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1 Introduction

1.1 Axions

Axion is a hypothetical particle which appears in formulations in order to explain
a standard model problem, called the strong CP problem. In particle physics, CP-
symmetry is the combination of Charge conjugation symmetry (C-symmetry) and par-
ity symmetry (P-symmetry). Peccei and Quinn [3] [4] proposed a solution to this
problem, by introducing anomalous global symmetry. It was soon realized that such a
solution to the strong CP problem leads to a light pseudo scalar particle : the axion.

Axion is a neutral, stable and very light particle. It interacts weakly with con-
ventional matter. Due to this interaction, we can classify the experiments focused in
searching axions in two main groups:

Axion helioscope : this experimental searches for the axion are based on the inter-
actions with two photons. As a consequence of this interaction, axions can transform
into photons and vice-versa under strong electric and magnetic fields. This process
takes place in stars, where axions are produced through the transformation of ther-
mal photons in the presence of electric field. Our closest star is, evidently, the sun,
becoming in our brightest source of axions. As it an be observed in figure 1 Solar
axions streaming from the sun would be reconverted into photons in the presence of a
transverse electromagnetic field in a laboratory.

Figure 1: Schematic of a solar axions experiment

Axion haloscope : Axion haloscopes try to detect dark matter (DM) axions in
the galaxy by using microwave cavities. Under a strong magnetic field, the axion DM
may produce radio wave with its frequency corresponding to the axion mass, and it
is amplified if the size of the cavity matches with the axion’s wavelength. Note that
this technique crucially relies on the assumption that the observed DM consists of cold
axion.
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The conventional axion haloscope technique [5] consists of a high-Q microwave
cavity inside a magnetic field to trigger the conversion of axions from our galactic
DM halo into photons. Being non-relativistic, the axions convert to monochromatic
photons with energy proportional to its mass. For a cavity whose resonant frequency
matches that specific energy, and consequently, to the mass, the conversion is enhanced
by a factor proportional to the quality factor of the cavity Q. For a high Q cavity, the
resonant band is small and thus the cavity must be tunable and data taking is performed
by scanning very thin mass-slices of parameter space.

Figure 2: Schematic of the theoretical axion mass range of different axion experiments

Since its prediction four decades ago, there has not been any evidence for its dis-
covering. Nevertheless, the efforts have not decayed,in fact, the number of experiments
have grown up significantly. So far the most relevant experiments are ADMX, CASPEr
and CAST [2] [6] [4]. It is expected a new generation of helioscope with IAXO (Inter-
national Axion Observatory). Figure 2 shows the different ranges of mass and energy
that are being explored for searching axions.

1.2 Axion Searches with Microwave Filters:The RADES Project

In this project, we design and construct a variant of the conventional axion haloscope
concept that could be competitive in the search for dark matter axions of masses
in the decade 10 − 100µeV . Theses masses are located somewhat above the mass
range in which existing experiments have reached sensitivity to benchmark quantum
chromodynamic (QCD) axion models. Our haloscope consists of an array of small
microwave cavities coupled by rectangular irises, in an arrangement commonly used in
radio-frequency filters.

The size of the unit cavity determines the main resonant frequency, while the pos-
sibility to connect a large number of cavities allows to reach large detection volumes.
We develop the theoretical framework of the detection concept, and present design
prescriptions to optimize detection capabilities.
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We describe the design and realization of various small-scale prototypes of this
concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a
copper-coated stainless steel five-cavities microwave system with the detecting mode
operating at around 8.4 GHz. This structure has been electromagnetically character-
ized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores
of the 9 T CAST (CERN Axion Solar Telescope) dipole magnet at CERN (European
Organization for Nuclear Research) 3. We describe the data acquisition system (DAQ)
developed for relic axion detection, and present preliminary results of the electromag-
netic properties of the microwave system, which show the potential of coupling cavities
systems to reach QCD axion window sensitivity at X-band frequencies.

Figure 3: Image of dipole magnet CAST located at CERN

1.3 Description of the project

In the under graduate thesis [7], we showed the behaviour of a six cavities filter, the
procedure to obtain it by using a theoretical physic model as well as how we make the
data taking process. Once we have understood the behaviour of this small prototype,
the next step consists on the design and manufacturing of a larger and more complex
structure of searching axions. In order to obtain this structure, we have divided the
project in three main sections:

[I] Theoretical model: First of all, we should review some theoretical concepts
and relevant parameters previous to the main part of the project.

[II] Very long structures with periodic conditions: Simulating very large
structures with a huge amount of resonant cavities could be really time consuming.
As far as time is concerned, applying periodic boundary conditions could be a good
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solution for our project. In this chapter we will introduce the theoretical concept and
how we can design a microwave filter by using this concept.

[III]Alternated coupling cavity: Since we have designed and studied a five
cavities filter with inductive irises, the next step consists of the study of more complex
structures. For doing that, we are going to simulate a filter with capacitive irises.
Afterwards we are going to develop a filter with both irises, inductive and capacitive,
alternating in the same system. We will do a study for each structure.

[IV] A mechanical tunable cavity: In this chapter we are going to elaborate
a mechanical tunable system for searching axions. The challenge of this part is to
create a system with a great frequency range variation but without losing any of its
properties.

1.4 Software used in this project

1.4.1 CST Microwave Studio

CST Microwave Studio (CST MWS) is an electromagnetic simulation software spe-
cialised in 3D simulations of high frequency components.

CST MWS enables the fast and accurate analysis of high frequency devices such as
antennas, filters, couplers, etc.

1.4.2 Matlab

MATLAB (Matrix laboratory) is a multi-paradigm numerical computing environment
which allows matrix manipulations, plotting of functions and data, implementation of
algorithms, etc.
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2 Theoretical model

Taking into account [2], we can describe the figure of merit or F.O.M, which determines
the quality of our device for searching axions, as follows in equation 1:

F.O.M. = g4Aγm
2
AB

4V 2T−2sysC
4Q (1)

where B is the magnetic field (assumed constant over the cavity volume), V is the cavity
volume, T corresponds with the noise temperature, and C and Q are respectively, the
geometrical and quality factors of the cavity resonant mode. The main objective of this
project consists in maximising the F.O.M. The magnetic field is given by an external
dipole magnet and it can not be modified, so the only feasible ways of increasing the
figure of merit is by the C and Q factors and the cavity volume.

2.1 Loaded and Unloaded Q

The quality factor Q is a measure of the losses of a resonant circuit. It is defined as
the relation between the energy stored in our system and the power loss. the quality
factor depends directly on the capacity of the resonator for storing energy. On the
other hand, The greater losses our system have, the lower Q we get. If we apply this
relationship to a resonator of lumped elements formed by an inductor and a capacitor:

Q = ω
(average energy stored)

energy loss/second
= ω

Wm +We

Pl
(2)

where Wm is the average magnetic energy stored in the capacitor and We is the average
electric energy stored in the inductor.

Wm =
1

4
|I|2L (3)

We =
1

4
|Vc|2C =

1

4
|I|2 1

ω2C
(4)

Due to the fact that any resonant circuit is invariably coupled to other external
circuit, which will modify the global quality factor, we have to distinguish between the
intrinsic conditions of our system and those external condition that affect our system.

The quality factor Q defined in the absence of any loading effects caused by external
circuitry is called the unloaded Q or Qu. When we include the effects of external
systems we obtain the loaded Q or QL. The QL is obtained as:
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1

QL

=
1

Qu

+
∑ 1

Qe

(5)

If we consider that our resonant circuit is not affected by any external loading effect,
then QL = Qu. Note that in any other case QL will be smaller than Qu. In order to
calculate the optimum value of QL of the experiment [2] we have to match our Qu with
the combination of all the external effects Qe.

1

Qu

=
∑ 1

Qe

(6)

The non trivial simplest case is when we have a structure with just one port, then
it is easy to see that Qu = Qe and QL = Qu

2
. However, when the number of ports

increases, then the optimum value of QL is when Qu =
∑
Qe, but the relation between

Qu and QL keeps unaltered, which means that the more amount of ports we have in
our system, the less coupled they must be in order to keep an optimum QL.

When the value of the combination of external quality factors is higher than Qu,
then our system is said to be over-coupled. On the other side, if Qu is higher, it is said
to be under-coupled.

There are several forms of calculating the different quality factors of a microwave
filter. Additionally, we can obtain easily either the loaded or external quality factors
through the Scattering parameters. For a two ports filter, We can calculate Qe of each
port from the Sii parameter and the Ql factor from the Sij parameter. In the case of
the QL we will use equation 7.

Q =
f

BW
(7)

Where f is the resonant frequency of the resonator mode and BW corresponds with
the bandwidth, in this case of 3 dB, of the same resonator.

2.2 Critical coupling

To obtain maximum power transfer between a resonator and a feedline, the resonator
must be matched to the feed at the resonant frequency. Then we can say that the
resonator is critically coupling to the feed.

It is useful to define a coupling coefficient, g as:
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g =
Qu

Qe

(8)

There are three cases which can be distinguished:

I g < 1 The resonator is said to be undercoupled to the feedline.

II g = 1 The resonator is critically coupled to the feedline.

III g > 1 The resonator is overcoupled to the feedline.

2.3 Cavity coupling

According to M.Pozar [8], the coupling factor between two cavities can be described
as the ratio among the coupled and stored energy introduced by a coupling element.

k =

∫ ∫ ∫
εE1E2dv√∫ ∫ ∫

ε|E1|2dv ×
∫ ∫ ∫

ε|E2|2dv
+

∫ ∫ ∫
µH1H2dv√∫ ∫ ∫

µ|H1|2dv ×
∫ ∫ ∫

µ|H2|2dv
(9)

The coupling factor can be obtained from the electric and magnetic field, where Ei
represents the electric field of the specific cavity and Hi its magnetic field (i = 1, 2).ε ans
µ are the permittivity and permeability respectively. In the right side of the equation,
the first element represents the electric coupling whereas the second represents the
magnetic coupling.

Then, if we use capacitive couplings, we obtain a positive k whereas in inductive
couplings the k factor is negative. The only restriction to use these equations is that
both resonant cavities must be identical. If not, to extract the coupling factor, the
expression 9 must be employed, using the electromagnetic field inside the cavities.

2.4 Form factor C

The form factor C is a measure of how the electric field of a resonant mode of a cavity
is aligned with an external magnetic field. It can be calculated as:

C =
(
∫
dV Ecav(x)B0(x))2

V |B0|2
∫
dV ε(x)E2

cav(x)
(12)
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Figure 4: General view of a coupling between two radiofrequency resonators, M.Pozar
[8]

A positive value in the coupling factor means that the energy stored in the resonators is
increased due to the coupling. On the other side, a negative value implies a reduction in
the energy stored. Due to that fact, we can associate a positive value with a capacitor
and a negative to a inductor

As we described in [7], an alternative way of calculating both, the electric and magnetic
coupling factor, is through the even (fe) and odd (fo) frequencies applying symmetries.
The equations to be used are the following:

kE =
f 2
e − f 2

o

f 2
e + f 2

o

=
Cm
C

(10)

kM =
f 2
o − f 2

e

f 2
e + f 2

o

=
Lm
L

(11)

Due to the direct relation between the electric field in the cavity and the C factor.
At first glance, it seems obvious that the simplest and more logical solution would be
working with the first resonant mode, which presents a positive electric field in the
whole structure. If we align the electric cavity field with the external one, the C factor
must be the maximum possible. However, as we showed in [7], there are some issues
that makes this kind of systems infeasible. Following the idea described in [7], we are
going to optimize this factor, designing more complex structures in which the phase
mode is not the first.

2.5 Theoretical model for a multi cavity filter

In this project, we cannot use directly an identical resonant cavities system in which all
of them resonate at the same specific frequency. We need to use a mathematical model
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that maximise the C and Q values. For doing so, we are going to use the following
matrix which represent a coupling cavities system

Ω =



Ω2
1 K12 0 0 0 0

K12 Ω2
2 K23 0 0 0

0 K23 Ω2
3 K34 0 0

0 0
. . . . . . . . . 0

0 0 0
. . . . . .

...
0 0 0 0 KN−1,N Ω2

N


(13)

where Ωi is the resonant frequency of the i-th cavity when it is isolated, and Ki,i+1 is the

coupling factor normalised between the i-th cavity and (i+1)-th. It is a square matrix
of size NxN in which we will have N different eigenvalues λi associated to this matrix
that represent the natural frequency of the coupling cavities system. Each eigenvalue
will have associated an eigenvector which represents the electric field distribution of
the specific resonant mode.

In order to maximise the form factor C, we are looking for an eigenvalue in which
all the components of the eigenvector will present exactly an equal normalised value of
1√
N

. That will be the mode which couples to axions. Due to the fact that the rest of
eigenvectors must be orthonormal to the mode we are looking for, they will not interact
with axions and their form factor must be very small (C ' 0).

Now we are going to solve the eigenvalue problem associated to this matrix. To
proceed, we have to enforce the eigenvalue and their corresponding eigenvector as

λ


x1
x2
x3
...
xN

 = Ω


x1
x2
x3
...
xN

 =


x1Ω

2
1 + x2K12

x1K12 + x2Ω
2
2 + x3K23

x2K23 + x3Ω
2
3 + x4K34

...
xN−1KN−1,N + xNΩ2

N

 (14)

Where xi are the components of the eigenvector associated to the eigenvalue λ.

Substituting Ki−1,i = ki−1,iλ in equation (14)

for i = 1 λ =
x1Ω

2
1

x1 − x2k12
(15)

for i ∈ [2, N − 1] λ =
xiΩ

2
i

xi − xi−1ki−1,i − xi+1ki,i+1

(16)

for i = N λ =
xNΩ2

N

xN − xN−1kN−1,N
(17)
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As we can observe, at first glance the system is unapproachable due to the huge amount

of variables. In order to make it simpler, we are going to stablish the next procedure:

I We stablish the value of the eigenvalue as well as each value of the eigenvector.
Depending on the frequency we want, we will choose the eigenvalue. In the case
of the eigenvector, we will select a value of (1, 1, 1, 1, ..., 1) for maximising the
form factor C.

II We also choose the value of the coupling factor ki,i+1 which will correspond with
a feasible value to be implemented with inductive or capacitive irises.

III From the equation described previously we are capable of obtaining the different
Ωi values. Then we will have the resonant frequency of each isolated cavity.

IV We have to calculate the physical dimension of each cavity when it is coupled.
We just have to calculate the loading effects of each coupling into nearby cavities.

V Probably, a final optimization process is required to compensate for nearby in-
teractions.
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3 Very long structures with periodic conditions

3.1 Theoretical concept

According to [8], we can describe periodic structures as an infinite transmission line or
waveguide periodically loaded with reactive elements. Periodic structures have a similar
response to conventional filters, there are pass and banned bans which determines
whether a wave can propagate or not . Typically, it is used in travelling-wave tubes,
masers, phase shifters and antennas.

In order to understand the basic wave propagation phenomena associated with
periodic structures, we are going to use the simplest example made of infinite repetitions
of lumped elements, as shown in figure (5).

Figure 5: Schematic of a periodic structure formed by lumped elements

We can imitate the procedure described by [8] and [9] by considering a unit cell as
a two port network, then the relationship between the input and output ports could
be described, using the transmission parameters or ABCD, as:

[
Vn
In

]
=

[
A B
C D

] [
Vn+1

In+1

]
(18)

where

A = cosθ − (B/2)sinθ
B = j(B/2cosθ + sinθ −B/2)
C = j(B/2cosθ + sinθ +B/2)

D = cosθ −B/2sinθ

Note that,if we apply the condition for passive networks, then AD − BC = 1.
Additionally, the electrical length θ could be obtained as θ = kd, where k is the wave
number and d is the length of the period.
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The next step consists of assuming that our periodic structure is infinitely long, so
that the conditions at the input of the n cell must be identical to the (n+1) cell except
for a phase delay. The relationship can be described as:

[
Vn
In

]
= e−γd

[
Vn+1

In+1

]
(19)

As we know, γ = α + jβ and it is the complex propagation constant of the whole
periodic structure. Applying the relationship between (18) and (19), the eigenvalue
equation is obtained as follows:

[
A B
C D

]
=

[
e−γd 0

0 eγd

]
(20)

The non trivial solution is:

coshγd = cosθ − b/2sinθ (21)

Since the right hand side is purely real, either α or β must be zero. In our first case
(α = 0), we have a non attenuating structure, in which a wave is propagating along
the system and defines the bandpass zone of the structure. In the second case (β = 0)
the wave does not propagate but it is attenuated. It defines the stopband zone of the
line.

When we are studying the stopband and passband characteristic of a periodic struc-
ture, it is useful to plot the propagation constant β versus the propagation constant of
the unloaded line k. Such graph is called a k-β graph, or more commonly, a Brillouin
diagram. The k-β diagram can be plotted from the relation shown in equation (21),
which is the dispersion relation for a general periodic structure. Independently of its
applications for periodic structures, this diagram can be used to study the dispersion
characteristic of many types of microwave components. For example, we can consider
the dispersion relation for a waveguide mode giving the well known equation

β =
√
k2 − k2c (22)

3.2 Applications and results

In our previous experiment, we designed a five cavities microwave filter in which the
first resonant mode was at 8.4 GHz. The next step consists of creating a new structure
with higher volume. In order to get that, we are going to increase the number of cavities
of our array. Due to the increase in simulation time with the volume, the analysis of
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Parameter Physical dimension (mm)

a 22.86
b 10.16

L1=L5 26.68
L2=L3=L4 25

W 8
t 2

Table 1: Physical dimensions of the five cavities filter.

the whole structure is practically infeasible. However, the analysis of a infinite periodic
structure can be reduced to the analysis of only a period by using periodic conditions.

Firstly, we are going to imitate the behaviour of our first design using periodic
conditions, we can observe the geometry of the structure and the resonant modes in
figure (6) and table (1) respectively. In this case, one period of the structure consists in
one cavity with the same dimensions than the internal cavities of the structure shown
in figure 6. However, the coupling length has been reduced from t to t/2 with the aim
of defining the period of the corresponding infinite periodic structure.

Figure 6: Schematic of the five cavities microwave filter used in the RADES experiment
[2]

The periodic structure and its dispersion curve are represented in figure (7) and
figure (8) respectively. The period of this structure are composed by one resonant
cavity and the coupling among cavities, in this case we use half coupling in each side
of a cavity. Note that in the case of the periodic cavity, instead of having any discrete
resonant frequency, we are able to calculate a continuous dispersion diagram for a
particular phase of the periodic conditions. Theoretically, if we have a structure with
infinite cavities, the first mode of this system corresponds with the frequency obtained
at 0 degrees of the dispersion curve represented in figure (8). As we only have designed
a small structure with 5 cavities, the first and last mode are not located at 0 and 180
degrees of our dispersion curve respectively.
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Resonant Mode Frequency (GHz) Q

Mode 1 8.445308 7016.1
Mode 2 8.500021 7340.8
Mode 3 8.577578 7628.9
Mode 4 8.658225 8040 1
Mode 5 8.719438 8448.1

Table 2: Resonant frequencies and Q factors for each mode of the inductive irises cavity.

Figure 7: Schematic of one cavity period applying periodic boundary conditions

Figure 8: Frequency dispersion curve of an infinite periodic structure applying different
periodic condition phases to the unit cell of the periodic structure

Now we are going to study the behaviour of the periodic structure modifying the
iris sizes, changing only the width W of both with 1 mm steps. In figure (9), we can
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observe the frequency dispersion curves for different values W of the inductive irises.
Note that as we increase the width W of the irises, the slope of the curve increases as
well as the whole frequency range decreases.

The decrease in the frequency range is caused because, when the iris width W
increases, the loading coupling effect increases in the resonator. The increase in the
slope means that the frequency resonances will breaking away if the system is finite.
Additionally, the slope is smaller at the beginning and the end of the phase range,
which means that the resonant frequencies that are located in the limits will be quite
close, whereas those frequencies that are in the middle will be more separated.

Figure 9: Frequency dispersion curve vs phase of the infinite periodic structure for
different values of W with steps of 1 mm

It could be difficult to compare the slope of each curve, so we can eliminate the
”offset” of every function in order to compare just the increment of the slope. The
increment of frequency generated from the coupling is not an important problem be-
cause the length of the cavity can be modified to adjust the resonant frequency. The
comparison between the four dispersion curves, when the offset is eliminated, is shown
in figure (10).

We have studied the most simple case of periodic structures. The next step is a
more complex structure, such as a biperiodic structure. In that case, the unit cell is
composed by two cavities and the coupling between them. The cavities are coupled by
one of the couplings as we can observe in figure (11). In this case, if the length of both
cavities are identical, we are in the same situation than the previous case, in which a
period is formed by only one cavity and the coupling. If we want to take advantage of
this kind of structures, we should use different length L for each cavity.

When we increase the period of the structure to two cavities like in figure (11), we
have a split in the frequency dispersion curve, obtaining two dispersion curves, one for
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Figure 10: Comparison of dispersion curve among structures with different values of
W removing the frequency offset.

Figure 11: Schematic of a periodic unit cell composed by two cavities coupled with an
inductive

each cavity. The separation among the curves, usually called stopband or bandgap,
will depend mainly on two factors: the length’s difference between the cavities and the
width difference among the irises, both the external irises and the one which couples
the two cavities. In figure (12) it is represented the dispersion frequency curve for
different values of the internal iris (W2) and external irises (W1). The slope of both
curves will depend on the difference between the irises width. The frequency split
increases as the difference between both widths is higher. As we said before, in the
condition W1=W2 (c) we do not have any split because we are in the same situation
as in the first periodic structure studied.
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If we modify the length of the cavities instead of the iris width, we have a similar
situation than the previous one. As we can observe in figure (13), the frequency split
increases as the length difference between both cavities increases.

We have studied a very simple case such as the first periodic structure and the
behaviour of a biperiodic system altering different dimensions of the cavities. Now,
the next step consists of designing a more complex structure. We are going to design
a periodic unit cell composed by five resonant cavities. Due to we want to design
a unit cell with five cavities, each cavity must have a different length. The physical
dimensions of the five cavities of one period are showed in table (3). We will make a
comparison between the periodic structure and a five cavities system using the same
physical dimensions, it is showed in figure (14 )

Parameter value (mm)

W 8
L1 26.68
L2 25.63
L3 28.43
L4 26.082
L5 26.6

Table 3: Physical dimensions of the unit cell composed by 5 resonant cavities

Applying the theoretical model described in equation 13, the eigenvector obtained
in the design of the five cavities system is (1,1,-1,0.6,0.7) which has also a period of 5.

In figure (15), we are seeing a comparison between the five dispersion curves ob-
tained from the periodic structure and the five resonant modes simulated from the five
cavities filter. Each mode of the discrete structure corresponds with one dispersion
curve of our periodic structure. On the other hand, the slope of the dispersion curves
decreases with the period of the periodic structure. Additionally, the band gap among
curves is too small for our application, doing the design infeasible.

3.3 Pros and cons of periodic structures

The benefits of working with periodic structures are mainly two: A faster simulation
as compared to very long systems (e.g. analysis of 1 period instead of 20 or even
more cavities), and the occasion of seeing the whole dispersion curve. On the other
hand, the most important problem of working which periodic structures is that we
are considering an infinite system. We will have to study more techniques in order to
consider the external cavities for a finite system.
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(a) W1 = 8 mm W2 = 6 mm (b) W1 = 8 mm W2 = 7 mm

(c) W1 = 8 mm W2 = 8 mm

(d) W1 = 8 mm W2 = 9 mm (e) W1 = 8 mm W2 = 10 mm

Figure 12: Comparison of the split in the dispersion curve using different values of W
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(a) L1 = 25 mm L2 = 23 mm (b) L1 = 25 mm L2 = 24 mm

(c) L1 = 25 mm L2 = 25 mm

(d) L1 = 25 mm L2 = 26 mm (e) L1 = 25 mm L2 = 27 mm

Figure 13: Comparison of the split in the dispersion curve using different values of L

19



Figure 14: Schematic of a unit cell composed by five different cavities applying periodic
boundary conditions

Figure 15: Comparison between the dispersion diagram of a unit cell composed by 5
cavities (left) and a real system of five resonant cavities (right)

4 Alternated coupling cavities

In this section, we are going to develop a resonant cavity system with alternating
couplings. We will analyse the mathematical model as well as study the design in
simulations and take some measurements in a laboratory.
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4.1 Design of different structures

First of all, we have to calculate the k-factor (??) for inductive coupling. Once we get
it, we should find the k-factor with same value than the inductive coupling but with
opposite sign. As we showed in equation (??), we can express the electric k-factor by
even and odd frequencies.

Figure 16: Two cavities connected by an inductive coupling

It is possible to calculate both frequencies by two different ways, the first one
consists of a two cavities structure, like figure (16). In the even resonant mode, the
sign of the Ey field of both cavities is the same, because that we call this mode as the
phase mode. On the other hand, in the odd mode the Ey field of each cavity is the
opposite, so we call this case as the contra phase mode. Figure (17a) and (17b) show
the Ey field of the even and odd modes in a two cavities design coupled by an inductive
irises. In this case we get fe = 8.298 GHz and fo = 8.530 GHz. As we can observe the
even resonant mode appears before the odd mode, obtaining a negative value of the
intra cavities coupling parameter k.

(a) Ey field of the even mode in a two cavities
design

(b) Ey field of the odd mode in a two cavities
design

Another way of calculating this pair of frequencies is making a vertical cut in the
XY symmetry plane, obtaining a design as in the figure (18), in which there is only
one cavity with an inductive iris. After that, we introduce a perfect electric condition
(PMC) or a perfect magnetic condition (PEC) in the XY plane as boundary conditions.
Analysing each case we get the even and odd frequency respectively. In this case, for
a cavity with the same size than in the previous case, we obtain fo = 8.529 GHz and
fe = 8.298. A quite similar result than the obtained before.
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Parameter physical dimensions (mm)

lfs 27
inductive iris ai 9.09

a 22.86
b 10.16
ti 1.7

Table 4: Physical system dimensions

The structure that we have used in this test has the parameters showed in table
(4):

Figure 18: View of the structure when it is cut by the symmetry plane between the
two coupled cavities

Now we are going to calculate a k value for our experiment. The k obtained following
one of the two procedures can be observed in table (5). As we have described, the
k factor is negative due to the inductive iris. This parameter depends directly on
the iris width, the wider our inductive iris is, the greater k value we get. However,
as it is explained in the degree thesis ([7]), if we extend the iris width, it will have
a negative impact on the C factor, and consequently on the figure of merit F.O.M.
Taking into account all the conditions and aspects mentioned, we have chosen a value
of |k| = 0.0377, which is obtained with a cavity length lc = 30.374mm.

fe 8.50984 GHz
fo 8.19461 GHz
k -0.0377

Table 5: Simulation results

We are ready for calculating the dimensions of the capacitive iris. Following the
same procedure than in the inductive case, we obtain an iris height of 1 mm. Note
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that the width of the inductive iris has a much higher value in comparison with the
height of the capacitive iris. In both cases the resonator is formed by introducing an
impedance change at the end of the resonators, so the energy is trapped in the middle.
In the case of an inductive iris the change is very strong, since it changes the impedance
from real to purely imaginary. That is why relatively wide irises are able to produce
small couplings. In the case of a capacitive coupling, the impedance is always real. You
can only change the value of the impedance from low real values to high real values.
This is the maximum contrast that you can get, so to produce enough contrast in the
impedance you need to produce very big skip. That is the reason the capacitive iris is
so small.

We are going to simulate a five cavity filter with four capacitive irises we have cal-
culated with the idea of emulating our first design in which all the irises was inductive.
In this case, the phase mode is the fifth instead of the first, due to the influence of the
capacitive couplings. In table (6) we are displaying the size of the structure whereas
in figure (20) there is a view of the E-field of the fifth mode.

According with the theory we have seen in section 2, we have to force the eigenvector
(1,1,1,1,1) for a matrix in which all the inter cavities parameters are positive and equal
as follows

λ


1
1
1
1
1

 = Ω


1
1
1
1
1

 =


Ω2

1 +K
K + Ω2

2 +K
K + Ω2

3 +K
K + Ω2

4 +K
K + Ω2

5

 (23)

We obtain the following relationships:

λ = Ω2
1 +K = Ω2

5 +K (24)

λ = Ω2
2 + 2 ·K = Ω2

3 + 2 ·K = Ω2
4 + 2 ·K (25)

To solve this system we have to enforce the inter-cavities coupling factor k and the
eigenvalue λ. As we have described before, λ represents the frequency of the resonant
mode associated with the eigenvector we have imposed. Once we have solved the
equation system, we can show the eigenvectors obtained in equation (26).

−0.1954 −0.3717 −0.5117 −0.6015 0.4472
0.5117 0.6015 0.1954 −0.3717 0.4472
−0.6325 4.8295 · 10−17 0.6325 2.2383 · 10−17 0.4472
0.5117 −0.6015 0.1954 0.3717 0.4472
−0.1954 0.3717 −0.5117 0.6015 0.4472

 (26)
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As we can observe, the values of the eigenvector obtained for the fifth mode are
equals and with the same sign. Theoretically, the fifth resonant mode is the one which
couples to axions.

We are able to calculate the scattering parameter through the theoretical model.
The scattering parameters of this structure are shown in figure (19), note that it is
calculated without losses, so that when S11 tends to 0, or a very negative value in a
logarithmic scale, then S21 ' 1, or 0 dB.

Parameter value (mm)

a 22.86
b 10.16

Wc 0.5
ti 2
L1 26.68
L2 25
L3 25
L4 25
L5 26.68

Table 6: Physical dimensions of a five cavities filter with capacitive couplings.

In figure (19) and table (6) we show the Ey field of the five resonant cavities with
capacitive irises and its physical dimensions respectively.

Observing figure (19), the fifth resonant mode is quite close to the fourth (poner
MHZ), so we have the same problem than in the inductive irises cavity. In both
structures, this proximity between modes will cause a huge instability to a tolerance
geometric change in the structure, and it will be even more unstable when we increase
the number of cavities.

As we can appreciate in figure (20), the highest field intensities are in the irises,
with opposite sign with the cavities. That is caused because the capacitive irises are
able to store energy. Due to that fact, the geometric factor C of this structure is
very low independently of the value obtained theoretically in the eigenvalues and their
respective eigenvectors. The problem with this design are mainly two, we did not find
a solution in which the geometric factor C is high enough, and the fourth resonant
mode is too near to the fifth mode, provoking the same instability issue than in the
cavity system with inductive irises, making this design infeasible.
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Figure 19: Scattering parameters of a five cavities system coupled by capacitive irises

Figure 20: 5 cavities capacitive couplings, log(Ey-field)

Once we have seen the behaviour of a system in which its coupling are exclusively
inductive or capacitive, the next step could be the design of a simple structure al-
ternating both couplings. The idea consists of the design of a simple structure with
alternating couplings, in which the phase mode that couples to axions will be located
in a intermediate resonant mode. In this kind of structures, the number of cavities play
an important role in the design. If we use an even amount of cavities N , the number
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of couplings would we necessarily odd N − 1 and we will have a symmetric structure.
However the phase mode will not be located in the middle of our frequency bandwidth
due to the fact that we have an even number of resonant modes. On the other side,
if we design an odd number of cavities, we will have an asymmetric structure with a
symmetric frequency spectrum. We have developed two structures with alternating
couplings, with five and six cavities. The Scattering parameters of both systems are
shown in figures (21a) and (21b) . As we have explained previously, in the odd case
we have a symmetric frequency spectrum whereas for the even structure it is not. On
the other hand. if we see pictures (22) and (23), we can observe that the six cavities
system is symmetric. We are going to study the behaviour of the even structure. From
this moment, we are going to call it the alternating couplings cavity.

(a) S-param five cavities design (b) S-param six cavities design

As we showed in the figure (23). In this design we have chosen 3 capacitive and 2
inductive couplers (k−kk−kk) with the dimensions of the irises that we had obtained
before. we have to increase the number of cavities to six in order to keep the geometry
of the structure. As it is displayed in the picture (23, if we make a XY plane cut in the
middle of the structure, we obtain two identical pieces. Whereas in our first inductive
design the phase mode was the first and in the capacitive was the fifth, in this case, due
to the alternation of coupling, the phase mode which couples to axions is the fourth.
That is exactly what we were looking for. According to the theory seen in section 3,
in the dispersion frequency curve the modes located in a intermediate frequency are
more separated from the others.

Additionally, there is another aspect to be considered. Due to the geometry of the
system, the are three additional resonant modes located at 6 GHz, one of them couples
to axions. To understand why the system has this behaviour, we have to imagine that
only the inductive irises are working as a couplers. Then we have a system formed
by three long cavities joint by three inductive irises. Due to the fact that these ”new
cavities” are longer, the resonant modes are in a lower frequency range. Moreover, as
we have only three new cavities, there are three resonant modes. we can conclude that
the behaviour of this design is like a three sub-cavities system connected by inductive
irises at 6 GHz and like a six sub-cavities system with alternated couplings at 8GHz.
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Figure 22: 5 cavities alternating couplings, log(Ey-field)

Figure 23: 6 cavities alternating couplings, log(Ey-field)

The most important application for our experiment consists of using both modes
for looking axions, increasing the frequency range by two.

Now we are going to show the Ey field for each resonant mode when the system
is behaving as a six cavities filter (Figure 27), and as a three cavities filter (Figure
24). As we have explained above, we have two phase modes, modes 1 and 4 when the
system works as a three or six cavities filter respectively.

Because of some manufacture problems with the design, we cannot fabricate the
structure as we had designed. We have found a solution modifying the capacitive irises
to a quasi-capacitive iris. Due to that change in the capacitive irises, there is less electric
field stored inside them, then the electric field with opposite sign has decreased, so we
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Figure 24: Six cavities design when it is behaving as a three cavities system

Figure 25: Six cavities design when it is behaving as a six cavities system

obtain a better C factor. The inductive irises has not been altered. the dimensions of
this design are showed in figure (26). The probes have been introduced in the system
in order to obtain the scattering parameters.

Figure 26: Six cavities design with inductive and quasi-capacitive coupling

In figure (27) we show the electric field of each resonant mode. We can observe
that the only resonant mode in which the electric field is in phase for all the cavities is
the fourth one.
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(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 4

(e) mode 5 (f) mode 6

Figure 27: Schematic of Ey field for each mode of the six cavities design

In table (7) we show a comparison between our first 5 cavities design (Design 1),
the new design with capacitive irises (Design 2) and the structure with quasi-capacitive
irises (design 3) when it is behaving as a six cavity structure:

Parameter Design 1 Design 2 Design 3

C2 0.65 0.512335 0.618833
Q 40386 28033.5 41330.5

Volume 3.0210−5 3.5859610−5 3.997410−5

F.O.M. 1.56 10−5 2.48372 10−6 2.52914 10−5

Mode 1 frequency 8.428 GHz 8.50706 GHz 8.18762
Mode 2 frequency 8.454 GHz 8.57515 GHz 8.21562
Mode 3 frequency 8.528 GHz 8.70721 GHz 8.29073
Mode 4 frequency 8.625 GHz 8.9441 GHz 8.38477
Mode 5 frequency 8.710 GHz 9.09981 GHz 8.51107
Mode 6 frequency - 9.24052 GHz 8.59725

Table 7: Results of 5 cavities simulation

Note: All the parameters (apart from frequencies) have been calculated with the
E-field of the mode 1 in the first design and with the mode 4 in the other two cases.
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From the data obtained in the table (7), we can appreciate that, although the first
design gets a better value of the geometric factor C, in the third case we obtain a
higher frequency separation between our phase mode and the rest (26 MHz vs 126.3
MHz). Moreover, in this last design, we have increased the quality factor value and the
volume of the structure, getting also an increment in the F.O.M. The advantages of
this design are mainly three, a more stable design against tolerance geometric changes
in the structure, a higher F.O.M value, and an increment in the frequency separation
between resonant modes.

Now we can try with a bigger system, like 30 cavities. In this design, the phase mode
will be the 16th as we can see in the figure 28. Due to the increment in the number of
sub-cavities, its dimension has undergone several changes from the 6 cavities system.

Figure 28: 30 cavities alternating couplings, log(Ey-field)

Parameter dimensions

C2 0.625718
Q 40399

Volume 1.196310−4

F.O.M. 6.1564 10−4

Mode 14 frequency 8.35573 GHz
Mode 15 frequency 8.37013 GHz
Mode 16 frequency 8.40635 GHz

Table 8: Results of 30 cavities simulations

In this case, from the data of table (8) we get a frequency separation of 36.2 MHz,
a higher value than in the original design of 5 cavities in which the phase mode was
the first (36.2 MHz vs 26 MHz). As far as the frequency is concerned, this 30 cavities
system seems to be more stable than a 5 inductive cavities. As we have obtained in
equation 27, the total length of this structure is 0.924m. Although it is enough space
to introduce an extra couple of cavities in the experiment room, we think that it is
better to leave some additional free space. This system has been manufactured and it
is going to be measured at CERN.
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L = 2 · lfs+ 28 · lc+ 14 · ti+ 15 · tc+ 2 · thick = 0.924(m) (27)

As we have a huge amount of cavities, we can show the frequency dispersion curve
of the different resonant modes. We can appreciate that, as well as we could see in the
periodic boundary condition section, the modes which are located in the middle are
more separated of the rest of resonant modes. We can say that the theory seen in the
periodic boundary conditions section agrees with the results we have obtained here.

Figure 29: Frequency dispersion curve for a 30 cavities design

4.2 Ports coupling

Once we have described our design: a six cavity system with the capacitive and induc-
tive irises, the next step consists of finding the critical coupling point in which we get
the best value of quality factor Q, introducing probes in the first and last cavities. Ac-
cording to the theory seen in section 1, for our application the higher Ql value happens
when the unloaded and loaded quality factors are equal. In this section, we are going
to explain procedure to find the critical coupling point and the relationship between it
and others parameters such as the quality factor Q.
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As we have explained previously, our system is critically coupled to a feedline when∑
Qe is equal to Qu. The Qu is given by the material properties such us the con-

ductivity, it can be modified by changing the temperature. The Qe is modified by
the geometry of the global system. Once it is manufactured, we cannot change the
dimensions of the cavity structure, so the only way of modifying this factor is through
the feedline geometry. We are going to use a coaxial cable, so in order to change the
geometry, we will alter the depth of the probes (inner coaxial conductor) inside the
cavity.

4.2.1 Simulations

In this part, we will show the procedure we have carried out to obtain the critical point
of the fourth mode using the scattering parameters. Finally we display all the results
obtained in the simulations with different materials and varying the temperature.

Before starting we should explain that, although the structure is designed with two
ports, we are going to use only one port so the second port will be weakly coupled.
Then, the external quality factor of the second port will be so high that it does not
affect to the global QL. Additionally, as it is explained in [7], the behaviour of this
structure is identical to a system with only one port.

Due to the fact that we do not have a formula or mechanism for calculating which
is the best geometry in which the critical coupling point is located, we carry out a
parametric sweep; it allows us to find the critical point by a final fine tuning. As an
example we are going to find the critical coupling for the fourth resonant mode of the
alternated couplings cavity at a cryogenic environment (temperature of 4K), at this
temperature, the cooper has a theoretical conductivity of 2.008·109 S

m
. In figure (30) we

can appreciate a parametric sweep of the probe length with steps of 0.4mm. Looking
this sweep, we can extract some details:

• In figure (30a), The probe is not enough introduced in the cavity, which means
that all modes are weakly coupled.

• In figure (30c), modes 1 and 2 are strongly coupled, it occurs because of the
frequency split between both modes is quite small (under 0.2 GHz). Moreover,
the fifth mode is strongly coupled when lhot = 0.2mm, as it is shown in figure
(30d). According to what we explained in theory, the critical coupling point of
each mode depends on its frequency, as we are looking that the fourth mode will
be strongly coupled, we should do a fine tuning of lhot from -0.2mm to 0.2mm.

• Finally, in figure (30f) the six modes are overcoupled.

Now, with a fine tuning we obtain the critical coupling point for the fourth mode,
which is located with a probe length of 0.02 mm inside the cavity, as we can observe
in figure (31). In this case, whereas all the modes situated before the fourth are
overcoupled, the fourth mode is strongly coupled, and the last modes are undercoupled.
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(a) S11 when lhot =-1mm (b) S11 when lhot =-0.6mm

(c) S11 when lhot =-0.2mm (d) S11 when lhot =0.2mm

(e) S11 when lhot =0.6mm (f) S11 when lhot =1mm

Figure 30: Evolve of S11 parameter with different probes length

Figure 31: S11 parameter with lhot=0.02 mm and at cryogenic temperature

We can appreciate the evolution of the fourth mode adaptation from the variation
of the probe length lhot. It is displayed in figure (32)

Although the adaptation of the fourth mode seems a bit unstable due to the high
conductivity, we are able to find the critical coupling point at 0.02 mm. Figure (32)
allows us to understand the behaviour of the coupling, from 0.02 to 0.2 mm the resonant
mode is strongly coupled. The points before and after this interval are undercoupled
and overcoupled respectively.
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Figure 32: Adaptation of the fourth mode in dB scale

Following the same procedure we did at cryogenic temperature, we can find at room
temperature the critical point, which is located when the probe is introduced at - mm
inside the cavity. We could appreciate the S11 parameter in figure 32 and the evolution
of the fourth resonant mode sensibility varying the length of the probe.

Finding the critical coupling point at room temperature did not represent a chal-
lenge. At this environment, the conductivity is not high, so the simulations run quite
fast and the critical point is very stable. Nevertheless, when we are at cryogenic tem-
perature the situation changes. The optimum coupling becomes more difficult to be
found and the simulation needs more time until finishing.

4.3 Pros and cons of alternated couplings cavity

The alternating irises system presents several advantages such as the stability and the
frequency difference between the mode which couples to axions and the rest. Several
tolerances studies have been realised. We did a montecarlo analysis where the input
parameters are the physical dimmensions and the output parameter is the C factor.
As it is shown in figure (33), we can appreciate that the system is very stable. On
the other hand, in order to obtain a suitable simulation, we need a huge mesh in the
Software. However, if the mesh is too high, the software cannot find a solution and it
stop immediately, giving us a wrong result. Additionally, the manufacture of a system
of such characteristic is a complete challenge.
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Figure 33: Frequency dispersion curve for a 30 cavities design

5 Tunable cavity

Once he have designed and tested different systems, the next step consists in doing a
tunable cavity system. In this section we are going to describe the technology we have
used as well as how is the behaviour of the inductive and alternated coupling cavities
in simulations.

5.1 Theoretical explanation

In this part of the project we are designing a mechanical tunable cavity. The idea
consists of dividing the cavity in two identical halves. Although there are infinite
planes for doing the cut, there is only one in which the electric field that scape from
the structure would be minimum. For instance, in figure (34) we can observe that the
minimum Htan is located at the symmetry plane ZY when the x axis is equal to zero.

doing a cut in the ZY plane the structure will be as shown in figure 35a.

5.2 Inductive irises cavity

In this part we are going to create a tunable inductive cavity by introducing a vacuum
brick in the middle of the system as in figure (35a) and (35b). The idea consists of the
separation of the inductive cavity shown in figure 6 in two identical halves by doing
a vertical cut. Afterwards, increasing the separation between both parts, the volume
will increase so that the frequency of the resonant modes will be reduced as expected.

The evolution of the first resonant mode from the vertical cut separation is displayed
in figure (36).
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Figure 34: Htan of a six sub-cavities structure

(a) CST design of six cavities with inductive
irises and vertical cut

(b) CST design of six cavities with inductive
irises and vertical cut

Figure 36: Mode 1 frequency increasing the width of the vacuum brick

Due to the vertical cut, it seems relevant to see the radiated power from the gap
width. In order to calculate this parameter, we have eliminated the material losses
changing copper to PEC, so that the power which is not transmitted nor reflected must
be radiated. We are able to obtain both powers, transmitted and reflected, through the
Scattering parameters, then we can calculate the radiated power Pr using the equation
(28), where S11 and S21 are the reflected and transmitted power respectively.

Pr = 1− |S11|2 − |S21|2 (28)
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In equation (28) we are calculating the radiated power from the power available in
the generator, another interesting idea could be calculate the radiated power from the
port one instead from the generator as follows:

Pr
PL1

= 1− |S21|2

1− |S11|2
(29)

The most interesting part of this relation is that we are able to see the radiated
power without taking into account reflections, providing us a general idea about how
much power is transmitted or radiated. Using equation 28, we calculate the radiated
power versus the gap width. In figure (37), we observe that the radiated losses are
basically zero until the gap is approximately 2.5 mm wide, which corresponds with 10
dB loss. Once the gap is wider than 3.5 mm the resonance vanishes and consequently
the transmitted power decreases dramatically. The radiated power has a maximum at
4 mm before the resonance disappear. In the light of these results, it seems that the
gap width must be below 3mm, after this point, we can consider the radiated power is
practically equal to the power available in port 1, which means that most part of this
power is radiated.

Figure 37: Radiated (blue), reflected (red) and transmitted power (green) vs gap width

It could be interesting to see how the probe location affects to the radiated power.
In the previous simulation we place both probes in the cavity centre. Now we are going
to situate both probes in the middle of one of the half cavity as it is shown in figure
(38).
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Figure 38: Radiated (blue), reflected (red) and transmitted power (green) vs gap width

The procedure for getting the radiated power is exactly the same than in the pre-
vious case. According to the equation (28), the results are displayed in figure (39)

Figure 39: Radiated (blue), reflected (red) and transmitted power (green) vs gap width

Another interesting parameter to be monitored is the inter-cavities coupling k.
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Although the equation to obtain this factor was described previously (see equation ??),
due to the gap the design to calculate both frequencies, even and odd, has undergone
several changes. As we can appreciate in figure (40), we introduce the gap in the
middle of the structure. Additionally there are two extra cavities in order to feed
the two cavities design with the gap. The inductive irises among the external and
internal cavities must be narrow so that in the structure response should appear only
two resonances as we show in picture 41. The first resonance corresponds with the even
frequency whereas the second one represent the odd frequency. The behaviour of this
parameter is shown in figure (42) for a gap range from 0 to 3mm, which is the region
of interest.

Figure 40: Design to obtain the inter-cavities coupling k

Observing figure (42), we can appreciate a lineal behaviour of the inter-cavities fac-
tor. Moreover the difference between the biggest and the smallest values is practically
0.03, which means that, as far as k factor is concerned, the coupling to the axion will
be practically stable.

Once we have seen that the previous parameter are quite stable, the next step
consists in calculating two of the most relevant parameters of this section, which are
the axion coupling C and the quality factor of the system. As we saw in the first
chapter, both parameters play an important role in the axion figure of merit F.O.M.
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Figure 41: S21 parameter used to obtain the inter-cavities coupling

Both parameters, C and Q factors, seem to be quite stable from a gap range to
2mm, which means that we can have a tunable system of 700 MHz without undergoing
great changes. From this point, the C factor decreases linearly with the gap width.

Additionally, another relevant aspect to be taken into account is the structure
misalignment. Principally, the system could be misaligned in two directions, vertical
and horizontal, we are going to see the structure behaviour in both cases for two
different gap lengths. First of all, we are going to calculate the radiated power from
de power available in port 1 for a gap length of 1.5 mm. The vertical and horizontal
misalignments have been simulated to 2 millimetres with steps of 0.2 mm. The result
is displayed in figure (45)

From picture 45, we can obtain several conclusions, the vertical misalignment has
a greater impact in the radiated power than the horizontal. We can appreciate that
due to the fact that when the vertical misalignment is greater to 0.3 mm, the radiated
power is practically equal to the power available in port 1, whereas it happens in the
horizontal misalignment at 1.8 mm. Additionally, we can pay no heed to the radiated
power caused by misalignment when it is lower than 0.2 millimetres in both cases,
horizontal and vertical.

The next step consists in the calculation of the radiated power in the region of
interests that we have described above, but for another gap length, we now study 3.5
mm, which is the limit value that we have chosen previously.
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Figure 42: Variation of inter-cavities factor

In figure 46 we can appreciate that, as well as in (45), the vertical misalignment
increases the radiated power more than the horizontal. Moreover, we can appreciate
that, in a logarithmic scale, the growth of the radiated power is lineal with the vertical
misalignment.

Due to the importance in this project, additionally we are going to calculate the
variation ofQu andQl. TheQl is going to be calculated as we have described previously.
However, in the case of calculating the Qu, we are not going to use the CST calculator.
As we know from equation (??), this factor depends on the Qe of both ports as well as
on Qu. We define both ports extremely weakly coupled, so that both Qe and Qe will
be such a high value that Ql will be practically equal to Qu.

1

Ql

=
1

Qe

+
1

Qe

+
1

Qu

=
1

Qu

(30)

This way of calculating the Qu is faster than using the CST solver because this
method does not require any kind of mathematical integration,

Finally we are going to calculate the distance from the first resonant mode to the
next one as it is shown in figure 47.
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Figure 43: Variation of C factor

Figure 44: Variation of Qu factor
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Figure 45: Variation of radiated power Pr

PL1
for different misalignments

As we can appreciate in figure (47), the wider the vertical cut is, the greater distance
we obtains. We can conclude that the distance between the first and second resonant
modes depend on the ratio width-length of the cavity.
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Figure 46: Variation of radiated power Pr

PL1
for different misalignments

5.3 Alternated irises cavity

As well as we did with the inductive irises design, we are going to combine both ideas,
mechanically tunable cavities and alternated irises cavity. Before obtaining any result
and see the behaviour of different parameters, we need to see how to design the tunable
structure. First of all, let’s see what would happen if we introduce a vertical cut in the
entire structure as we did in the previous design. Figures (48a) and (48b) show the
outside and inside appearance in simulations of the structure with alternated couplings
and vertical cut. The gap is defined as a vacuum brick with the same length and high
than the whole structure.

As well as in the alternated system described in section 3, the mode which couples
to axions is the fourth. In this structure, unlike the inductive system, the Ey-field
is not constant, especially in the capacitive irises and surroundings. Additionally the
surface current is not zero in the area of the vertical cut, which means that the electric
field will scape from the structure. This increment in the radiated power will cause a
dramatic decrease in the geometric factor C, and consequently, in the figure of merit
F.O.M. For instance, for a gap length of 0.5mm we get a C factor of 0.00059295 and
a F.O.M of 3.80359 × 10−12. Moreover, the Scattering parameters are represented in
figure 49, as we can appreciate, the transmitted power is practically zero, so that the
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Figure 47: Variation of radiated power Pr

PL1
for different misalignments

(a) CST design of alternated irises cavity with
vertical cut

(b) CST design of alternated irises cavity with
vertical cut

radiated power must have such a high value that it makes this design infeasible.

A solution for the mechanical tuning in the alternated design could be solved by
introducing the vertical cut in the whole structure except for the capacitive irises,
minimising the radiated losses. The idea consists on designing a structure in which the
capacitive irises keep a physical contact independently of the vertical gap. Although
the structure can be simulated easily, manufacturing this design could be a challenge.
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Figure 49: Scattering parameters of the alternated irises cavity with vertical cut, sep-
aration of 0.5mm

In this section, we only focus on the theoretical simulations in order to see if the design
is feasible and the behaviour of the same parameters than in the inductive irises cavity.

The appearance of the structure is displayed in figure 50a and 50b. Unlike the
previous design, now the gap is defined as four vacuum bricks, separated by the capac-
itive irises. Additionally, the capacitive couplings play a alignment function in both
directions, vertical and horizontal, so there is no sense in calculate the radiated losses
due to geometric misalignment.

(a) CST design of alternated irises cavity with
vertical cut

(b) CST design of alternated irises cavity with
vertical cut

As we can see in figure 51, we get a frequency range of 400MHz for the same gap
variation than in the inductive design, a range a bit smaller, 400 vs 700 MHz. Note
that we are comparing the variation of the first resonant mode in the inductive designs
with the variation of the fourth resonant mode in the alternating coupling design.

As well as we did in the inductive cavity design, we are going to calculate the
variation of the inter-cavities factor, for the inductive and the capacitive couplings. As
we have explained previously, the k factor for inductive irises is negative, whereas for
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Figure 51: Frequency variation of the fourth resonant mode in the alternating tunable
cavity

capacitive irises the k factor is positive. In order to make a comparison between both
cases, we show in figure (52) the absolute value of the inductive irises.

We can observe in figure 52 that the variation of k factor in the inductive case is
greater than for the capacitive irises.

Yet another parameter to study is the radiated power. Using the same procedure
than in the inductive tunable cavity we obtain the result shown in figure (53). The
radiated power is not relevant for a gap range to 3mm, we obtain less radiated power
than in the whole inductive structure since contact is kept in the capacitive irises.
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Figure 52: Frequency variation of the fourth resonant mode in the alternating tunable
cavity

5.4 Pros and cons of tunable structures

this first design is a mere prototype. We have to spend more time searching new forms
of developed the frequency tunable cavity. In this part, we have used a 20 inductive
cavities for the simulation. For the alternated (capacitive and inductive) coupling, we
can not apply this idea because of the electromagnetic field could scape from the system
as soon as we do the vertical cut. We are developing new ideas for that challenge like
make a tunable cavity varying the dielectric of it.
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Figure 53: Frequency variation of the fourth resonant mode in the alternating tunable
cavity

6 Conclusion and future lines

The work presented in the master thesis has been structured in order to achieve the
main goal. We have successfully designed and manufactured a mechanical tunable
system as well as an alternating coupled structure. Both devices are being physically
studied at CERN, where they can be analysed at cryogenic temperature. Additionally,
a larger alternating system is being manufactured also at CERN. This design presents
enough volume to search axions taking into account nowadays models. Although the
resonant frequency of this cavity is located inside the hypothetical axions region, the
possibility to find the axion is low. However, it is a great opportunity to test the post
processing part and check the potential for next iterations.

The simulation and manufacturing of the design with such characteristics have been
a complete challenge. Not only caused by the complexity, but also for the size. More-
over, simulations must present a high accuracy at room and at cryogenic temperature,
increasing the time cost of each simulation. The time frame for the optimization process
of the final thirty sub-cavities design was two weeks.

One of the most gratifying parts of this project becomes when the theoretical model
and simulations agrees with the real measurements in the laboratory. This is the
moment when we realise that everything we have calculated is correct.

49



Although we have advanced quite a lot in the project, we are in the middle of the
project age and the are is still a lot of work to be done. Since creating larger structures
is practically infeasible, we can focus our efforts in mainly two directions, new tunable
systems and more stable structures.

Although it is not a big deal to simulate tunable mechanical cavities, manufacturing
the tunable device is a challenge, even more at cryogenic temperature and in the
presence of a 9 Tesla magnetic field. To cope with that problem, a suitable solution
could be working with tunable electrical structures. Then, instead of modifying the
frequency through the cavity geometry, we can vary it changing the internal material
permittivity.

Another point consists of stablishing zeros at some specific frequencies so that we
obtain a frequency spectrum with just one resonant mode. The main problem is how
to combine this concept with a tunable system.

There are several problems when working with large structures, they are too com-
plicated and we have many problems regarding with the tolerances. A solution could
be the use of a certain amount of smaller cavities and combine them via hybrids. Al-
though each cavity will have some variation in the resonant mode, we can stablish some
zeros and with a fine tuning synchronise their frequency resonant mode.
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