586

iii. Peso de los equipos.

Tabla 10. Pesos y centros de gravedad de los equipos

	Peso Equipos						
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)		
Balsa salvavidas	40	2,312	92,500	1,680	67,200		
12 Chalecos	10,50	8	84	1,500	15,750		
2 Aros	6	7,237	43,425	2,500	15		
Pirotecnia	4	6,987	27,950	1,500	6		
1 Extintor	14	6,687	93,625	1,700	23,800		
1 Extintor	14	10,750	150,500	1,700	23,800		
Total	88,50		492		151,550		

Tabla 11. Centros de gravedad de los equipos

XG (m)	5,559
ZG (m)	1,712

iv. Peso de la habilitación.

Tabla 12. Pesos y centros de gravedad de la habilitación

Peso Habilitación					
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)
Cocina	212,5	9,34	1984,943	1	212,5
Baño Popa	100	7,159	715,909	1	100
Baño proa	100	10,568	1056,818	1	100
Camarote Proa	150	11,931	1789,772	1	150
Camarote Invitado	150	7,159	1073,863	1	150
Chill Out Popa	250	4,09	1022,727	2,5	625
Suelo	287,5	7,5	2156,25	0	0
Peso cubierta	325	7,5	2437,5	2,1	682,5
Total	1825		14112,784		2445

Tabla 13. Centros de gravedad de la habilitación

XG (m)	7,733	
ZG (m)	1,339	

Peso en Rosca

Tabla 14. Resumen peso en Rosca y centros de gravedad

Peso en Rosca					
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)
Estructura	4669,06	6,975	32566,693	1,500	7003,590
Maquinaria	3986,5	4,630	18459,533	0,585	2336,055
Equipos	88,50	5,559	492	1,712	151,550
Habilitación	1825	7,733	14112,784	1,339	2445
Total	10569,06		65631,010		11936,195

Tabla 15. Peso en rosca y centros de gravedad preliminares

Peso en rosca (kg)	10569,060
XG(m)	6,209
ZG(m)	1,129

Peso muerto

En primer lugar, se calcula el peso del fluido contenido en los tanques a partir del volumen estimado y de la densidad de cada líquido. Para ello, se obtiene el volumen a partir de embarcaciones similares.

En segundo lugar, se define cuantas personas podrán ir a bordo. En la base de datos creada anteriormente, se puede apreciar el máximo de número de tripulantes permitido para cada embarcación de la tabla. En este proyecto, el principal objetivo es la disminución del gasto de combustible, pero sin perder todas las comodidades y beneficios que da un buque de este calibre. Por ello, se decide que nueve tripulantes es suficiente para garantizar el disfrute y el ocio a bordo.

Finalmente, el peso de las provisiones y reserva se ha obtenido también a partir de históricos de embarcaciones similares.

Tabla 16. Pesos y centros de gravedad del peso muerto

Peso Muerto/carga					
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)
Tanques de combustible	1000	7,5	7500	1,5	1500
Tanques de agua dulce	200	7,5	1500	1,5	300
Lodos	50	7,5	375	1,5	75
Persona 1	75	7,5	562,5	1,5	112,5
Persona 2	75	7,5	562,5	1,5	112,5
Persona 3	75	7,5	562,5	1,5	112,5
Persona 4	75	7,5	562,5	1,5	112,5
Persona 5	75	7,5	562,5	1,5	112,5
Persona 6	75	7,5	562,5	1,5	112,5
Persona 7	75	7,5	562,5	1,5	112,5
Persona 8	75	7,5	562,5	1,5	112,5
Persona 9	75	7,5	562,5	1,5	112,5
Provisiones	70	7,5	525	1,5	105
Reserva	200	7,5	1500	1,5	300
Total	2195		16462,5		3292,5

Tabla 17. Centros de gravedad del peso muerto

Peso muerto/carga (kg)	2195
XG(m)	7,5
ZG (m)	1,5

Peso del buque

Tabla 18. Resumen pesos y centros de gravedad

Peso Buque					
Elemento	Peso (kg)	XG (m)	ML (kg*m)	ZG (m)	MV (kg*m)
Estructura	4669,06	6,975	32566,693	1,5	7003,590
Maquinaria	3986,50	4,630	18459,533	0,585	2336,055
Equipos	88,50	5,559	492	1,712	151,550
Habilitación	1825	7,733	14112,784	1,339	2445
Peso muerto	2195	7,500	16462,500	1,5	3292,5
TOTAL	12764,06		82093,510		15228,695

Tabla 19. Centros de gravedad del buque

Peso del buque (kg)	12764,060	
XG(m)	6,414	
ZG(m)	1,193	

El peso del buque obtenido mediante las regresiones es muy similar al peso obtenido mediante el proceso de cálculos de pesos, siendo este último el valor utilizado como dato preliminar.

Tabla 20. Dimensionamiento preliminar

Dimensiones preliminares			
Eslora (m)	15		
Manga (m)	3,935		
Calado (m)	0,938		
Desplazamiento (m)	12766,798		
Potencia (m)	1711		
LCG (m)	6,414		
VCG (m)	1,127		

CAPÍTULO 4

ESTIMACIÓN DEL TRIMADO Y SOLUCIÓN DEL EQUILIBRIO DE UN BARCO ESCALONADO

4. Estimación del trimado y solución del equilibrio de un barco escalonado

4.1. Barcos de planeo

Este proyecto se basa en la optimización de un buque de alta velocidad añadiéndole un escalón en su línea base para disminuir de esta forma la resistencia y con ello, resumir el consumo. Básicamente, hay tres tipos de cascos:

- 1. Barcos de desplazamiento.
- 2. Barcos semi-planeo.
- 3. Barcos de planeo.

En un barco de 40 nudos es necesaria la optimización de su diseño con el fin de alcanzar dicha velocidad sin grandes consumos. La ganancia que se obtiene al diseñar un casco como este, es que se eleva parcialmente fuera del agua, reduciendo en gran medida su área mojada y por lo tanto, su fricción hace posibles velocidades más altas.

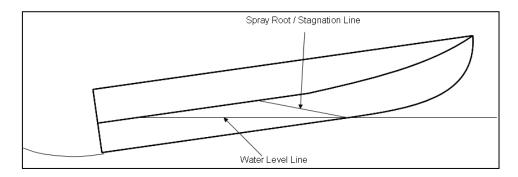


Figura 9. Casco de planeo

En un buque de planeo la componente horizontal de la fuerza normal, N, se llama resistencia inducida. La resistencia inducida es aquella que se genera como una penalidad al crearse sustentación.

Figura 10. Resistencia inducida

Este arrastre depende del peso y del trimado de la embarcación, ya que la fuerza normal se aplica normal a la quilla y no es paralela al peso. Desde el punto de vista de resistencia inducida, se desea un trimado lo más pequeño posible, ya que esto reduce la resistencia inducida.

Sin embargo, eso daría como resultado una superficie mojada más grande por lo que hay que encontrar un punto de equilibrio entre ambos.

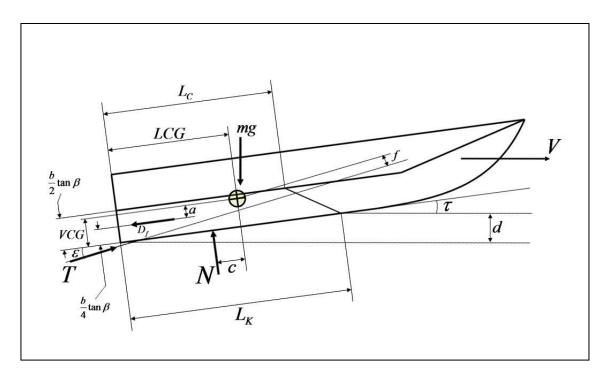


Figura 11. Equilibrio en una embarcación de planeo

Las principales fuerzas verticales son las fuerzas de sustentación y el peso del buque. Pero al tener trimado, la fuerza friccional hay que tenerla al igual que la del empuje.

Equilibrio de fuerzas y momento:

o Fuerzas verticales:

$$N * \cos(\tau) + T * \sin(\tau + \varepsilon) - m * g - Df * \sin(\tau) = 0.$$
 (1)

o Fuerzas horizontales:

$$T * \cos(\tau + \varepsilon) - N * \sin(\tau) - Df * \cos(\tau) = 0.$$
 (2)

o Momento:

$$N * c + Df * a - T * f = 0.$$
 (3)

Dicho desarrollo de fuerzas será explicado posteriormente. Para un barco escalonado, la base teórica sería la misma, pero se diferenciaría dos fuerzas normales en vez de una.

Los cascos con escalones transversales han existido desde hace más de un siglo. En altas velocidades el agua es completamente separada del "step", creando una sección seca del casco desde el escalón a algún punto entre el paso y el espejo de popa. Con ello, se consigue una disminución en el valor de la resistencia de fricción provocada por la superficie mojada del buque.

Uno de los beneficios de usar pasos es que el barco puede diseñarse con el centro de gravedad más alejado del espejo de popa y aún mantiene la mayor parte de su buen rendimiento en altas velocidades. El paso permite construir embarcaciones donde se pueda repartir el peso de forma más homogénea a lo largo del buque.

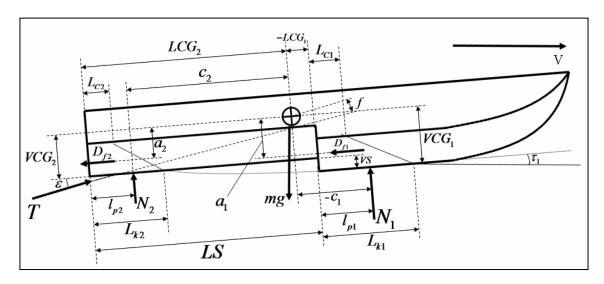


Figura 12. Equilibrio en una embarcación escalonada de planeo

Equilibrio de fuerzas y momento:

o Fuerzas verticales:

$$N_1 * \cos(\tau_1) + N_2 * \cos(\tau_2) + T * \sin(\tau_2 + \varepsilon) - m * g - Df_1 * \sin(\tau_1) - Df_2 * \sin(\tau_2) = 0.$$
 (4)

o Fuerzas horizontales:

$$T * \cos(\tau_2 + \varepsilon) - N_1 * \sin(\tau_1) - N_2 * \sin(\tau_2) - Df_1 * \cos(\tau_1) - Df_2 + \cos(\tau_2) = 0.$$
 (5)

o Momento:

$$N_1 * c_1 + N_2 * c_1 + Df_1 * a_1 + Df_2 * a_2 - T * f = 0.$$
 (6)

Para la determinación de las dimensiones principales de la embarcación escalonada se establece un procedimiento de cálculo basado en los siguientes puntos:

- 1- Estimación de las dimensiones del barco y su velocidad.
- 2- Cálculo del trimado.
- 3- Equilibrio en las fuerzas verticales.
- 4- Equilibrio en el momento.
- 5- Resultados finales, obteniendo trimado definitivo, potencia, calado...

La "Figura 13" muestra el proceso de cálculo.

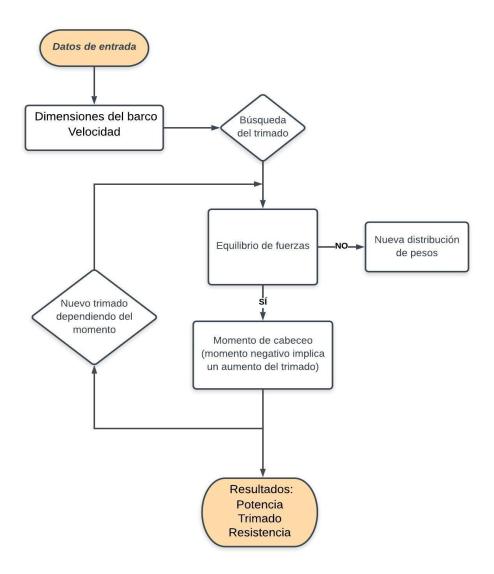


Figura 13. Mapa conceptual. Equilibrio de un barco escalonado

4.2. Cálculo del trimado

En este apartado, se calculará el trimado con la formulación indicada para un barco de planeo sin "step". Al ser sin "step", se utilizará el resultado obtenido como indicador para el cálculo del equilibrio de fuerzas y de momento.

Datos necesarios:

Tabla 21. Datos para el trimado preliminar

DATOS		
Masa	M (Kg)	12766,79
Posición longitudinal del centro de gravedad	Lcg (m)	6,414
Manga	B (m)	4
Ángulo de astilla muerta	β (°)	8
Velocidad	V (m/s)	20,577
Número de Froude basado en la manga	Fnb	3,284
Densidad	kg/m ³	1025
Gravedad	m/sg ²	9,81

a) Para comenzar hay que determinar el ratio entre la eslora en la flotación y la manga:

$$\frac{lcg}{\lambda_w B} - 0.75 + \frac{1}{\left(5.21 * \left(\frac{Fn_b}{\lambda_w}\right)^2 + 2.39\right)} = 0.$$
 (7)

Iterando la ecuación anterior se obtiene el valor del ratio.

$$\lambda_w = 2{,}398$$

b) Una vez obtenido el ratio, se procede a calcular el coeficiente de sustentación:

$$C_{L\beta} = \frac{M * g}{0.5 * \rho * V^2 * B^2}.$$
 (8)

$$C_{L\beta}=0{,}036$$

c) Con el coeficiente de sustentación en la superficie podemos hallar el coeficiente de sustentación en la línea base:

$$C_{L\beta} = C_{L0} - 0.0065 * \beta * C_{L0}^{0.6}.$$
 (9)

Introduciendo el valor del coeficiente de sustentación en la superficie e iterando, se obtiene el valor de C_{L0} .

$$C_{L0} = 0.0441$$

d) Finalmente, iterando la siguiente fórmula es posible obtener el valor del trimado necesario:

$$C_{L0} = \tau^{1,1} * \left(0.012 * \lambda_w^{0,5} + 0.0055 * \frac{\lambda_w^{2,5}}{Fn_b^2} \right).$$
 (10)

$$au=1.8^{\circ}$$

Con esta primera hipótesis, los cálculos partirán con un trimado aproximadamente de 2 grados.

4.3. Equilibrio en las fuerzas y en el momento de cabeceo

En este apartado se va a explicar toda la formulación pertinente para llegar a las fuerzas verticales totales de la embarcación.

Además, toda la información expuesta a continuación ha sido extraída del documento "Svahn, David. (2009). Perfomance Prediction of Hulls with transverse Steps".

4.3.1. Coeficiente de sustentación en la superficie

Es el coeficiente necesario para contrarrestar el peso de la embarcación. Este coeficiente es el considerado en una placa plana.

Cabe destacar que la sustentación depende de la densidad del fluido a mayor densidad mayor será la sustentación. Un incremento de la velocidad también produce un aumento en dicha fuerza. A su vez, cada perfil tiene su propio coeficiente de sustentación, al aumentar el ángulo de ataque que en este caso es el trimado también aumentará el coeficiente de sustentación, hasta llegar a un límite disminuyendo rápidamente posteriormente.

$$C_{L\beta} = \frac{mg}{\frac{1}{2} * V^2 * B^2 * \rho}.$$
 (11)

4.3.2. Coeficiente de sustentación en la línea base

El método de Savitsky relaciona mediante la siguiente fórmula el coeficiente de sustentación para una placa plana, es decir, sin ángulo de astilla muerta, con el coeficiente de sustentación de una placa con cierto ángulo de astilla muerta.

$$C_{L\beta} = C_{L0} - 0.0065 * \beta * C_{L0}^{0.6}. \tag{12}$$

Para comprobar que los resultados de los coeficientes son coherentes, se apoyarácon el gráfico recreado por Savitsky en 1964:

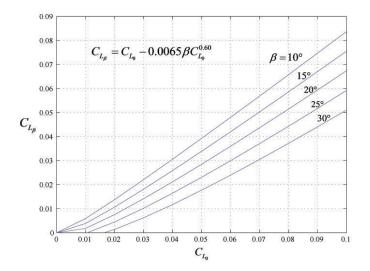


Figura 14. Coeficiente de sustentación creado por Savitsky en 1964

4.3.3. Coeficiente de velocidad

Es un coeficiente que no depende del trimado, depende de la manga de la embarcación.

$$C_V = \frac{V}{\sqrt{g * b}}. (13)$$

4.3.4. Ratio eslora-manga

Para la obtención de este ratio, previamente hace falta conocer los coeficientes de sustentación y el coeficiente de velocidad. Siendo otra forma diferente respecto a la utilizada para conocer el trimado preliminar.

$$C_{L_0} = \tau^{1,1} * \left[0.0120 * \lambda^{\frac{1}{2}} + \frac{0.0055 * \lambda^{\frac{5}{2}}}{C_V^2} \right].$$
 (14)

4.3.5. Longitud mojada en proa

 L_{k1} es la distancia en metros que se encuentra entre el "step" hasta el punto longitudinal donde termina la superficie mojada en proa.

$$L_{K1} = \lambda_e * b + \frac{b * \tan(\beta)}{2 * \pi * \tan(\tau)}.$$
 (15)

Una vez hallado la longitud mojada en proa, se puede calcular un calado aproximado:

$$d = L_K * sen(\tau). \tag{16}$$

4.3.6. Distancia longitudinal a ¼ del step

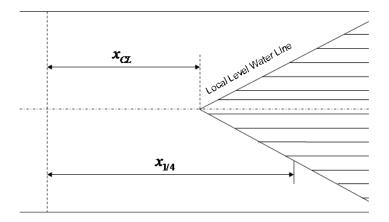


Figura 15. distancia local desde el step hasta 1/4 de su longitud

En el método de Savitsky no hay ninguna forma teórica para conocer exactamente la forma creada por la estela. Pero es posible interpretar las formas del casco en relación con la estela. Al ser un barco de planeo, la superficie mojada no corresponde con las líneas de agua con las que generalmente se trabaja. La superficie mojada creada en este tipo de buques a medida que coge velocidad es triangular.

Con la teoría de la estela, es posible calcular el área mojada y las fuerzas que actúan sobre el casco de popa, dado que se conocen las propiedades del casco antes del escalón. En la popa, solo es cuestión de resolver la siguiente ecuación, para dar la posición donde se cruzan el agua y el casco. El valor se obtiene en metros.

$$VS + 0.25 * (tan\beta_2 - tan\beta_1) + x_{\frac{1}{4}} * tan(\varphi)$$

$$= b * 0.17 * \left(0.75 + 0.003 * \frac{L_{k1}}{b} * \tau^{1.5}\right) * sen\left[\frac{\pi}{c_{V1}} * \left(\frac{x_{\frac{1}{4}}}{3 * b}\right)^{1.5}\right]. \tag{17}$$

Cabe destacar que φ es el ángulo existente entre la quilla de proa y popa siendo en este caso cero.

4.3.7. Distancia longitudinal entre la estela y el escalón

Realizando una serie de iteraciones se obtiene el valor de la distancia en metros.


$$VS + x_{CL} * \tan(\varphi) = H_{CL}(x_{CL}) = b * 0.17 * \left(1.5 + 0.003 * \frac{L_{k1}}{b} * \tau^{1.5}\right) * sen\left(\frac{\pi}{c_{V1}} * \left(\frac{x_{CL}}{3 * b}\right)^{1.5}\right).$$
 (18)

4.3.8. Ángulo de trimado local del área de planeo en popa

El ángulo del trimado es el que se encuentra entre la superficie del agua nivelada y la quilla. Pero la parte del casco después del escalón hay un ángulo de corte local que es el ángulo entre la quilla de popa y el ángulo del agua que se encuentra en esa zona.

Por lo que se tiene dos ángulos, el ángulo del trimado y el ángulo de ajuste provocado por el escalón. Este ángulo es tomado en la parte de ¼ de manga de donde se obtuvo la distancia longitudinal también ya que es un ángulo usado solo para los cálculos.

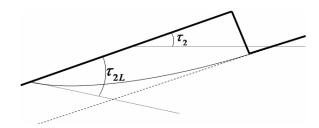


Figura 16. Ángulo local detrás del escalón

$$\tau_{2L} = 0.17 * \left(0.75 + 0.003 * \frac{L_{k1}}{b} * \tau^{1.5}\right) * \frac{1}{2} * \frac{\pi}{C_{V1}} * \left(\frac{\frac{x_1}{4}}{3 * b}\right) * \cos\left(\frac{\pi}{c_{V1}} * \left(\frac{\frac{x_1}{4}}{3 * b}\right)^{1.5}\right) - \varphi. \tag{20}$$

4.3.9. Ángulo de astilla muerta local del área de planeo en popa

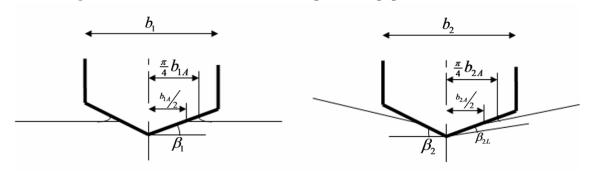


Figura 17. Comparación del nivel de agua con el nivel de agua local en popa

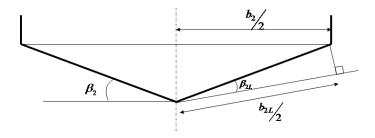


Figura 18. Ángulo de la astilla muerta local

La estela producida en el movimiento tras el escalón está inclinado respecto la quilla, por lo que la astilla muerta local es la diferencia entre el casco y el fluido. Cabe destacar que la astilla muerta será variable a lo largo de la eslora tras el escalón. Por lo que para todos los cálculos se toma el punto detrás del escalón que se encuentra a ¼ , para la obtención del valor de la astilla muerta. La misma teoría es la utilizada para el trimado.

$$\beta_{2L} = \beta_2 - \arctan\left[\frac{H_{\frac{1}{4}}\left(x_{\frac{1}{4}}\right) + 0.25 * b * tan\beta_1 - H_{CL}(x_{\frac{1}{4}})}{0.25 * b}\right]. \tag{21}$$

4.3.10. Diferencia entre las longitudes de quilla y pantoque en la superficie del agua

$$L_{22} = 2 * \frac{x_1 - x_{CL}}{cos\varphi}.$$
 (22)

Cabe destacar que el ángulo φ es el ángulo de diferencia existente entre la quilla de proa y la quilla después del escalón, siendo en este proyecto nula.

4.3.11. Longitud de la quilla mojada en popa

Se trata de la longitud del buque respecto al espejo de popa que se encuentra en contacto con el agua después del escalón.

$$L_{K2} = LS - \frac{x_{CL}}{\cos\varphi}.$$
 (23)

4.3.12. Manga local del área de planeo en popa

Para su obtención hace falta conocer previamente el trimado y la astilla muerta local.

$$b_{2L} = \frac{2 * L_{22} * \tan(\tau_{2L})}{\tan(\beta_{2L})}.$$
 (24)

4.3.13. Diferencia entre las longitudes de la quilla mojada y el pantoque mojado en proa

$$L_{12} = \frac{b_{2L} * \tan(\beta_{2L})}{\pi * \tan(\tau_{2L})}.$$
 (25)

4.3.14. Relación media local del ratio entre la eslora y la manga mojada en popa

$$\lambda_{2L} = \frac{L_{K2}}{b_{2L}} - \frac{L_{12}}{2 * b_{2L}}. (26)$$

4.3.15. Coeficiente de velocidad en la popa

Para el cálculo del coeficiente se toma como valor de la manga, el obtenido en área de planeo en la propia popa " b_{2L} ".

$$C_{V2} = \frac{V}{\sqrt{g * b_{2L}}}. (27)$$

4.3.16. Coeficiente de sustentación en el área de planeo de popa

Para la estimación de este valor se utiliza los valores locales de trimado y ratio eslora-manga, obtenidos anteriormente.

$$C_{L0_{2L}} = \tau_{2L}^{1,1} * \left(0.0120 * \lambda_{2L}^{0,5} + \frac{0.0055 * \lambda_{2L}^{2,5}}{C_V^2} \right). \tag{28}$$

4.3.17. Coeficiente de sustentación en la superficie en el área de planeo de popa

$$C_{L\beta 2} = C_{L02} - 0.0065 * \beta_{2L} * C_{L02}^{0.6}$$
 (29)

4.3.18. Componente normal de la fuerza hidrodinámica en popa a la línea de agua local

$$F_{L2L} = \frac{1}{2} * C_{L\beta_2} * \rho * V^2 * b_{2L}^2 * \cos(\beta_2 - \beta_{2L}).$$
 (30)

Al usar el coeficiente de sustentación en la superficie en el área de planeo de popa la resultante será la normal a la superficie del agua. Se obtiene la componente vertical de la fuerza hidrodinámica que afecta a la parte de popa. En este caso, esta fuerza obtenida es la proyección respecto a la zona local del planeo.

4.3.19. Componente vertical de la fuerza N₂

Se trata de la fuerza vertical con respecto al ángulo del trimado local. Dicha fuerza tiene que ser un valor aproximado a cero para poder conseguir la situación de equilibrio a la velocidad que

deseamos, siendo en este caso 40 nudos.

$$F_{L2} = F_{L2L} * \cos(\tau_2 - \tau_{2L}). \tag{31}$$

4.3.20. Componente vertical de la fuerza N_1

$$F_{L1} = \Omega * m * g. \tag{32}$$

 Ω es un factor aplicable para determinar el peso que se encuentra en la parte delantera del escalón. Dicho valor oscila entre 0 a 1 y una elección inicial cuando no se sabe el valor es de 0,6, siendo este el valor elegido.

4.3.21. Componente vertical de las fuerzas totales aplicadas en el casco

$$\uparrow: F_{L1} + F_{L2} - mg = \gamma . \tag{33}$$

 γ su valor debe ser cero para que se produzca el equilibrio en fuerzas verticales en el casco. El equilibrio se consigue variando valores como el de las dimensiones del escalón, el trimado, la manga, la astilla muerta, etc. Una vez logrado, se procede a conocer el valor del momento producido por las fuerzas en el casco, teniendo que ser un valor de equilibrio también.

4.3.22. Velocidad media en la proa sobre la superficie de planeo

$$V_{m1} = V * \left[1 - \frac{0.012 * \lambda^{0.5} * \tau^{1.1} - 0.0065 * \beta * (0.012 * \lambda^{0.5} * \tau^{1.1})^{0.6}}{\lambda * \cos(\tau)} \right]^{\frac{1}{2}}.$$
 (34)

4.3.23. Velocidad media en la popa sobre la superficie de planeo

$$V_{m2} = V * \left[1 - \frac{0.012 * \lambda_{2L}^{0.5} * \tau_{2L}^{1.1} - 0.0065 * \beta_{2L} * (0.012 * \lambda_{2L}^{0.5} * \tau_{2L}^{1.1})^{0.6}}{\lambda_2 * \cos(\tau_{2L})} \right]^{\frac{1}{2}}.$$
 (35)

4.3.24. Número de Reynolds en proa

Es una cantidad numérica adimensional que establece la relación existente entre las fuerzas viscosas e inerciales del fluido en movimiento. Conociendo este valor, se puede saber qué tipo de flujo tendría el fluido.

$$Re_1 = V_{m1} * \lambda * \frac{b}{v}. \tag{36}$$

v es la viscosidad cinemática del fluido que en este caso es el agua salada.

$$v = 1,190E - 06 \text{ m}^2/\text{s}.$$

4.3.25. Número de Reynolds en popa

$$Re_2 = \frac{V_{m2} * (\lambda_2 * b_2 + \lambda_1 * b_1)}{v}.$$
 (37)

4.3.26. Coeficiente de fricción en proa

El coeficiente de fricción es determinado por la ITTC-57.

$$C_{f1} = \frac{0.075}{(\log_{10}(Re_1) - 2)^2}. (38)$$

$$C_{ftot1} = C_{f1} + \Delta C_f. \tag{39}$$

 ΔC_f , es un incremento en el coeficiente de fricción debido a la superficie del barco que generalmente no es lisa. Tomamos un valor estándar igual a 0,0004 considerando casi que la superficie del buque es lisa.

4.3.27. Número de Reynolds en popa

$$C_{ftot2} = \frac{0.075}{(log_{10}(Re_2) - 2)^2}. (40)$$

4.3.28. Fuerza friccional del buque en proa

$$D_{f1} = \frac{1}{2} * \frac{\rho * V_{m1}^2 * \lambda * b^2}{\cos(\beta)} * (C_{f1} + \Delta C_f).$$
 (41)

4.3.29. Fuerza friccional del buque en popa

$$D_{f2} = \frac{1}{2} * \frac{\rho * V_{m2}^2 * \lambda_2 * b^2}{\cos(\beta_2)} * (C_{f2} + \Delta C_f).$$
 (42)

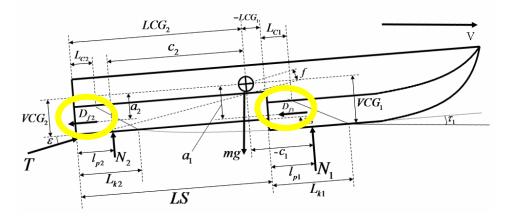


Figura 19. Gráfico de la fuerza friccional

4.3.30. Fuerza inducida total horizontal en proa

Cuando se ha encontrado el equilibrio vertical para el trimado elegido, se debe calcular el el momento de cabeceo del sistema. Para ello, hay que calcularse todas las fuerzas que actúan, comenzando por la fuerza total inducida.

$$D_1 = \Omega * mg * \tan(\tau_1) + \frac{D_{f1}}{\cos(\tau_1)}.$$
 (43)

4.3.31. Fuerza inducida total horizontal en popa

$$D_2 = (1 - \Omega) * mg * \tan(\tau_2) + \frac{D_{f2}}{\cos(\tau_2)}.$$
 (44)

4.3.32. Fuerza inducida total

Es la fuerza que penaliza al crearse sustentación. Es la resistencia a tener en cuenta para calcular la potencia necesaria para vencerla y alcanzar la velocidad de 40 nudos que tiene que alcanzar la embarcación.

$$D = D_1 + D_2. (45)$$

4.3.33. Distancia entre la fuerza friccional en proa con el centro de gravedad del buque

$$a_1 = VCG_1 - \frac{b}{4} * \tan(\beta_1)$$
 (46)

4.3.34. Distancia entre la fuerza friccional en popa con el centro de gravedad del buque

$$a_2 = VCG_1 - \frac{b}{4} * \tan(\beta_2)$$
 (47)

4.3.35. Distancia entre el empuje de la hélice y el centro de gravedad

$$f = (VCG_2 + e) * \cos(\varepsilon) - LCG * sen(\varepsilon).$$
 (48)

4.3.36. Centro de presiones que actúa en la quilla de proa

$$c_{p1} = 0.75 - \frac{1}{\frac{5.21 * C_v^2}{\lambda^2} + 2.39}.$$
 (49)

4.3.37. Centro de presiones que actúa en la quilla de popa

$$c_{p2} = 0.75 - \frac{1}{\frac{5.21 * C_{v2}^2}{\lambda_2^2} + 2.39}$$
 (50)

Cabe destacar que el centro de presiones actúa generalmente a una distancia del 75% de la distancia total de la quilla partiendo desde el espejo de popa.

4.3.38. Distancia entre fuerza hidrodinámica N1 al centro de gravedad del buque

$$c_1 = (LCG - LS) - c_{p1} * \lambda * b.$$
 (51)

Siendo LS la longitud del escalón.

4.3.39. Distancia entre fuerza hidrodinámica N2 al centro de gravedad del buque

$$c_2 = (LCG) - c_{p2} * \lambda * b$$
. (52)

4.3.40. Empuje horizontal de la hélice

$$T * \cos(\tau) = FL1 * \tan(\tau) + FL2 * \tan(\tau) + D_{f1} * \cos(\tau) + D_{f2} * \cos(\tau).$$
 (53)

Conociendo el valor de la componente vertical de las fuerzas hidrodinámicas, puede conocer las horizontales. Y a su vez, obtener el valor total de las fuerzas N_1 , N_2 .

4.3.41. Momento de equilibrio en el cabeceo

Una vez conocidas todas las fuerzas que actúan en el sistema de fuerzas, es posible saber cuál es el momento total de equilibrio.

$$M = N_1 * c_1 + N_2 * c_2 + D_{f1} * a_1 + D_{f2} * a_2 - T * f = 0.$$
 (54)

Hasta aquí, se encuentra la explicación teórica y la exposición ordenada de todas las fórmulas que se necesitan en el cálculo del propio equilibrio.

4.4. Resultados numéricos obtenidos

Las fórmulas nombradas anteriormente dependen principalmente de unos parámetros fundamentales del buque, como pueden ser las dimensiones del escalón, la astilla muerta o la manga.

Para la resolución de este proyecto, se ha desarrollado una "Hoja de cálculo" introduciendo las funciones de iteraciones y buscar objetivo en las diversas fórmulas.

Cabe decir, que su correcto desarrollo ha sido bastante complejo ya que al modificar lo más mínimo cualquier parámetro, los cálculos se tenían que realizar por completo. Utilizando el solucionador no lineal de la herramienta de cálculo de "Excel".

Tras varios intentos fallidos de buscar el equilibrio tanto en fuerza como en momento, se decide fijar parámetros. Para comenzar, la astilla muerta establecida ha sido de 8 grados con desfase de medio grado respecto popa. Aunque la formulación de Savitsky es aplicada a partir de los 10 grados, se ha podido comprobar que los valores obtenidos en los coeficientes de sustentación son correctos para 8 grados, dicha comprobación puede realizarse en el gráfico expuesto en la "Figura 13".

El trimado inicial utilizado es el obtenido en el cálculo del trimado preliminar. Siendo el valor de este igual a 2 grados.

DATOS 12766,79 masa m kg astilla muerta proa β_1 o astilla muerta popa 7,5 β_2 distancia debajo del travesaño / quilla donde está 0,150 e m el eje de la hélice centro gravedad longitudinal LCG_2 6,414 m centro gravedad vertical VCG_1 1,127 m 4 manga en proa b_1 m 4 manga en popa b_2 m velocidad 40 nudos

Tabla 22. Parámetros fijos para los cálculos

4.4.20. Definición de la longitud del escalón

Tabla 23. Parámetros fijados en la definición de la L.E.

Trimado (grados)	2,01
eta_1	8
eta_2	7,5
Altura del escalón	0,123

De los resultados obtenidos cogemos aquellos cuyos valores se aproximan más al equilibrio deseado.

Datos obtenidos:

Tabla 24. Datos obtenidos en la definición de la L.E.

LS	F(N)	M(N*m)
3	-	-
3,50	-32007	-
3,75	-23191	-
4	-16593	-
4,50	-6173	-
4,75	-1729	-
4,85	-86	-84000
4,90	777	-

En esta ocasión, el valor que se ha variado ha sido el de la longitud del escalón ya que es un parámetro bastante ambiguo y va en función del diseñador del buque. Como se señala en la "Tabla 18" a media que se incrementaba el valor de la longitud, el valor de la fuerza disminuía hasta tal punto que el signo cambia. Para ello se cogió, un valor interpolado entre ambas medidas, obteniendo así que el valor óptimo para la longitud del escalón es de 4,85 metros.

4.4.21. Definición del trimado

Tabla 25. Parámetros fijados en la definición del trimado

Longitud del escalón	4,85
eta_1	8
eta_2	7,5
Altura del escalón	0,123

Tabla 26. Datos obtenidos en la definición del trimado

Trimado	F (N)	M(N*m)
2,01	-86	-84000
2,5	34000	-147000
2,75	33000	-58000
2,85	33000	800
2,9	33000	1000
3	33000	34000
5	31000	397000

En este caso, como se puede comprobar en la "Tabla 20" el ángulo óptimo para conseguir casi el equilibrio en fuerza y momento es el obtenido a 2,85 grados.

4.4.22. Definición de la altura del escalón

Tabla 27. Parámetros fijados en la definición de la altura del escalón

Longitud del escalón	4,85
eta_1	8
eta_2	7,5
Trimado	2,85

Tabla 28. Datos obtenidos en la definición de la altura del escalón

VS	F (N)	M(N*m)
0,1234	19610,000	62989,060
0,152	8244,622	29537,543
0,16	3881,199	16630,363
0,161	3312,474	9760,267
0,163	2099,938	6217,519
0,164	1476,300	4394,768
0,1655	519,154	1596,591
0,166	194,165	646,323
0,1663	-2,698	70,600
0,167	-465,7655	-1283,667
0,17	-3431,57	-10182,032

Al realizar las iteraciones la exactitud de la altura tuvo que ampliarse a 4 dígitos para obtener el valor óptimo por lo que con esta definición finalmente se encontró el equilibrio en fuerza y momento deseado.

Tabla 29. Datos definitivos para el cálculo del equilibrio

DATOS DEFINITIVOS PARA EL CÁLCULO DEL EQUILIBRIO			
Altura del escalón	VS	0,166	m
Masa	m	12766,79	kg
Astilla muerta proa	eta_1	8	О
Astilla muerta popa	β_2	7,5	0
	ф	0	0
Inclinación de la hélice respecto la quilla	3	0	0
Distancia debajo del travesaño / quilla donde está el eje de la hélice	e	0,150	m
Longitud del escalón	LS	4,850	m
Centro gravedad longitudinal	LCG_2	6,414	m
Centro gravedad vertical	VCG_1	1,127	m
Manga en proa	b_1	4	m
Manga en popa	b_2	4	m
Velocidad	V	40	Nudos
Trimado	τ	2,85	0

4.4.23. Desarrollo numérico para la obtención del equilibrio

Tabla 30. Resultados definitivos en el equilibrio de fuerzas

Ecuación	Simbología	Resultado	
4,3,1	$\mathit{CL}eta_1$	0,036	
4,3,2	CL_0	0,044	
4,3,3	CV_1	3,285	
4,3,4	λ_1	1,173	
4,3,5	LK_1 (m)	6,490	
4,3,6	x _{1/4} (m)	4,740	
4,3,7	$x_{CL}(m)$	3,357	
4,3,8	$\tau_{2L}(\mathrm{rad})$	0,049	
4,3,9	β_{2L} (radianes)	0,068	
4,3,10	L_{22} (m)	2,767	
4,3,11	L_{K2} (m)	1,493	
4,3,12	b_{2L} (m)	3,982	
4,3,13	L ₁₂ (m)	1,761	
4,3,14	λ_{2L}	0,154	
4,3,15	CV_2	3,292	
4,3,16	CL_{02L}	0,015	
4,3,17	$CL_{\beta 2}$	0,015	
4,3,18	F_{L2L} (N)	50094,239	
4,3,19	F_{L2} (N)	50094,220	
4,3,20	F_{L1} (N)	75145,378	
4,3,21	↑ (N)	-2,698	

Tabla 31. Resultados definitivos en el equilibrio del momento de cabeceo

Ecuación	Simbología	Resultado
4,3,22	V_{m1} (m/s)	20,886
4,3,23	V_{m2} (m/s)	20,695
4,3,24	Re_1	82355236,460
4,3,25	Re_2	163200006,420
4,3,26	C_{ftot1}	0,003
4,3,27	C_{ftot2}	0,002
4,3,28	D_{f1} (N)	12471,198
4,3,29	D_{f2} (N)	11397,852
4,3,30	D_1 (N)	3740,959
4,3,31	<i>D</i> ₂ (N)	13905,939
4,3,32	D(N)	17646,898
4,3,33	<i>a</i> ₁ (m)	0,987
4,3,34	a ₂ (m)	0,830
4,3,35	f (m)	1,112
4,3,36	C_{p1}	0,727
4,3,37	C_{p2}	0,727
4,3,38	c_1 (m)	-1,846
4,3,39	c ₂ (m)	3,003
4,3,40	T (N)	30074,323
4,3,41	M (N*m)	70,601

Como se puede apreciar con los parámetros obtenidos se ha conseguido obtener el equilibrio en fuerza como en momento ya que como margen se ha dado 100 Newtons.

Este equilibrio se verá afectado por una fuerza extra que no se ha tenido en cuenta para estos cálculos, siendo esta la resistencia del viento ya que a la velocidad que va a ir la embarcación hay que tenerla presente. En el apartado de los cálculos hidrostáticos se calculará un nuevo centro de gravedad con el fin de mantener el equilibrio calculado al añadir dicha resistencia. Teniendo la Resistencia de avance se puede calcular la potencia necesaria de la embarcación.

Tabla 32. Resultados potencia necesaria

Trimado	2,85	0
D	17646,897	N
	363130,803	W
Peq	363,130	KW
	493,384	HP
λ	1,173	
de1	0,235	m
de2	0,075	m

CAPÍTULO 5

GENERACIÓN DE FORMAS

5. Generación de formas

La generación de formas de la embarcación es primordial para el desarrollo de fases posteriores. Las formas de la carena influyen directamente en la estabilidad del buque, la potencia de este o la propia posición del centro de gravedad.

5.1. Estudio de formas

5.1.1. Formas de cuadernas

Para poder alcanzar altas velocidades en el agua es necesario un diseño que permita una transición rápida hacia el planeo. Generalmente, este tipo de casco tiene una base plana desde la sección media del barco hacia popa. Para este diseño se ha elegido un ángulo de astilla muerta de 8º en proa, se ha optado por formas un poco más llena para ganar espacio y optimizar los pesos ya que el principal objetivo de este proyecto es la optimización de la potencia necesaria.

- Proa: las cuadernas con formas en V en la zona de proa suelen utilizarse en embarcaciones de este calibre, con el afinamiento de las formas se consigue que las olas tengan un paso más constante.
- Popa: la base plana en popa es debido al comportamiento de la hélice ya que un afinamiento excesivo en popa produciría vibraciones y una mala configuración de la estela.

5.1.2. Conclusiones

Se generará un casco con un ángulo de astilla muerta variable, siendo éste decreciente en la dirección proa-popa. En cuanto al fondo, se le aplicará los cálculos obtenidos en el "capítulo 4" con las dimensiones del escalón y con el fin de disminuir más aún la superficie mojada el buque será dotado de un pantoque.

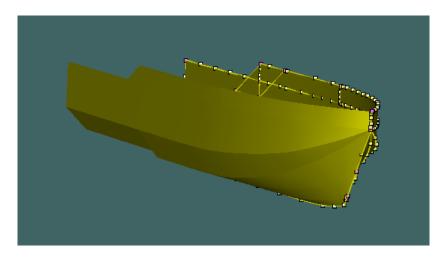


Figura 20. Casco escalonado diseñado en Maxsurf Modeler

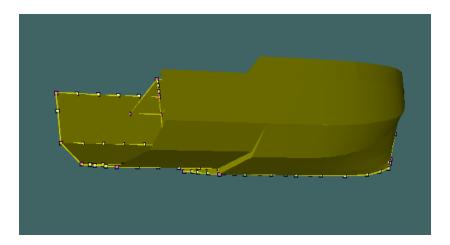


Figura 21. Vista del escalón en Maxsurf Modeler

Cabe destacar la dificultad que se ha tenido para obtener estas formas ya que ha sido un proceso costoso y laborioso si se compara con una embarcación con las mismas características, pero sin el escalón.

Finalmente, se ha diseñado dos embarcaciones, un buque con escalón, siendo este el objetivo de este proyecto. También, un casco sin el escalón para poder compararlos en capítulos posteriores.

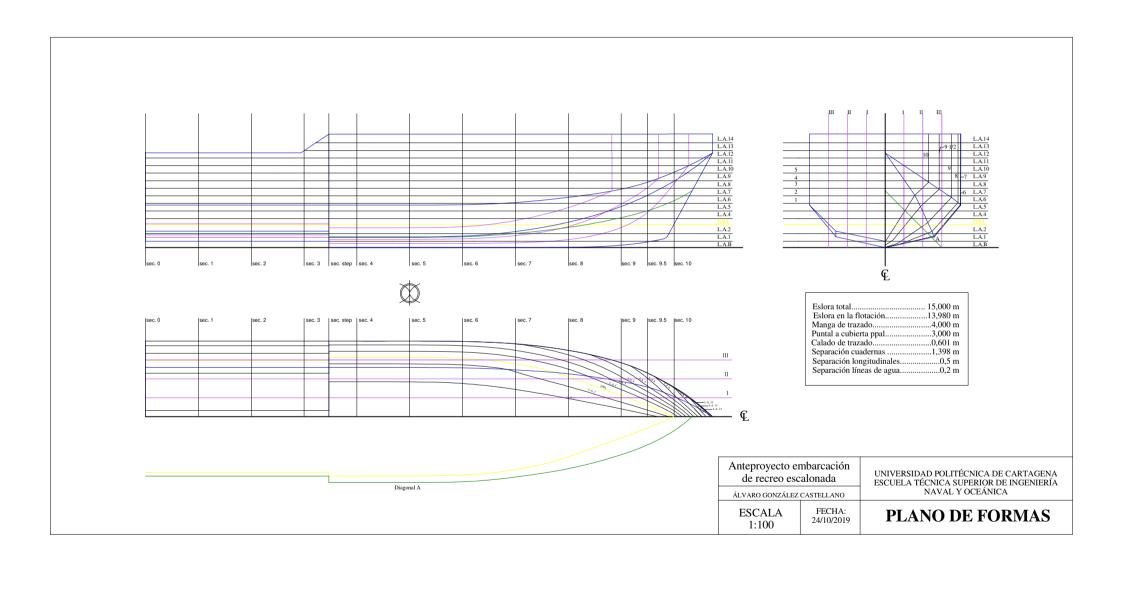



Figura 22. Casco de planeo sin escalón diseñado en Maxsurf Modeler

Las características hidroestáticas que se obtienen de la embarcación escalonada son las expuestas en la siguiente Tabla:

Tabla 33. Características hidroestáticas de la embarcación escalonada

Magnitud	Valores	Unidades
Desplazamiento	12,76	T
Volumen	12,451	m^3
Calado	0,601	m
Eslora en la flotación	13,98	m
Manga en la flotación	3,134	m
Superficie mojada	40,95	m^2
Coeficiente prismático	0,694	
Coeficiente de bloque	0,473	
Coeficiente en la maestra	0,681	
Coeficiente en la flotación	0,824	

CAPÍTULO 6

POTENCIA Y MOTORIZACIÓN

6. Potencia y motorización

El objetivo de este capítulo es definir la planta propulsora del buque. Para ello, se determinará la potencia con diferentes formulaciones. Para empezar, se determinará la potencia necesaria para la embarcación en la condición de planeo, pero sin escalón ya que en el capítulo 4 se ha obtenido un valor teórico y en el capítulo 7 se obtendrá el valor de dicha potencia de la embarcación con escalón mediante simulación CFD.

Una vez definida la planta propulsora y calculada la resistencia al avance que ofrece la embarcación sin escalón, se procederá a la elección de la propulsión necesaria. Si es necesario en el capítulo 7 se ajustará la elección del motor dependiendo de los valores obtenidos.

Finalmente, otro objetivo de este capítulo es la validación de la colocación del escalón en el buque puesto que al reducir la superficie mojada el consumo de energía será menor.

6.1. Consideraciones previas

Actualmente existen en el mercado numerosas opciones para propulsar una embarcación, en este proyecto se tomará la opción de utilizar hélice convencional como medio de propulsión.

Para el motor, se pueden contemplar dos opciones: intraborda y fueraborda. Para este proyecto, se ha elegido la opción de motor intraborda con el fin de obtener una mayor amplitud en el área de la cubierta y ofrecer al pasajero mayor confort.

A su vez, se ha elegido una división de la potencia en dos líneas, con el fin de obtener una mayor maniobrabilidad, seguridad y calado. Por lo que la propulsión del buque estará compuesta por dos motores intraborda, con hélice convencional.

6.2. Cálculo de la potencia necesaria

6.2.1. Método de Savitsky

En este apartado se calculará la resistencia al avance de la embarcación, pero sin el escalón, la metodología es la misma utilizada en el capítulo 4 pero mucho más simplificada.

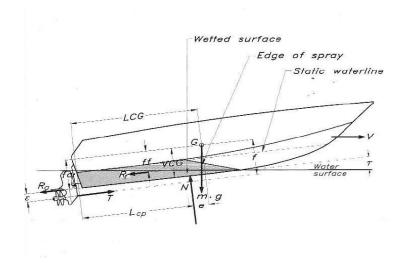


Figura 23. Fuerzas sobre el casco. LARSSON L., E ELIASSON R.

6.2.1.1. <u>Coeficiente de velocidad</u>

$$C_V = \frac{V}{\sqrt{g * b}}. ag{55}$$

6.2.1.2. <u>Coeficiente de sustentación para una placa plana</u>

$$C_{Lo} = \frac{mg}{\frac{1}{2} * V^2 * B^2 * \rho}.$$
 (56)

En el método de Savitsky como se ha realizado anteriormente, se relaciona el coeficiente de sustentación para una placa plana, es decir, sin astilla muerta, con el coeficiente de sustentación de una placa con un cierto ángulo de astilla muerta. En la siguiente fórmula se expone dicha relación:

$$C_{L\beta} = C_{L0} - 0.0065 * \beta * C_{L0}^{0.6}.$$
 (57)

6.2.1.3. Superficie mojada

$$S_w = (\lambda + \Delta \lambda) * \frac{b^2}{\cos(\beta)} (m^2).$$
 (58)

6.2.1.4. <u>Resistencia de fricción</u>

$$R_f = c_F * 0.5 * \rho * V^2 * S_w.$$
 (59)

6.2.1.5. Resistencia al avance

$$R = \left(g * \sin \tau_0 + R_f\right) * \frac{\cos(\tau_0 + \varepsilon)}{\cos(\varepsilon)}.$$
 (60)

6.2.1.6. Potencia necesaria

$$P_E = V * R . ag{61}$$

Obteniendo:

Tabla 34. Potencia Savitsky Teórico

V (m/s)	R total (N)	Potencia (KW)
5,144	9553,3	49,1
10,288	14624,1	150,4
15,433	18807,5	290,2
20,577	21905,1	450,7
25,722	26017,2	669,2

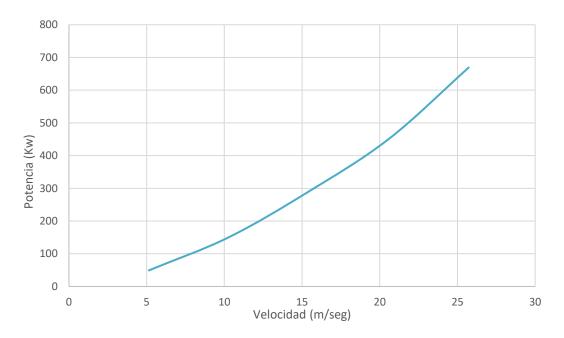


Figura 24. Gráfico Savitsky Teórico

6.2.2. Savitsky mediante Maxsurf Resistance

Tabla 35. Savitsky mediante Maxsurf Resistance

V (m/s)	R total (N) Potencia (KW)	
5,144	7500	43,4
10,288	13200	135,4
15,433	18600	286,3
20,577	23700	487,3
25,722	30700	789,7

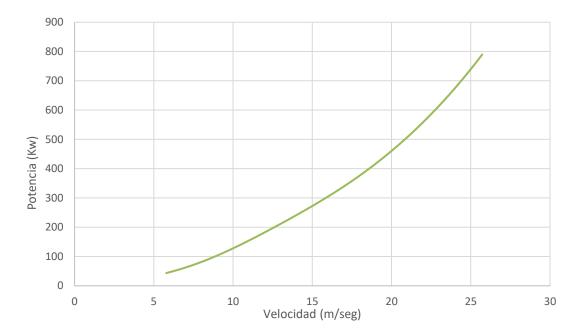


Figura 25. Gráfico Método de Savitsky mediante Maxsurf Resistance

6.2.3. Método de CAHI

El método de CAHI es casi desconocido para los diseñadores de embarcaciones de planeo de alta velocidad. Se basa en la ecuación de elevación dinámica de "Sedov", y es similar al método de Savitsky con algunas diferencias. El coeficiente de elevación, la longitud mojada y el ajuste se calculan para una placa plana. La longitud mojada y el trimado se corrigen respecto a la astilla muerta que tiene la embarcación. En el método CAHI, la longitud mojada (y la superficie) aumenta con el ángulo de astilla muerta.

A continuación, se expone las fórmulas necesarias para la obtención de la potencia mediante el método de CAHI.

6.2.3.1. Factor del momento hidrodinámico

$$m\Delta = \frac{LCG}{b}.$$
 (62)

6.2.3.2. <u>Coeficiente de velocidad</u>

$$Cv = \frac{V}{\sqrt{gb}}. ag{63}$$

6.2.3.3. Ratio eslora-manga superficie plana

$$m\Delta = \frac{\frac{0.7\pi\lambda}{1+1.4\lambda} * \left(0.75+0.08 * \frac{\lambda^{0.865}}{\sqrt{Cv}}\right) + \frac{\lambda-0.8}{3\lambda+1.2} * \frac{\lambda^2}{Cv^2}}{\frac{0.7\pi}{1+1.4\lambda} + \frac{\lambda-0.4}{\lambda+0.4} * \frac{\lambda}{Cv^2}}.$$
(64)

6.2.3.4. Coeficiente de sustentación

6.2.3.5.

$$C_L = \frac{mg}{\frac{1}{2} * V^2 * B^2 * \rho}.$$
 (65)

6.2.3.6. <u>Ratio eslora-manga con astilla muerta</u>

$$\lambda_{\beta} = \frac{\lambda^{0.8}}{\cos\beta} * (1 - 0.29 * (seno(\beta)^{0.28}) * \left(1 + 1.35 * seno(\beta)^{0.44} * \frac{m\Delta}{\sqrt{Cv}}\right).$$
 (66)

6.2.3.7. Superficie mojada

$$S = \frac{b^2 * \lambda_{\beta}}{\cos \beta}.\tag{67}$$

6.2.3.8. <u>Velocidad de fondo</u>

$$Vm = V * \left(1 - \frac{\tau}{1 + \lambda}\right). \tag{68}$$

6.2.3.9. <u>Reynolds</u>

$$Rn = \frac{Vm * \lambda * b}{v}.$$
 (69)

6.2.3.10. <u>Coeficiente de fricción</u>

$$C_f = \frac{0,075}{(\log_{10}(Re) - 2)^2}. (70)$$

6.2.3.11. Resistencia de fricción

$$R_f = c_F * 0.5 * \rho * V^2 * S_w.$$
 (71)

6.2.3.12. Resistencia al avance

$$R = \left(g * \sin \tau_0 + R_f\right) * \frac{\cos(\tau_0 + \varepsilon)}{\cos(\varepsilon)}. \tag{72}$$

Obteniendo:

Tabla 36. Potencia Método de CAHI

V (m/s)	R total (N) Potencia (KW)	
5,144	9140,3	47,0
10,288	11293,4	116,1
15,433	15223,9	234,9
20,577	20428,4	420,3
25,722	26613,9	684,5

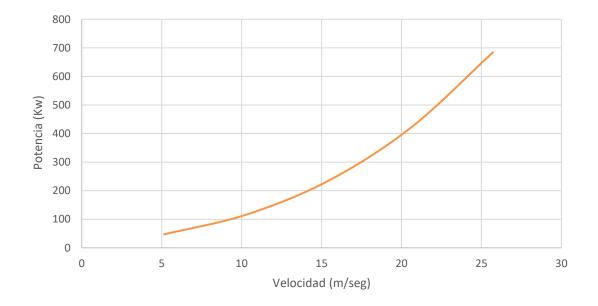


Figura 26. Gráfico Método de CAHI

6.2.4. Resultados y elección del motor

Finalmente, se comparan todas las gráficas obtenidas y con ellas se obtiene un valor aproximado de cuanto es la potencia de la embarcación diseñada sin escalón. Posteriormente, en el siguiente capítulo se obtendrá mediante simulación CFD el valor de la potencia diseñada con el escalón y se confirmará que al tener menor superficie mojada el consumo será menor.

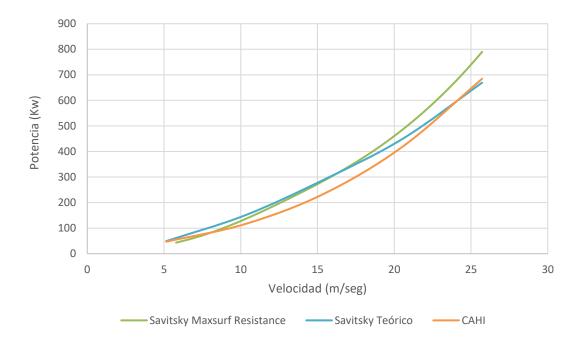


Figura 27. Gráfico comparación de diversas formas de obtener el valor de la potencia

6.3. Selección del motor

Al crear la base de datos, se comprobó que la gran cantidad de las embarcaciones tenían como motor los nuevos VOLVO PENTA IPS. El "Inboard Perfomance System (IPS)) es un sistema completamente diseñado y construido por Volvo Penta. La información expuesta a continuación, ha sido extraída del documento "Volvo Penta. (2019) Product Range, power for marine professionals".

Se trata de un sistema de hélices dobles mirando a proa en un soporte rotario. Las principales ventajas de este sistema:

- 40% más de autonomía de crucero.
- 20% más de velocidad máxima.
- 50% menos de nivel de ruido percibido.
- Reducción del consumo de combustible de hasta un 30%.
- 30% menos de emisiones de CO2.
- Atraque mediante un Joystick.

Dentro de esta gama, hay diversos modelos dependiendo de la potencia necesaria. A través de una relación de eslora y modelos dada por el fabricante se ha podido conocer qué modelo es el más aconsejable para este proyecto.

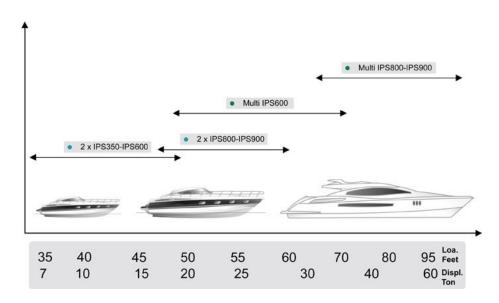


Figura 28. Elección del modelo IPS

Como se puede apreciar, el modelo "IPS800" es el motor idóneo para este proyecto.

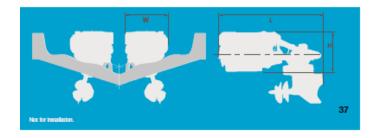


Figura 29. Esquema de las dimensiones del motor

Figura 30. Modelo Volvo Penta IPS

Las características del motor se han extraído del manual dado por el fabricante. Como se puede apreciar en la siguiente imagen, la potencia máxima dada por el modelo elegido es 435 KW. A priori para un modelo sin escalón, este modelo de motor es muy ajustado, pero en el "Capítulo 7" se comprobará que dicha elección es adecuada ya que la potencia obtenida para un modelo de buque con escalón es bastante inferior a los 435 KW del modelo "IPS800".

PROPULSION SYSTEM				
ENGINE	Rating	Prop. shaft power kW/hp	Crankshaft power kW/hp	rpm
D6-IPS 400MC	4	210/286	221/301	3500
D6-IPS 450	4	231/314	243/330	3500
D8-IPS 600	3	315/428	331/450	2650
D8-IPS 650	4	356/484	375/510	2850
D8-IPS 700	4	384/523	404/550	2900
D11-IPS 650	3	354/482	375/510	2250
D11-IPS 800	4	435/591	459/625	2400
D13-IPS 1050	3	485/660	515/701	2250
D13-IPS 1050	4	554/753	588/800	2300

DIMENSIONS AND WEIGHTS					
ENGINE	L (mm)	W (mm)	H (mm)	kg**	lb**
D6-IPS 400	2185	760	518	780	1720
D6-IPS 450	2185	760	518	863	1903
D8-IPS 600	2710	987	628	1418	3126
D8-IPS 650	2710	987	628	1418	3126
D8-IPS 700	2710	987	628	1418	3126
D11-IPS 650	3102	1006	808	1800	3968
D11-IPS 800	3102	1006	808	1800	3968
D13-IPS 900	3103	1124	842	2300	5060
D13-IPS 1050	3103	1124	842	2300	5060

Figura 31. Características de los modelos Volvo Penta IPS

CAPÍTULO 7

ANÁLISIS CFD

7. Análisis CFD

Este capítulo se centra en la obtención del valor de la resistencia de avance y de la resistencia al viento mediante la computación dinámica del fluido, es decir, la simulación del comportamiento del buque en la mar. Anteriormente se ha calculado dicho valor de forma teórica en diferentes métodos como es Savitsky, Cahi y dichos valores han sido corroborados con "Maxsurf Resistance".

Para su cálculo, se utilizará el programa TDYN. Utiliza herramientas numéricas para resolver las ecuaciones de cantidad de masa, movimiento y momento que describen el movimiento de los fluidos.

Un aspecto a definir es la geometría de estudio, cuya simplificación ayudará a la resolución del fenómeno. Aunque el campo del fluido sea continuo, las ecuaciones no pueden ser resueltas en un campo infinito por lo que es necesario discretizar el dominio en un número determinado de puntos llamándose a esta acotación "discretización espacial".

Por otro lado, el estudio temporal no es posible realizarlo de forma continua por lo que se discretizará de forma temporal. Para ello, se tomará como valores de referencia el tiempo que tarda en simularse una embarcación en un canal de experiencia, oscilando entre 60 a 120 segundos. A todo este procedimiento se le conoce como "discretización temporal".

Por último, de las ecuaciones de gobierno se eliminarán aquellos términos que no sean necesarios o despreciables, con los que se podrá alcanzar un nivel de aproximación bastante elevado, llamándose "aproximación dinámica".

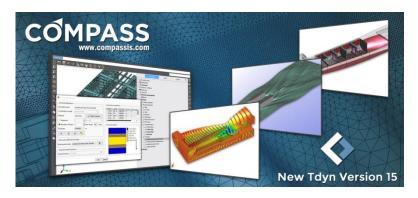


Figura 32. Versión de TDYN utilizada

7.1. Cálculo de la resistencia al avance mediante TDYN COMPASS

7.1.1. Datos iniciales del problema

El fluido para el volumen de control es agua de mar. La velocidad elegida son los 40 nudos siendo esta la cifra de mérito del proyecto. La siguiente tabla muestra un resumen de los datos de entrada que se utilizarán a lo largo de la simulación:

Parámetros de entrada Eslora 15 m Densidad del agua de mar 1025 kg/m³ 1,18E-06 Viscosidad cinemática m^2/s Viscosidad dinámica 1,21E-03 kg/m·s 40,0 nudos Velocidad 20,58 m/s Rn 2,61E+8 m/s^2 Gravedad 9,8065

Tabla 37. Datos de entrada. TDYN, resistencia al avance

Para este caso, se seleccionan los siguientes problemas a resolver:

- o <u>3D:</u> modelo en tres dimensiones.
- o *Fluid flow:* flujo de un fluido el cual hay que definir en la introducción de datos en el programa.
- o <u>Transpiration</u>: tipo de superficie libre.

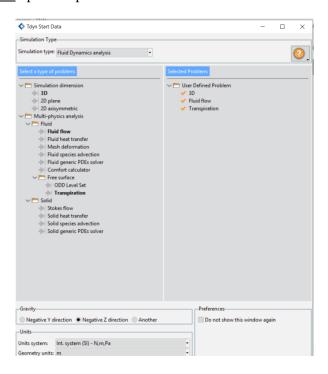


Figura 33. Definición del problema en la ventana de inicio de TDYN

7.1.2. Discretización espacial

7.1.2.1. Geometría

El archivo ".igs" obtenido en la creación de las formas se debe adaptar a las condiciones de simulación necesarias de este software. Para ello se importará el modelo en formato .igs" pero con la inclinación del trimado y con la longitud mojada de proa impuesta para que se cumpla la condición de equilibrio a la velocidad exigida. Todos estos valores han sido calculados en el capítulo 4.

Tabla 38. Datos de entrada para el modelo ".igs"

Trimado (º)	2,85
Longitud mojada en proa tras el escalón (LK1) (m)	6,489

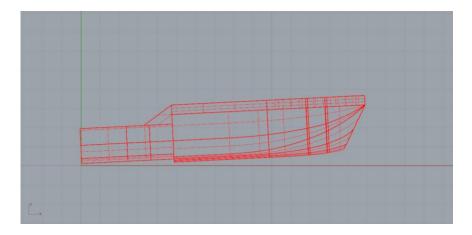


Figura 34. Modelo inclinado con su trimado correspondiente

Cabe nombrar, que para optimizar el cálculo en TDYN se ha cortado por el plano del calado, de modo que solo se analizará la obra viva del casco.

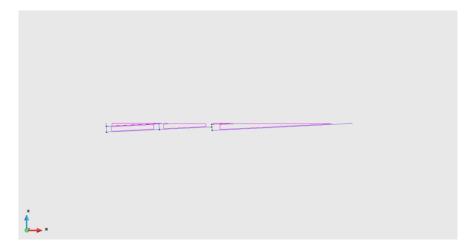


Figura 35. Vista de perfil del casco a analizar en TDYN

7.1.2.2. <u>Volumen de control o Volumen de Fluido (VDF)</u>

El volumen de fluido se dividirá en dos partes para facilitar así el cálculo, un volumen cercano al casco, el cual tendrá una distancia de 0,5 metros respecto al mismo. Y un volumen más alejado:

Tabla 39. Datos de entrada para la creación de la piscina

Volumen de control					
Aguas abajo (a popa) (m) 2L 30					
Aguas arriba (a proa) (m)	L	15			
Anchura (m)	2L	30			
Profundidad (m)	L	15			

Quedando por lo tanto las siguientes coordenadas:

Tabla 40. Coordenadas volumen de control

Coordenadas de los vértices	X	y	Z
	30	32	15.514
Daned de cutua da	30	-32	15.514
Pared de entrada	30	32	0
	30	-32	0
Pared de salida	-45	32	15.514
	-45	-32	15.514
	-45	32	0
	-45	-32	0

7.1.2.3. Importación del modelo y creación del volumen de control

Una vez conocido todos los valores necesarios para crear la geometría a estudiar, se crea el volumen de control a partir de líneas en TDYN. Una vez creadas se obtiene las superficies del prisma y con estas la superficie del casco se crea el volumen interior entre el volumen de control cercano y el casco. Finalmente, se crea a su vez el volumen de control entre el volumen de control principal y el volumen de control cercano, como se muestra en la "Figura 36".

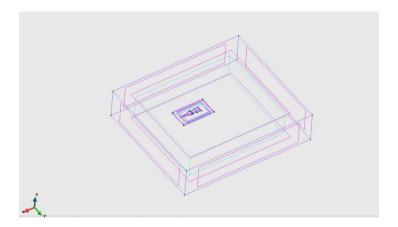


Figura 36. Superficies y Volumen de control

7.1.2.4. <u>Identificación de las entidades geométricas</u>

Se separan las diferentes superficies en distintos grupos para facilitar el trabajo con ellas. Quedando el siguiente cuadro de diálogo en el programa TDYN:

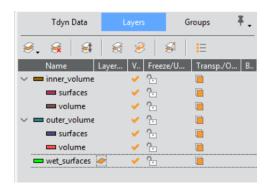


Figura 37. Entidades geométricas

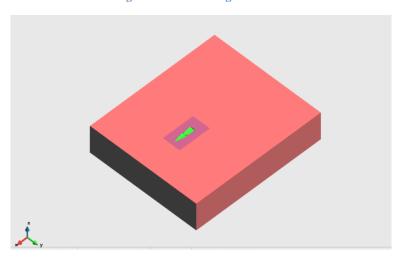


Figura 38. Volumen del fluido generado

7.1.3. Campo de velocidades y presiones

Una vez creada las superficies necesarias para el cálculo, se establecen los campos de velocidades y de presiones:

- o **El campo Vxyz:** superficie frontal de proa.
- o El campo Vy: superficies de costado.
- o El campo Vz: superficie del fondo.
- o Campo de presiones: Superficie frontal de popa.

La superficie se establecerá a la superficie superior a ambos volúmenes de control.

7.1.3.1. Modelos de turbulencias

La base fundamental de elección del modelo de turbulencia es el número de Reynolds. En el programa TDYN tenemos la opción de elegir los siguientes modelos:

- Spalart Allmaras
- $k \varepsilon HR$
- $k-\omega$
- $k \omega SST$

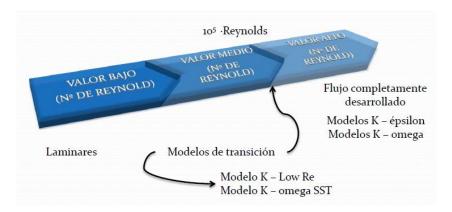


Figura 39. Esquema modelos de turbulencias

Al tratarse de una embarcación de planeo, las velocidades que alcanza son altas por lo que el número de Reynolds son mayores que 10⁵, el problema se encuentra dentro de un flujo totalmente desarrollado por lo que se deberá utilizar un modelo K-épsilon o K-omega.

7.1.4. Parámetros de cálculos

Hay que considerar algunos parámetros con los que inicializar algunas variables:

- 1. Ratio de viscosidad turbulenta/viscosidad.
- 2. Intensidad de turbulencia (TIL).
- 3. Longitud de la turbulencia ("Eddy Length").
- 4. Energía cinética turbulenta ("Kinetic Energy turbulence").

1. Ratio de viscosidad turbulenta/viscosidad.

$$1 < \frac{\mu_{\mathrm{T}}}{\mu} < 10 \tag{73}$$

Se escoge un valor intermedio por lo que se escoge 5. Multiplicándolo por la viscosidad se obtiene la viscosidad turbulenta.

2. Intensidad de turbulencia (TIL).

En flujos externos, la intensidad turbulenta oscila alrededor del 2%.

3. Longitud de la turbulencia ("Eddy Length").

$$l = \frac{\mu_{\tau}}{\rho * V} \tag{74}$$

4. Energía cinética turbulenta ("Kinetic Energy turbulence").

$$k = \frac{3}{2} * (TIL * v_{\tau})^{2}$$
 (75)

Siendo v_{τ} la velocidad adimensionalizada con el esfuerzo en la pared y se obtiene de la siguiente forma:

a) Número de Reynolds:

$$Re = \frac{v * L}{v} \tag{76}$$

b) Coeficiente de resistencia por fricción:

$$c_f = \frac{0.075}{(\log(Re) - 2)^2} \tag{77}$$

c) Tensiones de Reynolds:

$$\tau_w = 0.5 * c_f * \rho * v^2 \tag{78}$$

d) Velocidad adimensionalizada con el esfuerzo en la pared:

$$v_{\tau} = \sqrt{\frac{\tau_w}{\rho}} \tag{79}$$

Calculado todos los parámetros, se introducen en TDYN con el fin de conseguir una buena simulación del flujo turbulento:

Parámetros	Valores	Unidades
Eslora	15	m
Velocidad	20,58	m/s
Re (global)	2,61E+8	-
Ratio de viscosidad	5	-
turbulenta/viscosidad		
Viscosidad turbulenta	6,05E-03	kg/m·s
TIL	2,00%	-
Longitud de la turbulencia	3,881E-04	m
Coeficiente de fricción	1,82E-03	-
Tensiones de Reynolds	395,21	kg/m⋅s²
Velocidad de turbulencia	0,620	m/s
Energía cinética turbulenta	0,00023	m^2/s^2

Tabla 41. Valores para la modelización de la turbulencia

7.1.4.1. <u>Tratamiento de la pared</u>

Para modelizar la capa límite se utilizará el modelo "ITTC wall". Para ello es necesario obtener el valor de y⁺:

Como Re es mayor que 10⁶ se toma la siguiente ecuación para obtener el valor de delta:

$$\frac{\delta}{x} = \frac{0.16}{Re^{\frac{1}{7}}}\tag{80}$$

Siendo x la distancia al borde de una placa en este caso el buque. Se toma de valor un 1% de la eslora.

$$y \approx 0.03 * \delta \tag{81}$$

Finalmente:

$$y^+ = y * \rho * \frac{v_\tau}{\mu} \tag{82}$$

Tabla 42. Valores para el tratamiento de pared

Tratamiento de pared						
Delta 0,0015056 m						
Y	0,000045169	m				
Yplus	23,76	-				

Como el valor de Yplus salió inferior a 30 se toma dicho valor como Yplus.

7.1.5. Discretización temporal

El número de intervalos temporales vendrá dado por:

$$NOS \approx \frac{Tiempo\ simulación\ en\ canal}{dt}$$
 (83)

^{*}Tiempo de simulación en canal= 60 segundos.

El incremento de tiempo será en función del número de Courant (C). Dicho valor se establece entre valores 0,01<C<0,1.

$$dt = C * \frac{L}{v}$$
 (84)

Resumiendo:

Tabla 43. Valores discretización temporal

h	0,0500
dt seleccionado	0,0020
Tiempo de simulación	60,0000
NOS	30.000

Cabe decir que para llegar a este incremento de tiempo y a este tamaño de malla se ha realizado un total de 22 simulaciones.

7.1.6. Creación de la malla y selección del modelo de turbulencia

7.1.6.1. <u>Mallados</u>

Para la creación de una malla óptima se estudian los diferentes tamaños posibles y el tiempo empleado en obtener dichos cálculos, a mayor afinamiento, mayor será el tiempo necesario para su cálculo. Para la obtención del tamaño ideal, se ha realizado diversas simulaciones con diferentes tamaños.

Tabla 44. Nº de elementos, tiempo y Resistencia total para una elección de malla adecuada

Nº de elementos	Rt (N)	h	Superficie piscina lejana al casco	Superficie piscina lejana al casco	NOS	dt
71754	14568,1043	0,125	0,375	1,5	6000	0,01
76743	22592,6134	0,05	0,25	0,75	6000	0,002
133251	18072,6359	0,05	0,1	0,6	6000	0,002
160040	23869,6615	0,05	0,1	0,6	6000	0,002
208476	25259,6420	0,05	0,15	0,5	10000	0,002
245477	16079,6207	0,05	0,08	0,5	6000	0,002
502345	21090,0755	0,125	0,375	1,5	6000	0,006

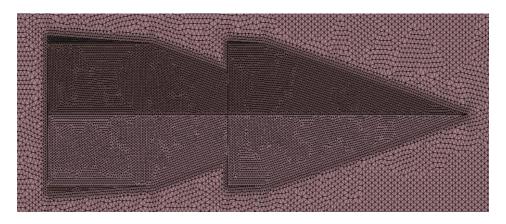


Figura 40. Mallado del casco en TDYN

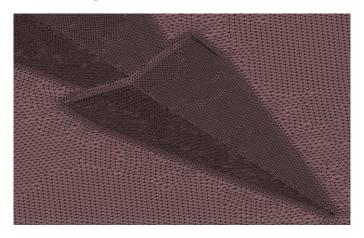


Figura 41. Mallado en la zona del escalón del buque

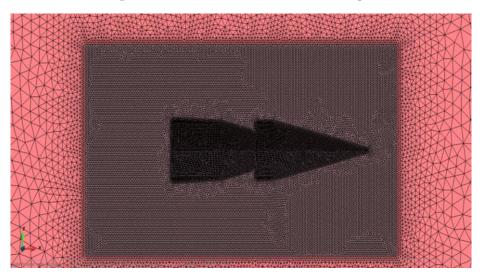


Figura 42. Mallado de las superficies cercana y lejana del casco en TDYN

Cabe nombrar que teóricamente en el "Capítulo 4" se ha calculado teóricamente el valor de la Resistencia siendo este valor igual a 17646,8977 N.

Número de elementos	Error relativo
71754	17%
76743	28%
133251	2%
160040	35%
208476	43%
245477	9%
502345	20%

Tabla 45. Error relativo en la elección de malla

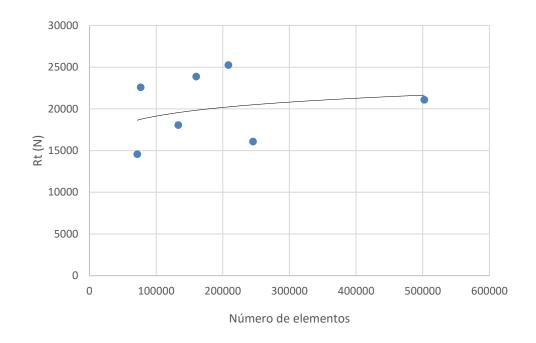


Figura 43. Gráfico de Número de elementos frente a la Resistencia obtenida

Al ver los resultados obtenidos y al analizar la línea de tendencia se puede determinar que la malla idónea por su tamaño y el número de elementos empleados es la malla con un número de elementos igual 133251, ya que el tiempo utilizado y los valores de la resistencia total están en buena relación. Y a su vez, es el mallado con menor error relativo respecto al valor teórico.

Tabla 46. Valor de tamaño de malla seleccionado

Nº de elementos	Rt (N)	h	Superficie cercana al casco	Superficie lejana al casco	NOS	dt
133251	18072,6359	0,05	0,1	0,6	6000	0,002

7.1.6.2. <u>Selección modelo turbulencia</u>

Al tratarse de una embarcación de alta velocidad, hay que encontrar el modelo de turbulencia idóneo que represente dicho flujo. Las ecuaciones más comunes son K-Omega y K-Épsilon.

Pero al ser un barco con altas velocidades se ha optado por trabajar y simular con los modelos turbulentos K-Omega sst y K-Épsilon High Reynolds.

El modelo de turbulencia SST es una combinación de los modelos K-Épsilon estándar y K-Omega, en la región de la capa límite más cercano a la pared el modelo SST se convierte en K-Omega, mientras que fuera de la capa límite se recupera totalmente el modelo K-Épsilon, utilizando el K-Omega para altos números de Reynolds.

Se ha realizado diferentes simulaciones fijando el tamaño de malla seleccionado anteriormente. La dificultad de esta modelización CFD proviene de la determinación de las condiciones de contorno adecuadas para modelar la aireación tras el escalón. Para ello, se ha usado la opción "fix beta" que permite fijar la altura de la superficie libre en un punto. Generalmente, dicha condición se fija en el contorno del espejo de popa, pero al ser una embarcación escalonada, es como tener dos contornos de codaste.

En el presente proyecto se ha realizado ocho simulaciones con los dos tipos de modelos de turbulencias elegidos. Se ha recreado una combinación de simulaciones donde la variable es "Fix Beta" entre el contorno del codaste y el contorno del escalón. La simulación elegida será aquella donde las presiones y la viscosidad convergen totalmente.

Modelo turbulento	Condición de contorno	Rt (N)
Omega sst	casco con fix beta en codaste	23869,661
Omega sst casco sin fix beta		23942,570
Omega sst	casco con fix beta en codaste y step	22835,839
Omega sst	casco con fix beta en step	24004,304
High Reynolds	casco con fix beta en codaste	22130,609
High Reynolds	casco sin fix beta	19308,380
High Reynolds casco con fix beta en codaste y ste		19927,289
High Reynolds	casco con fix beta en step	18930,811

Tabla 47. Simulaciones variando "Fix Beta"

Al obtener dichos resultados se puede apreciar que el valor más aproximado es el modelo de turbulencia High Reynolds con un fix beta colocado en el escalón.

Una vez conocido el modelo de turbulencia con sus condiciones de contorno, se procede a realizar la simulación total con el número de pasos que le corresponde, obteniendo los siguientes resultados:

Tabla 48. Valores de la simulación elegida para el cálculo de Resistencia al avance

Modelo turbulento	Condición de contorno	Nº de elementos	Rt (N)	h	S1	S2	NOS	dt
High Reynolds	casco con fix beta en step	160040	19787,170	0,05	0,1	0,6	15000	0,002

Siendo:

o h: tamaño de la malla del casco

- O S1: tamaño de la malla de la superficie cercana al casco.
- o S2: tamaño de la malla de la superficie lejana al casco.

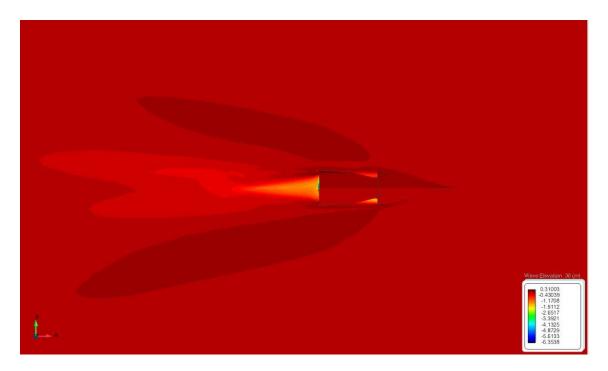


Figura 44. Elevación del oleaje. Cálculo resistencia al avance

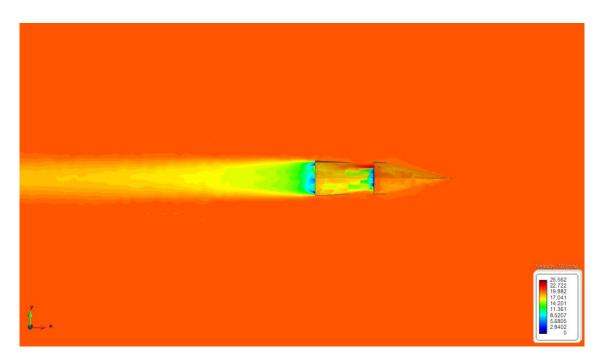


Figura 45. Contorno velocidades. Cálculo resistencia al avance

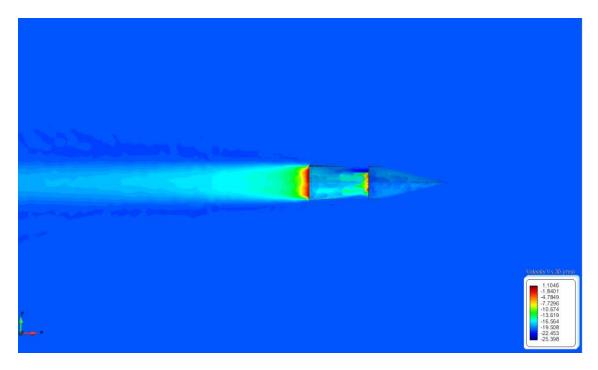


Figura 46. Velocidades en la dirección X. Cálculo resistencia al avance

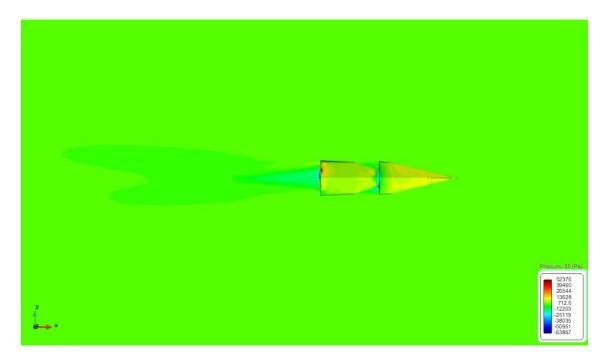


Figura 47. Campo de presiones. Cálculo resistencia al avance

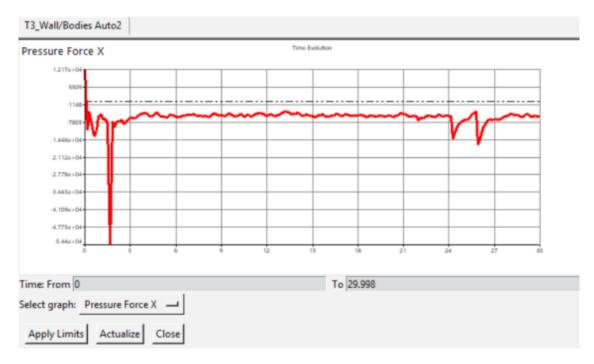


Figura 48. Gráfico Fuerza de Presión en X

Figura 49. Gráfico Fuerza Viscosa en X

Como se puede apreciar en los gráficos, en la simulación generalmente convergen los valores y a su vez, el campo de velocidades y de presión tiene un comportamiento coherente a este tipo de embarcaciones.

Tabla 49. Comparación Rt teórica con Rt CFD

Resistencia al avance teórica (N)	Resistencia al avance CFD (N)	Error relativo
17646,897	19787,170	11%

7.2. Cálculo de la resistencia al viento mediante TDYN COMPASS

7.2.1. Cálculo teórico de la resistencia al viento

Antes de empezar con los cálculos, debemos tener un valor teórico de referencia de la resistencia al viento. Teóricamente el valor del viento se puede obtener:

Cabe nombrar que teóricamente en el "Capítulo 4" se ha calculado teóricamente el valor de la Resistencia siendo este valor igual a 17646,897 N.

$$R = \frac{1}{2} * \rho_{aire} * v^2 * c * \text{Å} rea.$$
 (85)

"C" es el coeficiente de resistencia al viento, dependiendo de las formas del objeto, el coeficiente puede variar. Al ser una embarcación con unas formas parecidas al de un coche aerodinámicamente hablando, se toma como valor 0,5.

Tabla 50. Calculo teórico de la resistencia al viento

Cálculo teórico			
Densidad Aire	1,28	kg/m ³	
Velocidad	20,58	m/seg	
С	0,5		
Área	12,719	m ²	
Resistencia	1723,827	N	

7.2.2. Datos iniciales del problema

El fluido para el volumen de control es aire. La velocidad elegida son los 40 nudos siendo esta la cifra de mérito del proyecto. La siguiente tabla muestra un resumen de los datos de entrada que se utilizarán a lo largo de la simulación:

PARÁMETROS DE ENTRADA				
Eslora 15 m				
Densidad Del Agua De Mar	1,28	kg/m ³		
Viscosidad Cinemática	1,41E-05	m ² /s		
Viscosidad Dinámica	1,80E-05	kg/m·s		
Velocidad	40,0	nudos		
v elocidad	20,58	m/s		
Rn	2,19E+8	-		
Gravedad	9,806	m/s^2		

Tabla 51. Datos de entrada. TDYN, resistencia al viento

Para este caso, se seleccionan los siguientes problemas a resolver:

- o <u>3D:</u> modelo en tres dimensiones.
- o *Fluid flow:* flujo de un fluido el cual hay que definir en la introducción de datos en el programa.

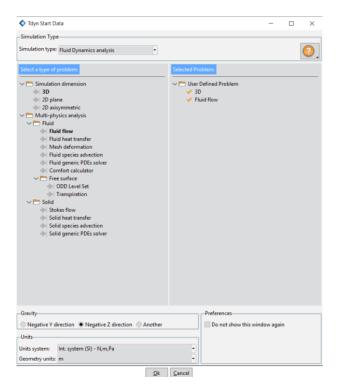


Figura 50. Definición del problema en la ventana de inicio de TDYN

7.2.3. Discretización espacial

7.2.3.1. Geometría

Cabe nombrar, que para optimizar el cálculo en TDYN se ha cortado por el plano del calado, de modo que solo se analizará, en este caso, la obra muerta del casco.

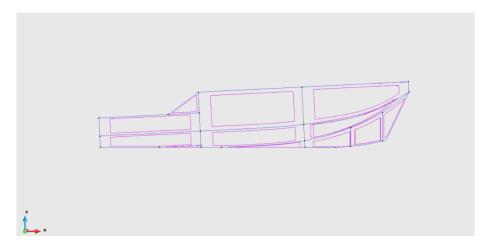


Figura 51. Vista de perfil de la obra muerta a analizar en TDYN

7.2.3.2. <u>Volumen de control o Volumen de Fluido (VDF)</u>

El volumen de fluido se dividirá en dos partes para facilitar así el cálculo, un volumen cercano al casco, el cual tendrá una distancia de 0,5 metros respecto al mismo. Y un volumen más alejado:

Tabla 52. Datos de entrada para la creación de la piscina

Volumen de control			
Aguas abajo (a popa) (m) 3L 45			
Aguas arriba (a proa) (m)	2L	15	
Anchura (m)	2L	32	
Altura (m)	L	15	

Quedando por lo tanto las siguientes coordenadas:

Tabla 53. Coordenadas volumen de control

Coordenadas de los vértices	X	y	z
	30	32	15
Pared de	30	-32	15
entrada	30	32	0
	30	-32	0
	-45	32	15
Pared de salida	-45	-32	15
	-45	32	0
	-45	-32	0

7.2.3.3. <u>Importación del modelo y creación del volumen de control</u>

Una vez conocido todos los valores necesarios para crear la geometría a estudiar, se crea el volumen de control a partir de líneas en TDYN. Una vez creadas se obtiene las superficies del prisma y con estas la superficie del casco se crea el volumen interior entre el volumen de control cercano y el casco. Finalmente se crea a su vez el volumen de control entre el volumen de control principal y el volumen de control cercano, quedando:

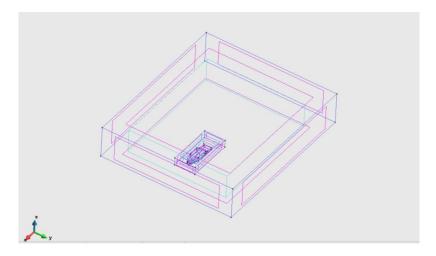


Figura 52. Superficies y Volumen de control

7.2.3.4. <u>Identificación de las entidades geométricas</u>

Se separan las diferentes superficies en distintos grupos para facilitar el trabajo con ellas. Quedando el siguiente cuadro de diálogo en el programa TDYN:

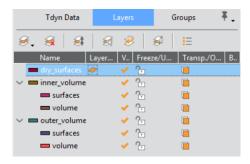


Figura 53. Entidades geométricas

7.2.4. Campo de velocidades y presiones

Una vez creada las superficies necesarias para el cálculo, se establecen los campos de velocidades y de presiones:

o El campo Vxyz: superficie frontal de proa.

- o El campo Vy: superficies de costado.
- o El campo Vz: superficie del fondo.
- o Campo de presiones: Superficie frontal de popa.

La superficie se establecerá a la superficie superior a ambos volúmenes de control.

7.2.5. Parámetros de cálculos

El proceso de cálculo es el mismo que se ha utilizado en la obtención de la resistencia al avance:

Tabla 54. Valores para la modelización de la turbulencia

Parámetros	Valores	Unidades
Eslora	15	m
Velocidad	20,58	m/s
Re (global)	2,19E+7	-
Ratio de viscosidad	5	-
turbulenta/viscosidad		
Viscosidad turbulenta	9,00E-05	kg/m⋅s
TIL	2,00%	-
Longitud de la turbulencia	0,003847	m
Coeficiente de fricción	2,63E-03	-
Tensiones de Reynolds	0,71	$kg/m \cdot s^2$
Velocidad de turbulencia	0,746	m/s
Energía cinética turbulenta	0,0003	m^2/s^2

7.2.5.1. <u>Tratamiento de la pared</u>

El y⁺ utilizado en este caso es el mismo que el que se ha utilizado en el cálculo de la resistencia al avance ya que el obtenido teórico es inviable.

Tabla 55. Valores para el tratamiento de pared

Tratamiento de pared				
Delta 0,0021 m				
Y	6,43E-05	m		
Yplus 3,41				

Como el valor de Yplus salió inferior a 30 se toma dicho valor como Yplus.

7.2.6. Discretización temporal

Tabla 56. Valores discretización temporal

dt seleccionado	0,001
Tiempo de simulación	60,0000
NOS	30.000

7.2.7. Creación de la malla y selección del modelo de turbulencia

Para la creación de una malla óptima se estudian los diferentes tamaños posibles y el tiempo empleado en obtener dichos cálculos, a mayor afinamiento, mayor será el tiempo necesario para su cálculo. El modelo de turbulencia elegido es el K-Épsilon High Reynolds igual que en la obtención de la resistencia al avance. Para la obtención del tamaño ideal, se ha realizado diversas simulaciones con diferentes tamaños.

Tabla 57. Diferentes mallado para el cálculo de la resistencia al viento

Tamaño de malla	h	Nodos	Resistencia viento
Gruesa	0,8	9876	4130,999
Media	0,5	10629	3511,063
Fina	0,25	17532	1749,079

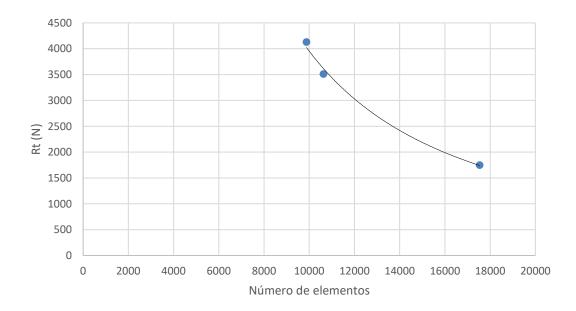


Figura 54. Gráfico Resistencia al viento

Finalmente, el afinamiento de la malla ha servido para obtener un valor muy próximo al esperado.

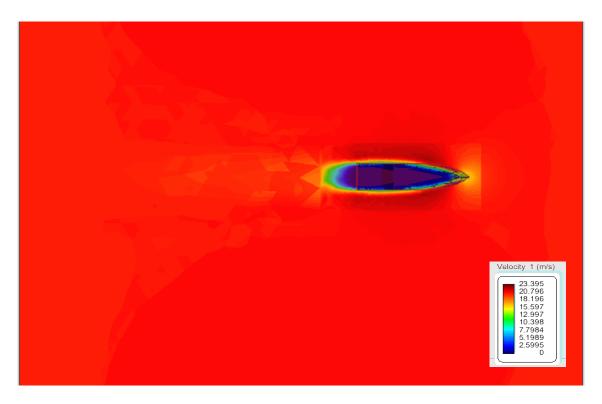


Figura 55. Contorno velocidades. Cálculo resistencia al viento

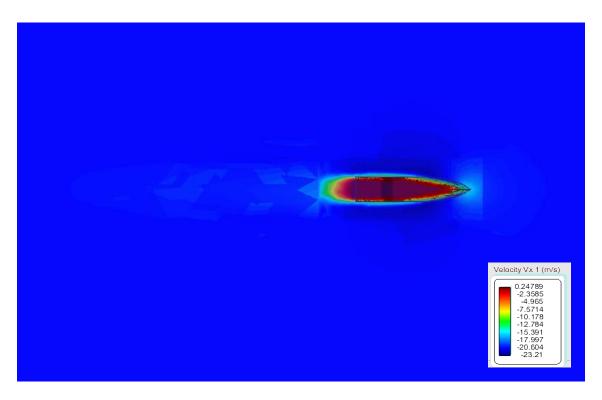


Figura 56. Velocidades en la dirección X. Cálculo resistencia al viento

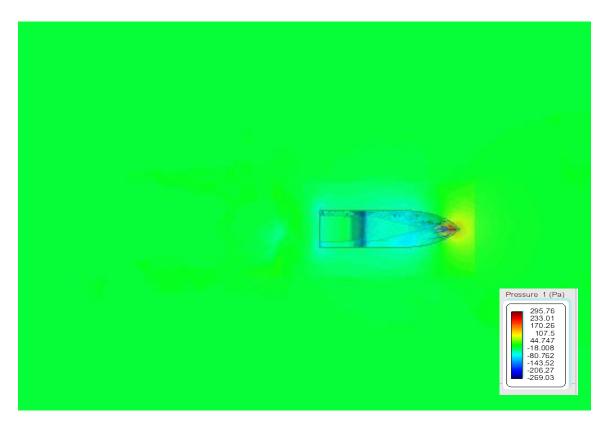


Figura 57. Campo de presiones. Cálculo resistencia al viento

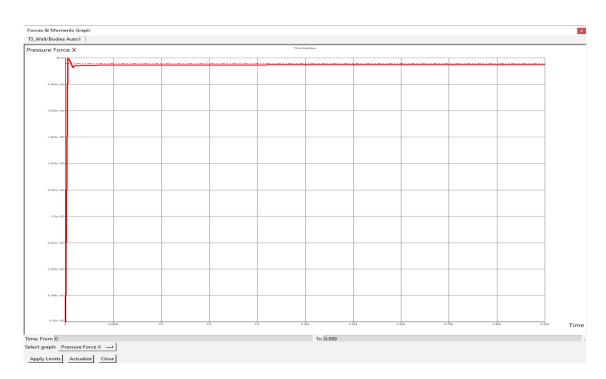


Figura 58. Gráfico Fuerza de Presión en X



Figura 59. Gráfico Fuerza Viscosa en X

Como se puede apreciar en los gráficos, en la simulación generalmente convergen los valores y a su vez, el campo de velocidades y de presión tiene un comportamiento coherente a este tipo de embarcaciones.

Tabla 58. Comparación Rt teórica con Rt CFD

Resistencia al viento teórica (N)	Resistencia al viento CFD (N)	Error relativo
1723,827	1749,079	1,5%

7.3. Resistencia al avance total

La resistencia total y con la que se obtendrá finalmente el consumo del buque es:

Tabla 59. Comparación Resistencia total teórica con la Resistencia total CFD

Resistencia	Velocidad 40 nudos (Teórico)	Velocidad 40 nudos (CFD)
Resistencia al avance (N)	17646,897	19787,170
Resistencia al viento (N)	1723,827	1749,079
Rt (N)	19370,724	21536,249

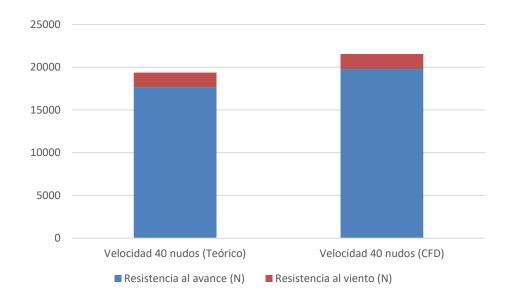


Figura 60. Gráfico comparación de valores de la resistencia total

Finalmente, se ha obtenido unos valores satisfactorios teniendo en cuenta la dificultad que tiene simular el flujo en este tipo de embarcación. Existe un error relativo de un 11% entre ambos resultados, la mejor opción para haber obtenido unos valores exactos era la creación de un mallado de forma manual ajustando sobre todo en la parte del escalón. Esta apreciación serían meses de trabajo y no es el objetivo de este proyecto.

7.3.1. Comparación de resultados embarcación con escalón & embarcación sin escalón

Una vez obtenido el valor de la resistencia total, se compara con los valores de potencia obtenidos en el "capítulo 6". No se tendrá en cuenta la resistencia al viento ya que en los cálculos teóricos y en el Maxsurf Resistance no se tienen en cuenta y es importante para saber cuál es el valor real de consumo.

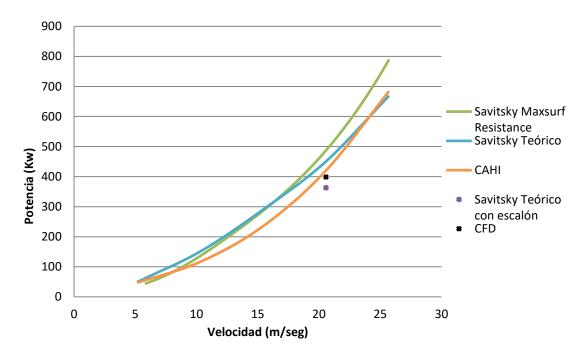


Figura 61. Gráfico comparación de diversas formas de obtener el valor de la potencia

Tabla 60. Comparación de potencias en la velocidad de diseño (40 nudos)

V (m/s)	Savitsky Maxsurf Resistance (kW)	Savitsky Teórico (kW)	CAHI (kW)	Savitsky Teórico con escalón (kW)	CFD (kW)
20,57	487,3	450,7	420,3	363,1	398,6

Si comparamos los dos valores "simulados" obtenidos que es el proporcionado por Maxsurf Resistance y el CFD, se puede afirmar que la colocación de un escalón en el casco del barco con las características elegidas implica un ahorro de energía del orden del 20%.

Tabla 61. Comparación de potencias mediante simulaciones

V (m/s)	Savitsky Maxsurf Resistance (kW)	CFD (kW)	Ahorro
20,57	487,3	398,6	18,2%

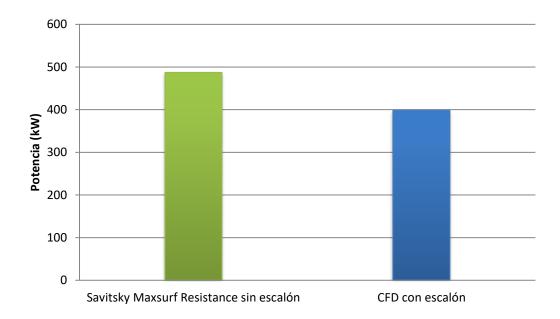
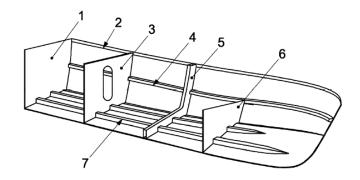


Figura 62. Gráfico comparación de potencia de la embarcación a diseñar con y sin escalón

CAPÍTULO 8

ESCANTILLONADO


8. Escantillonado

En este capítulo, se realizará el estudio y diseño estructural de la embarcación escalonada. Se tratará los materiales a utilizar, disposición estructural, presiones de diseño, espesores de paneles y refuerzos, y finalmente, el laminado óptimo para el buque.

La normativa a seguir será la proporcionada por la "UNE" en especial la "ISO 12215: Pequeñas embarcaciones, construcción de cascos y escantillones", aplicadas a embarcaciones de recreo con una eslora máxima de 24 metros, además no pueden superar los 50 nudos.

8.1. Disposición general

La estructura elegida será la formada por refuerzos transversales principales, teniendo como secundaria una estructura longitudinal. Se elige esta distribución ya que es la más habitual en para construcciones pequeñas en fibra.

- espejo de popa tapa de regala
- refuerzo longitudinal de costado (palmejar)
- outarcama varenga profunda refuerzo longitudinal de fondo (vagra o palmejar); constituye una buena práctica el disponer los extremos de acuerdo con las figura 4 a) o 4 c).

Figura 63. Disposición de los refuerzos

Para comenzar, la división de los espacios desde el punto de vista estructural se hará disponiendo tres mamparos estancos transversales a distintas esloras del casco. Éstos se ubicarán entre la popa y la proa del compartimento del motor (siendo el primero a su vez mamparo de pique de popa) y a proa de la embarcación el mamparo de colisión. Cabe destacar que, al ser un barco escalonado, la distribución estructural ha sido basada en reforzar dicho escalón, por ello el mamparo estanco de la Cámara de Máquinas se ubica justo donde se encuentra dicho escalón. Se tratan de mamparos estancos, por lo que se consideran estructurales y se dimensionan con el fin de aportar resistencia a la embarcación. Cabe decir que a su vez se encuentran dos mamparos más no estancos a proa pero que se dimensionarán como si los fueran para aportar mayor rigidez.

Se dispondrá de diez cuadernas espaciadas homogéneamente entre cada conjunto de mamparos, además de varengas entre las cuadernas ya que las varengas elegidas han sido de tipo omega. A su vez a cada cuaderna, le acompañará un bao.

Para finalizar, la estructura longitudinal secundaria estará apoyada en la transversal. Se dispondrá de dos longitudinales de fondo equiespaciados con respecto a la quilla, atravesando el fondo de popa a proa, apoyado en cuadernas, dos longitudinales de costados y dos esloras de cubierta.

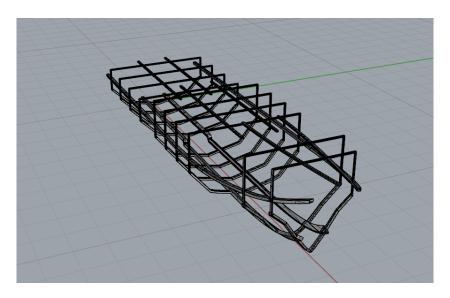


Figura 64. Disposición general de los refuerzos. Vista 3D

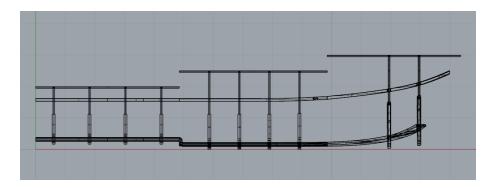


Figura 65. Disposición general de los refuerzos. Vista perfil

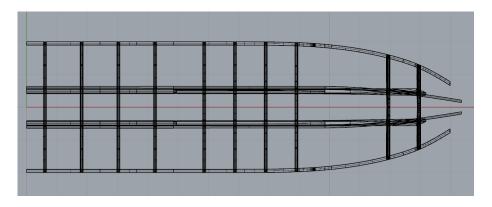


Figura 66. Disposición general de los refuerzos. Vista planta

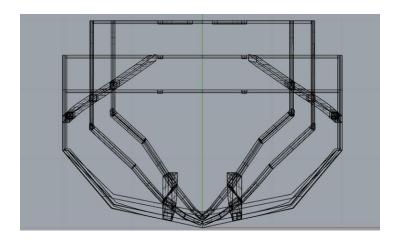


Figura 67. Disposición general de los refuerzos. Vista caja de cuadernas

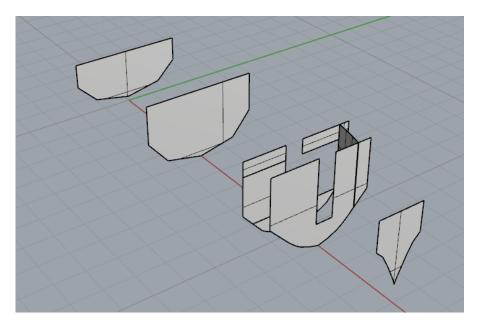


Figura 68. Disposición general de los mamparos

8.2. Materiales

La finalidad de este proyecto es construir una embarcación escalonada de fibra de vidrio. Se trata de una embarcación formada por materiales compuestos, que son aquellos materiales que se forman por la unión de dos o más materiales para conseguir una combinación de propiedades conjuntamente y que no es posible de forma individual. Con ciertas combinaciones específicas se consiguen valores óptimos en rigidez, resistencia, rendimiento a alta temperaturas, resistencia a la corrosión o incluso dureza.

8.2.1. Tejidos de fibra de vidrio

Las fibras de vidrio están constituidas por delgados y duros filamentos con gran resistencia a la tracción. Se prepara con unos productos químicos que la hacen impregnable con las resinas plásticas, dicha operación es conocida como "ensimaje". Existen diferentes tipos de tejidos que se forman por entrecruzamiento de los hilos, llamándose hilos de "urdimbre" a los situados en la dirección más larga del tejido e hilos de "trama" a los situados a lo ancho. Se llama gramaje a la cantidad de peso de un tejido que hay por unidad de superficie, y se mide en kg/m². Los tejidos más utilizados son el mat y el roving, los cuales viene en rollos de aproximadamente un metro de ancho. La densidad de la fibra de vidrio tipo E es de 2,56 gr/cm³.

a) Tejido Mat

El tejido mat está compuesto por hilos de fibra de vidrio de 4 ó 5 cm unidos aleatoriamente por un ligante en varias capas. Tiene una gran facilidad para impregnarse bien en resina, se trata de un material isotrópico, fácil de utilizar adaptándose a todo tipo de superficies.

Los gramajes más usados son de 300, 450 y 600 gr/m². En el procedimiento de laminado, después del gel coat se coloca una capa de mat que proporciona una capa rica en resina, creando en si una capa buena a la resistencia del agua del mar y ataque ambiental. A su vez, es un tejido que mejora las propiedades del gel coat frente a las grietas, la abrasión y el impacto, aislando el resto del laminado. El mat tiene que combinarse con tejidos como el roving, con el fin de proporcionar propiedades de resistencia al laminado.

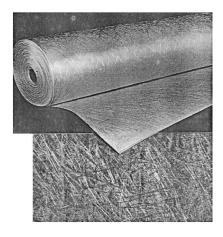


Figura 69. Tejido mat de hilos cortados

b) <u>Tejido Roving</u>

Se trata de un tafetán que se forma entrelazando hilo de trama y urdimbre de forma alternada. De esta manera se obtiene un tejido con una superficie de mayor espesor que ayuda a formar rápidamente el espesor del laminado. La distorsión en los hilos produce una merma en las propiedades mecánicas de los mismos, aunque mantiene sus características en las dos direcciones de trama y urdimbre, por lo que es un tejido biaxial.

Se emplea mucho en gramajes de 800 gr/m². La dificultad de la absorción de la resina hace que no sea aconsejable poner dos capas contiguas de roving, por lo que se intercala una capa de mat entre dos de roving, ya que el mat absorbe bien la resina y consigue la unión de todas las capas.

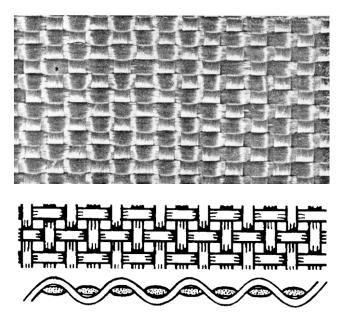


Figura 70. Tejido Roving

8.2.2. Resinas

Las resinas termoestables constituyen el elemento matriz que permite explotar las altas cualidades mecánicas de algunas fibras. Existen tres tipos de resinas de utilización en construcción naval: poliéster, viniléster y epoxi.

Todas son polímeros termoendurecibles, es decir, susceptibles de convertirse en sólidos estables mediante un proceso de polimerización irreversible, con la ayuda de unos productos químicos llamados catalizadores. Un aspecto importante es el de la mejora de las cualidades mecánicas y químicas de estas resinas cuando son sometidas a procesos de postcurado a temperatura elevada, lo cual no siempre se puede realizar. En este caso es necesario polimerizar a temperatura ambiente mediante la adición de un acelerador.

El proceso de polimerización o curado tiene lugar en cuatro fases:

a. **Tiempo hábil de utilización**, durante el cual la resina todavía permanece en forma de líquido susceptible de trabajarla, aunque se va espesando de forma continua.

- b. **Tiempo de gel**, durante el que la resina adquiere la composición de un gel flexible.
- c. Tiempo de endurecimiento o de fraguado, que es el siguiente periodo de tiempo necesario para que la resina se haga lo suficientemente dura para poder sacar el modelo del molde.
- d. **Tiempo de maduración**, último periodo de tiempo durante el cual seguirá endureciéndose hasta lograr su completa solidez.

En este caso, para embarcaciones de recreo, se utilizará resina de poliéster. Pueden ser ortoftálicas e isoftálicas. Las primeras son las que se emplean en embarcaciones de menor calidad ya que tiene mayor riesgo de absorción de agua en los laminados. Las segundas son las más utilizadas, al tener mejores propiedades mecánicas y de resistencia al mar. La densidad de las resinas de poliéster es de 1,2 gr/cm³. Algunas de las grandes ventajas de utilizar este tipo de resina son su bajo coste y la capacidad de varias las proporciones de catalizador y acelerador, permitiendo aumentar o disminuir la velocidad del curado.

8.2.3. Materiales de núcleo

La baja rigidez a la flexión es una de las desventajas de los laminados de fibra. Para solucionar este tipo de problemas se puede hacer:

- Aumentar esta rigidez en una embarcación consiste en aumentar el número de refuerzos del casco o mamparos para disminuir el espaciado entre ellos y por tanto que el tamaño de los paneles de plancha laminada no soportado sea menor.
- 2. Aumentar el espesor del laminado con el consiguiente aumento de peso.
- 3. Utilizar paneles sándwich, colocando un material de núcleo de baja resistencia y densidad entre dos "pieles" de un laminado de gran resistencia.

La rigidez de un panel sándwich no solo depende de la rigidez de los componentes, de su módulo de flexión, sino también de la distancia que el núcleo separa los laminados exteriores. De hecho, la rigidez es proporcional al cubo del espesor del panel. Esto significa que un ligero aumento del espesor aumenta considerablemente la resistencia a la flexión.

Actualmente para la creación de paneles sándwich son los paneles sintéticos. Ofrecen un peso menor, una mayor absorción de agua y humedad, y una gran vida útil. En este proyecto, para los núcleos se utilizará espuma PVC.

En la norma ISO 12215-2 se indican las propiedades mínimas que deben cumplir los núcleos en los laminados.

Finalmente, para este proyecto se utilizará la espuma PVC reticulado I con una densidad de 80 kg/m^3 .

8.3. Escantillonado

Para la obtención de las presiones y tensiones de diseño se aplica la normativa ISO 12215-5. Todos los cálculos han sido realizados en una hoja Excel, explicando y detallando en todo momento el procedimiento a seguir.

8.3.1. Datos iniciales

Todos los valores iniciales introducidos en todas las fórmulas utilizadas se miden en la condición de plena carga de la embarcación. Siendo dichos valores:

- o m_{LDC} = desplazamiento del buque (kg)
- o L_h = eslora del buque (m)
- o L_{WL} = eslora en la flotación del buque (m)
- o B_c = manga en el pantoque medida a 0,4 Lwl a proa del extremo de popa (m)
- o β_c = semiángulo del diedro del fondo a 0,4Lwl a proa del extremo de popa (°) debe encontrarse entre los 10 y 30°, pero desde un principio en este proyecto se ha decidido tener una astilla muerta de 8°.

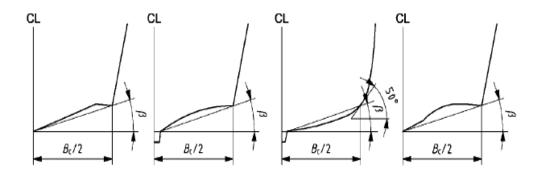


Figura 71. Formas de cascos para la obtención de la manga y el semiángulo del diedro del fondo

Como se puede apreciar en la figura 24, hay diversas formas de casco. La embarcación del proyecto tiene formas rectas en la zona del pantoque por lo que la tercera forma que aparece en la figura es la más parecida a dichas formas. Para optimizar en los valores, el punto de tangencia entre el costado y una línea recta inclinada 50° con respecto a la horizontal se hizo coincidir con el propio pantoque.

o V= velocidad máxima en aguas tranquilas (nudos). Dicho valor no debe ser menor que:

$$\frac{V}{\sqrt{Lwl}} \ge 5$$

 Kdc = es el factor de categoría de diseño, tiene en cuenta la variación de las cargas de presión debidas a la mar con la categoría de diseño.

Categoría de diseño	A	В	C	D
Valor de k_{DC}	1	0,8	0,6	0,4

Figura 72. Factor de categoría de diseño

o n_{CG} = factor de carga dinámica para embarcaciones planeadoras a motor. El valor obtenido no debe ser mayor que 7.

$$n_{CG} = \frac{0.5 * V}{m_{LDC}^{0.17}} \tag{86}$$

Aplicando toda la formulación expuesta anteriormente se obtienen los siguientes resultados:

Tabla 62. Valores iniciales para el escantillonado

Parámetros	Planeadora	Unidades
m_{LDC}	12766,79	Kg
L_h	15	m
L_{WL}	13,825	m
$\boldsymbol{B}_{\boldsymbol{c}}$	2,6	m
$oldsymbol{eta}_c$	8	o
${f v}$	40	nudos
Kdc	0,6	-
n_{CG}	4,008	-

8.3.2. Evaluación de las propiedades del laminado

Para conocer las propiedades del material utilizado en el escantillonado, la norma establece tres niveles de evaluación para conocer dichas propiedades:

Tabla 63. Niveles de evaluación de las propiedades del material utilizado en el escantillonado

Nivel de evaluación	Definición	Método
EL-a	Las propiedades mecánicas y el contenido de fibra se determinan por mediciones efectuadas con la ayuda de normas de ensayo reconocidas sobre es- cantillones representativos del producto fabricado.	Utilizar los resultados de las mediciones co- rregidas según el apartado C.1.1.
EL-b	El contenido de fibra en masa ase determina por mediciones. Se efectúan verificaciones puntuales con ayuda de normas de ensayo reconocidas sobre escantillones representativos del producto fabricado para garantizar que el producto cumple o excede los valores de las tablas C.4 a la C.7.	Valores por defecto (tablas C.4 a la C.7)
EL-c	No se hacen mediciones explícitas ni del contenido de fibra ni de las propiedades mecánicas. El conte- nido de fibra se deduce de la tabla C.2 o de otros valores nominales.	Multiplicar los valores por defecto (tablas C.4 a la C.7) por 0,8.

Al estar en el anteproyecto de una embarcación escalonada y no tener la posibilidad de realizar ensayos experimentales, se selecciona el nivel de evaluación C. Las propiedades y factores a tener en cuenta en el laminado se pueden saber gracias a las siguientes tablas:

Tabla 64. Contenido de gramaje

Tipo de capa de refuerzo	Laminado de fibra de vidrio. Contenido en masa de vidrio 🌾				
	Moldead	Bolsa de vacío			
	Superficie simple ^b Superficie compleja ^b				
Mat proyectado (CSM)	0,30	0,25	(0,36)		
Mat estratificado (WR) a la mano por contacto	0,30	0,25	(0,36)		
Roving tejido (WR)	0,48	0,36	0,58		
Combinación roving-mat ^a	0,46-0,18 R	0,35-0,11 R	0,56-0,22 R		
Tejidos multidireccionales	0,50	0,38	0,60		
Tejidos unidireccionales	0,55	0,41	0,66		

Tabla 65. Valores de t/w en función del contenido de gramaje

Ψ	0,25	0,30	0,36	0,38	0,41	0,50	0,55	0,58	0,60	0,66
t/w a	2,89	2,34	1,87	1,75	1,59	1,22	1,07	0,99	0,95	0,82

a Relación entre el espesor, en milímetros, y la masa de fibra seca, en kilogramos por metro cuadrado.

Tabla 66. Propiedades físicas del laminado de fibra de vidrio E

Propiedad	Valores		
			N/mm^2
Mat laminado a mano (CSM), combinado	roving/mat, tejido	roving (WR) y	refuerzos alternados (CP) – 0/90 ª
Resistencia de rotura por tracción, $\sigma_{ m ut}$			$800 \ \psi^2 - 80 \ \psi + 37$
Resistencia de rotura por compresión, $\sigma_{\!\scriptscriptstyle m uc}$			150 \psi + 72
Resistencia de rotura por flexión, $\sigma_{ m uf}$			$502 \ \psi^2 + 107$
Resistencia de rotura por cizalla en el plano	(intralaminar), τ _u		80 ψ+38
Módulo elástico en el plano, E			38 000 ψ – 5 000
Módulo de cizalla en el plano, G		1 700 ψ+ 2 240	
Resistencia de cizalla interlaminar (fuera del		22,5 – 17,5 ψ	
Mat proyectado		•	
Resistencia de rotura por tracción, $\sigma_{\!\scriptscriptstyle{ m ut}}$	150 \psi + 25		
Resistencia de rotura por flexión, $\sigma_{ m uf}$		$300 \ \psi^2 + 107$	
Las otras propiedades para el mat proyectado	o deben obtenerse d	e las ecuaciones a	anteriores para el mat
Reforzado uni-direccional (UD)			
Propiedad	Paralelo a	las fibras	Perpendicular a las fibras
Resistencia de rotura por tracción, $\sigma_{ m ut}$	880 $\psi^2 + 14$	-0 ψ+ 140	42
Resistencia de rotura por compresión, $\sigma_{ m uc}$	250 ψ	+ 190	105
Módulo elástico en el plano, ${\cal E}$	46 600 $\psi^2 + 7$ 2	200 ψ+7 250	48 600 ψ^2 – 39 000 ψ + 12 500
Módulo de cizalla en el plano, G	14 380 $\psi^2 - 10560 \psi + 3840$		
Resistencia de cizalla en el plano, $ au_{\mathrm{u}}$	50		
Coeficiente de Poisson principal, v_{12}		0),3
a Para una combinación de mat y roving, w puede se	er el valor global. Véase e	el ejemplo del apartad	lo C.3.2.

8.3.3. Cálculo de las presiones mínimas de diseño

A continuación, se realiza el cálculo de presiones mínimas y presiones base que se utilizarán posteriormente para el cálculo de las presiones de diseños de cada panel, mamparo o refuerzo.

a) Presión mínima del fondo:

En la modalidad de desplazamiento

$$P_{\text{BMD BASE}} = 2.4 * m_{\text{LDC}}^{0.33} + 20 \text{ kN/m}^2$$
 (87)

$$P_{BMD MIN} = 0.45 * m_{LDC}^{0.33} + (0.9 * L_{wl} * K_{DC}) kN/m^{2}$$
(88)

En la modalidad de planeo

$$P_{\text{BMP BASE}} = \frac{0.1 * m_{\text{LDC}}}{L_{\text{WL}} * B_{\text{C}}} * (1 + K_{\text{DC}}^{0.5} + n_{\text{CG}})$$
 (89)

$$P_{BMP M\acute{l}N} = 0.45 * m_{LDC}^{0.33} + (0.9 * L_{wl} * K_{DC}) kN/m^{2}$$
(90)

b) Presión mínima en la cubierta:

$$P_{\text{DM BASE}} = 0.35 * L_{\text{WL}} + 14.6 \text{ KN/m}^2$$
 (91)

$$P_{DM MÍN} = 5 KN/m^2$$
(92)

c) Presión mínima en el costado:

En la modalidad de desplazamiento

$$P_{SM M \hat{I}N} = 0.9 * L_{wl} * K_{DC} KN/m^2$$
 (93)

En la modalidad de planeo

$$P_{SM M \hat{N}} = 0.9 * L_{wl} * K_{DC} KN/m^2$$
 (94)

El estudio de presiones en el casco se dividirá en tres partes:

- Fondo
- Costado
- Cubierta

Cabe destacar que la división de paneles se ha intentado hacer de una forma homogénea en todo el casco, pero hay partes como las formas en proa que son críticas y la división que se ha realizado ha sido más estricta. En este tipo de buque el pantoque se ha considerado fondo ya que es preferible que el laminado en esas zonas sea óptimo.

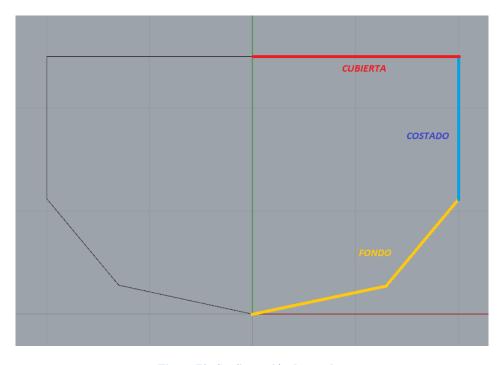


Figura 73. Configuración de paneles

Escantillonado del fondo

El fondo se ha dividido longitudinalmente en tres partes. El escantillonado se realizará para la condición de planeo y la de desplazamiento cogiendo en todo momento los valores de presiones más desfavorables. En total, el fondo se dividirá en 48 paneles.

Los valores necesarios para el cálculo de presión y espesor mínimo para cada panel son:

- \circ L = longitud mayor del panel (mm).
- \circ B = longitud menor del panel (mm).
- o X = distancia desde el extremo de popa de la flotación al centro del panel.
- o x/Lwl = distancia desde el extremo de popa de la flotación al centro del panel.
- o Kl = Factor de distribución longitudinal de presión.

-
$$K_L = \frac{1 - 0.167 * n_{CG}}{0.6} * \frac{X}{Lwl} + 0.167 * n_{CG}$$
 no siendo > 1 para $\frac{x}{Lwl} \le 0.6$
- $K_L = 1 \ para \ \frac{x}{Lwl} > 0.6$

-
$$K_L = 1 \ para \ \frac{x}{Iwl} > 0.6$$

- \circ K_R = Factor de corrección por componente de la estructura
 - $K_R = 1$ para el panel de fondo en la condición de planeo
 - $K_R = 1.5 3 * 10^{-4} * b$ condición de desplazamiento.
- Ad = área de diseño del panel.
 - $A_D = (l*b)*10^{-6}$ dicho valor no debe ser > 2.5 * $b^2 * 10^{-6}$
- o K_{AR} = factor de reducción de presión para áreas.

$$K_{AR} = \frac{K_R * 0.1 * m_{LDC}^{0.15}}{A_D^{0.3}} \tag{95}$$

Dicho valor no puede ser superior a 1 ni un valor inferior a los valores que figuran en la siguiente tabla:

Tabla 67. Valores mínimos del factor de reducción de presión

Categoría de diseño	Paneles de una sola capa y refuerzos de fondo y costados	Paneles tipo sandwich de fondo y costados ^a				
	Paneles de una sola capa o tipo sandwich y refuerzos de cubiertas y superestructuras	$\frac{x}{L_{\rm WL}} \le 0.4$	$0,4 < \frac{x}{L_{\text{WL}}} < 0,6$	$\frac{x}{L_{\text{WL}}} \ge 0, 6$		
A	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones	Interpolación entre los valores $\frac{x}{L_{WL}} = 0.4 \text{ y } 0.6$	0,5 fondo de veleros y costado 0,5 fondo embarcaciones a motor 0,4 costado embarcaciones a motor		
В	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones		0,4 todas las embarcaciones		
CyD	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones				
a El valor m	ínimo de k _{AR} se aplica a los requisitos de i	resistencia a la flexió	n o cizalla y con la flecha n	axima.		

\circ $K_{2=}$ factor de relación de aspecto para paneles

Tabla 68. Factor de relación de aspectos para paneles

Alargamiento del panel l/b	Factor k_2 k_2 debe tomarse = 0,5 para un costado de madera laminada
> 2,0	0,500
2,0	0,497
1,9	0,493
1,8	0,487
1,7	0,479
1,6	0,468
1,5	0,454
1,4	0,436
1,3	0,412
1,2	0,383
1,1	0,349
1,0	0,308
	k_2 puede evaluarse mediante la fórmula siguiente manteniendo $0.308 < k_2 < 0.5$
	$k_{2} = \frac{0,271(l/b)^{2} + 0,910(l/b) - 0,554}{(l/b)^{2} - 0,313(l/b) + 1,351}$

- o c/b = relación de curvatura del panel (flecha máxima entre dimensión mínima)
- Kc= factor corrector por curvatura del panel.

Tabla 69. Factor de corrección de curvatura Kc

c/b	kc
0 a 0,03	1,0
0,03 a 0,18	$1.1 - \frac{3.33c}{b}$
> 0,18	0,5

Una vez obtenidos todos los valores nombrados anteriormente, se procede a calcular la presión de diseño de fondo en las condiciones de planeo y de desplazamiento.

a) Presión de diseño de fondo en la modalidad de desplazamiento:

$$P_{BMD} = P_{BMD BASE} * k_{AR} * K_{DC} * K_L \frac{kN}{m^2}$$
(96)

b) Presión de diseño de fondo en la modalidad planeadora:

$$P_{BMP} = P_{BMP BASE} * k_{AR} * K_L \frac{kN}{m^2}$$
 (97)

Finalmente, después de haber obtenido las presiones de diseño se puede hallar el espesor mínimo necesario para cada panel. En todo momento se utiliza el valor P con un valor mayor entre las presiones de P_{BMD} y P_{BMP} calculadas. Y el valor de tensión de diseño se calcula a partir del laminado propuesto.

Tabla 70. Tensión de diseño para FRP

Material	Elemento estructural	Tensión de diseño σ _d N/mm²
FRP de una sola capa	Todos los elementos	$_{0,5}~\sigma_{ m uf}$

En donde σ_{uf} es la resistencia mínima a la flexión (tensión de rotura) (N/mm2). Dicho valor es obtenido a partir de las propiedades dadas de la tabla 31.

$$t = b * K_c * \sqrt{\frac{P * K_2}{1000 * \sigma_d}} \quad (mm)$$
 (98)

Tabla 71. Presiones mínima y base de fondo

Presión mínima del fondo planeadora	Pbm min	17,656	KN/m^2
Presión de fondo modalidad desplazamiento	Pbmd base	74,352	KN/m^2
Presión de fondo en la modalidad planeadora	Pbmp base	145,802	KN/m^2

Finalmente, en el "Anexo I" se puede ver los resultados de los espesores mínimos para los paneles de fondo.

Como se puede apreciar en la tabla 38, se obtiene valores mayores que la presión mínima exigida. El espesor mínimo más desfavorable sería el obtenido en el panel 12C con un t_{min} =19 mm, por lo que el laminado propuesto tiene que superar dicha cantidad.

Para el fondo se propone el siguiente laminado:

Tabla 72. Laminado del fondo

Capa	Tipo	Gramaje (kg/m²)	Contenido	Peso laminado (kg/m²)	t (mm)
1	mat	0,3	0,3	1	0,7
2	mat	0,6	0,3	2	1,4
3	rov	0,8	0,48	1,667	1,035
4	mat	0,6	0,3	2	1,4
5	rov	0,8	0,48	1,667	1,035
6	mat	0,6	0,3	2	1,4
7	rov	0,8	0,48	1,667	1,035
8	mat	0,6	0,3	2	1,4
9	rov	0,8	0,48	1,667	1,035
10	mat	0,6	0,3	2	1,4
11	rov	0,8	0,48	1,667	1,035
12	mat	0,6	0,3	2	1,4
13	rov	0,8	0,48	1,667	1,035
14	mat	0,6	0,3	2	1,4
15	rov	0,8	0,48	1,667	1,035
16	mat	0,6	0,3	2	1,4
	TOTALES	10,7	0,3588785	28,669	19,145

Sus propiedades mecánicas han sido utilizadas para el cálculo de t_{min} anterior y dichas propiedades se han sacado según las tablas 22,30 y 31.

Tabla 73. Propiedades del laminado de fondo

Tabla C.2. El-C		
ψ 0,358		
R 0,5619		
t/w	1,87	

Tabla C.4 a		
Propiedades mecánicas del lamin	ado fibra de vidi	rio E
Resistencia de rotura por tracción	σ_{ut}	89,059
Resistencia de rotura por compresión	σ_{uc}	100,665
Resistencia por rotura por flexión	σ_{uf}	137,323
Resistencia de rotura por cizalla en el plano	$ au_u$	53,368
Módulo elástico en el plano	Е	6909,906
Módulo de cizalla en el plano	G	2280,074
Resistencia de cizalla interlaminar	$ au_u$ inter	12,975
Tensión de diseño	σ_d	68,661

Para finalizar se verifica que se cumple con el contenido en fibra mínimo. Para ello se utiliza la siguiente formulación:

$$w_{min} = 0.43 * k_5 * (A + k_7 + V + k_8 + m_{LDC}^{0.33}) kg/m^2$$
(99)

Tabla 74. Valores requeridos para el peso de fibra mínimo de laminado

Material	Situación	A	k ₅	k ₇	k 8
FRP	Fondo	1,5	Como se define en	0,03	0,15
	Costado/espejo de popa	1,5	el apartado 10.5.6	0	0,15
Aluminio	Fondo	1,0	(125 / σ _ν	0,02	0,1
	Costado/espejo de popa	1,0	Villay	0	0,1
Acero	Fondo	1,0	$\sqrt{(240 / \sigma_{v})}$	0,015	0,08
	Costado/espejo de popa		Vizio	0	0,08
Contrachapado	Fondo	3,0	$\sqrt{(30 / \sigma_{uf})}$	0,05	0,3
	Costado/espejo de popa	3,0	V(00) uf	0	0,3

Obteniendo:

Tabla 75. Resultados w_{min} fondo

	A	K5	K7	K8	w_{min} (kg/m^2)	
Fondo	1,5	1	0,03	0,15	2,621	Cumple

Escantillonado del costado *8.3.5.*

El escantillonado se realizará para la condición de planeo y la de desplazamiento cogiendo en todo momento los valores de presiones más desfavorables. En total, el costado se dividirá en 15 paneles.

Los valores necesarios para el cálculo de presión y espesor mínimo para cada panel son:

- \circ L = longitud mayor del panel (mm).
- \circ B = longitud menor del panel (mm).
- o X = distancia desde el extremo de popa de la flotación al centro del panel.
- o x/Lwl = distancia desde el extremo de popa de la flotación al centro del panel.
- o Kl = Factor de distribución longitudinal de presión.

-
$$K_L = \frac{1 - 0.167 * n_{CG}}{0.6} * \frac{X}{Lwl} + 0.167 * n_{CG}$$
 no siendo > 1 para $\frac{x}{Lwl} \le 0.6$
- $K_L = 1 \ para \ \frac{x}{Lwl} > 0.6$

-
$$K_L = 1 para \frac{x}{Lwl} > 0.6$$

- \circ K_R = Factor de corrección por componente de la estructura
 - $K_R = 1$ para el panel de fondo en la condición de planeo
 - $K_R = 1.5 3 * 10^{-4} * b$ condición de desplazamiento.
- Ad= área de diseño del panel.
 - $A_D = (l*b)*10^{-6}$ dicho valor no debe ser > 2.5 * $b^2 * 10^{-6}$
- o K_{AR} = factor de reducción de presión para áreas.

$$K_{AR} = \frac{K_R * 0.1 * m_{LDC}^{0.15}}{A_D^{0.3}} \tag{100}$$

Dicho valor no puede ser superior a 1 ni un valor inferior a los valores que figuran en la siguiente tabla:

Tabla 76. Valores mínimos del factor de reducción de presión

Categoría de diseño	Paneles de una sola capa y refuerzos de fondo y costados		Paneles tipo sandwich de fondo y costados ^a			
	Paneles de una sola capa o tipo sandwich y refuerzos de cubiertas y superestructuras	$\frac{x}{L_{\text{WL}}} \le 0, 4$	$0.4 < \frac{x}{L_{\rm WL}} < 0.6$	$\frac{x}{L_{\rm WL}} \ge 0, 6$		
A	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones	Interpolación entre los valores $\frac{x}{L_{WL}} = 0.4 \text{ y } 0.6$	0,5 fondo de veleros y costado 0,5 fondo embarcaciones a motor 0,4 costado embarcaciones a motor		
В	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones		0,4 todas las embarcaciones		
CyD	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones				
a El valor mínimo de k _{AR} se aplica a los requisitos de resistencia a la flexión o cizalla y con la flecha máxima.						

 \circ k_z = factor de reducción de presión en el costado

$$k_z = \frac{z - h}{z} \tag{101}$$

Donde z es la altura de la parte superior del casco y h es la altura del centro del panel por encima de la flotación de plena carga todo ello en metros.

 \circ $K_{2=}$ factor de relación de aspecto para paneles

Tabla 77. Factor de relación de aspectos para paneles

Alargamiento del panel l/b	Factor k2 k2 debe tomarse = 0,5 para un costado de madera laminada
> 2,0	0,500
2,0	0,497
1,9	0,493
1,8	0,487
1,7	0,479
1,6	0,468
1,5	0,454
1,4	0,436
1,3	0,412
1,2	0,383
1,1	0,349
1,0	0,308
	k_2 puede evaluarse mediante la fórmula siguiente manteniendo 0,308 $< k_2 < 0,5$
	$k_{2} = \frac{0.271(l/b)^{2} + 0.910(l/b) - 0.554}{(l/b)^{2} - 0.313(l/b) + 1.351}$

- o c/b = relación de curvatura del panel (flecha máxima entre dimensión mínima)
- o K_C = factor corrector por curvatura del panel.

Tabla 78. Factor de corrección de curvatura Kc

c/b	kc
0 a 0,03	1,0
0,03 a 0,18	$1,1-\frac{3,33c}{b}$
> 0,18	0,5

Una vez obtenidos todos los valores nombrados anteriormente, se procede a calcular la presión de diseño de costado en las condiciones de planeo y de desplazamiento.

c) Presión de diseño de fondo en la modalidad de desplazamiento:

$$P_{SMD} = (P_{DM BASE} + k_z * (P_{BMD BASE} - P_{DM BASE})) * k_{AR} * k_{DC} * k_L kN/m^2$$
 (102)

d) Presión de diseño de fondo en la modalidad planeadora:

$$P_{SMP} = (P_{DM BASE} + k_z * (0.25 * P_{BMD BASE} - P_{DM BASE})) * k_{AR} * k_{DC}$$

$$* k_L kN/m^2$$
(103)

Finalmente, después de haber obtenido las presiones de diseño se puede hallar el espesor mínimo necesario para cada panel. En todo momento se utiliza el valor P con un valor mayor entre las presiones de P_{SMD} y P_{SMP} calculadas. Y el valor de tensión de diseño se calcula a partir del laminado propuesto.

Tabla 79. Tensión de diseño para FRP

Material	Elemento estructural	Tensión de diseño σ _d N/mm²
FRP de una sola capa	Todos los elementos	0,5 $\sigma_{ m uf}$

En donde σ_{uf} es la resistencia mínima a la flexión (tensión de rotura) (N/mm2). Dicho valor es obtenido a partir de las propiedades dadas de la tabla 31.

$$t = b * K_c * \sqrt{\frac{P * K_2}{1000 * \sigma_d}} \quad (mm)$$
 (104)

Tabla 80. Presiones mínima y base de costado

Presión mínima del costado planeadora	Psm min	7,465	KN/m^2
Presión mínima del costado modalidad desplazamiento	Psm min	7,465	KN/m^2

Finalmente, en el "Anexo I" se puede ver los resultados de los espesores mínimos y presiones para los paneles de costado.

Como se puede apreciar en la tabla 47, se obtiene valores mayores que la presión mínima exigida. El espesor mínimo más desfavorable sería el obtenido en el panel 12D con un $t_{mín}$ =10,8 mm, por lo que el laminado propuesto tiene que superar dicha cantidad.

Por lo que para el costado el laminado que se ofrece es el siguiente:

Tabla 81. Laminado del costado

Сара	Tipo	Gramaje (<i>kg/m</i> ²)	Contenido	Peso laminado (kg/m^2)	t (mm)
1	mat	0,3	0,3	1	0,7
2	mat	0,6	0,3	2	1,4
3	rov	0,8	0,48	1,667	1,035
4	mat	0,6	0,3	2	1,4
5	rov	0,8	0,48	1,667	1,035
6	mat	0,6	0,3	2	1,4
7	rov	0,8	0,48	1,667	1,035
8	mat	0,6	0,3	2	1,4
9	rov	0,8	0,48	1,667	1,035
10	mat	0,6	0,3	2	1,4
	TOTALES	6,5	0,352	17,668	11,84

Sus propiedades mecánicas han sido utilizadas para el cálculo de t_{min} anterior y dichas propiedades se han sacado según las tablas 22, 30 y 31, nombradas anteriormente.

Tabla 82. Propiedades del laminado de fondo

Tabla C.2. El-C			
ψ 0,352			
R	0,594		
t/w	1,859		

Tabla C.4 a					
Propiedades mecánicas del laminado fibra de vidrio E					
Resistencia de rotura por tracción	σ_{ut}	86,734			
Resistencia de rotura por compresión	σ_{uc}	99,952			
Resistencia por rotura por flexión	σ_{uf}	135,626			
Resistencia de rotura por cizalla en el	$ au_u$	52,988			
plano					
Módulo elástico en el plano	E	6729,411			
Módulo de cizalla en el plano	G	2272			
Resistencia de cizalla interlaminar	$ au_u$ inter	13,058			
Tensión de diseño	σ_d	67,813			

Para finalizar se verifica que se cumple con el contenido en fibra mínimo. Para ello se utiliza la siguiente formulación:

$$w_{min} = 0.43 * k_5 * (A + k_7 + V + k_8 + m_{LDC}^{0.33}) kg/m^2$$
 (105)

Tabla 83 Valores requeridos para el peso de fibra mínimo de laminado

Material	Situación	A	k ₅	k ₇	k 8
FRP	Fondo	1,5	Como se define en	0,03	0,15
	Costado/espejo de popa	1,5	el apartado 10.5.6	0	0,15
Aluminio	Fondo	1,0	$\sqrt{(125/\sigma_v)}$	0,02	0,1
	Costado/espejo de popa	1,0	V(222) Zy	0	0,1
Acero	Fondo	1,0	√(240 / σ _v	0,015	0,08
	Costado/espejo de popa	1,0	Visit	0	0,08
Contrachapado	Fondo	3,0	$\sqrt{(30 / \sigma_{uf})}$	0,05	0,3
	Costado/espejo de popa	3,0	V(00) uf	0	0,3

Obteniendo:

Tabla 84 Resultados w_{min} costado

	A	K5	K7	K8	w_{min} (kg/m^2)	
Costado	1,5	1	0,03	0,15	2,105	Cumple

8.3.6. Escantillonado de la cubierta

La cubierta se ha dividido longitudinalmente en cuatro partes. El escantillonado se realizará para la condición de planeo y la de desplazamiento cogiendo en todo momento los valores de presiones más desfavorables. En total, el fondo se dividirá en 46 paneles.

Los valores necesarios para el cálculo de presión y espesor mínimo para cada panel son:

- \circ L = longitud mayor del panel (mm).
- \circ B = longitud menor del panel (mm).
- o X = distancia desde el extremo de popa de la flotación al centro del panel.
- o x/Lwl = distancia desde el extremo de popa de la flotación al centro del panel.
- Kl = Factor de distribución longitudinal de presión.

-
$$K_L = \frac{1 - 0.167 * n_{CG}}{0.6} * \frac{X}{Lwl} + 0.167 * n_{CG}$$
 no siendo > 1 para $\frac{x}{Lwl} \le 0.6$
- $K_L = 1 \ para \ \frac{x}{Lwl} > 0.6$

- \circ K_R = Factor de corrección por componente de la estructura
 - $K_R = 1$ para el panel de fondo en la condición de planeo
 - $K_R = 1.5 3 * 10^{-4} * b$ condición de desplazamiento.
- o Ad = área de diseño del panel.
 - $A_D = (l * b) * 10^{-6}$ dicho valor no debe ser > 2.5 * $b^2 * 10^{-6}$

 \circ K_{AR} = factor de reducción de presión para áreas.

$$K_{AR} = \frac{K_R * 0.1 * m_{LDC}^{0.15}}{A_D^{0.3}}$$
 (106)

Dicho valor no puede ser superior a 1 ni un valor inferior a los valores que figuran en la siguiente tabla:

Tabla 85. Valores mínimos del factor de reducción de presión

Categoría de diseño	Paneles de una sola capa y refuerzos de fondo y costados		Paneles tipo sandwich (de fondo y costados ^a	
	Paneles de una sola capa o tipo sandwich y refuerzos de cubiertas y superestructuras	$\frac{x}{L_{\text{WL}}} \le 0, 4$	$0,4 < \frac{x}{L_{\text{WL}}} < 0,6$	$\frac{x}{L_{\rm WL}} \ge 0, 6$	
A	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones	Interpolación entre los valores $\frac{x}{L_{WL}} = 0.4 \text{ y } 0.6$	0,5 fondo de veleros y costado 0,5 fondo embarcaciones a motor 0,4 costado embarcaciones a motor	
В	0,25 todas las embarcaciones casco y cubierta	0,4 todas las embarcaciones		0,4 todas las embarcaciones	
CyD	C y D 0,25 0,4 todas las embarcaciones casco y cubierta 0,4				
a El valor m	a El valor mínimo de kar se aplica a los requisitos de resistencia a la flexión o cizalla y con la flecha máxima.				

\circ $K_{2=}$ factor de relación de aspecto para paneles

Tabla 86. Factor de relación de aspectos para paneles

Alargamiento del panel l/b	Factor k2 k2 debe tomarse = 0,5 para un costado de madera laminada
> 2,0	0,500
2,0	0,497
1,9	0,493
1,8	0,487
1,7	0,479
1,6	0,468
1,5	0,454
1,4	0,436
1,3	0,412
1,2	0,383
1,1	0,349
1,0	0,308
	$\it k_2$ puede evaluarse mediante la fórmula siguiente manteniendo 0,308 < $\it k_2$ < 0,5
	$k_2 = \frac{0.271(l/b)^2 + 0.910(l/b) - 0.554}{(l/b)^2 - 0.313(l/b) + 1.351}$

o c/b = relación de curvatura del panel (flecha máxima entre dimensión mínima)

o K_c = factor corrector por curvatura del panel.

Tabla 87. Factor de corrección de curvatura Kc

c/b	kc
0 a 0,03	1,0
0,03 a 0,18	$1.1 - \frac{3.33c}{b}$
> 0,18	0,5

Una vez obtenidos todos los valores nombrados anteriormente, se procede a calcular la presión de diseño de cubierta.

e) Presión de diseño de la cubierta:

$$P_{DM} = P_{DM \ BASE} * k_{AR} * K_{DC} * K_L \frac{kN}{m^2}$$
 (107)

Finalmente, después de haber obtenido las presiones de diseño se puede hallar el espesor mínimo necesario para cada panel. En todo momento se utiliza el valor P más desfavorable. Y el valor de tensión de diseño se calcula a partir del laminado propuesto.

Tabla 88. Tensión de diseño para FRP

Material	Elemento estructural	Tensión de diseño σα N/mm²
FRP de una sola capa	Todos los elementos	0,5 $\sigma_{ m uf}$

En donde σ_{uf} es la resistencia mínima a la flexión (tensión de rotura) (N/mm2). Dicho valor es obtenido a partir de las propiedades dadas de la tabla 31.

$$t = b * K_c * \sqrt{\frac{P * K_2}{1000 * \sigma_d}} \quad (mm)$$
 (108)

Tabla 89. Presiones mínima y base de cubierta

Presión mínima de la cubierta	Pd min	5	KN/m ²
Presión de la cubierta base	Pdm base	19,438	KN/m ²

10,334

6,97

Finalmente, los valores de espesores mínimos y de presiones de los paneles de la cubierta se pueden apreciar con exactitud en el apartado c) del "Anexo I".

Como se puede apreciar en la tabla 47, se obtiene valores mayores que la presión mínima exigida. El espesor mínimo más desfavorable sería el obtenido en el panel 12D con un $t_{mín}$ =10,8 mm, por lo que el laminado propuesto tiene que superar dicha cantidad.

Por lo que para el costado el laminado que se ofrece es el siguiente:

3,7

TOTALES

Peso laminado Capa **Tipo** Gramaje Contenido t (mm) (kg/m^2) (kg/m^2) 1 0,3 0,3 1 0,7 mat 2 0,6 0,3 2 1,4 mat 3 0,8 0,48 1,667 1,035 rov 4 mat 0,6 0,3 1.4 5 0,8 0,48 1,667 1,035 rov 6 0,6 0,3 2 1,4 mat

Tabla 90. Laminado de la cubierta

Sus propiedades mecánicas han sido utilizadas para el cálculo de t_{min} anterior y dichas propiedades se han sacado según las tablas 22, 30 y 31.

0,342

Tabla 91. Propiedades del laminado de la cubierta

Tabla C.2. El-C		
ψ 0,342		
R	0,650	
t/w	1,894	

Tabla C.4 a					
Propiedades mecánicas del lamin	Propiedades mecánicas del laminado fibra de vidrio E				
Resistencia de rotura por tracción	σ_{ut}	82,889			
Resistencia de rotura por compresión	σ_{uc}	98,742			
Resistencia por rotura por flexión	σ_{uf}	132,808			
Resistencia de rotura por cizalla en el plano	$ au_u$	52,342			
Módulo elástico en el plano	Е	6422,857			
Módulo de cizalla en el plano	G	2258,285			
Resistencia de cizalla interlaminar	$ au_u$ inter	13,2			
Tensión de diseño	σ_d	66,404			

Para finalizar se verifica que se cumple con el contenido en espesor mínimo. Para ello se utiliza la siguiente formulación:

Tabla 92. Espesor mínimo en el laminado de cubierta

Situación	Espesor mínimo requerido para la cubierta t _{Mín.} mm					
	FRP	Aluminio	Acero	Madera, contrachapado		
Cubierta	k ₅ (1,45 + 0,14 L _{WL})	1,35 + 0,06 L _{WL}	1,5 + 0,07 L _{WL}	3,8 + 0,17 L _{WL}		

Y mediante la ecuación que se muestra a continuación, se consigue calcular el peso mínimo en fibra requerida:

Tabla 93. Peso mínimo seco en el laminado de la cubierta

$$\frac{t}{w} = \frac{1}{3,072} \left(\frac{2,56}{\psi} - 1,36 \right)$$

Obteniendo:

Tabla 94. Resultados W_{min} de la cubierta

	Espesor mínimo (mm)	$W_{min} (kg/m^2)$	
Cubierta	3,388	1,7	Cumple

8.3.7. Escantillonado de los mamparos

Para el escantillonado del mamparo se necesita conocer los siguientes datos:

- o h: altura total del mamparo estructural (m).
- o h_b : altura de carga de agua para mamparos estructurales estancos (m).
- o 1: máxima longitud del mamparo (mm).
- o b: mínima longitud del mamparo (mm).
- o t_s : espesor de la capa de PRVF exterior (mm).
- o t_c : espesor del núcleo de sándwich (mm).
- \circ k_1 : factor de rigidez de flexión para un panel tipo sándwich.
- \circ k_2 : factor de alargamiento del panel por resistencia a flexión.
- \circ k_3 : factor de alargamiento del panel por rigidez a flexión.
- \circ k_{SHC} : factor de relación de aspecto para refuerzos cortantes, en función de l/b.

Los valores de los factores k_2 y k_3 son obtenidos a partir de las dimensiones de los paneles, dichos valores son introducidos en la siguiente formulación:

A su vez el factor de alargamiento por la fuerza de cizalla también se saca en función de las dimensiones de los paneles.

Al ser mamparos estructurales, deben cumplir una serie de requisitos marcados por la normativa ISO 12215. Siendo estos requisitos:

a) <u>Presiones mínimas en los mamparos</u> Presión mínima de diseño de los mamparos estructurales (kN/m2): $P_{WB} = 7 * h_B$ Presión mínima de diseño del mamparo de colisión (kN/m2): $P_{WB} = 10 * h_B$

b) Tensiones de diseño

Para un laminado tipo sándwich debe cumplir con una tensión mínima de diseño.

c) Espesores de las capas del laminado

El espesor del núcleo debe ser como mínimo cinco veces mayor que el de la capa de laminado de menor espesor. Además, los espesores de las capas y el espesor del núcleo deben cumplir:

$$t_s * t_c \ge \frac{t_b^2}{6} * \left(\frac{25}{\sigma_d}\right).$$
 (109)

$$t_s * \frac{t_c^2}{2} \ge \frac{t_b^3}{12} * \left(\frac{4000}{E_{io}}\right).$$
 (110)

Donde:

- $t_b=7*D_b$, siendo D_b la altura del mamparo desde el fondo hasta cubierta en metros.
- $\sigma_d y E_{io}$ valores obtenidos de la norma expuesta en el "ANEXO C" de la norma.
- d) Módulo mínimo de inercia para la capa exterior

$$\frac{\text{SMo}}{1} \text{cm anchura} = \frac{b^2 * k_c^2 * P * k_2}{6 * 10^5 * \sigma_{dto}} cm^3 / cm$$
 (111)

e) Módulo mínimo de inercia para la capa interior

$$\frac{\text{SMi}}{1} \text{ cm anchura} = \frac{b^2 * k_c^2 * P * k_2}{6 * 10^5 * \sigma_{dei}} cm^3 / cm$$
 (112)

f) Segundo momento mínimo (momento de inercia)

$$\frac{I}{1} \text{cm anchura} = \frac{b^3 * k_c^3 * P * k_3}{12 * 10^6 * k_1 * E_{io}} cm^3 / cm$$
 (113)

g) Espesor requerido para la capacidad de soportar el esfuerzo cortante

$$t_s \ge \sqrt{k_c} * \frac{k_{SHC} * P * b}{1000 * \tau_d} mm$$
 (114)

A continuación, se procederá a exponer las formulaciones necesarias para el cálculo de todos los valores necesarios para comprobar que el escantillonado de mamparos es el correcto.

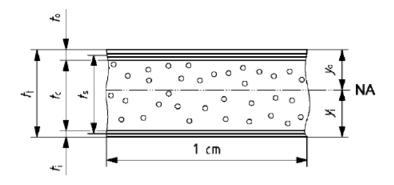


Figura 74. Laminado tipo sándwich

a) Espesor total del sándwich

$$\mathbf{t}_t = t_c * t_o * t_i \tag{115}$$

b) Distancia entre las partes medias de las capas del sándwich

$$t_s = t_c * \frac{t_o + t_i}{2} (mm)$$
 (116)

c) Distancia del punto de la capa exterior más alejada del centro de gravedad

$$y_0 = \frac{t_i * t_s}{t_i + t_o} + \frac{t_o}{2} \text{ (mm)}$$
 (117)

d) Distancia del punto de la capa interior más alejada del centro de gravedad

$$y_i = \frac{t_i * t_s}{t_i + t_o} + \frac{t_i}{2}$$
 (mm) (118)

e) Segundo momento del área por centímetro de anchura

$$I = \left(\frac{t_o * t_i * t_s^2}{t_o + t_i} + \frac{t_o^3 + t_i^3}{12}\right) * 10^{-3} (cm4/cm)$$
 (119)

f) Módulo de inercia de la capa exterior

$$SM_o = \frac{10 * I}{y_o} \tag{120}$$

g) Módulo de inercia de la capa interior

$$SM_i = \frac{10 * I}{y_i} \tag{121}$$

Para garantizar la seguridad en la embarcación y en su laminación, se requiere un contenido mínimo en masa en kg/m^2 para las capas exteriores e interiores:

$$w_{os} = k_{DC} * k_4 * k_5 * k_6 * (0.1 * L_{WL} + 0.15)$$
 (122)

$$w_{is} = 0.7 * w_{os} (123)$$

Tabla 95. Masas mínimas del laminado obtenido

$wos(kg/m^2)$	0,919
wis (kg/m^2)	0,643

Siendo el laminado propuesto para los mamparos:

Tabla 96. Laminado propuesto para los mamparos

сара	tipo	Gramaje (kg/m²)	Contenido	Peso laminado (kg/m²)	t (mm)
1	mat	0,3	0,3	1	0,7
2	wr	0,5	0,48	1,042	0,647
3	mat	0,3	0,3	1	0,7
4	wr	0,5	0,48	1,042	0,647
5	mat	0,3	0,3	1	0,7
6	wr	0,5	0,48	1,042	0,647
7	mat	0,3	0,3	1	0,7
8	wr	0,5	0,48	1,042	0,647
9	mat	0,3	0,3	1	0,7
10	wr	0,5	0,48	1,042	0,647
11	mat	0,3	0,3	1	0,7
	TOTALES	4,3	0,361	11,21	7,435

Una vez obtenido el laminado se puede conocer las propiedades mecánicas:

Tabla 97. Propiedades laminado de mamparos

Tabla C.2. El-C				
ψ 0,361				
R	0,546			
t/w	1,869			

Tabla C.4 a						
Resistencia de rotura por tracción	σ_{ut}	90,158				
Resistencia de rotura por compresión	σ_{uc}	100,997				
Resistencia por rotura por flexión	σ_{uf}	138,123				
Resistencia de rotura por cizalla en el plano	$ au_u$	66,931				
Módulo elástico en el plano	E	6993,972				
Módulo de cizalla en el plano	G	2283,835				
Resistencia de cizalla interlaminar	$ au_u$ inter	12,936				
Tensión de diseño	σ_d	69,061				
Fatiga de diseño atraccion capa exterior	$ au_{dto}$	45,079				
Fatiga de diseño compresión capa interior	$ au_{dci}$	50,498				

Tabla 98. Propiedades mecánicas de los materiales para el núcleo de los paneles sándwich

PVC rígido I					
Densidad	ρc (kg/m3)	80			
Resistencia a la cizalla	τ_u (N/mm2)	0,829			
Módulo de cizalla	Gc (N/mm2)	23,664			
Resistencia en compresión	σ_{uc} (N/mm2)	0,946			
Módulo de elasticidad en comprensión	Eco (N/mm2)	65,120			

Tabla 99. Propiedades del panel tipo sándwich

t _c (mm)	37
t _i (mm)	7,435
t ₀ (mm)	7,435
t _t (mm)	52,045
t _s efectivo (mm)	44,610
y ₀ (mm)	26,022
y _i (mm)	26,022
I (cm4/cm)	7,466
SM _o (cm3/cm)	2,869
SM _i (cm3/cm)	2,869

En la tabla 73, se puede apreciar los valores de dimensionamiento propuestos para los mamparos y sus momentos correspondientes. A continuación, se verificará que el mamparo propuesto cumple con los valores mínimos exigidos en los mamparos estructurales propuestos:

Tabla 100. Valores mínimos exigidos para los mamparos

Mamparo	Pwb (Kn/m2)	SM _o min	SM _i min	I min	t _s min (mm)
Mamparo espejo popa	9,333	0,686	0,612	2,487	18,932
Mamparo proa CCMM	11,666	1,261	1,126	6,337	27,792
Mamparo colisión	20	2,869	2,869	2,626	6,991

Como se puede apreciar en todo momento se cumple con los valores mínimos exigidos en la normativa ISO 12215-5. Para finalizar se comprueba que la relación existente entre los espesores de las capas y el del núcleo cumple con los requisitos exigidos:

Tabla 101. Relaciones de espesores para el laminado propuesto

Relación ts * tc	Relación $ts * \frac{tc^2}{2}$
1658,376	30825,077

Tabla 102. Valores mínimos exigidos en los mamparos

Mamparos	Relación ts * tc min	Relación ts $*\frac{tc^2}{2}$ min
Mamparo espejo popa	11,825	130,779
Mamparo proa CCMM	18,476	255,428
Mamparo colisión	26,606	441,380

Finalmente, se comprueba que el laminado propuesto, el tipo de PVC del núcleo y el grosor de este son correctos ya que cumplen con todos los requisitos exigidos por la norma.

8.3.8. Refuerzos

Todos los refuerzos serán del tipo omega y contarán con relleno de espuma PVC igual que en los mamparos, mejorando la rigidez y a su vez, se consigue hacer la embarcación un poco más ligera. Según la normativa, los refuerzos deben cumplir unos valores mínimos de área, módulo de inercia y de segundo momento:

a) Área del alma:

$$A_{W} = \frac{k_{SA} * P * s * lu}{\tau_{d}} * 10^{-6} (cm^{2})$$
 (124)

b) Módulo de inercia mínimo de la sección con la plancha asociada:

$$SM = \frac{83.33 * k_{CS} * P * s * lu}{\sigma_{d}} * 10^{-9} (cm^{3})$$
 (125)

c) Segundo momento de área:

$$I = \frac{26 * k_{CS}^{1.5} * P * s * lu}{k_{1s} * E_{TC}} * 10^{-9} (cm^4)$$
 (126)

Siendo:

 \circ k_{SA} = factor de superficie de cizalla del refuerzo.

Tabla 103. Valores del factor de superficie de cizalla del refuerzo

Disposición del refuerzo	k _{SA}
Unido al costado	5
Otras disposiciones (flotante)	7,5

- o P= presión de diseño (kN/m^2) .
- o s= separación entre refuerzos (mm).
- o lu= separación entre apoyos de un refuerzo (mm).
- \circ τ_d = tensión de diseño de cizalla del alma del refuerzo.
- \circ σ_d = tensión de diseño del refuerzo.

El laminado propuesto para los refuerzos ha sido:

Tabla 104. Laminado de los refuerzos

Сара	Tipo	$P. Seco$ (kg/m^2)	Contenido	Peso Laminado (kg/m²)	t (Mm)
1	mat	0,3	0,3	1	0,7
2	mat	0,6	0,3	2	1,4
3	rov	0,8	0,48	1,667	1,035
4	mat	0,6	0,3	2	1,4
5	rov	0,8	0,48	1,667	1,035
6	mat	0,6	0,3	2	1,4
7	rov	0,8	0,48	1,667	1,035
8	mat	0,6	0,3	2	1,4
9	rov	0,8	0,48	1,667	1,035
10	mat	0,6	0,3	2	1,4
	TOTAL	6,5	0,352	17,668	11,84

Una vez obtenido el laminado se puede conocer las propiedades mecánicas:

Tabla 105. Propiedades laminado de los refuerzos

Tabla C.2. El-C				
ψ 0,352				
R	0,594			
t/w 1,8949				

Tabla C.4 a		
Resistencia de rotura por tracción	σ_{ut}	86,734
Resistencia de rotura por compresión	σ_{uc}	99,952
Resistencia por rotura por flexión	σ_{uf}	135,626
Resistencia de rotura por cizalla en el plano	$ au_u$	52,988
Módulo elástico en el plano	Е	6729,411
Módulo de cizalla en el plano	G	2272
Resistencia de cizalla interlaminar	$ au_u$ inter	13,058
Tensión de diseño	σ_d	67,813
Tensión de diseño en tracción	$ au_{dto}$	43,367
Fatiga de diseño compresión	$ au_{dci}$	49,976

Tabla 106. Propiedades mecánicas de los materiales para el núcleo de los paneles sándwich

PVC rígido I					
Densidad	ρc (kg/m3)	80			
Resistencia a la cizalla	τ_u (N/mm2)	0,829			
Módulo de cizalla	Gc (N/mm2)	23,664			
Resistencia en compresión	σ_{uc} (N/mm2)	0,946			
Módulo de elasticidad en comprensión	Eco (N/mm2)	65,120			

8.3.8.1. <u>Cuadernas de fondo</u>

Los requisitos mínimos exigidos para las cuadernas de fondo son:

CUADERNAS DE FONDO	Pbmp planeo (KN/m^2)	Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
1	46,235	8,731	307,368	408,275
2	47,837	9,033	318,017	422,421
3	50,801	9,593	337,718	448,590
4	53,909	10,180	358,378	476,032
5	59,824	9,823	359,210	495,614
6	62,566	10,273	392,135	541,042
7	65,308	10,714	406,073	559,787
8	67,747	11,069	402,782	552,997
9	67,713	10,464	360,137	467,657
10	67,474	9,770	315,071	383,359

Tabla 107. Valores mínimos de área y momentos de las cuadernas de fondo

Una vez hallada todos los valores mínimos de todas las cuadernas de fondo, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 108. Valores más desfavorables de las cuadernas de fondo

Aw min (cm^2)	SM min (cm^3)	I min (cm ⁴)
11,069	406,073	559,787

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 100x80 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

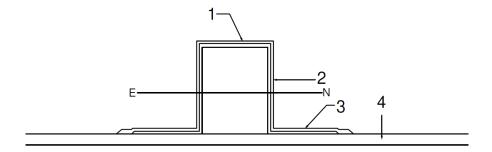


Figura 75. Refuerzo omega 100x80 cuadernas de fondo

Tabla 109. Valores de momentos y de inercia. Refuerzo 100x80

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden $A * y^2$	Inercia propia
1	10,000	1,184	11,840	9,776	115,747	1131,550	1,383
2	1,184	8,000	9,472	5,184	49,102	254,549	50,517
3	5,000	1,184	5,920	0,592	3,504	2,074	0,691
4	48,290	1,914	92,451	0,957	88,498	84,715	28,238
	TOTAL	AW	119,683		256,854	1472,890	80,830

a) Inercia propia del elemento:

$$I_p = \frac{1}{12} * b * h^3 \tag{127}$$

b) <u>Distancia del eje neutro a la plancha asociada:</u>

$$y_k = \frac{\sum A * y}{\sum A} \tag{128}$$

c) Inercia total:

$$I = Ip + \sum A * y^2 - A * y_k^2$$
 (129)

d) Módulo respecto a la plancha asociada:

$$SM = \frac{I}{y_k} \tag{130}$$

Tabla 110. Características cuadernas de fondo

$y_k(cm)$	Área (cm^2)	$SM(cm^3)$	$I(cm^4)$
2,146	119,683	467,114	1002,481

Como se puede comprobar los valores obtenidos del perfil propuesto son superiores a los mínimos exigidos por la normativa.

8.3.8.2. <u>Cuadernas de costado</u>

Los requisitos mínimos exigidos para las cuadernas de costado son:

CUADERNAS DE COSTADO	Pbmp desplazamiento (KN/m^2)	Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
1	7,468	0,585	8,539	4,704
2	8,012	0,628	9,162	5,047
3	8,509	0,666	9,729	5,359
4	9,029	0,707	10,324	5,687
5	9,074	1,275	39,917	47,140
6	9,472	1,331	43,222	49,206
7	9,825	1,381	43,222	51,043
8	9,825	1,381	43,222	51,043
9	8,287	0,930	23,257	21,938
10	8.569	0.885	20.355	17.664

Tabla 111. Valores mínimos de área y momentos de las cuadernas de costado

Una vez hallada todos los valores mínimos de todas las cuadernas de costado, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 112. Valores más desfavorables de las cuadernas de costado

Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
1,381	43,222	51,043

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 50x40 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

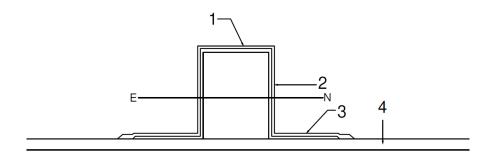


Figura 76. Refuerzo omega 50x40 cuadernas de costado

Tabla 113. Valores de momentos y de inercia. Refuerzo 50x40

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden $A * y^2$	Inercia propia
1	5,000	1,184	5,920	5,776	34,193	197,504	0,691
2	1,184	4,000	4,736	3,184	15,079	48,012	6,314
3	5,000	1,184	1,184	0,592	0,700	0,414	0,691
4	28,680	1,184	33,957	0,592	20,102	11,900	3,966
	TOTAL	AW	45,797		70,076	257,832	11,664

e) <u>Inercia propia del elemento:</u>

$$I_p = \frac{1}{12} * b * h^3 \tag{131}$$

f) Distancia del eje neutro a la plancha asociada:

$$y_k = \frac{\sum A * y}{\sum A} \tag{132}$$

g) Inercia total:

$$I = Ip + \sum A * y^2 - A * y_k^2$$
 (133)

h) <u>Módulo respecto a la plancha asociada:</u>

$$SM = \frac{I}{y_k} \tag{134}$$

Tabla 114. Características cuadernas de costado

$y_k(cm)$	Área (cm²)	$SM(cm^3)$	$I(cm^4)$
1,530	45,797	106,046	162,268

Como se puede comprobar los valores obtenidos del perfil propuesto son superiores a los mínimos exigidos por la normativa.

8.3.8.3. Longitudinales de fondo

Los longitudinales de fondo serán divididos en tres partes, dicha división será realizada en la parte que se encuentra los mamparos estructurales. Los requisitos mínimos exigidos para los longitudinales de costado son:

Tabla 115. Valores mínimos de área y momentos de los longitudinales de fondo

LONGITUDINALES DE FONDO	Pbmp planeo (KN/m^2)	Aw min (cm ²)	SM min (cm ³)	I min (<i>cm</i> ⁴)
1A POPA	53,909	9,638	779,116	2376,200
1B POPA	53,909	9,638	779,116	2376,200
2A MAESTRA	67,474	12,437	1036,421	3258,705
2B MAESTRA	67,474	12,437	1036,421	3258,705
3A PROA	67,474	7,462	373,111	703,880
3B PROA	67,474	7,462	373,111	703,880

Una vez hallada todos los valores mínimos de los longitudinales de fondo, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 116. Valores más desfavorables de los longitudinales de fondo

Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
12,437	1036,421	3258,705

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 130x130 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

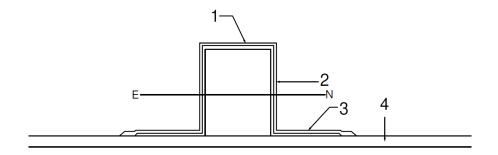


Figura 77 Refuerzo omega 130x130 longitudinales de fondo

Tabla 117 Valores de momentos y de inercia. Refuerzo 130x130

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden A * y ²	Inercia propia
1	13,000	1,184	15,392	14,776	227,432	3.360,538	1,798
2	1,184	13,000	15,392	7,684	118,272	908,803	216,770
3	20,000	1,184	23,680	0,592	14,018	8,299	2,766
4	56,160	2,158	121,193	1,079	130,767	141,098	47,032
	TOTAL	AW	175,657		490,490	4.418,738	268,367

i) Inercia propia del elemento:

$$I_p = \frac{1}{12} * b * h^3 \tag{135}$$

j) <u>Distancia del eje neutro a la plancha asociada:</u>

$$y_k = \frac{\sum A * y}{\sum A} \tag{136}$$

k) Inercia total:

$$I = Ip + \sum A * y^2 - A * y_k^2$$
 (137)

l) <u>Módulo respecto a la plancha asociada:</u>

$$SM = \frac{I}{y_k} \tag{138}$$

Tabla 118. Características longitudinales de fondo

$y_k(cm)$	Área (cm²)	$SM(cm^3)$	I (cm ⁴)
2,792	175,6573	1188,083	3317,502

Como se puede comprobar los valores obtenidos del perfil propuesto son superiores a los mínimos exigidos por la normativa.

8.3.8.4. Longitudinales de costado

Los longitudinales de costado serán divididos en tres partes, dicha división será realizada en la parte que se encuentra los mamparos estructurales. Los requisitos mínimos exigidos para los longitudinales de costado son:

Tabla 119. Valores mínimos de área y momentos de los longitudinales de costado

LONGITUDINALES DE COSTADO	Pbmp planeo (KN/m^2)	Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
1A POPA	9,029	4,682	378,460	1154,253
1B POPA	9,029	4,682	378,460	1154,253
2A MAESTRA	9,825	5,252	437,679	1376,146
2B MAESTRA	9,825	5,252	437,679	1376,146
3A PROA	9,825	3,151	157,564	297,247
3B PROA	9,825	3,151	157,564	297,247

Una vez hallada todos los valores mínimos de los longitudinales de costado, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 120. Valores más desfavorables de los longitudinales de costado

Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
5,252	437,679	1376,146

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 90x100 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

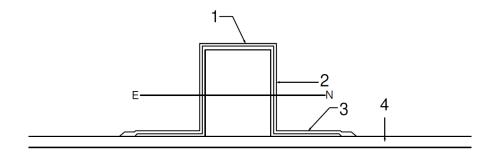


Figura 78. Refuerzo omega 90x100 longitudinales costado

Tabla 121. Valores de momentos y de inercia. Refuerzo 90x100

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden $A * y^2$	Inercia propia
1	9,000	1,184	10,656	11,776	125,485	1477,712	1,244
2	1,184	10,000	11,840	6,184	73,218	452,783	98,666
3	20,000	1,184	23,680	0,592	14,018	8,299	2,766
4	52,160	2,158	112,561	1,079	121,453	131,048	43,682
	TOTAL	AW	158,737		334,175	2069,843	146,360

m) <u>Inercia propia del elemento:</u>

$$I_p = \frac{1}{12} * b * h^3 \tag{139}$$

n) Distancia del eje neutro a la plancha asociada:

$$y_k = \frac{\sum A * y}{\sum A} \tag{140}$$

o) Inercia total:

$$I = Ip + \sum A * y^{2} - A * y_{k}^{2}$$
 (141)

p) <u>Módulo respecto a la plancha asociada:</u>

$$SM = \frac{I}{y_k} \tag{142}$$

Tabla 122. Características longitudinales de costado

$y_k(cm)$	Área (cm²)	$SM(cm^3)$	I (cm ⁴)
2,105	158,737	718,546	1512,692

Como se puede comprobar los valores obtenidos del perfil propuesto son superiores a los mínimos exigidos por la normativa.

8.3.8.5. Esloras de cubierta

Las esloras de cubierta estarán divididas en tres partes, dicha división será realizada en la parte que se encuentra los mamparos estructurales. Los requisitos mínimos exigidos para las esloras de cubierta:

	ESLORAS DE CUBIERTA	Pbmp planeo (KN/m2)	Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
	1A POPA	4,575	1,603	104,744	206,560
ľ	1B POPA	4,575	1,603	104,744	206,560
	2A MAESTRA	5,675	1,989	129,943	256,254
ľ	2B MAESTRA	5,675	1,989	129,943	256,254
	3A PROA	6,599	1,936	126,481	249,425
ľ	3B PROA	6 599	1 936	126 481	249 425

Tabla 123. Valores mínimos de área y momentos de las esloras de cubierta

Una vez hallada todos los valores mínimos de las esloras de cubierta colocadas en el buque, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 124. Valores más desfavorables de las esloras de cubierta

Aw min (cm^2)	SM min (cm ³)	I min (cm ⁴)
1,989	129,943	256,254

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 70x60 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

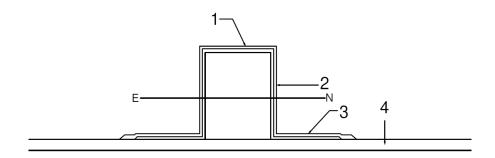


Figura 79. Refuerzo omega 70X60 esloras de cubierta

Tabla 125. Valores de momentos y de inercia. Refuerzo 70x60

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden $A * y^2$	Inercia propia
1	7,000	1,184	8,288	7,776	64,447	501,143	0,968
2	1,184	6,000	7,104	4,184	29,723	124,361	21,312
3	12,000	1,184	14,208	0,592	8,411	4,979	1,659
4	20,940	0,697	14,595	0,348	5,086	1,772	0,590
	TOTAL	AW	44,195		107,668	632,257	24,530

q) Inercia propia del elemento:

$$I_p = \frac{1}{12} * b * h^3 \tag{143}$$

r) <u>Distancia del eje neutro a la plancha asociada:</u>

$$y_k = \frac{\sum A * y}{\sum A} \tag{144}$$

s) Inercia total:

$$I = Ip + \sum A * y^2 - A * y_k^2$$
 (145)

t) <u>Módulo respecto a la plancha asociada:</u>

$$SM = \frac{I}{v_k} \tag{146}$$

Tabla 126. Características de las esloras de cubierta

$y_k(cm)$	Área (cm^2)	$SM(cm^3)$	$I(cm^4)$
2,436	44,195	161,927	394,487

Como se puede comprobar para las esloras de cubierta, los valores obtenidos son mayores que los mínimos exigidos por la normativa por lo que son perfiles adecuados para el buque a diseñar.

8.3.8.6. <u>Baos</u>

Los requisitos mínimos exigidos para los BAOS son:

BAOS	Pbmp desplazamiento (KN/m^2)	Aw min (cm ²)	SM min (cm ³)	I min (cm ⁴)
1	3,783	1,326	86,630	213,547
2	4,047	1,418	92,668	228,432
3	4,311	1,511	98,707	243,316
4	4,575	1,603	104,745	258,201
5	5,017	1,472	96,161	237,040
6	5,258	1,542	105,378	248,400
7	5,498	1,613	108,778	259,760
8	5,676	1,644	106,021	258,012
9	5,620	1,317	68,672	135,165
10	6,599	1,251	52,811	84,120

Tabla 127. Valores mínimos de área y momentos de los baos

Una vez hallada todos los valores mínimos de los baos, tanto de área como de los momentos, nos quedamos con los valores más desfavorables con el fin de obtener un refuerzo con valores superiores a los dados.

Tabla 128. Valores más desfavorables de los baos

Aw min (cm^2)	SM min (cm^3)	I min (cm ⁴)
1,643	108,777	259,760

A continuación, se detalla el cálculo del módulo e inercia del perfil omega 60x50 para verificar que el refuerzo propuesto es superior al mínimo exigido por el reglamento.

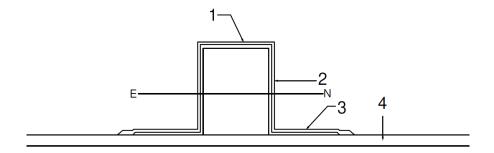


Figura 80. Refuerzo omega 60x50 baos

Tabla 129. Valores de momentos y de inercia. Refuerzo 60x50

Elemento	Ancho (cm)	Alto (cm)	Área (cm²)	D. linea base (y)	Mto 1r A*y	Mto 2 Orden $A * y^2$	Inercia propia
1	6,000	1,184	7,104	6,776	48,137	326,174	0,830
2	1,184	5,000	5,920	3,684	21,809	80,345	12,333
3	12,000	1,184	14,208	0,592	8,411	4,979	1,660
4	19,940	0,697	13,898	0,349	4,844	1,688	0,563
	TOTAL	AW	41,130		83,201	413,187	15,386

u) Inercia propia del elemento:

$$I_p = \frac{1}{12} * b * h^3 \tag{147}$$

v) <u>Distancia del eje neutro a la plancha asociada:</u>

$$y_k = \frac{\sum A * y}{\sum A} \tag{148}$$

w) Inercia total:

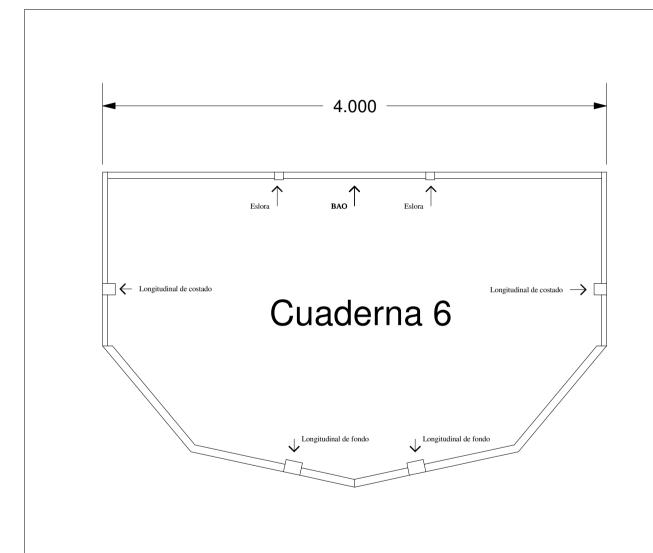
$$I = Ip + \sum A * y^2 - A * y_k^2$$
 (149)

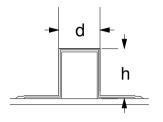
x) <u>Módulo respecto a la plancha asociada:</u>

$$SM = \frac{I}{y_k} \tag{150}$$

Tabla 130. Características de los baos

$y_k(cm)$	Área (cm²)	SM (cm^3)	I (cm ⁴)
2,022	41,130	128,664	260,269

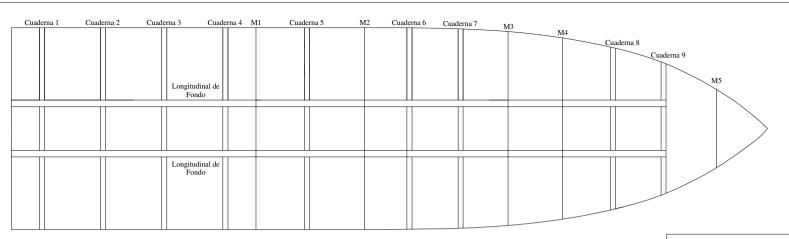

Como se puede comprobar los valores obtenidos del perfil propuesto son superiores a los mínimos exigidos por la normativa.



8.4. Planos

A continuación, se expondrá los siguientes planos obtenidos del escantillonado:

- Plano cuaderna maestra.
- o Plano de estructura de fondo y cubierta.
- o Plano de estructura de costado.



Refuerzo	Altura del perfil h (mm)	Anchura d (mm)
Cuaderna de fondo	80	100
Cuaderna de costado	40	50
Longitudinales de fondo	130	130
Longitudinales de costado	100	90
Baos de cubierta	50	60
Esloras de cubierta	60	70

Eslora total	15,000 m
Eslora en la flotación	13,980 m
Manga de trazado	4,000 m
Puntal a cubierta ppal	3,000 m
Calado de trazado	0,601 m
Separación cuadernas	1,398 m
Separación longitudinales	0,5 m
Separación líneas de agua	0,2 m
-	

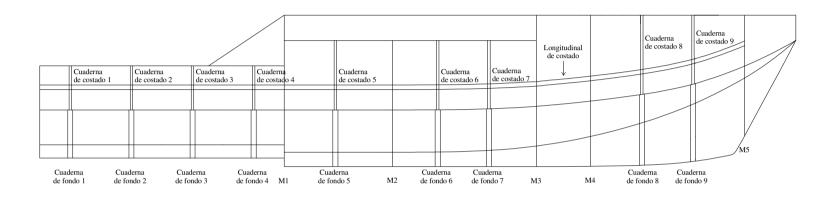
Anteproyecto en de recreo escritorios de Alvaro González	alonada	UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA		
ESCALA 1:30	FECHA: 25/11/2019	CUADERNA MAESTRA		

M1: Mamparo transversal estructural del escalón. M2: Mamparo transversal no estructural número 2.

M3: Mamparo transversal no estructural número 3. M4: Mamparo transversal no estructural número 4.

M5: Mamparo transversal estructural de colisión.

Bao 1	Bao 2	Bao 3	Bao 4 M1	Bao 5	M2	Bao 6	Bao 7	M3			
								WIS	M4 B	Bao 9	м5
		Eslora									
		Eslora									


Anteproyecto embarcación
de recreo escalonada

ÁLVARO GONZÁLEZ CASTELLANO

ESCALA 1:75

FECHA: 28/11/2019 UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA

PLANO DE ESTRUCTURA **DE FONDO Y CUBIERTA**

M1: Mamparo transversal estructural del escalón. M2: Mamparo transversal no estructural número 2. M3: Mamparo transversal no estructural número 3.

M4: Mamparo transversal no estructural número 4.

M5: Mamparo transversal estructural de colisión.

Eslora total	15,000 m
Eslora en la flotación	13,980 m
Manga de trazado	4,000 m
Puntal a cubierta ppal	3,000 m
Calado de trazado	0,601 m
Separación cuadernas	1,398 m
Separación longitudinales	0,5 m
Separación líneas de agua	0,2 m

Anteproyecto embarcación
de recreo escalonada

ÁLVARO GONZÁLEZ CASTELLANO

ESCALA 1:75

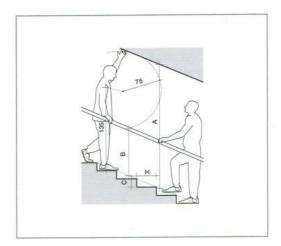
FECHA: 30/11/2019 UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA

PLANO DE ESTRUCTURA **DE COSTADO**

CAPÍTULO 9

DISPOSICIÓN GENERAL

9. Disposición General


El fin de este capítulo del proyecto es subdividir y compartimentar el buque, partiendo de la disposición estructural elegida y del propio dimensionamiento de los paneles y los refuerzos. Una vez conocida la ubicación de los paneles y los refuerzos, es posible realizar la distribución general del buque. Para poder realizarla de una forma correcta hay que tener en cuenta:

- I. Formas del caso.
- II. Posición y tamaño de los motores.
- III. Número, posición y tamaño de los paneles y los refuerzos.

La disposición general es fundamental para realizar el estudio de pesos y poder calcular el centro de gravedad de la embarcación. Este valor tiene que ser similar al calculado de forma preliminar con el fin de que se cumpla la condición de equilibrio al navegar a 40 nudos en planeo.

A continuación, se describirá los distintos espacios que componen el interior de la embarcación y finalmente se mostrarán los planos de disposición general.

Cabe decir que, para el dimensionamiento de todas las escaleras del buque, se ha empleado la normativa existente en la arquitectura de los edificios. Extraída del documento "Las medidas en arquitectura de Enrique Steegman y José Acebillo".

Escalón		Gradiente	A paso libre	B altura pasamanos		
С	Н					
13	37	20°	215	85		
15	33	25°	220	80		
17	29	30°	225	80		
18	27	35°	230	80		
20	23	40°	235	80		
21	21	*45°	245	85		
22	19	*50°	250	85		

Figura 81. Dimensiones escaleras I

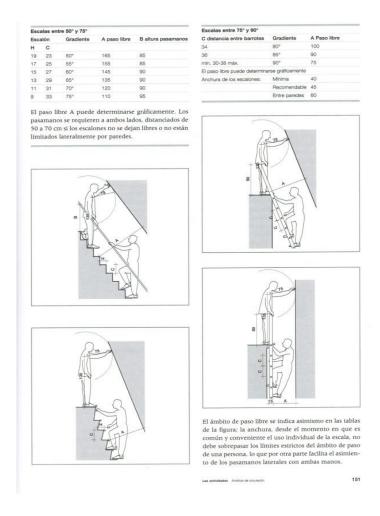


Figura 82. Dimensiones escaleras II

Para las dimensiones de pasillos para que el paso fuera cómodo, se ha tomado el valor genérico siendo este igual a 60 cm.

A continuación, se va a describir los espacios de la embarcación. Es un yate orientado a aquellas personas que quieren disfrutar de la velocidad, pero sin perder todos los beneficios que ofrece un buque con estas dimensiones. Para ello, se ha decidido que los interiores transmitan amplitud dándole a la altura del techo interior un valor de 2 metros en todo momento para evitar la sensación de agobio.

Al ser un barco de 15 metros, se ha tomado la decisión de que tengo dos camarotes matrimonio, dos baños y un amplio salón – cocina. En la cubierta exterior, en la zona de la superestructura se contará con una cama de descanso, el mando de control, un sofá biplaza y una barra de bar. Y finalmente, contará con amplias zonas de descanso para poder tomar el sol y disfrutar de todas las comodidades que tiene un apartamento, pero en alta mar.

9.1. Cubierta interior

9.1.1. Camarote doble de proa

Este camarote se encuentra ligeramente más elevado que el resto de la distribución ya que por las formas del casco, así se consigue aumentar la manga del mismo. En todo momento se respeta que la altura del interior de la habilitación sea 2 metros.

Está formado por una cama matrimonio de 2 x 3 metros siguiendo las formas de la proa, dos muebles en los laterales con dimensiones estándar a lo que existe en el mercado.

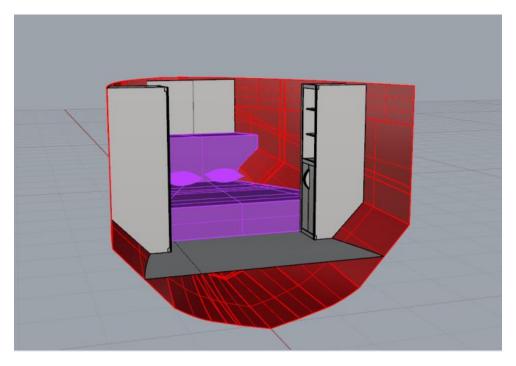


Figura 83. Camarote doble en proa

9.1.2. Baño de proa

Se encuentra en la parte estribor en proa, al terminar la habitación de proa. Es un baño cerca de las escaleras para acceder a la cubierta superior, es un aseo sin ducha ya que la finalidad de este baño es estar accesible para las personas que se encuentren en la cubierta superior. Cuenta con un lavabo, espejo y un WC. En todo momento se respeta las dimensiones adecuadas para las personas.

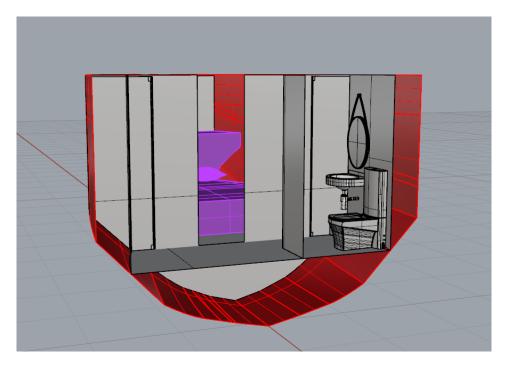


Figura 84. Baño de proa

9.1.3. Recibidor y escaleras de acceso a la cubierta superior

Es la primera estancia que se ve al bajar a la cubierta interior. Tiene un mueble con cajoneras y un colgador de abrigos. En esta zona, se encuentra el punto de unión de acceso al baño de proa, al camarote de proa, las escaleras de acceso a la cubierta superior y el acceso al salón y a la cocina.

Las escaleras son abiertas con peldaños alternativos con el fin de que la huella sea amplia y así evitar tropiezos.

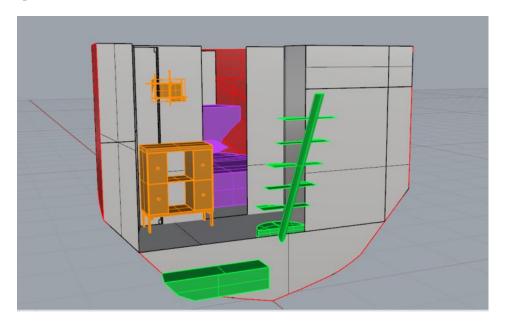


Figura 85. Recibidor principal en la entrada a la cubierta interior

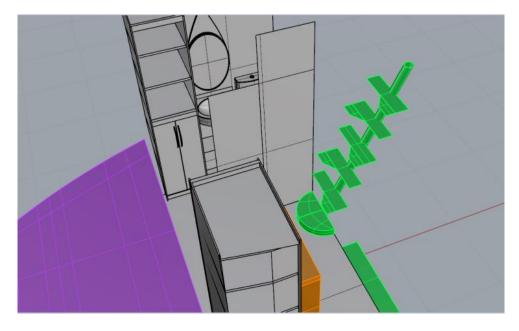


Figura 86. Escaleras de acceso a la cubierta superior

9.1.4. Cocina y salón

Se encuentra en la banda de estribor separada por un mamparo no estructural de la habilitación de proa. Se trata de una cocina con una distribución tipo "L".

Cuenta con una encimera y sus correspondientes muebles. En ellos se sitúa un fregadero doble y la vitrocerámica. La nevera se encuentra ubicada al lado de la escalera de acceso. En frente de la cocina se ubica un sillón amplio por lo que se ha querido que la cocina tenga amplitud de ahí que se haya juntado con el salón.

Debido a las formas del casco, tanto el sillón como la cocina se ha tenido que adaptar a dichas formas, pero en todo momento se ha respetado la fontanería y se ha intentado que los muebles de la cocina pierdan el mínimo espacio posible de almacenamiento.

Finalmente, hay que mencionar que a popa se encuentra el acceso tanto como al baño de popa o al camarote de popa.

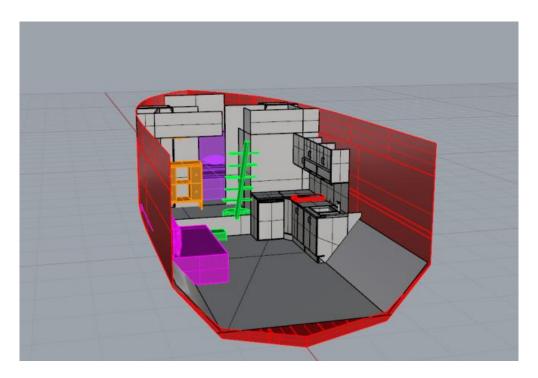


Figura 87. Distribución cocina y salón

9.1.5. Baño de popa

El baño de popa se ubica a estribor del buque, el acceso a este baño se encuentra en el salón cocina. Es un baño completo, cuenta con un lavabo con su correspondiente mueble, un wc y un planto de ducha con asiento e hidromasaje.

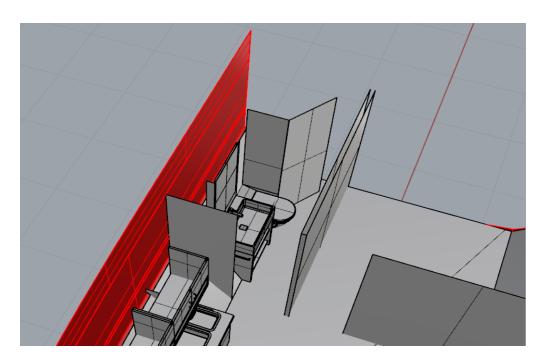


Figura 88. Baño de popa

9.1.6. Camarote doble de popa

Se encuentra a babor y su acceso se encuentra a babor del salón. Dicho camarote cuenta con una cama doble, armario, un mueble con cojones y una TV.

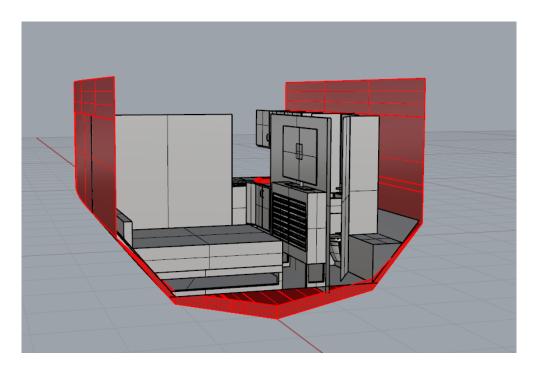


Figura 89. Camarote de popa

9.1.7. Sala de máquinas

Se encuentra en la parte más a popa de la cubierta interior, justo debajo de la terraza. El acceso a dicha sala es a partir de la terraza donde se encuentra una trampilla y con una escalerilla se accede a ella.

En esta sala, se encuentra los motores y todos los equipos necesarios para su correcto funcionamiento, se encuentran también los transformadores baterías y equipos que formarán el grueso de la instalación eléctrica de la embarcación.

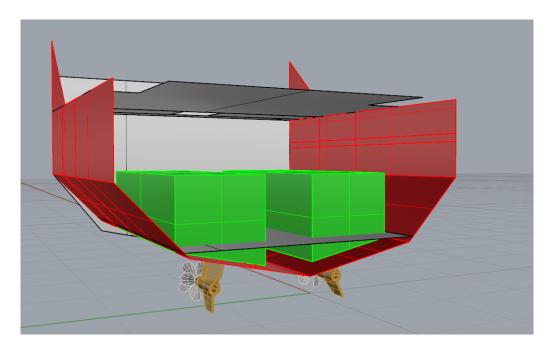


Figura 90. Sala de máquinas

9.2. Cubierta superior

Al hablar de cubierta superior se hace referencia a todo lo que está expuesto a la intemperie incluyendo el puente de gobierno que está protegido mediante la superestructura. En el puente de gobierno es donde se encuentran todos los equipos necesarios para la navegación y el gobierno de la embarcación.

Cabe destacar, que la cubierta tendrá un recubrimiento de material antideslizante, y a su vez también destacar que el diseño de este se ha basado en las formas cuadradas que tiene el yate "Antonio yachts D46".

Figura 91. Yate Antonio yachts "D46 cruiser"

9.2.1. Solarium proa

Se trata de la zona más a proa de la embarcación y se accede a ella desde la zona de popa a través de las pequeñas escaleras ubicadas en popa y posteriormente a través de los pasillos laterales a ambos lados de la caseta.

En proa a su vez, se encuentra el ancla con su respectivo molinete y un registro para poder acceder a la caja de cadenas. Pegado a la superestructura se encontrará una colchoneta de grandes dimensiones que formará el *solárium*, en el que se podrá disfrutar del sol y la brisa durante la navegación.

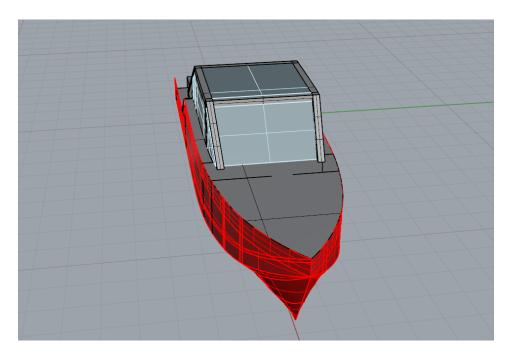


Figura 92. Solárium proa 4 x 4 metros

9.2.2. Superestructura

Se trata de la zona central de la embarcación, diseñada principalmente en vidrio siguiendo unas líneas futuristas y consiguiendo una gran luminosidad en el interior.

Su interior está compuesto en primer lugar, en la zona más a proa y a estribor el puesto de mando compuesto por dos butacas y las pantallas y equipos necesarios para el correcto manejo de la embarcación. Al lado de éste, justo en crujía se encuentran las escaleras nombradas anteriormente de acceso a la cubierta interior y al lado de estas se encuentra una cama de medidas estándar.

En la parte más a popa y a estribor de la superstructura se encuentra un sillón de grandes dimensiones y a babor un mueble bar, con sus correspondientes muebles.

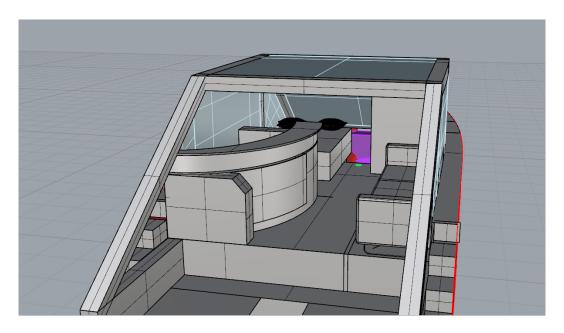


Figura 93. Superestructura vista del bar, cama de descanso y sofá

9.2.3. Terraza

La terraza es la zona que está más a popa de la parte superior de la cubierta superior. En ello se puede encontrar unas escaleras pequeñas de acceso entre la superestructura y dicha zona. A ambos lados de la escalera se puede apreciar unas camas *chill out* para poder disfrutar del sol.

Con formas modernistas se puede ver las escaleras de acceso al solárium de proa como se ha nombrado anteriormente.

Finalmente, cerca del espejo de popa se puede encontrar dos hamacas para poder coger sol también y dos escaleras laterales para poder acceder a la plataforma de baño. Todo ello protegido con una barandilla de cristal de última generación.

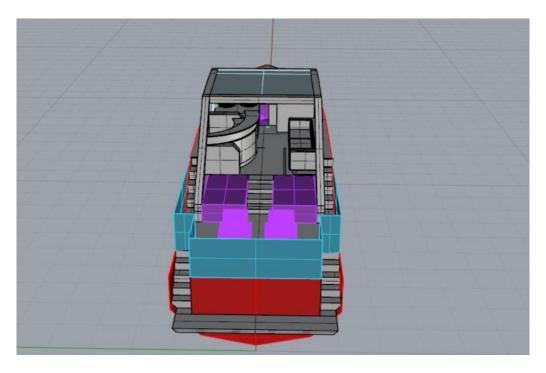
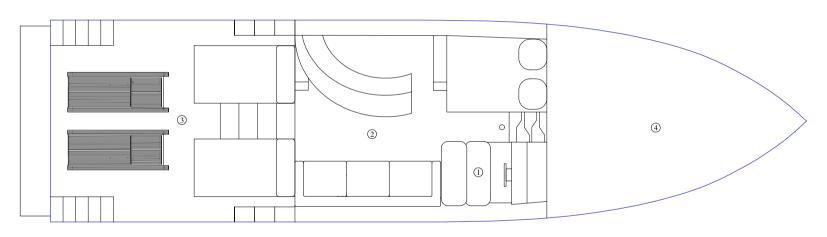
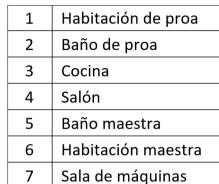
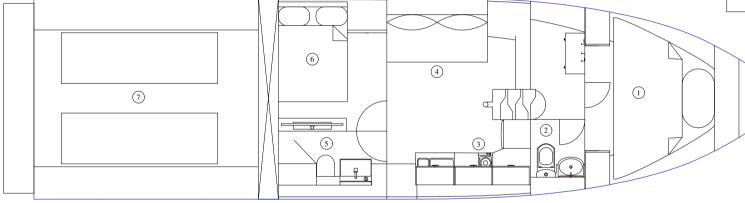


Figura 94 Terraza vista desde popa



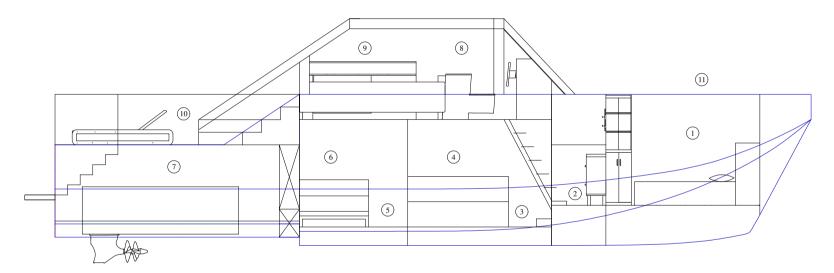
9.3. Planos de disposición general


A continuación, se expondrá los siguientes planos obtenidos de la disposición general:


- o Plano de la disposición general de la cubierta superior.
- o Plano de la disposición general de la cubierta interior.
- o Plano de la disposición general del perfil.

1	Mando de control
2	Zona de descanso
3	Solárium Popa
4	Solárium Proa

Anteproyecto en de recreo esc		UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
ÁLVARO GONZÁLEZ	CASTELLANO	NAVAL Y OCEÁNICA
ESCALA 1:75	FECHA: 24/10/2019	Disposición general cubierta superior


Anteproyecto embarcación
de recreo escalonada

ÁLVARO GONZÁLEZ CASTELLANO

ESCALA 1:75 FECHA: 24/10/2019

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA

Disposición general cubierta interior

1	Habitación de proa
2	Baño de proa
3	Cocina
4	Salón
5	Baño maestra
6	Habitación maestra
7	Sala de máquinas
8	Mando de control
9	Zona de descanso
10	Solárium Popa
11	Solárium Proa

Anteproyecto embarcación
de recreo escalonada

ÁLVARO GONZÁLEZ CASTELLANO

ESCALA 1:75 FECHA: 24/10/2019

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA

DISPOSICIÓN GENERAL PERFIL

CAPÍTULO 10

CÁLCULO DE ARQUITECTURA NAVAL

10. Cálculo de Arquitectura Naval

El principal objetivo de este capítulo es la obtención del libro de pesos y el ajuste del mismo al conocer la fuerza de viento existente con la velocidad de mérito. A su vez, realizar el estudio de estabilidad de la embarcación. Para ello, se seguirá la Normativa UNE-EN ISO 12217-1, facilitando los pasos a seguir en el estudio de la estabilidad y la flotabilidad de embarcaciones no propulsadas a vela con esloras iguales o superiores a 6 metros.

10.1. Arqueo

Para el desarrollo del arqueo se seguirán las indicaciones dadas en la Circular 7-95. Según lo marcado en la Circular, para embarcaciones de recreo con eslora de hasta 15 metros se calculará el arqueo teniendo en cuenta todos los espacios situados bajo la cubierta principal, y los situados por encima exceptuando cocinas, aseos y puentes de gobierno.

El arqueo bajo cubierta se calcula mediante la siguiente fórmula:

$$A = \frac{K * L_A * \left(\frac{B_A + C_A}{2}\right)^2}{2,83}$$
 (151)

Siendo:

- o K: 0,18 (cascos de fibra de vidrio)
- \circ L_A : eslora medida sobre la cubierta exterior desde el extremo de popa del espejo.
- o B_A : manga medida, fuera del forro en la sección mayor.
- \circ C_A : contorno de la embarcación, medido en la sección mayor.

$$A = \frac{0.18 * 15 * \left(\frac{4.022 + 12.6}{2}\right)^2}{2.83} = 65.899$$
 (152)

A continuación, se calcula el arqueo de los espacios sobre cubierta, realizándose de acuerdo con la Regla 1ª. Dicha regla argumenta que, para los espacios cerrados sobre cubierta, en caso de estar delimitados por superficies curvas, hay que seguir los siguientes pasos:

- i. Se toman las mangas en los extremos y en la eslora media.
- ii. Se obtiene el área media central del compartimento.
- iii. Se multiplica ésta por el puntal medio para obtener el volumen.
- iv. Se divide el volumen por 2,83 para obtener las Toneladas de Registro Bruto (TRB)

Tabla 131. Desglose del cálculo del arqueo para los espacios de cubierta

Manga en el extremo 1 (m)	2,990
Manga en el extremo 2 (m)	2,706
Manga en la eslora media (m)	2,840
Eslora media (m)	2,127
Área media (m2)	6,044
Puntal medio (m)	2,000
Volumen (m3)	12,088
Toneladas de Registro Bruto	4,271

Por lo que finalmente se obtiene un arqueo total de 70,1704 TRB.

10.2. Estimación de pesos y cálculo del centro de gravedad

En este apartado se obtendrá el valor exacto tanto del peso en rosca de la embarcación, como de su peso en plena carga, la cual es la condición por la cual se ha calculado la condición de equilibrio con la velocidad de 40 nudos del proyecto. A su vez, se determinarán las coordenadas de los centros de gravedad para ambas condiciones.

Cabe destacar que primero se calculará el libro de pesos original del buque y posteriormente, se le aplicará la fuerza existente debido al viento. Con el fin de que la embarcación navegue con las mismas condiciones con las que se le ha calculado el equilibrio y ello implica el movimiento de la coordenada longitudinal del centro de gravedad.

10.2.1. Estimación de pesos y cálculo del centro de gravedad inicial

10.2.1.1. Peso de la estructura

Para calcular el peso de la estructura se tendrán en cuenta los pesos de los laminados de los paneles, mamparos y refuerzos, así como el peso de los materiales del núcleo de los mamparos y de los refuerzos, todos estos valores han sido obtenidos en el "Capítulo 8".

Cabe destacar que para el aligeramiento de pesos y ajustarlo en un principio al peso preliminar obtenido en el "Capítulo 3", los mamparos, la cubierta interior y la superestructura se realizará en fibra de carbono.

Además, se calculará el peso de la superestructura teniendo en cuenta que estará formado por paneles y vidrio.

Tabla 132. Pesos y centros de gravedad de la estructura inicial I

Peso **VCG** Peso LCG TCG ML Elemento Área (m^2) laminado (kg) (m) (m) (m) (kg*m)

MT ML (kg*m) (kg*m) (kg/m^2) Laminado 67,48 7,53 0,88 28,669 1.934 14.569 1.708,60 de fondo Laminado 43,52 17,668 769,02 8 2,09 6.155,30 1.613,90 del costado Laminado 52,28 10,334 540,35 6,9 2,45 3.730,80 1.327,70 de cubierta **TOTAL** 3.243 4.650,30 24.455 (kg)

Tabla 133. Centros de gravedad de la estructura inicial I

XG (m)	7,538
YG (m)	0,000
ZG (m)	1,433

Tabla 134. Pesos y centros de gravedad de la estructura inicial II

Elemento	Área (m²)	Peso laminado (kg/m^2)	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Mamparos	30,330	11,210	238,000	7,350	-	1,540	1750,000	-	367,980
Cuadernas de fondo	5,100	17,668	96,340	6,360	-	0,540	613,080	-	52,039
Cuadernas de costado	2,700	17,668	52,500	7,190	-	1,840	377,500	-	96,968
Baos	4,191	17,668	79,880	7,100	-	1,840	574,390	-	147,540
Long. De fondo	3,383	17,668	86,970	6,370	-	0,240	554,100	-	21,412
Long. De costado	3,838	17,668	84,610	7,110	-	1,680	601,700	-	142,800
Esloras	1,569	17,668	35,720	7,180	-	2,460	256,580	-	87,910
Cubierta interior	34,250	10,334	250,700	6,330	-	0,510	1589,000	-	127,840
Superestructura	53,330	10,000	376,200	6,870	-	3,490	2585,000	-	1316,000
		TOTAL (Kg)	1301,000				8902,000	-	2360,000

Tabla 135. Centros de gravedad de la estructura inicial II

XG (m)	6,842
YG (m)	0,000
ZG (m)	1,814

10.2.1.2. <u>Peso de la maquinaria</u>

Para la estimación de pesos de la maquinaria, se ha tomado el peso del motor IPS 800, indicado en el "Capítulo 6". Además, el peso de todos los servicios necesarios para la sala de máquinas ha sido extraídos de catálogos comerciales.

Tabla 136. Pesos y centros de gravedad de la maquinaria

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
2 motores	3.600,00	3,11	i	0,82	11.197,80	-	2.957,40
Baterías de motores	45	1,1	-	0,73	49,5	1	33,01
Baterías servicios	45	1,1	1	0,73	49,5	1	33,01
Bomba combustible	4	1,1	1	0,44	4,4	1	1,76
Bomba refrigeración	3	1,1	ı	0,44	3,3	ı	1,32
Bomba de sentinas	3	1,1	-	0,44	3,3	1	1,32
Extractor	3	1,1	-	1,8	3,3	-	5,4
Válvulas de fondo	15	4,06	ı	0,15	60,87	ı	2,25
Tuberías y mangueras	40	4,06	-	0,9	162,33	-	36
Extintores 55B	10	2,43	-	0,9	24,25	-	9
TOTAL	3768				11558,55	0	3080,46

Tabla 137. Centros de gravedad de la maquinaria

XG (m)	3,067
YG (m)	0,000
ZG (m)	0,817

10.2.1.3. Fondeo y amarre

Tabla 138. Pesos y centros de gravedad de Fondeo y amarre

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Ancla	25	14,46	1	2,4	361,56	1	60
Cadena	95	14,46	1	2,4	1.373,94	1	228
Molinete	63	14,46	1	2,4	911,14	1	151,2
Cabo	28	7,5	-	2,4	210	-	67,2
TOTAL	211				2.856,64	-	506,4

Tabla 139. Centros de gravedad de Fondeo y amarre

XG (m)	13,538
YG (m)	0,000
ZG (m)	2,400

10.2.1.4. <u>Servicios</u>

Como se servicio se ha contado con todo aquello que ofrece un suministro al pasajero, tanto electricidad como fontanería e incluso, todo lo necesario para una evacuación de emergencia.

Tabla 140. Pesos y centros de gravedad de Servicios

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Instalación eléctrica	45	7,5	-	2	337,5	-	90
Ventilación	15	7,5	-	2	112,5	ı	30
Electrónica de navegación	27	9,15	-1,02	3,25	246,99	-27,62	87,71
Accesorios de navegación	30	7,5	-1,02	3,25	225	-30,69	97,45
Tuberías y mangueras	55	7,5	-	2	412,5	-	110
Balsa salvavidas	40	2,31	-	1,68	92,5	ı	67,2
9 Chalecos	10,5	8	-	1,5	84	I	15,75
2 Aros	6	7,24	-	2,5	43,43	-	15
Pirotecnia	4	6,99	-	1,5	27,95	ı	6
1 Extintor	14	6,69	-	1,7	93,63	-	23,8
1 Extintor	14	10,75	-	1,7	150,5	-	23,8
TOTAL	260,5				1.826,49	-58,31	566,71

Tabla 141. Centros de gravedad de Servicios

XG (m)	7,011
YG (m)	-0,223
ZG (m)	2,175

10.2.1.5. <u>Habilitación Proa</u>

La habitación de proa es el compartimento principal, cuenta con una amplia cama un aseo y diversos muebles.

Tabla 142. Pesos y centros de gravedad de Habilitación proa

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
cama proa	80	12,29	1	1,05	983,55	1	84,27
mueble 1	45	11,16	1,39	2,04	502,11	62,55	91,95
mueble 2	45	11,16	-1,39	2,04	502,11	-62,55	91,95
Lavamanos	20	10,65	-1,36	1,6	213	-27,2	31,93
WC	9	10,23	-1,32	1,16	92,04	-11,88	10,43
Espejo	15	10,65	-1,36	2,14	159,75	-20,4	32,16
Mueble pasillo	40	10,71	0,89	1,38	428,24	35,52	55,29
Cuadro	5	10,92	0,91	2,46	54,61	4,54	12,29
Total	259				2.935,40	-19,41	410,27

Tabla 143. Centros de gravedad de Habilitación proa

XG (m)	11,333
YG (m)	- 0,074
ZG (m)	1,584

10.2.1.6. <u>Cocina</u>

La cocina ha sido diseñada, con el fin de que satisfaga todas las necesidades existentes en una vivienda, por lo que contará con nevera, todo tipo de muebles y diversos electrodomésticos.

Tabla 144. Pesos y centros de gravedad de la Cocina

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Nevera	65	9,4	-0,77	0,78	611,01	-50,04	50,39
Vitrocerámica	8	8,96	-1,39	1,29	71,67	-11,14	10,29
Microondas	14	9,4	-0,77	1,03	131,6	-10,78	14,42
Extractor	6	8,96	-1,39	1,6	53,75	-8,35	9,6
Fregadero	8	7,99	-1,42	1,2	63,89	-11,34	9,57
Encimera	30	9,35	-1,18	1,25	280,46	-35,42	37,63
Muebles	20	8,49	-1,32	1,69	169,73	-26,33	33,71
Sillón	50	8	1,23	0,82	399,81	61,29	40,93
Total	201				1.781,90	-92,11	206,53

Tabla 145. Centros de gravedad de la Cocina

XG (m)	8,865
YG (m)	-0,458
ZG (m)	1,027

10.2.1.7. <u>Baño maestra</u>

Tabla 146. Pesos y centros de gravedad del Baño de maestra

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Lavamanos	50	6,39	-1,479	1,31	319,49	-73,94	65,53
WC	15	5,81	-1,328	0,72	87,1	-19,92	10,82
Espejo	10	6,39	-1,479	1,71	63,9	-14,78	17,11
Ducha	100	5,39	-1,302	1,29	538,77	-130,23	128,97
TOTAL	175				1.009,26	-238,88	222,43

Tabla 147. Centros de gravedad del Baño de maestra

XG (m)	5,767
YG (m)	-1,365
ZG (m)	1,271

10.2.1.8. <u>Habitación maestra</u>

Tabla 148. Pesos y centros de gravedad de Habilitación maestra

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Cama	80	5,53	0,78	0,76	442,55	62,7	60,62
Mueble	40	5,52	-0,52	1,1	220,88	-20,84	43,92
Armario	40	6,55	1,39	2,04	262	55,6	81,73
TV	23	5,52	-0,54	1,98	127,01	-12,42	45,48
TOTAL	183				1.052,44	85,04	231,75

Tabla 149. Centros de gravedad de Habilitación maestra

XG (m)	5,751
YG (m)	0,464
ZG (m)	1,266

10.2.1.9. <u>Cubierta exterior</u>

Tabla 150. Pesos y centros de gravedad de Cubierta exterior

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
Bar	50	6,04	0,85	3,12	302,15	42,72	156,14
Cama	80	8,91	0,92	2,79	713,07	73,28	223,08
Sofá	50	6,3	-1,27	2,84	314,77	-63,33	142,03
Cama estribor popa	80	3,85	-0,93	2,25	308	-74,03	179,68
Cama babor popa	80	3,85	0,93	2,25	308	74,03	179,68
Hamacas popa	30	1,33	0	2,24	39,79	0	67,33
TOTAL	370				1.985,70	52,67	947,94

Tabla 151. Centros de gravedad de Cubierta exterior

XG (m)	5,367		
YG (m)	0,142		
ZG (m)	2,562		

10.2.1.10. <u>Carga</u>

Para comenzar, se calcula el peso del fluido contenido en los tanques a partir del volumen estimado y de la densidad de cada líquido. Los tanques irán colocados a popa de la sala de máquinas, con el fin de que el centro de gravedad longitudinal total se encuentre más a proa.

En segundo lugar, se tiene en cuenta el peso de los tripulantes tomando el máximo número permitido y suponiendo un peso total incluyendo el equipaje de 100 kg.

Tabla 152. Pesos y centros de gravedad de la Carga

Peso Muerto/carga							
Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	M. longitudinal	M. transversal	M. vertical
Tanques de combustible	1400	4,65	0	1,37	6510	0	1924,44
Tanques de agua dulce	300	4,65	0	0,51	1395	0	153,27
Lodos	80	6	0	0,10	480	0	8
Persona 1 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 2 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 3 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 4 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 5 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 6 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 7 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 8 + Pertrechos	100	7,5	0	2,00	750	0	200
Persona 9 + Pertrechos	100	7,5	0	2,00	750	0	200
Provisiones	70	7,5	0	2,00	525	0	140
Reserva	50	7,5	0	2,00	375	0	100
Total	2800				16035	0	4125,71

Finalmente, a partir de todos los pesos mencionados anteriormente se obtienen los valores del peso en rosca y a plena carga, así como las coordenadas de los centros de gravedad:

Tabla 153. Estimación de pesos y centros de gravedad

	Peso (kg	XG(m)	YG (m)	ZG (m)
Peso en r	osca 9972,71	0 5,852	-0,027	1,322
Peso a plen	a carga 12772,71	5,824	-0,021	1,355

El centro de gravedad obtenido finalmente es 5,825 m, para que se cumpla la condición de equilibrio calculada en el "Capítulo 4" hay que tener un centro de gravedad longitudinal igual a 6,4144 m que fue estimado en el cálculo de pesos preliminar. Para no tener que ajustar dos veces, se realiza el ajuste incluyendo la resistencia al viento calculada el "Capítulo 7" y así se tiene en cuenta dicha resistencia para el traslado de pesos.

10.3. Estimación de pesos y cálculo del centro de gravedad incluyendo la resistencia al viento.

10.3.1. Cálculo del traslado de pesos debido a la resistencia al viento

Sin la interacción del viento, se tiene la condición de equilibrio que se ha calculado anteriormente:

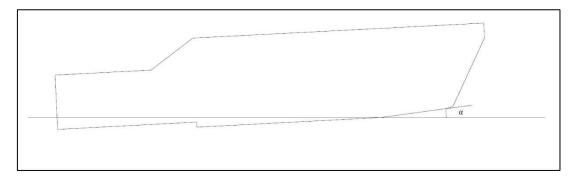


Figura 95. Condición del trimado dinámico

Al tener en cuenta la resistencia al viento, la embarcación sufre un desfase incrementando el trimado dinámico por lo que el barco deja de estar en la condición de equilibrio deseada para el planeo.

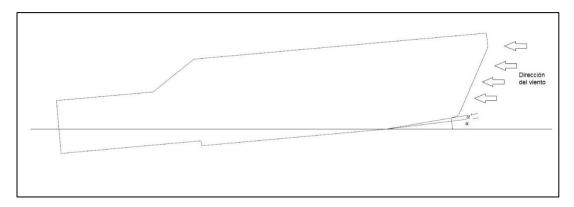


Figura 96. Condición del trimado dinámico con un desfase debido al viento

$$\boldsymbol{\beta} = \alpha + \alpha' \tag{153}$$

Siendo:

- \circ α = ángulo del trimado del buque
- o α' = incremento del ángulo del trimado debido al viento

Para que el barco navegue en la condición de equilibrio deseada el nuevo ángulo debe ser igual al trimado dinámico utilizado en los cálculos:

$$\boldsymbol{\beta} = \alpha \tag{154}$$

Para ello, se calcula la distancia necesaria de pesos para que el centro de gravedad longitudinal definitivo coincida con el esperado en la condición de equilibrio a la velocidad acordada.

$$M_{viento} = M_{adrizante}$$
 (155)

$$M_{viento} = \rho * g * \nabla * \overline{GM}_{L} * seno(\alpha'). \tag{156}$$

$$\alpha' = arcseno\left(\frac{M_{viento}}{\rho * g * \nabla * \overline{GM}_{L}}\right). \tag{157}$$

Tabla 154. Valores del momento creado por el viento y el GML

M. viento	M. viento -62096,51	
GML	36,814	m

Cabe decir que el valor del momento se ha obtenido en "TDYN COMPASS" al obtener la resistencia al avance. El valor de GMl es a plena carga y ha sido obtenido en "Maxsurf".

$$\alpha' = arcseno\left(\frac{62096,51}{1025 * 9.81 * 12.45 * 36.814}\right).$$
(158)

$$\alpha' = 0.77^{\circ} \tag{159}$$

Si no se tuviera en cuenta la resistencia al viento, la embarcación a 40 nudos estaría navegando en una condición errónea y no cumpliría la condición de equilibrio calculada en el "Capítulo 4"

Tabla 155. Error producido debido a la resistencia al viento

Trimado teórico	Trimado real	Error
2,85	3,62	27,09%

Con el desfase definido, es posible saber cuánto hay que trasladar el centro de gravedad longitudinal para cumplir la condición de equilibrio:

$$\Delta * \overline{gg} = \Delta * \overline{GM}_L * tg(\alpha')$$
 (160)

$$\overline{gg} = \overline{GM}_L * tg(\alpha') \tag{161}$$

$$\overline{gg} = 36,814 * tg(0,77)$$
 (162)

$$\overline{gg} = 0.4948 \, m \tag{163}$$

Finalmente, hay que realizar un traslado de pesos de casi 0,5 metros en la dirección de proa para lograr que el buque navegue con la velocidad deseada en la condición correcta.

10.3.2. Estimación de pesos y cálculo del centro de gravedad teniendo en cuenta la Resistencia al viento

Para el ajuste, se decide trasladar los motores lo más a proa en la sala de máquinas y trasladar los tanques de combustibles y agua a proa ya que no existe ninguna normativa que lo prohíba. Con este ajuste, se consigue obtener el centro de gravedad deseado.

A continuación, se mostrará los ajustes realizados en las tablas de distribución de pesos de la maquinaria y la condición de carga. Con el fin de obtener la posición del centro de gravedad longitudinal necesario para que se produzca la condición de equilibrio a la velocidad de 40 nudos.

10.3.2.1. <u>Peso de la maquinaria</u>

Tabla 156. Pesos y centros de gravedad de la maquinaria

Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	ML (kg*m)	MT (kg*m)	ML (kg*m)
2 motores	3600	3,35	0	0,821	12060	0	2957,4
Baterías de motores	45	1,1	0	0,733	49,5	0	33,0075
Baterías servicios	45	1,1	0	0,733	49,5	0	33,0075
Bomba combustible	4	1,1	0	0,44	4,4	0	1,76
Bomba refrigeración	3	1,1	0	0,44	3,3	0	1,32
Bomba de sentinas	3	1,1	0	0,44	3,3	0	1,32
Extractor	3	1,1	0	1,8	3,3	0	5,4
Válvulas de fondo	15	4,0582	0	0,15	60,873	0	2,25
Tuberías y mangueras	40	4,0582	0	0,9	162,328	0	36
Extintores 55B	10	2,425	0	0,9	24,25	0	9
TOTAL	3768				12420,75	0	3080,46

Tabla 157. Centros de gravedad de la maquinaria

XG (m)	3,296
YG (m)	0,000
ZG (m)	0,817

10.3.2.2. <u>Carga</u>

Para comenzar, se calcula el peso del fluido contenido en los tanques a partir del volumen estimado y de la densidad de cada líquido.

En segundo lugar, se tiene en cuenta el peso de los tripulantes tomando el máximo número permitido y suponiendo un peso total incluyendo el equipaje de 100 kg.

Tabla 158. Pesos y centros de gravedad de la Carga

	Peso Muerto/carga							
Elemento	Peso (kg)	LCG (m)	TCG (m)	VCG (m)	M. longitudinal	M. transversal	M. vertical	
Tanques de combustible	1400	12,5	0	0,5	17500	0	700	
Tanques de agua dulce	300	11	0	0,51	3300	0	153,27	
Lodos	80	6	0	0,1	480	0	8	
Persona 1 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 2 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 3 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 4 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 5 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 6 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 7 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 8 + Pertrechos	100	7,5	0	2	750	0	200	
Persona 9 + Pertrechos	100	7,5	0	2	750	0	200	
Provisiones	70	7,5	0	2	525	0	140	
Reserva	50	10	0	2	500	0	100	
Total	2800				29055	0	2901,27	

A partir de todos los pesos mencionados anteriormente se obtienen los valores del peso en rosca y a plena carga, así como las coordenadas de los centros de gravedad:

Tabla 159. Estimación de pesos y centros de gravedad

	Peso (kg)	LCG (m)	TCG (m)	VCG (m)
Peso en rosca	9972,710	5,938	-0,027	1,322
Peso a plena carga	12772,710	6,911	-0,021	1,259

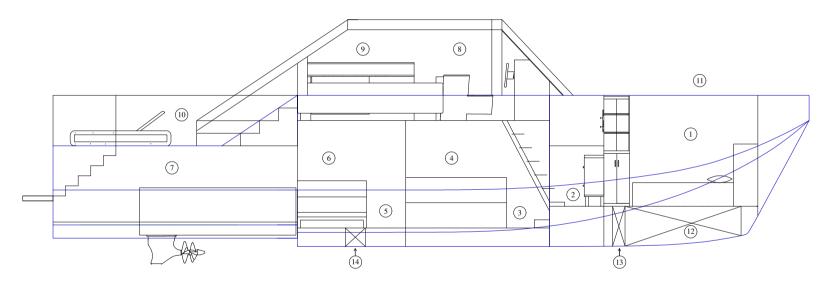

Al centro de gravedad longitudinal obtenido a plena carga hay que restarle el medio metro de traslado producido por la resistencia al viento quedando:

Tabla 160. Centro de gravedad longitudinal ajustado

	LCG (m)	LCG teniendo en cuenta el viento a 40 nudos (m)	LCG teórico (m)	Error relativo
Embarcación a plena carga	6,911	6,416	6,414	0,04%

Finalmente, a la velocidad del proyecto se obtiene un centro de gravedad muy similar que el obtenido en la fase preliminar, con un error relativo prácticamente del 0%, con el fin de que se cumpla la condición de equilibrio.

Loa planos de disposición general quedarán modificados. A continuación, se adjunta el plano de disposición general de perfil, en el cual se puede apreciar con claridad la traslación de los motores, los tanques de combustibles y los tanques de agua dulce.

1	Habitación de proa
2	Baño de proa
3	Cocina
4	Salón
5	Baño maestra
6	Habitación maestra
7	Sala de máquinas
8	Mando de control
9	Zona de descanso
10	Solárium Popa
11	Solárium Proa
12	Tanque de combustible
13	Tanque de agua dulce
14	Lodos

Anteproyecto embarcación
de recreo escalonada

ÁLVARO GONZÁLEZ CASTELLANO

ESCALA 1:75 FECHA: 02/01/2020

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA NAVAL Y OCEÁNICA

DISPOSICIÓN GENERAL PERFIL

10.4. Estabilidad

En este apartado, se realizará el estudio de la estabilidad de la embarcación diseñada en este proyecto. Este estudio se regirá según el criterio de la Norma ISO 12217-1.

La categoría de diseño para la embarcación es la categoría C, como se ha comentado en capítulos anteriores.

La normativa según la categoría de diseño y las características de la embarcación señala, en este caso, que deben cumplirse los apartados: 6.1.1, 6.1.2, 6.2, 6.4, 6.6, 6.9. Se analizarán aquellos apartados que requieran cálculos para demostrar el cumplimiento de estos. En cuanto a los otros, se comentará que es lo que dicta la Norma para tener en cuenta que debe aplicarse a la embarcación.

Para el estudio de la estabilidad y cumplimiento de la Norma se usará el software informático "Maxsurf Stability", en el cual se puede fijar los criterios de la normativa ISO a aplicar.

10.4.1. Condiciones de carga

La normativa exige comprobar cada apartado en distintas condiciones de carga, por lo que han sido definidas previamente tal y como indica la misma. Para realizar el estudio de estabilidad de la embarcación diseñada, es necesario definir las siguientes condiciones:

o MLDC: Condición máxima carga.

o MOC: Condición mínima operativa.

o MLA: Condición llegada en carga.

10.4.1.1. <u>MLDC</u>

Se trata de la embarcación en la condición de rosca a la que se ha añadido la carga máxima con el fin de producir el asiento de diseño, con la tripulación en las posiciones típicas utilizadas cuando la embarcación está en ruta.

Tabla 161. Condición de carga MLDC

Item	Cantidad	Peso (T)	Long. (m)	Trans. (m)	Vert. (m)
Peso en Rosca	1	9,972	5,852	-0,025	1,322
Tripulación	9	0,675	7,5	0	2
Equipaje	9	0,225	7,5	0	2
Provisiones	1	0,07	7,5	0	2
Reserva	1	0,05	7,5	0	2
Combustible babor	95%	0,674	12,186	-0,302	0,515
Agua dulce babor	95%	0,157	10,874	-0,488	0,487
Lodos	95%	0,09	6	0	0,251
Combustible estribor	95%	0,674	12,186	0,302	0,515
Agua dulce estribor	95%	0,157	10,874	0,488	0,487
Total		12,744	6,847	-0,02	1,263
Corrección Superficie libre					0,029
VCG					1,292

10.4.1.2. MOC

Embarcación equipada en la condición de rosca con la tripulación, provisiones no comestibles y equipo normalmente llevado a bordo de la embarcación.

Tabla 162. Condición de carga MOC

Item	Cantidad	Peso (T)	Long. (m)	Trans. (m)	Vert. (m)
Peso en Rosca	1	9,972	5,852	-0,025	1,322
Tripulación	1	0,675	7,5	0	2
Equipaje	1	0,225	7,5	0	2
Combustible babor	0%	0	11,363	0	0,009
Agua dulce babor	0%	0	10,769	0	0,002
Lodos	0%	0	6	0	0
Combustible estribor	0%	0	11,363	0	0,009
Agua dulce estribor	0%	0	10,769	0	0,002
Total		10,872	5,988	-0,023	1,378
Corrección Superficie libre					
VCG					1,378

10.4.1.3. <u>MLA</u>

Embarcación en la condición de carga máxima menos el 85% de la capacidad máxima de los depósitos fijos o portátiles de combustibles, aceites y agua potable, y menos el 90% de las provisiones comestibles, pero incluyendo la combinación más desfavorable para la estabilidad de los accesorios o equipos opcionales.

Cantidad Item Peso (T) Trans. (m) Vert. (m) Long. (m) 1 9,972 5,852 -0,025 1,322 Peso en Rosca Tripulación 1 0,675 7,5 2 1 0 2 Equipaje 0,225 7,5 **Provisiones** 1 0,007 7,5 0 2 Reserva 1 0,005 7,5 0 2 Combustible 15% 0.106 12,047 -0,1560.208 babor Agua dulce babor 0,025 15% 10,873 -0,2360,169 Lodos 15% 0,014 0,061 6 0 Combustible 15% 0,106 12,047 0,156 0,208 estribor Agua dulce 15% 0,025 0,236 10,873 0,169 estribor **Total** 11,161 6.127 -0.0221,349 Corrección 0,033 Superficie libre **VCG** 1,383

Tabla 163. Condición de carga MLA

10.4.2. Aberturas inundables

Para demostrar el nivel de estanqueidad de la embarcación, es necesario analizar aquellos puntos en los cuales puede entrar agua al buque: ventanas, escotillas... y la altura a la que se encuentran localizados, respecto a la flotación de máxima carga. Siendo estos los puntos de inundación progresiva.

En el caso de las escotillas, el punto más bajo de las mismas deber estar a una altura mínima con respecto a la flotación tal y como se indica en la norma ISO 12217-1.

Las tuberías que atraviesen el casco y se encuentren por debajo de la línea de flotación de carga cuando la embarcación se encuentre escorada o adrizada se deben instalar válvulas de tomas de agua que satisfagan las Normas ISO-9093-1 y ISO-9093-2. Existen ciertas excepciones indicadas en la norma ISO 12217-1 en el apartado 6.1.1.3.

Para la realización de este estudio, se han definidos dos puntos de inundación siendo estos las ventilaciones de los motores, uno en cada lado de la embarcación. Definidos de la siguiente forma:

Tabla 164. Puntos de inundación

	Long. Pos. (m)	Trans. Pos. (m)	Vert. Pos. (m)
Ventilación del motor 1	2,5	-1,5	2
Ventilación del motor 2	2,5	1,5	2

10.4.3. Ensayo de la altura de inundación

Este ensayo se desarrolla en el apartado 6.1.2. de la norma ISO 12217-1. Dicho ensayo, se realiza en la condición de carga (MLDC) con el software "Maxsurf Stability".

La altura mínima exigida viene dada en la normativa, obtenida a partir de la siguiente gráfica:

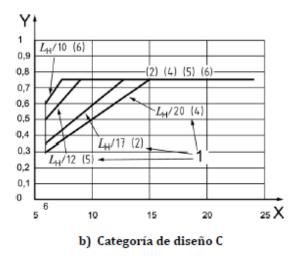


Figura 97. Altura mínima de inundación exigida

Es en función de la eslora por lo que para 15 metros la altura mínima exigida es 0,75 metros. Obteniendo los siguientes resultados:

Tabla 165. Altura de inundación obtenida mediante Maxsurf Stability

Código	Norma	Valor	Unidad	Valor actual	Estado	Margen %
ISO 12217- 1:2002(E)	6.1.2 Downflooding height at equilibrium	0,750	m	1,417	Pass	+88,93

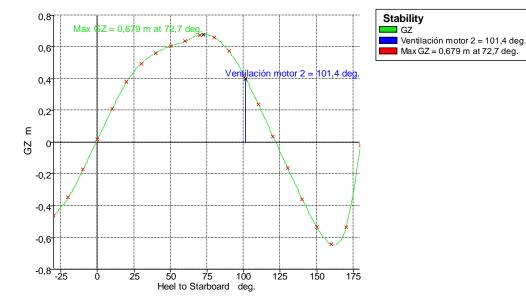


Tabla 166. Curva GZ indicando el punto de inundación

Por lo que la embarcación diseñada, cumple con las exigencias de este apartado de la norma ISO 12217-1.

10.4.4. Ensayo de compensación de pesos

Este ensayo es desarrollado en el apartado 6.2. de la norma ISO 12217-1. El ensayo consiste en la condición de plena carga, evaluar la estabilidad del buque en caso de un movimiento de pesos inesperado provocado por la propia tripulación, con respecto al centro de crujía. Se tiene en cuenta la pérdida de estabilidad en el caso de que el momento de escora superase el par adrizante y el cambio del centro de gravedad vertical (VCG) de los tripulantes.

La condición de plena carga es modificada de dos maneras diferentes según determina la norma, variando la posición de la tripulación. Las dos condiciones de carga (LC1 y LC2) se describen en el "Anexo B" de la norma en el apartado "B.3.2.".

- o <u>LC1</u>: el LCG de la tripulación estará al 75% de la eslora máxima de la zona de tripulación.
- o <u>LC2:</u> el LCG de la tripulación estará al 25% de la eslora máxima de la zona de tripulación.

Tabla 167. Condición de carga LC1

Item	Cantidad	Peso (T)	Long. (m)	Trans. (m)	Vert. (m)
Peso en Rosca	1	9,972	5,852	-0,025	1,322
Tripulación	1	0,675	11,25	0	4,6
Equipaje	1	0,225	7,5	0	2
Provisiones	1	0,07	7,5	0	2
Reserva	1	0,05	7,5	0	2
Combustible babor	95%	0,674	12,2	-0,299	0,515
Combustible estribor	95%	0,674	12,2	0,299	0,515
Agua dulce babor	95%	0,157	10,874	-0,488	0,487
Agua dulce estribor	95%	0,157	10,874	0,488	0,487
Lodos	95%	0,09	6	0	0,252
Total		12,744	6,979	-0,02	1,4
Corrección superficie libre					0,029
VCG					1,43

Tabla 168. Condición de carga LC2

Item	Cantidad	Peso (T)	Long. (m)	Trans. (m)	Vert. (m)
Peso en Rosca	1	9,972	5,852	-0,025	1,322
Tripulación	1	0,675	3,75	0	4,6
Equipaje	1	0,225	7,5	0	2
Provisiones	1	0,07	7,5	0	2
Reserva	1	0,05	7,5	0	2
Combustible babor	95%	0,674	12,2	-0,299	0,515
Combustible estribor	95%	0,674	12,2	0,299	0,515
Agua dulce babor	95%	0,157	10,874	-0,488	0,487
Agua dulce estribor	95%	0,157	10,874	0,488	0,487
Lodos	95%	0,09	6	0	0,252
Total		12,744	6,582	-0,02	1,4
Corrección superficie libre					0,029
VCG					1,43

El ángulo de escora durante el ensayo no debe ser mayor a:

$$\emptyset_{O(R)} = 11.5 + \frac{(24 - L_H)^3}{520} = 12.9^{\circ}$$
 (164)

Tabla 169. Ángulo máximo de escora autorizado durante los ensayos de compensación de pesos, para diferentes esloras de casco

L _H	(m)	6,0	7,0	8,0	9,0	10,0	12,0	15,0	18,0	21,0	24,0
Ø₀(R)	(°)	22,7	20,9	19,4	18,0	16,8	14,8	12,9	11,9	11,6	11,5

Se calcula los momentos adrizantes de la embarcación mediante "Maxsurf Stability" y una hoja de Excel. A su vez, se calcula los momentos escorantes a partir de la siguiente fórmula:

$$M_c = 480 * CL * Bc * \cos(\emptyset)$$
 (165)

Siendo:

- Bc: distancia transversal máxima entre los extremos de las zonas donde se encuentra la tripulación.
- Ø: ángulo de escora.
- CL: número de tripulación máxima (9 personas).

Una vez obtenido las curvas de los momentos adrizantes y escorantes, se representan en un mismo gráfico. La intersección de ambas curvas representa el ángulo de compensación de pesos buscado. Dicho ángulo debe ser menor que el ángulo máximo de escora autorizado.

10.4.4.1. Ensayo de compensación de pesos (LC1)

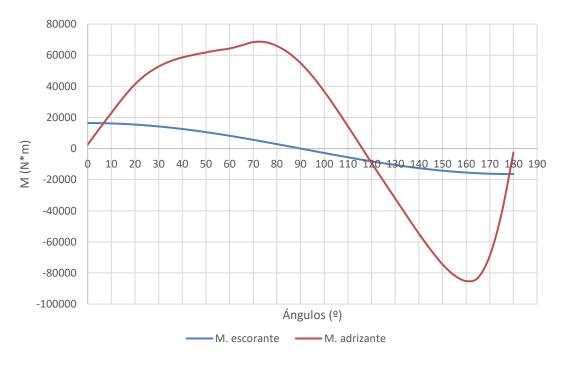


Figura 98. Curva de momentos para el ensayo de compensación de pesos (LC1)

Aproximadamente, el ángulo de compensación de pesos tiene un valor de 6°. Para comprobar que el valor obtenido es el correcto, se realiza el estudio en "Maxsurf Stability".

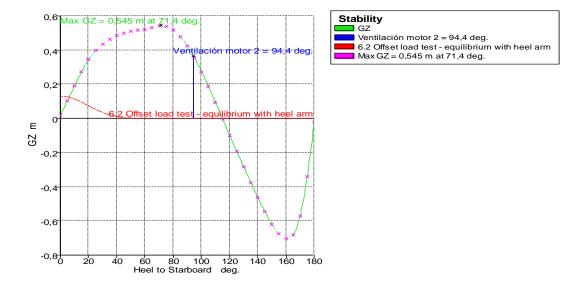


Figura 99. Curva GZ, concidición de carga LC1

Tabla 170. Resultado de Maxsurf Stability compensación de pesos, condición de carga LC1

Código	Norma	Valor	Unidad	Valor actual	Estado	Margen %
ISO 12217- 1:2002(E)	6.2 Offset load test - equilibrium with heel arm	12,9	deg	6,1	Pass	+52,26

Como se puede apreciar, el resultado obtenido es igual que el obtenido teóricamente.

10.4.4.2. Ensayo de compensación de pesos (LC2)

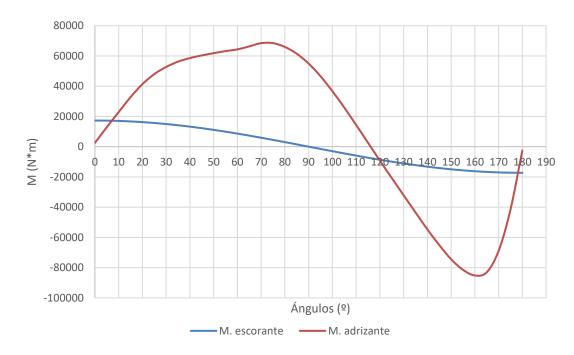


Figura 100. Curva de momentos para el ensayo de compensación de pesos (LC2)

Aproximadamente, el ángulo de compensación de pesos tiene un valor de 6,5°. Para comprobar que el valor obtenido es el correcto, se realiza el estudio en "Maxsurf Stability".

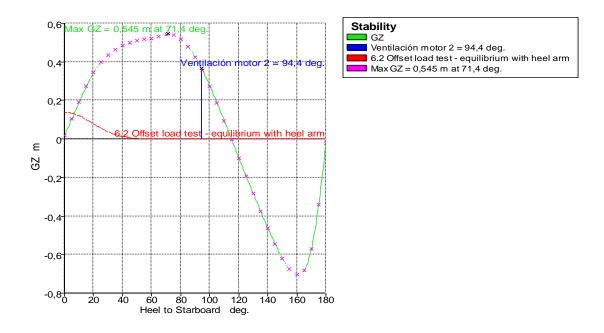


Figura 101. Curva GZ, concidición de carga LC2

Tabla 171. Resultado de Maxsurf Stability compensación de pesos, condición de carga LC2

Código	Norma	Valor	Unidad	Valor actual	Estado	Margen %
ISO 12217- 1:2002(E)	6.2 Offset load test - equilibrium with heel arm	12,9	deg	6,5	Pass	+49,48

Como se puede apreciar, el resultado obtenido es igual que el obtenido teóricamente.

10.4.5. Detección y achique de agua

La norma ISO 1217-1, establece que las embarcaciones deben estar provistas de medios de achique del agua de sentinas de acuerdo con la Norma ISO 15083. La capacidad de bombeo de la sentina debe corresponder al grado de protección de las cubiertas y al riesgo consecuente de entrada de agua en la embarcación.

Las embarcaciones de la categoría de diseño C deben estar provistas de medios de detección de la presencia de agua en la sentina desde el puesto de gobierno, mediante:

- o Inspección visual directo.
- o Alarmas de presencia de agua en las sentinas.
- o Indicadores de funcionamiento de las bombas de las sentinas.

En el presente proyecto, no se van a diseñar estos sistemas.

ANEXO I

a) <u>Espesores mínimos y presiones de los paneles de fondo:</u>

Fondo	I (mm)	b (mm)	x (m)	LWL (m)	x/LWL	Condición x/LWL	KI	Kr (planeadora) Kr (desplazam	nto)	Ad		Kar (planeadora)	Kar (desplazamiento)	Valor min de Kar	Valor max de Kar	K2	kc	Pbmp planeo (KN/m2)	Pbmd desplazamiento (KN/m2)	σd (N/mm2)	t min (mm)
1A	1212,5	663,2	0,60625	13,817	0,04387711	≤0,6	0,693614598	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	44,58584022	17,74880967	68,66179125	11,8186
1B	1212,5	663,2	0,60625	13,817	0,04387711	≤0,6	0,693614598	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	44,58584022	17,74880967	68,66179125	11,8186
10	1212,5	982,9	0,60625	13,817	0,04387711	≤0,6	0,693614598	1 1,20513	1,19176625	≤	2,41523103	0,4	0,472159655	0,4	1	0,394494803	1	40,45223523	14,61009486	68,66179125	14,9845
2A	1212,5	663,2	1,81875	13,817	0,13163132	≤0,6	0,741961126	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	47,69357548	18,98594239	68,66179125	12,2235
2B		663,2	1,81875	13,817	0,13163132	≤0,6	0,741961126	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	47,69357548	18,98594239	68,66179125	12,2235
2C	1212,5	982,9	1,81875	13,817	0,13163132	≤0,6	0,741961126	1 1,20513	1,19176625	≤	2,41523103	0,4	0,472159655	0,4	1	0,394494803	1	43,27184875	15,62845196	68,66179125	15,4980
3A	_	663,2	3,03125	13,817	0,21938554	≤0,6	0,790307653	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	50,80131074	20,2230751	68,66179125	12,6155
3B	1212,5	663,2	3,03125	13,817	0,21938554	≤0,6	0,790307653	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	50,80131074	20,2230751	68,66179125	12,6155
3C	1212,5	982,9	3,03125	13,817	0,21938554	≤0,6	0,790307653	1 1,20513	1,19176625	≤	2,41523103	0,4	0,472159655	0,4	1	0,394494803	1	46,09146227	16,64680906	68,66179125	15,9949
4A	1212,5	663,2	4,24375	13,817	0,30713976	≤0,6	0,838654181	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	53,90904601	21,46020782	68,66179125	12,9956
4B	1212,5	663,2	4,24375	13,817	0,30713976	≤0,6	0,838654181	1 1,30104	0,80413	≤	1,0995856	0,440873934	0,573594623	0,4	1	0,489056348	1	53,90904601	21,46020782	68,66179125	12,9956
4C	_	982,9	4,24375		0,30713976	≤0,6	0,838654181	1 1,20513	1,19176625	≤	2,41523103	0,4	0,472159655	0,4	1	0,394494803	1	48,91107579	17,66516616	68,66179125	16,4769
5A	1015	665	5,3575	-7-	0,38774698	≤0,6	0,883063207	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	59,82491549	23,80532298	68,66179125	13,2813
5B	1015	665	5,3575	13,817	0,38774698	≤0,6	0,883063207	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	59,82491549	23,80532298	68,66179125	13,2813
5C	1092,7	1015	5,3575	13,817	0,38774698	≤0,6	0,883063207	1 1,17219	1,1090905	≤	2,5755625	0,400333752	0,46926722	0,4	1	0,340423476	1	51,54402209	18,48663831	68,66179125	17,4680
6A	1015	665	6,3725	13,817	0,46120721	≤0,6	0,923534733	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	62,56674145	24,89634086	68,66179125	13,5823
6B	1015	665	6,3725	13,817	0,46120721	≤0,6	0,923534733	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	62,56674145	24,89634086	68,66179125	13,5823
6C	1092,7	1015	6,3725	13,817	0,46120721	≤0,6	0,923534733	1 1,17219	1,1090905	≤	2,5755625	0,400333752	0,46926722	0,4	1	0,340423476	1	53,90632777	19,33389642	68,66179125	17,8638
7A	1015	665	7,3875	13,817	0,53466744	≤0,6	0,96400626	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	65,30856741	25,98735874	68,66179125	13,8767
7B	1015	665	7,3875	13,817	0,53466744	≤0,6	0,96400626	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	65,30856741	25,98735874	68,66179125	13,8767
7C	1092,7	1015	7,3875	13,817	0,53466744	≤0,6	0,96400626	1 1,17219	1,1090905	≤	2,5755625	0,400333752	0,46926722	0,4	1	0,340423476	1	56,26863345	20,18115453	68,66179125	18,2510
8A	1015	665	8,4025	13,817	0,60812767	≥0,6	1	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	67,74703666	26,95766598	68,66179125	14,1334
8B	1015	665	8,4025	13,817	0,60812767	≥0,6	1	1 1,3005	0,674975	≤	1,1055625	0,464650058	0,604277401	0,4	1	0,457797116	1	67,74703666	26,95766598	68,66179125	14,1334
8C	1092,7	1015	8,4025	13,817	0,60812767	≥0,6	1	1 1,17219	1,1090905	≤	2,5755625	0,400333752	0,46926722	0,4	1	0,340423476	1	58,3695727	20,93467167	68,66179125	18,5886
9A	1015	673,37	9,4175	13,817	0,6815879	≥0,6	1	1 1,297990	0,68346548	≤	1,13355106	0,462910815	0,600853841	0,4	1	0,454869269	1	67,49345111	26,80493615	68,66179125	14,2386
9B	1015	673,37	9,4175	13,817	0,6815879	≥0,6	1	1 1,297990	0,68346548	≤	1,13355106	0,462910815	0,600853841	0,4	1	0,454869269	1	67,49345111	26,80493615	68,66179125	14,2386
9C	1046,4	1015	9,4175	13,817	0,6815879	≥0,6	1	1 1,18608	1,062096	≤	2,5755625	0,405567523	0,481035527	0,4	1	0,321440192	1	59,13266846	21,45967243	68,66179125	17,4102
10A	1015	678,5	10,4325	13,817	0,75504813	≥0,6	1	1 1,29645	0,6886775	≤	1,15090563	0,461857004	0,598774513	0,4	1	0,453040863	1	67,33980297	26,71217439	68,66179125	14,3020
10B	1015	678,5	10,4325	13,817	0,75504813	≥0,6	1	1 1,29645	0,6886775	≤	1,15090563	0,461857004	0,598774513	0,4	1	0,453040863	1	67,33980297	26,71217439	68,66179125	14,3020
10C	1059,6	1015	10,4325	13,817	0,75504813	≥0,6	1	1 1,18212	1,075494	≤	2,5755625	0,404045156	0,47762986	0,4	1	0,32701329	1	58,91070391	21,3077408	68,66179125	17,7486
11A	1015	666,1	11,4475	13,817	0,82850836	≥0,6	1	1 1,30017	0,6760915	≤	1,10922303	0,464419728	0,603824597	0,4	1	0,457415768	1	67,71345393	26,93746577	68,66179125	14,1473
11B	1015	666,1	11,4475	13,817	0,82850836	≥0,6	1	1 1,30017	0,6760915	≤	1,10922303	0,464419728	0,603824597	0,4	1	0,457415768	1	67,71345393	26,93746577	68,66179125	14,1473
11C	1015	930	11,4475	13,817	0,82850836	≥0,6	1	1 1,1955	0,94395	≤	2,16225	0,420172481	0,502316201	0,4	1	0,346266322	1	61,26210459	22,40903324	68,66179125	17,8406
12A	1015	674	12,4625	13,817	0,90196859	≥0,6	1	1 1,2978	0,68411	≤	1,13569	0,462779935	0,600595799	0,4	1	0,454644427	1	67,4743684	26,79342455	68,66179125	14,2465
12B	1015	674	12.4625	13.817	0.90196859	≥0.6	1	1 1.2978	0.68411	≤	1.13569	0,462779935	0.600595799	0.4	1	0.454644427	1	67.4743684	26.79342455	68.66179125	14.2465
12C	1110	1015	12,4625	13.817	0.90196859	≥0.6	1	1 1.167	1.12665	≤	2,5755625	0,4	0,464993039	0.4	1	0.34711775	1	58.32091095	20.74399444	68.66179125	19.0597
13A	770	507.5	13.285	-7-	0,96149671	≥0.6	1	1 1,34775	0,390775	<	0.64389063	0.547437156	0,737808427	0,4	1	0.456412987	1	79,81758402	32.91467313	68,66179125	11,6898
13B	770	507,5	13,285	-7-	0,96149671	≥0,6	1	1 1,34775	0,390775	<	0.64389063	0,547437156	0,737808427	0,4	1	0,456412987	1	79,81758402	32,91467313	68,66179125	11,6898
13C	581.2	507,5	13,285	13,817	0,96149671	≥0,6	1	1 1,32564	0,294959	<	0.64389063	0,595639933	0,789604121	0,4	1	0.366123444	1	86.84565879	35,22535202	68.66179125	12,5071
14A	770	507,5	13,263	13,817	0,98936093	≥0,6	1	1 1,32304	0,294939		0.64389063	0,593039933	0,694697751	0,4	1	0,300123444	1	79,81758402	30,99144515	68.66179125	17,7362
14A 14B	770	507,5	13,67	13,817	0,98936093	≥0,6	1	1 1,269	0,390775	<	0,64389063	0,547437156	0,694697751	0,4	1	0,430412987	1	79,81758402	30,99144515	68,66179125	17,7362
146 14C	581,2	507,5	13,67	13,817	0,98936093	-,-	1	1 1,32564	0,390775	2	0,64389063	0,547437136		0,4	1	0,456412987	1	86,84565879	35,22535202	68,66179125	12,5071
		, .				≥0,6				2	0,64389063		0,789604121	-			1				8.3526
15A	507,5	311,5	14,23875	13,817	1,03052399	≥0,6	1	1 1,40655	0,15808625	≤ .	-,	0,718197804	1	0,4	1	0,471451879	1	104,7148754	44,61140851	68,66179125	.,
15B	507,5	311,5	14,23875	13,817	1,03052399	≥0,6	1	1 1,40655	0,15808625	≤	0,24258063	0,718197804	1	0,4	1	0,471451879	1	104,7148754	44,61140851	68,66179125	8,3526
15C	507,5	214,4	14,23875	13,817	1,03052399	≥0,6	1	1 1,34775	0,108808	≤	0,1149184	0,803367121	1	0,4	1	0,501913443	1	117,1327559	44,61140851	68,66179125	14,8502
16A	507,5	311,5	14,7461	13,817	1,06724325	≥0,6	1	1 1,40655	0,15808625	≤ .	0,24258063	0,718197804	1	0,4	1	0,471451879	1	104,7148754	44,61140851	68,66179125	8,3526
16B	507,5	311,5	14,7461	13,817	1,06724325	≥0,6	1	1 1,40655	0,15808625	≤ .	0,24258063	0,718197804	1	0,4	1	0,471451879	1	104,7148754	44,61140851	68,66179125	8,3526
16C	507,5	214,4	14,7461	13,817	1,06724325	≥0,6	1	1 1,34775	0,108808	≤	0,1149184	0,803367121	1	0,4	1	0,501913443	1	117,1327559	44,61140851	68,66179125	14,8502

Fondo	Pbmp planeo (KN/m2)	Pbmd desplazamiento (KN/m2)	t min (mm)
1A	44,58584022	17,74880967	11,8186
1B	44,58584022	17,74880967	11,8186
1C	40,45223523	14,61009486	14,9845
2A	47,69357548	18,98594239	12,2235
2B	47,69357548	18,98594239	12,2235
2C	43,27184875	15,62845196	15,4980
3A	50,80131074	20,2230751	12,6155
3B	50,80131074	20,2230751	12,6155
3C	46,09146227	16,64680906	15,9949
4A	53,90904601	21,46020782	12,9956
4B	53,90904601	21,46020782	12,9956
4C	48,91107579	17,66516616	16,4769
5A	59,82491549	23,80532298	13,2813
5B	59,82491549	23,80532298	13,2813
5C	51,54402209	18,48663831	17,4680
6A	62,56674145	24,89634086	13,5823
6B	62,56674145	24,89634086	13,5823
6C	53,90632777	19,33389642	17,8638
7A	65,30856741	25,98735874	13,8767
7B	65,30856741	25,98735874	13,8767
7C	56,26863345	20,18115453	18,2510
8A	67,74703666	26,95766598	14,1334
8B	67,74703666	26,95766598	14,1334
8C	58,3695727	20,93467167	18,5886
9A	67,49345111	26,80493615	14,2386
9B	67,49345111	26,80493615	14,2386
9C	59,13266846	21,45967243	17,4102
10A	67,33980297	26,71217439	14,3020
10B	67,33980297	26,71217439	14,3020
10C	58,91070391	21,3077408	17,7486
11A	67,71345393	26,93746577	14,1473
11B	67,71345393	26,93746577	14,1473
11C	61,26210459	22,40903324	17,8406
12A	67,4743684	26,79342455	14,2465
12B	67,4743684	26,79342455	14,2465
12C	58,32091095	20,74399444	19,0597
13A	79,81758402	32,91467313	11,6898
13B	79,81758402	32,91467313	11,6898
13C	86,84565879	35,22535202	12,5071
14A	79,81758402	30,99144515	17,7362
14B	79,81758402	30,99144515	17,7362
14C	86,84565879	35,22535202	12,5071
15A	104,7148754	44,61140851	8,3526
15B	104,7148754	44,61140851	8,3526
15C	117,1327559	44,61140851	14,8502
16A	104,7148754	44,61140851	8,3526
16B	104,7148754	44,61140851	8,3526
16C	117,1327559	44,61140851	14,8502

b) Espesores mínimos y presiones de los paneles de costado:

Costado	I (mm)	b (mm)	x (m)	LWL (m)	x/LWL	Condición x/LWL	KI	Kr (planeadora)	Kr (desplazamiento)		Ad		Kar (planeadora)	Kar (desplazamiento)	Valor min de Kar	Valor max de Kar	K2	kc	Puntal (m) Calado (m)	Z (m)	h (m)	Kz	Psmp planeo (KN/m2)	Psmd desplazamiento (KN/m2)	σ d (N/mm2)	t min (mm)
1D	1212,5	876	0,60625	13,817	0,04387711	≤0,6	0,693614598	1	1,2372	1,06215	≤	1,91844	0,405561337	0,501760486	0,4	1	0,432225128	1	2	0,32	1,6817832	1,2417832	0,26162706	4,032116985	7,059192222	67,8131488	5,8760
2D	1212,5	876	1,875	13,817	0,1357024	≤0,6	0,744204006	1	1,2372	1,06215	≤	1,91844	0,405561337	0,501760486	0,4	1	0,432225128	1	2	0,32	1,6817832	1,2417832	0,26162706	4,326203081	7,574060786	67,8131488	6,0865
3D	1212,5	876	3,03125	13,817	0,21938554	≤0,6	0,790307653	1	1,2372	1,06215	≤	1,91844	0,405561337	0,501760486	0,4	1	0,432225128	1	2	0,32	1,6817832	1,2417832	0,26162706	4,594212578	8,04327598	67,8131488	6,2722
4D	1212,5	876	4,24375	13,817	0,30713976	≤0,6	0,838654181	1	1,2372	1,06215	≤	1,91844	0,405561337	0,501760486	0,4	1	0,432225128	1	2	0,32	1,6817832	1,2417832	0,26162706	4,875260374	8,535317859	67,8131488	6,4612
5D	1878	1015	5,3575	13,817	0,38774698	≤0,6	0,883063207	1	1,1955	1,90617	≤	2,5755625	0,4	0,406830396	0,4	1	0,490424124	1	3	0,32	2,6817832	1,7417832	0,35051305	5,383495505	8,339075801	67,8131488	7,8823
6D	1878	1015	6,3725	13,817	0,46120721	≤0,6	0,923534733	1	1,1955	1,90617	≤	2,5755625	0,4	0,406830396	0,4	1	0,490424124	1	3	0,32	2,6817832	1,7417832	0,35051305	5,630225611	8,721262626	67,8131488	8,0609
7D	1878	1015	7,3875	13,817	0,53466744	≤0,6	0,96400626	1	1,1955	1,90617	≤	2,5755625	0,4	0,406830396	0,4	1	0,490424124	1	3	0,32	2,6817832	1,7417832	0,35051305	5,876955717	9,103449451	67,8131488	8,2357
8D	1878	1015	8,4025	13,817	0,60812767	≥0,6	1	1	1,1955	1,90617	≤	2,5755625	0,4	0,406830396	0,4	1	0,490424124	1	3	0,32	2,6817832	1,7417832	0,35051305	6,096387507	9,443350975	67,8131488	8,3880
9D	1878	1015	9,4175	13,817	0,6815879	≥0,6	1	1	1,1955	1,90617	≤	2,5755625	0,4	0,406830396	0,4	1	0,490424124	1	3	0,32	2,6817832	1,7417832	0,35051305	6,096387507	9,443350975	67,8131488	8,3880
10D	1805	1015	10,4325	13,817	0,75504813	≥0,6	1	1	1,1955	1,832075	≤	2,5755625	0,4	0,411698143	0,4	1	0,485565427	1	3	0,32	2,6817832	1,7792832	0,33652981	6,03929625	9,366662858	67,8131488	8,3124
11D	1664	1015	11,4475	13,817	0,82850836	≥0,6	1	1	1,1955	1,68896	≤	2,5755625	0,4	0,421867504	0,4	1	0,472615462	1	3	0,32	2,6817832	1,8497832	0,31024133	5,931964687	9,232625441	67,8131488	8,1419
12D	1486	1015	12,4625	13,817	0,90196859	≥0,6	1	1	1,0542	1,50829	≤	5,52049	0,4	0,384848553	0,4	1	0,447650055	1	3	0,32	2,6817832	1,9387832	0,27705446	5,796468104	8,001649621	67,8131488	10,7999
13D	1295	1015	13,4775	13,817	0,97542882	≥0,6	1	1	1,1115	1,314425	≤	4,1925625	0,4	0,422864304	0,4	1	0,406351327	1	3	0,32	2,6817832	2,0342832	0,24144383	5,651075703	8,295912385	67,8131488	9,1305
14D	803	507	14,2388	13,817	1,03052399	≥0,6	1	1	1,2591	0,407121	≤	1,6120225	0,54074841	0,680856322	0,4	1	0,465872496	1	3	0,32	2,6817832	2,2802832	0,14971382	7,133224591	11,29952187	67,8131488	7,0749
15D	714	507	14,7461	13,817	1,06724325	≥0,6	1	1	1,2858	0,361998	≤	1,27449	0,560144983	0,72023442	0,4	1	0,43719221	1	3	0,32	2,6817832	2,2802832	0,14971382	7,389092413	11,95304253	67,8131488	6,2678

Costado	Psmp planeo (KN/m2)	Psmd desplazamiento (KN/m2)	t min (mm)
1D	4,032116985	7,059192222	5,8760
2D	4,326203081	7,574060786	6,0865
3D	4,594212578	8,04327598	6,2722
4D	4,875260374	8,535317859	6,4612
5D	5,383495505	8,339075801	7,8823
6D	5,630225611	8,721262626	8,0609
7D	5,876955717	9,103449451	8,2357
8D	6,096387507	9,443350975	8,3880
9D	6,096387507	9,443350975	8,3880
10D	6,03929625	9,366662858	8,3124
11D	5,931964687	9,232625441	8,1419
12D	5,796468104	8,001649621	10,7999
13D	5,651075703	8,295912385	9,1305
14D	7,133224591	11,29952187	7,0749
15D	7,389092413	11,95304253	6,2678

c) Espesores mínimos y presiones de los paneles de la cubierta:

CUBIERTA	_ , ,	b (mm)	x (m)	LWL (m)	x/LWL	Condición x/LWL	Kl	Kr (planeadora)	Kr (desplazamiento)		Ad		Kar (planeadora)	Kar (desplazamiento)	Valor min de Kar	Valor max de Kar	К2	kc	Pbmp planeo (KN/m2)	Pbmd desplazamiento (KN/m2)	σd (N/mm2)	t min (mm)
1A	1212,5	500	0,60625	13,817	0,04387711	≤0,6	0,6936146	1	1,35	0,60625	≤	0,625	0,4	0,647814322	0,4	1	0,50156033	1	3,235920186	5,240688602	66,4042449	3,1458
1B	1212,5	1000	0,60625	13,817	0,04387711	≤0,6	0,6936146	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,235920186	3,783788334	66,4042449	4,7031
1C	1212,5	1000	0,60625	13,817	0,04387711	≤0,6	0,6936146	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,235920186	3,783788334	66,4042449	4,7031
1D	1212,5	500	0,60625	13,817	0,04387711	≤0,6	0,6936146	1	1,35	0,60625	≤	0,625	0,4	0,647814322	0,4	1	0,50156033	1	3,235920186	5,240688602	66,4042449	3,1458
2A	1212,5	1000	1,81875	13,817	0,13163132	≤0,6	0,74196113	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,46147124	4,047527054	66,4042449	4,8642
2B	1212,5	1000	1,81875	13,817	0,13163132	≤0,6	0,74196113	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,46147124	4,047527054	66,4042449	4,8642
2C	1212,5	1000	1,81875	13,817	0,13163132	≤0,6	0,74196113	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,46147124	4,047527054	66,4042449	4,8642
2D	1212,5	1000	1,81875	13,817	0,13163132	≤0,6	0,74196113	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,46147124	4,047527054	66,4042449	4,8642
3A	1212,5	1000	3,03125	13,817	0,21938554	≤0,6	0,79030765	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,687022295	4,311265774	66,4042449	5,0202
3B	1212,5	1000	3,03125	13,817	0,21938554	≤0,6	0,79030765	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,687022295	4,311265774	66,4042449	5,0202
3C	1212,5	1000	3,03125	13,817	0,21938554	≤0,6	0,79030765	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,687022295	4,311265774	66,4042449	5,0202
3D	1212,5	1000	3,03125	13,817	0,21938554	≤0,6	0,79030765	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,687022295	4,311265774	66,4042449	5,0202
4A	1212,5	1000	4,24375	13,817	0,30713976	≤0,6	0,83865418	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,912573349	4,575004494	66,4042449	5,1714
4B	1212,5	1000	4,24375	13,817	0,30713976	≤0,6	0,83865418	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,912573349	4,575004494	66,4042449	5,1714
4C	1212,5	1000	4,24375	13,817	0,30713976	≤0,6	0,83865418	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,912573349	4,575004494	66,4042449	5,1714
4D	1212,5	1000	4,24375	13,817	0,30713976	≤0,6	0,83865418	1	1,2	1,2125	≤	2,5	0,4	0,46772332	0,4	1	0,38817593	1	3,912573349	4,575004494	66,4042449	5,1714
5A	1062,5	1000	5,38125	13,817	0,38946588	≤0,6	0,8840102	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,181099299	5,017319159	66,4042449	5,0291
5B	1062,5	1000	5,38125	13,817	0,38946588	≤0,6	0,8840102	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,181099299	5,017319159	66,4042449	5,0291
5C	1062,5	1000	5,38125	13,817	0,38946588	≤0,6	0,8840102	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,181099299	5,017319159	66,4042449	5,0291
5D	1062,5	1000	5,38125	13,817	0,38946588	≤0,6	0,8840102	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,181099299	5,017319159	66,4042449	5,0291
6A	1062,5	1000	6,44375	13,817	0,4663639	≤0,6	0,92637572	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,38147529	5,257770348	66,4042449	5,1482
6B	1062,5	1000	6,44375	13,817	0,4663639	≤0,6	0,92637572	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,38147529	5,257770348	66,4042449	5,1482
6C	1062,5	1000	6,44375	13,817	0,4663639	≤0,6	0,92637572	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,38147529	5,257770348	66,4042449	5,1482
6D	1062,5	1000	6,44375	13,817	0,4663639	≤0,6	0,92637572	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,38147529	5,257770348	66,4042449	5,1482
7A	1062,5	1000	7,50625	13,817	0,54326192	≤0,6	0,96874123	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,58185128	5,498221536	66,4042449	5,2646
7B	1062,5	1000	7,50625	13,817	0,54326192	≤0,6	0,96874123	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,58185128	5,498221536	66,4042449	5,2646
7C	1062,5	1000	7,50625	13,817	0,54326192	≤0,6	0,96874123	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,58185128	5,498221536	66,4042449	5,2646
7D	1062,5	1000	7,50625	13,817	0,54326192	≤0,6	0,96874123	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,58185128	5,498221536	66,4042449	5,2646
8A	1062,5	1000	8,56875	13,817	0,62015995	≥0,6	1	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,729695758	5,67563491	66,4042449	5,3489
8B	1062,5	1000	8,56875	13,817	0,62015995	≥0,6	1	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,729695758	5,67563491	66,4042449	5,3489
8C	1062,5	1000	8,56875	13,817	0,62015995	≥0,6	1	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,729695758	5,67563491	66,4042449	5,3489
8D	1062,5	1000	8,56875	13,817	0,62015995	≥0,6	1	1	1,2	1,0625	≤	2,5	0,405521253	0,486625504	0,4	1	0,33474314	1	4,729695758	5,67563491	66,4042449	5,3489
9A	1800	750	9,475	13,817	0,68574944	≥0,6	1	1	1,275	1,35	≤	1,4062	0,37740893	0,481196385	0,4	1	0,50173905	1	4,401814699	5,612313741	66,4042449	4,8840
9B	1700	750	9,475	13,817	0,68574944	≥0,6	1	1	1,275	1,275	<	1,4062	0,383936363	0,489518863	0,4	1	0,50196371	1	4,477945787	5,709380879	66,4042449	4,9271
10A	1281.5	1033.75	10.367	13.817	0.75030759	≥0.6	1	1	1.189875	1.32475062	5 <	2.67159	66 0.37955268	0.451620245	0.4	1	0.39626179	1	4.426817794	5,267359823	66,4042449	5,7957
10B	1281,5	1033,75	10.367	13,817	0,75030759	≥0.6	1	1	,	1.32475062	_	2,67159	.,	0.451620245	0.4	1	0.39626179	1	4.426817794	5,267359823	66,4042449	5,7957
10C	1281,5	1033,75	10,367	13,817	0,75030759	≥0,6	1	1	1,189875	1,32475062		2,67159		0,451620245	0,4	1	0,39626179	1	4,426817794	5,267359823	66,4042449	5,7957
11A	1163.3	968.68	11.4	13,817	0.82507057	≥0.6	1	1	1,209396	1.12686544	_	2.345857		0.481858153	0,4	1	0.384587	1	4.646974277	5.620032103	66,4042449	5,5265
11B	1281,5	1033,75	11.4	13,817	0.82507057	≥0,6	1	1	1,189875	1,32475062	_	2,67159		0,451620245	0.4	1	0.39626179	1	4,426817794	5,267359823	66.4042449	5,7957
11C	1163,3	968,68	11,4	13,817	0,82507057	≥0,6	1	1	1,209396	1,12686544		2,07159		0,451620245	0,4	1	0,39020179	1	4,646974277	5,620032103	66,4042449	5,5265
12A	1287	657	12,434	13,817	0,82507057	≥0,6	1	1	1,209396	0.845559	_	1.07912	.,	0,481858153	0,4	1	0,384587	1	5.065108023	6,599329243	66,4042449	4.6119
$\overline{}$				13,817	_			1		.,	_		.,	.,			.,	1	.,	.,	66,4042449	
12B 12C	1281,5 1287	1033,75 657	12,434 12.434	13,817	0,89990591	≥0,6	1	1 1	1,189875 1.3029	1,32475062	.> ≤	2,67159		0,451620245 0,565822497	0,4	1	0,39626179	1	4,426817794 5.065108023	5,267359823 6,599329243	66,4042449	5,7957 4.6119
				-,-	.,	-7-	_		,	.,	<u> </u>	,		.,	.,	-	.,	1	.,	6,599329243	66,4042449	
13A 13B	1290,6	778,5	13,468	13,817	0,97474126	≥0,6	1	1	1,26645	1,0047321	<u> </u>	1,515151	.,	0,522258199	0,4	1	0,47463534	1	4,809686877	.,	, -	5,1368
	1290,6	778,5	13,468	13,817	0,97474126	≥0,6	-	1	1,26645	1,0047321	_ ≤	1,515155		0,522258199	0,4	1	0,47463534	1	4,809686877	6,091227945	66,4042449	5,1368
14	1560	1015	14,502	13,817	1,04957661	≥0,6	1	1	1,1955	1,5834	≤	2,57556	0,35977842	0,430115101	0,4	1	0,45937932	1	4,196185654	5,01653995	66,4042449	5,9794

CUBIERTA	Pbmp planeo (KN/m2)	Pbmd desplazamiento (KN/m2)	t min (mm)
1A	3,235920186	5,240688602	3,1458
1B	3,235920186	3,783788334	4,7031
1C	3,235920186	3,783788334	4,7031
1D	3,235920186	5,240688602	3,1458
2A	3,46147124	4,047527054	4,8642
2B	3,46147124	4,047527054	4,8642
2C	3,46147124	4,047527054	4,8642
2D	3,46147124	4,047527054	4,8642
3A	3,687022295	4,311265774	5,0202
3B	3,687022295	4,311265774	5,0202
3C	3,687022295	4,311265774	5,0202
3D	3,687022295	4,311265774	5,0202
4A	3,912573349	4,575004494	5,1714
4B	3,912573349	4,575004494	5,1714
4C	3,912573349	4,575004494	5,1714
4D	3,912573349	4,575004494	5,1714
5A	4,181099299	5,017319159	5,0291
5B	4,181099299	5,017319159	5,0291
5C	4,181099299	5,017319159	5,0291
5D	4,181099299	5,017319159	5,0291
6A	4,38147529	5,257770348	5,1482
6B	4,38147529	5,257770348	5,1482
6C	4,38147529	5,257770348	5,1482
6D	4,38147529	5,257770348	5,1482
7A	4,58185128	5,498221536	5,2646
7B	4,58185128	5,498221536	5,2646
7C	4,58185128	5,498221536	5,2646
7D	4,58185128	5,498221536	5,2646
8A	4,729695758	5,67563491	5,3489
8B	4,729695758	5,67563491	5,3489
8C	4,729695758	5,67563491	5,3489
8D	4,729695758	5,67563491	5,3489
9A	4,401814699	5,612313741	4,8840
9B	4,477945787	5,709380879	4,9271
10A	4,426817794	5,267359823	5,7957
10B	4,426817794	5,267359823	5,7957
10C	4,426817794	5,267359823	5,7957
11A	4,646974277	5,620032103	5,5265
11B	4,426817794	5,267359823	5,7957
11C	4,646974277	5,620032103	5,5265
12A	5,065108023	6,599329243	4,6119
12B	4,426817794	5,267359823	5,7957
12C	5,065108023	6,599329243	4,6119
13A	4,809686877	6,091227945	5,1368
13B	4,809686877	6,091227945	5,1368
14	4,196185654	5,01653995	5,9794

BIBLIOGRAFÍA

- Brooklin Boat Yard. (2019) Sport Boat. Obtenido de: http://www.brooklinboatyard.com/sport-boat/
- (2) Flying Flipper, Scandinavian Boat Design. (2017) Flyig Flipper GT 42. Obtenido de: http://flyingflipper.com/techspec.aspx?m=2
- (3) De Valk Yacht Brokers. (2019). Wally Power 58. Obtenido de: https://www.devalk.nl/en/yachtbrokerage/100543/WALLY-POWER-58.html
- (4) Alen Yacht. (2019). Alen 55. Obtenido de: http://www.alenyacht.com/
- (5) OTAM. (2019) OTAM 45' Restyled. Obtenido de: https://www.otam.it/en/fast-and-iconic/45-restyled/
- (6) De Antonio Yachts. (2019) Antonio Yachts D46 Cruiser. Obenido de:
 https://www.deantonioyachts.com/d46-cruiser
- (7) Compass Ingeniería y Sistemas. (2017) "Turbulence Handbook Tdyn CFD+HT v. 4.0.".
 Obtenido de:
 https://www.compassis.com
- (8) Alonso Pardo, B. (2017) Apuntes Hidrodinámica Naval Avanzada. Universidad Politécnica de Cartagena.
- (9) Martínez García, A. (2018) Apuntes Construcción y Reparación de buques. Universidad Politécnica de Cartagena.
- (10) (2017). Proceso constructivo. Embarcación 909 DECK.
- (11) Svahn, D. (2009). Perforance Prediction of Hulls with Transverse Steps. David Svahn.
- (12) Larsson L. (2000) Lars Larsson and Rolf E Eliasson. Principles of yacht design. Adlard Coles Nautical,
- (13) Volvo Penta. (2016). Product range. Power for marine professionals. Obtenido de: https://www.volvopenta.com
- (14) Alourdas, P. (2016) Planing Hull Resistance Calculation The CAHI Method Presented at the SNAME Greek Section Meeting on 13th October 2016.

- (15) Ezequiel J., Lópeza C., Andrés E. Zappab C. y Carlos A. (2017) Determinación De Las Características Aerodinámicas De Perfiles Para Aerogeneradores De Baja Potencia Utilizando Dinámica De Fluidos Computacional.
- (16) Asociación Española de Normalización. (2019) Norma UNE-EN ISO 12215
- (17) Asociación Española de Normalización. (2019) Norma UNE-EN ISO 12217

