
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Proyecto Fin de Carrera

Design Space Exploration of an Advanced Direct

Memory Access Unit for a Generic VLIW processor

 AUTOR: Fátima Reino Gómez

 DIRECTOR(ES): José Javier Martínez Álvarez,

Francisco Javier Garrigós Guerrero

 CODIRECTOR: G.Payá Vayá

 P.Pirsch

Septiembre/ 2008

- ii -

Autor Fátima Reino Gómez

E-mail del Autor fatimareino@hotmail.es

Director(es) José Javier Martínez Álvarez, Francisco Javier Garrigós Guerrero

E-mail del Director JJavier.Martinez@upct.es

Codirector(es) G.Payá Vayá, P.Pirsch

Título del PFC
Design Space Exploration of an Advanced Direct Memory Access Unit for a

Generic VLIW Processor

Descriptores
DMA avanzado, codificación de video, procesamiento de video, motion

estimation, procesadores VLIW.

Resumen

Analizando los actuales requerimientos para la transferencia de datos de los estándares de

codificación de video, los diferentes tipos de procesadores, y estudiando el funcionamiento y

las ventajas de los accesos directos a memoria (Direct Memory Access), he desarrollado un

modelo parametrizable de un acceso directo a memoria. Considerando un método de

codificación de video concreto (motion estimation), he implementado una versión mejorada,

añadiendo funcionalidad extra en el DMA para conseguir una reducción en el tiempo de

ejecución y por lo tanto mejoras en las aplicaciones de video. A partir del estudio de los

resultados obtenidos he realizado un análisis exhaustivo indicando las posibles futuras

modificaciones.

Titulación
Ingeniero Superior de Telecomunicaciones

Intensificación
Planificación y gestión de Telecomunicaciones

Departamento
Electrónica, tecnología de computadoras y proyectos

Fecha de Presentación
Septiembre-2008

mailto:fatimareino@hotmail.es
mailto:JJavier.Martinez@upct.es

- iii -

El objetivo de este documento es realizar una breve presentación en castellano sobre

el proyecto realizado.

El procesamiento multimedia tiene un gran número de aplicaciones como la televisión

interactiva de alta definición o teléfonos móviles multimedia. Debido a esto, está tomando

cada vez más importancia en la actualidad.

El procesamiento multimedia abarca la captura, almacenamiento, manipulación y

transmisión de objetos multimedia como por ejemplo objetos de audio, de texto, imágenes,

video y gráficos de 2-D/3-D.

Hoy en día, debido a la amplia variedad de aplicaciones como por ejemplo las actuales

aplicaciones de video, teléfonos móviles multimedia, la televisión interactiva de alta

definición… son necesarias continuas mejoras requiriendo para esto sofisticadas operaciones

multimedia, las cuales implican una alta demanda de potencia. Por ello y para conseguir

mejores resultados, han aparecido una gran variedad de métodos que consiguen que los

procesadores se comporten menos linealmente y más en paralelo.

El paralelismo puede existir a varios niveles, por ejemplo de datos, de instrucciones o

de hilos (programas).

a) Paralelismo de instrucciones (ILP) busca aumentar la velocidad a la que las

instrucciones son ejecutadas en la CPU (es decir, aumenta la utilización de los recursos

en la ejecución). Se pueden distinguir dos tipos principales:

 Super-Scalar: Superscalar es el término empleado para describir un tipo de

microarquitectura de procesador capaz de ejecutar más de una instrucción por

ciclo de reloj. En un procesador superescalar es el hardware en tiempo de

ejecución el que se encarga de planificar las instrucciones. La microarquitectura

superescalar usa el paralelismo de instrucciones además de el paralelismo de

flujo, este último gracias a la estructura en pipeline.

 VLIW: Esta arquitectura implementa una forma de paralelismo a nivel de

instrucción. Es similar a las arquitecuras superescalares, pues ambas usan varias

unidades funcionales (por ejemplo: varias ALUs, varios multiplicadores, etc)

para lograr este paralelismo.

Los procesadores con arquitecturas VLIW están caracterizados, como su

nombre sugiere, por tener juegos de instrucciones muy simples en cuanto al

número de instrucciones diferentes, pero muy grandes en cuanto al tamaño de

cada instrucción. Esto es así porque en cada instrucción se especifica el estado

de todas y cada una de las unidades funcionales del sistema. El objetivo de este

tipo de arquitectura de computadoras es simplificar el diseño hardware

dejando la tarea de la planificación del código en manos del

programador/compilador. Por el contrario, un procesador superescalar

requiere hardware extra para realizar esta programación en tiempo de

ejecución.

- iv -

b) Paralelismo a nivel de hilo de ejecución (TLP) busca aumentar el número de hilos

(programas individuales) que un CPU puede ejecutar simultáneamente. Ejecuta

simultáneamente instrucciones de múltiples hilos en lugar de ejecutar

concurrentemente múltiples instrucciones del mismo hilo.

c) Paralelismo de datos (DLP) trata con múltiples piezas de datos en el contexto de una

instrucción. Por ejemplo:

 Single Instruction Multiple Data (SIMD) es una técnica empleada para lograr el

paralelismo de datos. Las instrucciones aplican la misma operación en un

conjunto de datos. Una única unidad de control envía las instrucciones a

diferentes unidades de procesamiento. Todos los procesadores reciben la

misma instrucción de la unidad de control, pero operan en diferentes conjuntos

de datos. En otras palabras, la misma instrucción es ejecutada de manera

síncrona por todas las unidades de procesamiento.

Debido a la posibilidad de explotar el paralelismo de datos en las aplicaciones

multimedia, la arquitectura VLIW está siendo muy empleada en los últimos años. Usando

subword parallelism (es una forma a pequeña escala de SIMD), una arquitectura VLIW puede

conseguir unas mejoras significativas en los resultados.

Para explotar el paralelismo de datos, es necesario subword parallelism, que realiza la

misma operación simultáneamente en diferentes subword empaquetadas en una word.

Subword es una pequeña unidad de datos que está contenida en una word. En subword

parallelism, se empaquetan varias subword en una word para posteriormente procesar la

word completa. El paralelismo de datos también necesita:

1) Un modo de expandir los datos en largos contenedores.

2) Reorganización de las subword en un registro. Muchos son los algoritmos que

necesitan esta reorganización de las subword. Dos ejemplos de instrucciones que se

encargan de realizar esta reorganización de las subword son:

o MIX: Estas instrucciones cogen subwords de dos registros e intercalan alternativas

subwords de cada uno de los registros en el registro final. Mix left empieza cogiendo

la subword situada más a la izquierda de cada uno de los dos registros fuente,

mientras que mix right termina con la subword situada más a la derecha de cada

uno de los dos registros fuente. La figura 1.1 del proyecto ilustra esto para 16-bit

subwords [1].

- v -

o Permute: La instrucción permute coge un registro fuente y realiza una permutación

de las subwords de este registro. Con subwords de 16-bits, esta instrucción puede

generar todas las permutaciones posibles, con o sin repeticiones, de las 4 subwords

en el registro fuente. La figura 1.2 del proyecto muestra una posible permutación.

Para especificar una permutación particular, se usa un índice de permutación. El

número de subword en el registro fuente empieza con cero para el subword situado

más a la izquierda. El índice de permutación identifica el subword del registro fuente

se situará en un determinado subword del registro destino [1].

3) Alineamiento de datos realizado durante una transferencia entre una memoria externa

y una memoria local.

Una referencia a memoria es llamada alineada cuando accede a posiciones de

memoria que coinciden con el acceso a memoria alineado del procesador, cuando esto no

ocurre es llamada no alineada. Para acceder a una posición no alineada, se debe realizar un

proceso de alineamiento. El proceso de alineamiento se muestra en la figura 1.3 del proyecto.

Se debe leer la word alineada en memoria que se encuentra antes de la posición no

alineada y descartar los bytes que no son necesarios, después se lee la word alineada en

memoria que está localizada después de la posición no alineada y descartar los bytes que no

son necesarios y finalmente se juntan los bytes necesarios de las dos anteriores words.

La mayoría de los procesadores SIMD proporcionan acceso solo a datos contiguos en

memoria, con fuertes restricciones de alineamiento porque tienen una arquitectura de

memoria limitada. Estas arquitecturas, a menudo no proporcionan ningún soporte hardware

para accesos no alineados o lo proporcionan pero degradando los resultados. Debido a esto,

normalmente el programador acaba realizando el alineamiento en software, lo cual implica

una carga extra y degrada los rendimientos significativamente. Por ejemplo, en aplicaciones de

codificación y decodificación de video que usan los algoritmos motion estimation (ME) y

motion compensation (MC), se requieren alineamientos de modo impredecible.

Hoy en día, hay numerosos consensos sobre la importancia de los accesos no alineados

para las aplicaciones de video (no teniendo un soporte eficiente para accesos no alineados se

degradan los rendimientos de manera significativa), pero la mayoría de las actuales

arquitecturas SIMD que soportan accesos no alineados presentan restricciones y limitaciones.

Debido a que las aplicaciones requieren cada vez más recursos, una unidad de acceso

directo a memoria (DMA) es una característica esencial en todos los ordenadores modernos,

ya que permite a diferentes dispositivos comunicarse sin someter a la CPU a una carga masiva

de interrupciones, incrementando de este modo los rendimientos de la aplicación. Una

transferencia DMA esencialmente copia un bloque de memoria de un dispositivo a otro. Con

un DMA, la CPU podría iniciar la transferencia, realizar otras operaciones mientras la

transferencia está en proceso, y recibir una interrupción del controlador del DMA una vez que

la operación ha sido realizada. Un uso típico en un DMA es transferir un bloque de memoria

desde/hacía una memoria externa o desde/hacía un buffer del dispositivo.

- vi -

Con las instrucciones explicadas anteriormente, el proceso de alineamiento somete a

la CPU a una gran sobrecarga. Hay muchas aplicaciones, como las de procesamiento de video,

que requieren un soporte eficiente para accesos no alineados, el no tenerlo degrada los

rendimientos significativamente. Debido a que el DMA permite a los dispositivos transferir

datos sin someter a la CPU a una carga masiva de interrupciones, una posible solución sería

diseñar un ‘Enhanced DMA Unit’ (DMA inteligente) capaz de realizar este alineamiento de los

datos. Este nuevo DMA ahorrará muchos ciclos porque ahora este alineamiento es realizado

en el DMA y la CPU puede ejecutar otras partes del código de la aplicación en paralelo.

La idea de este proyecto es implementar un DMA que además de realizar este

alineamiento pueda también realizar otras permutaciones de datos, por ejemplo padding

(extensiones de datos). Las instrucciones explicadas anteriormente seguirán siendo empleadas

porque una vez que los datos estén en la memoria interna, estas instrucciones serán las

responsables de realizar cualquier alineamiento requerido. Pero muchos serán los casos en los

que podremos usar el 'Enhanced DMA Unit' y colocar los datos ya alineados del modo

requerido en la memoria interna. De este modo se eliminarán muchas instrucciones de código

y por tanto estaremos eliminando ciclos.

Un ejemplo donde el 'Enhanced DMA Unit' puede claramente reducir la sobrecarga

para la CPU sería en aplicaciones de codificación y decodificación de video que usan los

algoritmos ME y MC. Estos algoritmos requieren mover bloques de datos de una memoria

externa a una local más rápida, y alinear estos bloques para colocarlos correctamente en la

memoria local. Además en los casos en los que estemos leyendo fuera de la imagen de

referencia será necesario realizar una extensión de los datos (padding process).

Los objetivos de este proyecto son los siguientes:

 Analizar los requerimientos de transferencias de los actuales estándares de

codificación de video y desarrollar un modelo parametrizable de un acceso directo a

memoria (Direct Memory Access).

 Considerando un método particular de codificación, por ejemplo motion estimation,

una versión mejorada será implementada, añadiendo funcionalidad extra en el DMA

para disminuir el tiempo de ejecución.

 Un análisis exhaustivo de los rendimientos de los resultados será realizado, indicando

posibles futuras modificaciones.

Este proyecto está organizado del siguiente modo. El capítulo 2 presenta los

procesadores VLIW y una introducción a los DMA. El capítulo 3 introduce H.264/AVC que es un

estándar de compresión de video y además introduce el algoritmo motion estimation (ME). El

capítulo 4 expone las propuestas para el ‘Enhanced DMA Unit’. Después de esto, en el capítulo

5, se muestra la evaluación del DMA propuesto usando el algoritmo motion estimation.

Finalmente, las conclusiones son presentadas en el capítulo 6.

- vii -

H.264/ AVC y Motion Estimation

H.264 es un estándar para compresión de video. El objetivo del proyecto H.264/AVC

era crear un estándar capaz de proporcionar buena calidad de video, sin aumentar mucho la

complejidad del diseño para que este no fuera impráctico o excesivamente caro de

implementar.

La figura 3.2 del proyecto muestra un diagrama genérico de un codificador de video.

A continuación se va a realizar un estudio del bloque motion estimation para analizar

las mejoras que serían útiles en un DMA.

Motion Estimation

Es el proceso de determinar los vectores de movimiento que describen la

transformación de una imagen a otra.

La idea clave de motion estimation es que imágenes de video consecutivas serán

similares excepto por pequeños cambios introducidos por objetos que se mueven en las

imágenes.

Motion estimation extrae información del movimiento de las secuencias de video. El

movimiento está representado con un vector de movimiento(x,y). Este vector indica el

desplazamiento de un pixel o un bloque de pixels de la imagen actual debido al movimiento. El

proceso de aplicar este vector de movimiento a una imagen para obtener la siguiente se llama

motion compensation. La combinación de motion compensation y estimation es una pieza

clave de la compresión de video.

Hay muchas técnicas para realizar motion estimation, pero la más empleada es el

algoritmo de correspondencia de bloque (Block Matching Algorithm).

Block Matching Algorithm

Este algoritmo calcula un vector de movimiento para un bloque de pixels. La figura

3.11 del proyecto puede ayudar a comprender el funcionamiento del algoritmo.

La imagen actual es dividida en bloques de pixels y motion estimation se realiza para

cada uno de estos bloques.

Motion estimation se realiza identificando el bloque de pixels de la imagen de

referencia que más se le parece al bloque a codificar. El bloque de referencia es generado por

el desplazamiento (este desplazamiento se realiza con los vectores de movimiento) de la

localización del bloque a codificar en la imagen de referencia.

- viii -

Para encontrar el bloque de pixels que más se parece al bloque actual la búsqueda en

la imagen de referencia se realiza solo en una región de búsqueda.

Para decidir cual es el bloque de pixels que más se parece al actual hay dos posibles

criterios:

 Sum of Square Error (SSE) = (𝐶(𝑥, 𝑦) − 𝑅(𝑥, 𝑦))2𝑦=𝑁
𝑦=1

𝑥=𝑁
𝑥=1

SSE proporciona una muy buena correspondencia de bloque pero requiere una carga

computacional alta.

 Sum of Absolute Difference (SAD) = 𝐶 𝑥,𝑦 − 𝑅(𝑥, 𝑦)
𝑦=𝑁
𝑥=1

𝑥=𝑁
𝑥=1

SAD proporciona una buena correspondencia de bloque y requiere menor carga

computacional. Por esto el criterio más usado es SAD. El bloque que más se parece al bloque

actual es el bloque con el menor SAD, y su vector de movimiento será el vector de movimiento

que describa el desplazamiento del bloque actual.

Se ha asumido que el bloque se va a encontrar situado en un número entero de

píxeles. En la práctica, el desplazamiento de un objeto entre dos imágenes consecutivas de

video no coincidirá con un número entero de píxeles. Por lo tanto, los actuales estándares de

codificación de video emplean subredes de píxeles, en las cuales los vectores de movimiento

pueden apuntar a bloques candidatos localizados en medio-pixel o incluso en cuarto-pixel.

En la aplicación empleada en el proyecto es posible apuntar a bloques situados solo en

medio-pixel (además de pixeles enteros) y existen los siguientes casos:

 FH: Media vertical (círculo verde).

 HF: Media horizontal (círculo azul).

 HH: Media vertical y media horizontal (círculo amarillo).

 FF: copia (círculo rojo).

Estos casos están representados en la figura 3.9 del proyecto.

Buscar el bloque en toda la región de búsqueda supone un gasto computacional

elevado. Para reducir esta búsqueda en la imagen de referencia existen diversos algoritmos, en

este proyecto se va a emplear búsqueda recursiva de tres dimensiones (Three Dimensional

Recursive Search (3DRS)).

Three Dimensional Recursive Search

Three dimensional recursive search (3DRS) es un algoritmo de búsqueda. Este

algoritmo se basa en dos premisas:

- ix -

 Los objetos son más largos del tamaño de un bloque

 Los objetos tienen inercia

Teniendo en cuenta la primera premisa los vectores de movimiento de los vecinos

pueden ser usados como candidatos para el bloque actual. En este punto puede aparecer un

problema para bloques vecinos cuyo vector de movimiento aun no haya sido calculado. Aquí

es donde se aplica la segunda premisa y se emplean para estos bloques los vectores de

movimiento de la imagen anterior. En la aplicación empleada en este proyecto para la

búsqueda de los vectores de movimiento candidatos mediante 3DRS, se cogen los vectores de

movimiento de cuatro bloques vecinos y sumando un random a estos cuatro vectores de

movimiento obtenemos otros cuatro. Es decir, obtenemos en total ocho vectores de

movimiento candidatos.

Cuando hay dos candidatos iguales, dos vectores de movimiento iguales, solo se empleará

una vez este vector de movimiento, por tanto tendremos en este caso un candidato menos.

Scheme of operation of motion estimation

La figura 3.15 del proyecto muestra el esquema de operación de motion estimation.

Los pasos son los siguientes:

1. El bloque (a codificar) de la imagen actual es introducido.

2. Se estima el primer vector de movimiento en la imagen actual por medio de 3DRS.

3. Con el vector de movimiento y la imagen de referencia, por medio de motion

compensation, se localiza el candidato en la imagen de referencia.

4. Por medio de la resta del bloque de la imagen actual y del candidato localizado en

la imagen de referencia, se obtiene el SAD.

5. Se repiten los pasos del 2 al 4 para los 8 candidatos, para quedarse finalmente con

el vector de movimiento del candidato con el menor SAD.

- x -

DMA propuesto

DMA con alineamiento

Las direcciones apuntan a datos de 64 bits. Debido a que ahora existe subword

parallelism, la información está dividida en pequeños datos de 8 bits. Es decir, las direcciones

apuntan ahora a words que están formadas por 8 subwords. Gracias al alineamiento de datos

es posible apuntar a cualquier subword y a partir de esta coger una word completa.

La idea es usar los primeros tres bits de la dirección para realizar el alineamiento de

datos, es decir, con esos tres bits indicaremos si la word está alineada o si es necesario coger

una word de 64-bits a partir de una determinada subword. En la figura 4.7 del proyecto se

ilustra esto.

Como se puede observar, los números en color negro permanecen iguales para los 64

bits de la word alineada, y los tres primeros bits (marcados en rojo) indican la subword a la que

se está apuntando.

En el caso en que sea necesario realizar el alineamiento de datos, se deberá copiar la

word alineada en memoria que se encuentra antes de la posición no alineada en un registro

interno del DMA, después copiar la word alineada en memoria que se encuentra después de la

posición no alineada en otro registro interno del DMA, y finalmente en otro registro almacenar

los datos necesarios (determinaremos los datos necesarios con los tres bits nombrados

anteriormente) de las dos words anteriores. Las figuras 4.9 y 4.10 del proyecto ilustran un

ejemplo.

Realizando el alineamiento en el DMA, se conseguirá una mejora en los resultados

obtenidos porque se disminuye considerablemente la carga a la que se sometía a la CPU

realizando el alineamiento con otros métodos.

Con las instrucciones descritas anteriormente, era necesario cargar los datos en

memoria, posteriormente realizar el alineamiento en software y finalmente cargar los datos

alineados de nuevo en memoria. Por lo tanto se están empleando tres registros y además se

está haciendo trabajar a la CPU.

Realizando el alineamiento en el DMA, los datos son cargados en memoria ya

alineados. De este modo el alineamiento se lleva a cabo sin interrumpir a la CPU que mientras

se realiza este proceso puede realizar otras tareas, además solo se está empleando un registro

de memoria (en el que se almacenan los datos ya alineados del modo deseado).

En aplicaciones de codificación y decodificación de video que usan los algoritmos ME y

MC, este modo de realizar el alineamiento de datos puede mejorar significativamente los

resultados.

- xi -

DMA con extensiones

En aplicaciones de codificación y decodificación de video que usan los algoritmos ME y

MC, cuando se quiere buscar el bloque de la imagen de referencia que más se parece al bloque

que se va a codificar, se busca solo en una región de búsqueda. Cuando un candidato (a ser el

bloque de la imagen de referencia que más se parece al bloque a codificar) se sale fuera de

esta región, es necesario hacer una extensión de los datos (padding). La figura 4.11 del

proyecto muestra la necesidad de realizar padding en las aplicaciones de video.

En la figura, se puede observar como parte de un candidato se encuentra fuera de la

región de búsqueda (el bloque amarillo), lo cual significa que para representar este candidato,

es necesario realizar una extensión de los datos. En este caso, la extensión de los datos se

realiza por la parte de arriba, es decir, los contenidos de la última línea de datos que está

dentro de la región de búsqueda, deben ser replicados hacía arriba.

Hay ocho casos diferentes donde existe una necesidad de extensión como se puede

observar en la figura 4.12 del proyecto:

 Extensión horizontal por la derecha (bloque marrón).

 Extensión horizontal por la izquierda (bloque gris).

 Extensión vertical superior (bloque amarillo).

 Extensión vertical inferior (bloque naranja).

 Extensión vertical superior y extensión horizontal por la derecha (bloque azul).

 Extensión vertical superior y extensión horizontal por la izquierda (bloque verde).

 Extensión vertical inferior y extensión horizontal por la derecha (bloque lila).

 Extensión vertical inferior y extensión horizontal por la izquierda (bloque rosa).

La idea es que el 'Enhanced DMA Unit' además de realizar el alineamiento de los

datos, realice también la extensión de estos.

Para realizar la extensión de datos en el DMA es necesario crear dos nuevos registros que

aparecen ilustrados en la figura 4.13 del proyecto:

 X_EDGE: Indica el número de words que se encuentran fuera de la imagen. Si es

positivo significa que las words están fuera de la imagen por el lado izquierdo, y

si es negativo por el lado derecho.

 Y_EDGE: Indica el número de líneas que se encuentran fuera de la imagen. Si es

positivo significa que las líneas están fuera de la imagen por arriba, y si es

negativo por abajo.

En aplicaciones de codificación y decodificación de video que usan los algoritmos ME y

MC, realizar las extensiones en el DMA reduciría considerablemente la sobrecarga de la CPU.

Cada vez que un candidato se sale fuera de la región de búsqueda, la CPU debe hacer un

trabajo extra, un trabajo que se puede ahorrar si es realizado por el DMA. Además si la CPU no

tiene que realizar este trabajo, podrá realizar otras tareas mientras el DMA realiza las

extensiones.

- xii -

DMA con cola

En aplicaciones de codificación y decodificación de video que usan los algoritmos de

ME y MC, para encontrar el bloque candidato que más se parece al bloque a codificar, es

necesario transmitir varios candidatos, y cada vez que se transmite un candidato se

interrumpe a la CPU y se le hace trabajar para cargar los datos de la transmisión.

Por lo tanto, sería interesante que el DMA fuera capaz de almacenar varias

transmisiones en la CPU, de modo que cuando una transferencia termine, no sea necesario

programar la siguiente sino que esta ya estará en la cola y simplemente cargará directamente

los datos necesarios para realizar la siguiente transferencia.

La idea es que el 'Enhanced DMA Unit' además de realizar el alineamiento y las

extensiones de datos, pueda almacenar varias transmisiones en una cola, porque de este

modo estaremos reduciendo la carga de la CPU.

Para implementar esto en el DMA un se ha sido necesario crear un nuevo registro:

 DMA_READ_OUT: Es un registro de un bit. El usuario pone a 1 esta variable cuando quiere

saber si el DMA ha terminado con una determinada transferencia o está aun

transmitiendo. Este registro incrementa un puntero de lectura interno.

Además para implementar el DMA son necesarios tres punteros internos:

 Write: Indica el número de transferencias cargadas. Es incrementado cada vez que los

datos de una nueva transmisión son cargados en la cola.
 Read: Indica el número de la transmisión del que el usuario quiere saber el estado. Es

incrementado cada vez que el registro DMA_READ_OUT está a alta.
 Transfer: Indica el número de la transmisión actual. Es incrementado cada vez que la

transmisión de un bloque finaliza.

Cuando una de estas variables alcanza el límite de la cola, se pone a cero, y los

registros internos que usan esta variable como índice son sobrescritos.

Para entender mejor el modo de funcionamiento de las colas y el uso del registro

DMA_READ_OUT, ver las figuras 4.29 y 4.30 del proyecto respectivamente.

En aplicaciones como la codificación y decodificación de video que usan los algoritmos

ME y MC, un DMA capaz de almacenar varias transmisiones en una cola, reduce

considerablemente la sobrecarga de la CPU mejorando de este modo los resultados.

- xiii -

Evaluación del DMA propuesto

Descripción del sistema

El sistema con el que trabaja este proyecto se muestra en la figura 5.1 del proyecto.

El proyecto trabaja con el ‘Enhanced DMA Unit’, que está en el interior del procesador

Moai4k.

Hay tres modelos diferentes de DMA que serán analizados:

 Basic Profile (BP) es un DMA básico.

 Advanced Profile 2 (AP2) es el Basic Profile añadiéndole los procesos de

alineamiento y padding.

 Advanced Profile 3 (AP3) es el Advanced Profile 2 añadiéndole una cola para

almacenar varias configuraciones de transferencias.

El ‘Enhanced DMA Unit’, se comunica con la memoria externa (SDRAM) por medio del

bus AMBA.

Con el objetivo de obtener resultados más realistas, una latencia ha sido introducida

en el controlador de memoria externa y los resultados han sido obtenidos con diferentes

valores para esta latencia (entre 15 y 55 ciclos).

Algoritmo de Motion Estimation

Usando el ‘Enhanced DMA Unit’ propuesto y el algoritmo de motion estimation como

aplicación, las ventajas de este DMA serán demostradas.

El algoritmo motion estimation ha sido elegido como aplicación por las siguientes razones:

 Con el algoritmo motion estimation, es inevitable el tener que acceder a

posiciones de memoria no alineadas cuando se hace referencia a un bloque

candidato.

 Con el algoritmo motion estimation, para buscar el bloque de la imagen de

referencia que más se asemeja al bloque a codificar, la búsqueda se realiza solo

en una región de búsqueda, por lo tanto cuando un candidato se sale fuera de

esta región es necesario realizar una extensión de los datos.

- xiv -

 Con el algoritmo motion estimation es necesario transmitir una gran cantidad

de bloques, y cada vez que se transmite uno la CPU debe interrumpir lo que

esté realizando y cargar los datos para la siguiente transferencia.

El algoritmo de motion estimation ha sido programado en lenguaje ensamblador. La

estructura del código se puede ver en la Figura 5.2 del proyecto.

El algoritmo ha sido implementado de este modo porque se ha comprobado que es la

forma óptima para programar las transferencias en este algoritmo teniendo en cuenta que se

debe terminar una transferencia para programar la siguiente.

Resultados

Empleando el ‘Enhanced DMA Unit’ propuesto y el algoritmo motion estimation como

aplicación, se han realizado análisis con latencias entre 15 y 55 ciclos para cada uno de los

diferentes modelos de DMA implementados.

En el proyecto se pueden ver los resultados detallados para cada uno de los modelos

con diferentes latencias, pero en este resumen se van a comentar los resultados para el

modelo básico con diferentes latencias y se va a realizar una comparación entre los diferentes

modelos implementados.

En las figuras 5.3, 5.4 y 5.5 del proyecto aparecen los resultados del modelo básico con

latencias de 15, 30 y 45 ciclos respectivamente.

En las gráficas se puede observar el número de ciclos que cada bloque emplea en

realizar cada tarea. Además se puede observar el número total de ciclos empleado por cada

bloque para encontrar el bloque de la imagen de referencia que más se parece al bloque a

codificar.

Los picos aparecen en las gráficas porque cuando hay dos vectores de movimiento

iguales, se usa solo una vez este vector de movimiento, y por lo tanto tendremos un candidato

menos. Debido a esto habrá un número de candidatos diferente dependiendo del bloque a

codificar, por lo que se realizarán un número diferente de operaciones, y por este motivo

aparecen los picos en las gráficas.

Comparando los resultados del modelo básico con diferentes latencias se puede

apreciar como el número de ciclos que cada bloque emplea para encontrar el bloque que más

se le parece, aumenta al aumentar la latencia. Esto es porque cuando la latencia aumenta,

aumenta el tiempo que se debe esperar a que una transferencia finalice para poder empezar la

siguiente. Con los otros modelos de DMA implementados ocurre lo mismo.

En la figura 5.12 del proyecto se muestra una comparación de los resultados obtenidos

con los diferentes modelos de DMA implementados.

- xv -

En la gráfica se puede apreciar el número total de ciclos que cada bloque emplea en

media en ejecutar el algoritmo para cada modelo con cada latencia.

 A partir de la gráfica se puede concluir que:

 Cuando la latencia aumenta, aumenta el número total de ciclos ejecutados para

identificar el bloque de la imagen de referencia que más se asemeja al bloque

que se quiere codificar.

 Comparando el BP con el AP2 con latencias bajas, el número total de ciclos

ejecutados decrece porque el proceso de alineamiento y padding es realizado

por el DMA. Sin embargo con latencias altas, el número de ciclos tiende a ser

igual. Esto se debe a que con bajas latencias no es necesario esperar a que llegue

el bloque y cuando el alineamiento y las extensiones se realizan en el DMA, el

número de ciclos se reduce. Por el contrario, con latencias altas es necesario

esperar a que llegue el bloque y no importa el hecho de ahorrar ciclos realizando

el alineamiento y las extensiones en el DMA porque de todos modos tendré que

seguir esperando una vez estos se hayan realizado.

 Comparando AP2 con AP3, es fácil apreciar que AP3 emplea menos ciclos que

AP2 y esto es más notable conforme aumenta la latencia. Esto se debe a que con

latencias bajas en la mayoría de los casos no es necesario esperar, pero con

largas latencias será necesario esperar en casi todos los casos, y con AP2 se debe

esperar más porque espera el fin de una transmisión para programar la siguiente.

 El código para AP2 ha sido implementado para obtener los mejores resultados

teniendo en cuenta que para realizar una transferencia debe haberse

completado la previa, y por este motivo la diferencia entre el AP2 y AP3 es

menor. Con AP3 además de disminuir el número de ciclos que se emplean al

ejecutar el algoritmo se ahorra trabajo al programador, al no tener este que

decidir el mejor modo de implementar el código teniendo en cuenta que debe

haberse terminado una transferencia para empezar la siguiente.

- xvi -

Conclusiones

En este proyecto han sido analizados los procesadores VLIW y SIMD, las unidades de

acceso directo a memoria (DMA) y los estándares de codificación de video. Motion estimation

(un método particular de codificación de video) ha sido estudiado, analizando el algoritmo y

las transferencias necesarias.

En aplicaciones de codificación y decodificación de video que usan motion estimation (ME), no

es posible evitar las referencias a posiciones no alineadas de memoria. El algoritmo ME busca

el bloque que más se parece al bloque a codificar. Este bloque, llamado de referencia, es

generado por el desplazamiento de la localización del bloque a codificar en la imagen de

referencia. Este desplazamiento puede ser arbitrario y por tanto, esto hace que sean

necesarios múltiples e impredecibles accesos a posiciones no alineadas de memoria.

En este tipo de aplicaciones, las actuales optimizaciones de software no son del todo

satisfactorias porque las instrucciones necesarias para realizar el alineamiento de datos en

software someten a la CPU a una gran sobrecarga.

Conociendo que un DMA es una característica esencial en todos los ordenadores

modernos debido a que el DMA permite a los dispositivos transferir datos sin someter a la CPU

a una carga masiva de interrupciones, la solución adoptada en este proyecto ha sido diseñar

un ‘Enhanced DMA Unit’ (DMA inteligente) capaz de realizar el alineamiento de los datos.

Este 'Enhanced DMA Unit' además de realizar el proceso de alineamiento puede

realizar el proceso de extensión de los datos (padding). Por ejemplo en aplicaciones de

codificación y decodificación de video que emplean el algoritmo de motion estimation para

encontrar el bloque de la imagen de referencia que más se le parece al bloque que se quiere

codificar, la búsqueda se realiza solo en una región conocida como área de búsqueda. Cuando

un candidato (a ser el bloque de pixel de la imagen de referencia que mejor se asemeja al

bloque a ser codificado) se sale fuera del área de búsqueda, es necesario realizar una

extensión de los datos (padding).

Además este 'Enhanced DMA Unit' es capaz de almacenar varias configuraciones de

transferencias en una cola, de este modo cuando una transferencia termine, se iniciará

inmediatamente la siguiente. Ahora no es necesario esperar a que termine la transferencia

anterior para programar otra.

Con el ‘Enhanced DMA Unit’ propuesto, que se encuentra en el interior del procesador

Moai4k y se comunica con la memoria externa (SDRAM) por medio del bus AMBA, y usando el

algoritmo motion estimation como aplicación, han sido analizados los resultados obtenidos

empleando tres modelos diferentes:

 Basic Profile (BP)

 Advanced Profile 2 (AP2)

- xvii -

 Advanced Profile 3 (AP3)

Con el objetivo de obtener resultados más realistas, una latencia ha sido introducida

en el controlador de memoria externa y los resultados han sido obtenidos con diferentes

valores para esta latencia (entre 15 y 55 ciclos).

Se puede concluir que:

 Cuando la latencia aumenta, aumenta el número total de ciclos ejecutados para

identificar el bloque de la imagen de referencia que más se asemeja al bloque

que se quiere codificar.

 Comparando el BP con el AP2, el número total de ciclos ejecutados decrece

porque el proceso de alineamiento y padding es realizado por el DMA.

 Comparando AP2 con AP3, es fácil apreciar que AP3 emplea menos ciclos que

AP2. Con AP2 DMA es necesario esperar el final de una transferencia para

programar la siguiente. Esta “espera para programar transferencias”, que es

programada en el código de instrucciones, es evitada empleando el AP3 DMA.

En conclusión, con AP3 se ha disminuido el tiempo de ejecución, porque ha sido

eliminado código de instrucciones (proceso de alineamiento y padding) y no es necesario

esperar el final de una transferencia para programar una nueva. Además, con AP3, el tiempo

requerido para considerar el mejor lugar en el código de la aplicación para esperar el fin de

una transferencia para empezar una nueva, es eliminado.

Para finalizar el proyecto, se proponen algunas ideas indicando posibles futuras

modificaciones.

Cuando el padding está siendo realizado, es necesario copiar los contenidos de una

línea en todas las líneas que están fuera de la imagen, esto ha sido implementado leyendo

varias veces la misma línea. Leer todo el tiempo el contenido de la misma línea no es necesario

y se producen transferencias innecesarias que pueden ser evitadas:

 Ajustando el tamaño del bloque a los contenidos de este que permanecen dentro

de la imagen.

 Almacenando este contenido en la memoria local, y copiando estas líneas que son

iguales al mismo tiempo.

La implementación de estas futuras modificaciones podría ahorrar bastantes recursos

pero haría el DMA mucho más complejo.

Como conclusión a este proyecto se puede decir que un nuevo modelo de DMA

inteligente 'Enhanced DMA Unit' ha sido integrado en un procesador VLIW genérico para

futuros estudios con otras aplicaciones multimedia.

- xviii -

Leibniz Universität Hannover

Institute of Microelectronic Systems

Prof. Dr.–Ing. P. Pirsch

Design Space Exploration of an Advanced

Direct Memory Access Unit for a Generic

VLIW Processor

Master Thesis

Fátima Reino Gómez

July 2008

 Advisor : Ing. G. Payá Vayá

Examiner : Prof. Dr.-Ing. P. Pirsch

- xix -

MASTER’S THESIS

Ms. Fátima Reino Gómez

Design Space Exploration of an Advanced Direct Memory

Access Unit for a Generic VLIW Processor

In the last decade embedded consumer device requirements have grown, requiring

more efficient computer architectures. On the one hand, current image and video

coding standards, e.g. MPEG-4, H.264 or JPEG2000, are pushing the limits of the

existing media processors. Actual media processors cannot comply the tremendous

demand on the increasingly sophisticated multimedia operations, requiring special

architectural improvements. On the other hand, low power consumption is mandatory

in any multimedia portable device.

A Direct Memory Access (DMA) unit bus is mandatory in this kind of media processors.

A processor uses the DMA to transfer data between memory spaces or between a

memory space and a peripheral in background. An Advanced DMA can help to reach

the performance demanded by a multimedia application by performing some data

transformation during the background transfers. Moreover, this data transformation

will decrease the amount of executed operations, saving power consumption.

Ms Fátima Reino Gómez’s task is firstly to analyze the transfer’s requirements of actual

video coding standards and to develop a parameterized Direct Memory Access unit

model. Then, considering a particular video coding task, i.e. motion estimation, an

improved version has to be implemented, by adding extra functionality in the DMA

unit in order to decrease the required execution time. Finally, an exhaustive analysis of

the performance results should be done, indicating possible future modifications.

The submitted copies as well as the results of the work remain the property of the

institute.

Prof. Dr.-Ing. Peter Pirsch

- xx -

I hereby declare that this thesis is entirely the result of my own work except

where otherwise indicated. I have only used the resources given in the list

of references.

Hannover, July 2008

 Fátima Reino Gómez

- xxi -

Contents
1. Introduction .1

2. VLIW processors and DMA Basics . 6

 2.1. - Basics of VLIW/SIMD processors 6

 2.1.1. - VLIW vs. Superscalar processors 6

 2.1.2. - VLIW benefits 8

 2.1.3. - SIMD processors 9

 2.2. - Moai4k . 9

 2.2.1. - Introduction . .10

 2.2.2. - A generic VLIW architecture. 10

 2.3. - Basics of Direct Memory Access Units15

 2.3.1. - Introduction . 15

 2.3.2. - Operation of a DMA 15

 2.3.3. - DMA Transfer Strategies. 19

 2.3.4. - How to program a DMA Controller19

 2.3.5. - DMA Classification 25

3. H.264/AVC and Motion Estimation 26

 3.1. - H.264/AVC Coding Standard 26

 3.1.1. - Introduction .26

 3.1.2. - Video Encoder .28

 3.1.3. - Video Decoder . 35

 3.2. - Motion Estimation . 35

 3.2.1. – Introduction . 36

- xxii -

 3.2.2. - Block Matching Algorithm 36

 3.2.3. - Three Dimensional Recursive Search 38

 3.2.4. - Scheme of operation of motion estimation 40

 3.2.5. - Example of motion estimation 41

4. Proposed enhanced DMA unit .44

 4.1. - Introduction . 44

 4.2. - DMA processor interface45

 4.2.1. - Processor interface 46

 4.2.2. - Example . .46

 4.3. - Alignment process . .48

 4.3.1. - Introduction . .48

 4.3.2. - DMA with alignment 50

 4.4. - Padding process . 56

 4.4.1. - Introduction . .56

 4.4.2. - DMA with padding 58

 4.5. - Queue implementation 71

 4.5.1. - Introduction . .71

 4.5.2. - DMA with queue . 71

5. Evaluation of the proposed enhanced DMA Unit74

 5.1. - Design Space Exploration 74

 5.1.1. - System description 74

 5.1.2. - Motion Estimation task 75

 5.2. - Characteristics of motion estimation algorithm . . . 78

 5.3. - Results . 78

 5.3.1. - Results of Basic Profile (BP) 79

- xxiii -

 5.3.2. - Results of Advanced Profile 2 (AP2) 82

 5.3.3. - Results of Advanced Profile 3 (AP3) 85

 5.3.4. - Comparison of the different profiles88

6. Conclusions . .91

7. References . 94

- 1 -

Chapter 1

Introduction

Multimedia processing has increasingly applications such as high-definition interactive

television or multimedia cell phones. Because of this, multimedia processing is taking an

increasingly importance.

Media processing involves the capture, storage, manipulation and transmission of

multimedia objects such as audio objects, handwritten data, text, images, full-motion video

and 2-D/3-D graphics.

Nowadays, because of the wide variety of applications such as current video

applications, multimedia cell phones, high-definition interactive television… are necessary

continuous improvements requiring sophisticated multimedia operations, which imply a high

demand of power. Because of this and to achieve better performance, it has resulted in a

variety of design methodologies that cause the processors to behave less linearly and more in

parallel.

Parallelism can exist at various levels i.e. data, instruction and thread.

a) Instruction level parallelism (ILP) seeks to increase the rate at which instructions are

executed within a CPU (that is, to increase the utilization of on-die execution

resources). We can distinguish two principal types:

 Super-Scalar: Superscalar is the term used to describe a type of

microarchitecture processor capable of running more than one instruction per

clock cycle. In a superscalar processor is the hardware at runtime which is

responsible for planning the instructions. The microarchitecture superscalar

uses the instruction parallelism in addition to the parallelism flow, the latter

through the pipeline structure.

 VLIW: This architecture CPU implements a form of parallelism at the level of

instruction. It is similar to architectures Superscalar, both used several

functional units (e.g., several ALUs, several multipliers, etc.) to achieve this

parallelism.

Processors with VLIW architectures are characterized, as its name suggests, in

executing very long instructions that contain several independent operations,

which each one uses a different functional unit. The aim of this computer

architecture is to simplify the hardware design leaving the instruction

scheduling task in the hands of the programmer / compiler. As opposed, a

- 2 -

superscalar processor requires extra hardware to perform this scheduling at

runtime.

b) Thread level parallelism (TLP) seeks to increase the number of threads (effectively

individual programs) that a CPU can execute simultaneously.

c) Data level parallelism (DLP) deal with multiple pieces of data in the context of one

instruction. An example:

 Single Instruction Multiple Data (SIMD) is a technique employed to achieve

data level parallelism, as in a vector processor. The instructions apply the same

operation on a set of data. A single control unit sends instructions to different

processing units. All processors receive the same instruction from the control

unit, but operating on different data sets. In other words the same instruction is

executed in a synchronous manner by all processing units.

Due to the capability of exploiting parallelism in multimedia applications, VLIW

architecture is being very used in the last years. Using subword parallelism (this is a form of

small-scale SIMD), a VLIW architecture can achieve a significant improvement in performs.

To exploit data parallelism, we need subword parallel compute instructions, which

perform the same operation simultaneously on subwords packed into a word. A subword is a

lower precision unit of data contained within a word. In subword parallelism, we pack multiple

subwords into a word and then process the whole word. Data parallelism also need:

1) A way to expand data into larger containers.

2) Subword rearrangement within a register. Many algorithms require this subword

rearrangement. Two data rearrangement instruction examples are:

o MIX: These instructions take subwords from two registers and interleave alternate

subwords from each register in the result register. Mix left starts from the left most

subword in each of the two source registers, while mix right ends with the rightmost

subwords from each source register. Figure 1.1 illustrates this for 16-bit subwords

[1].

- 3 -

Figure 1.1.MIX instruction

o Permute: The permute instruction takes one source register and produces a

permutation of that register’s subwords. With 16-bit subwords, this instruction can

generate all possible permutations, with and without repetitions, of the four

subwords in the source register. Figure 1.2 shows a possible permutation. To specify

a particular permutation, we use a permute index. The instruction numbers

subwords in the source register starting with zero for the leftmost subword. A

permute index identifies which subword in the source registers places in each

subword of the destination register [1].

Figure 1.2.Permute instruction

3) Data alignment performed during a transfer between an external memory and a local

memory.

A memory reference is called aligned when it accesses positions that match with the

memory access granularity of the processor, when that does not happen is called misaligned

(or unaligned). To access an unaligned position, must be done a realignment process. The

realignment process is shown in Figure 1.3:

- 4 -

Figure 1.3.Alignment process

We must read the aligned memory word that is located before the unaligned position

and discards the unnecessary bytes, then read the aligned memory word that is located after

the unaligned position and discards the unnecessary bytes and finally merge the necessary

bytes of the two previous words.

Most SIMD processors provide access to only contiguous data in memory, with strong

alignment restrictions because they have limited memory architecture. These architectures,

either do not provide any hardware support for unaligned accessed or provide it but with

degrade results. Therefore, the programmer usually ends doing the alignment in software

which implies an extra-overhead and degrades the performance significantly. For example,

applications like video coding and decoding that use motion estimation (ME) and motion

compensation (MC) algorithms, require performing unpredictable alignments.

Nowadays, there are wide consensus about the importance of non-aligned accesses for

video applications (not having an efficient support for unaligned accesses degrade the

performance significantly), but most of the current SIMD architectures that support unaligned

accesses have restrictions and limitations.

Because the applications require increased resources, DMA Unit is an essential feature

of all modern computers, as it allows devices to transfer data without subjecting the CPU to a

heavy overhead, thus increasing application performance. A DMA transfer essentially copies a

block of memory from one device to another. With DMA, the CPU would initiate the transfer,

do other operations while the transfer is in progress, and receive an interrupt from the DMA

controller once the operation has been done. A typical usage of a DMA is to transfer a block of

memory from/to an external memory or from/to a buffer on the device. A DMA is usually used

in high performance embedded systems.

Because the instructions explained above, the alignment process subjects the CPU to a

heavy overhead. There are some applications, like video processing that require an efficient

support for unaligned accesses, degrading the performance significantly. Due to the DMA

allows devices to transfer data without subjecting the CPU to this heavy overhead, a possible

solution would be to design an ‘Enhanced DMA Unit’ capable of performing this alignment of

- 5 -

data. This new DMA will save many cycles because now the alignment is performed in the

DMA and the CPU can execute other part of the application code in parallel.

The idea of this project is to implement a DMA that in addition to perform this

alignment can also perform some data permutations, for example padding. The instructions

explained before can continue be using because once we have the data in internal memory,

these instructions will be responsible for performing any required alignment. But in many case,

we will use an 'Enhanced DMA Unit' because then we will be able to remove instructions code

and therefore reduce instructions cycles.

One example where the 'Enhanced DMA Unit' can reduce fairly the overload for the

CPU would be in applications like video coding and decoding that use ME and MC algorithm.

This algorithm requires to move blocks of data from an external memory to a local memory

faster, and to align theses blocks to place them correctly in the local memory. Moreover in

case of reading out from a reference frame some padding process should be executed.

The objectives of this project are the follows:

 Analyze the transfer’s requirements of actual video coding standards and to develop a

parameterized Direct Memory Access unit model.

 Considering a particular video coding task, i.e. motion estimation, an improved version

has to be implemented, by adding extra functionality in the DMA unit in order to

decrease the required execution time.

 An exhaustive analysis of the performance results should be done, indicating possible

future modifications.

This project is organized as follows. Chapter 2 presents the VLIW processors and the

DMA basics. Chapter 3 introduces H.264/AVC which is a standard for video compression and

also introduces motion estimation (ME) algorithm. Chapter 4 explains the DMA proposal for

the ‘Enhanced DMA Unit’. After that, in Chapter 5, the evaluation of the proposal DMA Unit

using Motion Estimation algorithm is shown. Finally, conclusions are presented in Chapter 6.

- 6 -

Chapter 2

VLIW processors and DMA Basics

This section presents the VLIW processors compared with other types of processors.

After that, we are going to study and analyze Moai4k processor, which is a processor that

implements a VLIW architecture. Finally, the basics of Direct Memory Access Units (DMA) are

presented in this section.

2.1. - Basics of VLIW/SIMD processors

This section, presents the VLIW processors compared with Superscalar processors.

After that, VLIW benefits are explained. Finally, SIMD processors are presented.

2.1.1. - VLIW vs. Superscalar processors

Superscalar is the term used to describe a type of microarchitecture processor capable

of running more than one instruction per clock cycle. The term is used as opposed to scalar

microarchitecture that only is able to execute an instruction per clock cycle. A superscalar

processor presents the following characteristics:

o In a superscalar processor, it is the hardware at runtime which is responsible for

planning the instructions. The microarchitecture superscalar uses the instruction

parallelism in addition to the parallelism flow, the latter through the pipeline

structure.

o In a superscalar processor, the processor handles more than one instruction at every

stage. The maximum number of instructions in a particular stage of the pipeline is

called degree and a processor superscalar grade 2 in reading (fetch) can read up to

two instructions per cycle.

- 7 -

IF

IF

ID

ID

IF

IF

EX

EX

ID

ID

IF

IF

MEM

MEM

EX

EX

ID

ID

IF

IF

WB

WB

MEM

MEM

EX

EX

ID

ID

IF

IF

WB

WB

MEM

MEM

EX

EX

ID

ID EX MEM WB

EX MEM WB

WBMEM

WBMEM

WB

WB

Figure 2.1.Simple superscalar pipeline. By fetching and dispatching two instructions at a time, a

maximum of two instructions per cycle can be completed.

o A superscalar processor is able to execute more than one instruction simultaneously

only if the instructions do not present any kind of dependence (hazard).

A statically scheduled superscalar must verify in the issue packet for any dependence

between instructions, as well as between any issue candidate and any instruction already in

the pipeline. A type of superscalar processor requires so much compiler assistance to achieve

good performance. In contrast, a dynamically-scheduled superscalar requires significant

hardware costs but less compiler assistance.

An alternative to the superscalar processors is to rely on compiler technology not only

to minimize the potential data hazard stalls, but to actually format the instructions in a

potential issue packet so that the hardware need not check explicitly for dependences.

With this new approach the compiler may be required to avoid dependences within

the issue packet, or if there are dependences to indicate when may be presented. This new

approach offers good performance with the potential advantage of simpler hardware.

The first multiple-issue processors that required the instruction stream to be explicitly

organized to avoid dependences used wide instructions with multiple operations per

instruction. For this reason, this architectural approach was named VLIW, standing for Very

Long Instruction Word, and denoting that the instructions, since they contained several

instructions, were very wide. A VLIW processor presents the following characteristics:

o VLIWs use multiple functional units that must be independent. A VLIW packages the

multiple operations into one very long instruction.

o VLIW leaves all the work of planning the code in the hands of the programmer /

compiler, as opposed a superscalar processor, which is the hardware at runtime

which plans instructions.

- 8 -

Example: Assume the following program:

1. Multiply Reg1 and Reg2 save in Reg3

2. Add Reg3 and Reg4 save in Reg5

3. Subtract Reg1 and Reg4 save in Reg6

a) Execution on a Superscalar machine

In this program, the planner code that would see that the second instruction depends

on the first (until it is not calculated Reg3 cannot run the sum), and that change in the third

instruction is independent of the other two. Therefore, the processor will begin simultaneously

multiplication and subtraction in different units and, once finished the multiplication, will

execute the sum. All this scheduling work is conducted by an internal circuitry in the

microprocessor.

b) Execution on a VLIW

In this case all the work will be made by the compiler and the code would be:

1. MULT(Reg1, Reg2, Reg3) - REST(Reg1, Reg4, Reg6)

2. - SUM(Reg3, Reg4, Reg5) -

 Figure 2.2.Code executed for a VLIW processor

In each instruction specifies the status of each and every one of the functional units of

the system. In the first instruction, it would be carried out multiplication and subtraction and

in the second the sum.

2.1.2. - VLIW benefits

VLIW offers the followings benefits:

a) Offers the potential advantage of simpler hardware while still exhibiting good

performance through extensive compiler optimization.

b) Reducing the number of instructions in the programs.

c) Has the ability to use a more conventional, and typically less expensive, cache-based

memory system.

- 9 -

d) Has the potential to extract some amount of parallelism from less regularly structured

code.

2.1.3. - SIMD processors

Vector processors deal with multiple pieces of data in the context of one instruction.

This contrasts with scalar processors, which deal with one piece of data for every instruction.

These two schemes of dealing with data are generally referred to as SISD (single instruction,

single data) and SIMD (single instruction, multiple data), respectively. The great utility in

creating CPUs that deal with vectors of data lies in optimizing tasks that tend to require the

same operation (for example, a sum) to be performed on a large set of data. Some classic

examples of these types of tasks are multimedia applications (images, video, and sound), as

well as many types of scientific and engineering tasks. Whereas a scalar CPU must complete

the entire process of fetching, decoding, and executing each instruction and value in a set of

data, a vector CPU can perform a single operation on a comparatively large set of data with

one instruction. Of course, this is only possible when the application tends to require many

steps which apply one operation to a large set of data.

The repertoires of SIMD consist of instructions that apply the same operation on a set

more or less big of data. A single control unit sends instructions to different processing units.

All processors receive the same instruction from the control unit, but operating on different

data sets. In other words the same instruction is executed in a synchronous manner by all

processing units.

For example: Typical operations encountered such as SAD require the same operation to be

performed on multiple pixels or data units with no dependencies involved. Therefore, the same

instruction can be used to perform this task simultaneously on all the data units.

In most embedded media processors and in microprocessors for desktop computers,

the common approach for dealing with the requirements of digital video processing, and the

other multimedia applications, has been the extension of the Instruction Set Architecture (ISA)

with SIMD instructions.

2.2. - Moai4k

Moai4k is a processor, created in Rapanui project, that implements a VLIW

architecture. This section study and analyze this processor, and presents the generic VLIW

architecture [2].

- 10 -

2.2.1. - Introduction

Multimedia processing has increasingly applications and because of the wide variety of

applications such as current video applications, multimedia cell phones, high-definition

interactive television… are necessary continuous improvements requiring sophisticated

multimedia operations, which imply a high demand of processing power.

 Because of this and to achieve better performance, have resulted in a variety of design

methodologies that cause the processors to behave less linearly and more in parallel. VLIW

architecture is being very used in the last years due to the capability of exploiting parallelism in

multimedia applications. VLIW architectures execute multiple operations within a single long

instruction word. Therefore, to allow this concurrency, multiple parallel functional units have

to be implemented.

Using subword parallelism in a VLIW architecture can be achieved a significant

improvement of results. VLIW can be also improved with instruction set extensions, specialized

functional units and instruction level parallelism. VLIW architectures require instruction

scheduling to be performed at compile time to assemble the long instruction words.

For designing a media processor there are multiple architectural features that should

be taken into account. For example, increasing the amount of instruction level parallelism (ILP)

requires more registers to hold the operands and results of those instructions. This lead to a

complex register file with a high number of read/write ports to allow the concurrence access.

On the other hand large multiport memories introduce performance degradation. Therefore,

partitioned register should be considered for this kind of processor architectures.

2.2.2. - A Generic VLIW architecture

This generic VLIW architecture covers the basics requirements for media processing.

Two important characteristics have been considered:

1) A fully parameterized architecture: easily extendable by adding or modifying functional

units.

2) A novel register file structure avoids a high number of required ports when there are a

big number of parallel operations.

For this generic VLIW architecture, a parameterized simulator was written in Open

Vera and standard C. Figure 2.3 shows an overview of the design space exploration

environment.

- 11 -

Figure 2.3.Rapanui Design Space Exploration Environment

a) Vector Unit Structure

The basic structure of this VLIW architecture, has been specially designed for efficient

processing of blocks of data or macroblocks normally used in video coding algorithms. This

basic structure will be hereafter called Vector Unit (VU).

Figure 2.4 shows a Vector Unit architecture:

Figure 2.4.Vector unit architecture

The VU comprises a flexible datapath controlled by a 64-bit dual-issue VLIW (two 32-

bit operations). Moreover, the datapath implements subword parallelism (e.g. for a 64 bit

datapath, operands splitable into one 64-bit subword, two 32-bit subwords, four 16-bit

subwords or eight 8-bit subwords) in almost every functional unit.

- 12 -

OPCODE

OPCODE

OPCODE

Optional

Flags

Optional

Flags

Optional

Flags

Operand1

Reg./ Address

Reg.

Operand1

Reg./ Address

Reg.

Operand1

Reg./ Address

Reg.

Operand2

Reg.

TARGET

Reg./ Address

Reg.

Operand2

Inmediate 6-bit

TARGET

Reg./ Address

Reg.

TARGET

Reg./ Address

Reg.

Operand2

Inmediate 32-bit

The control path is divided initially into 5 different basics stages:

 Instruction Fetch(IF)

 Instruction Decode(DE)

 Register Access(RA)

 Execution(EX)

 Write Back(WB)

The EX stage, as shown in Figure 2.5, can be subdivided into more stages depending on

the characteristics, e.g. latency, of the functional units.

Figure 2.5.Vector Unit pipeline

The VU implements a configurable global address map which allocates a 64-bit dual

port instruction memory with configurable size. There is also a dual port data memory with

configurable size. Each memory is accessed by the processor itself and DMA unit, which

performs data transfers in background between memories and external slaves through a

configurable bus system.

b) Specialized instructions and functional units

The VU implements an orthogonal instruction set that contains several extensions for

typical video processing computations, e.g. data formatting, different kinds of rounding,

multiply-and-accumulate operations. To facilitate adding new instructions and functional

units, most instructions use a common bit-pattern, as shown in Figure 2.6:

 R_R_R mode

 R_I_R mode

 R_IL_R mode

 32 Bit 32 Bit

 Figure 2.6.Instructions types

- 13 -

Move and flow operations use different patterns. Access to memory or special

registers, e.g. address registers for indirect addressing mode or configuration register

located in the functional units, are performed by move operations.

Functional units are represented by a set of characteristics, e.g. latency, which is

expressed in number of execution stages, and type and number of operands, which are

related with the number of read and write ports required in the register file.

Table shows details about the functional units implemented: operations performed,

latency required and number of register and number of register written in the write-back

(WB) stage. MV, LS and FLOW are not considered functional units.

Table 2.1.Details about the functional units implemented

Another interesting feature is that a VU can execute all kinds operations either of its

two issues. Therefore, two operations that execute the same function can only be

scheduled in the same instruction, if the needed functional unit has been replicated for the

desired architecture configuration.

c) Multiple Vector Unit and Partitioned Register File

Using a higher degree of parallelism in some applications, results in considerably more

performance. This can be achieved by increasing the number of VUs to two or even three

within the architecture as shown in Figure 2.7:

- 14 -

Vector

Register File
V1RX

 Figure 2.7.Dual Vector Unit architecture

The pipeline configuration is mostly the same, with the exception of the IF stage, which is

now common for all VUs. The other stages are independent for each VU.

 Figure 2.8.Dual Vector Unit pipeline architecture

In this new architecture, every VU has its own data memory and DMA, allowing multiple

transfers in parallel.

Vector Unit 0 Vector Unit 1

- 15 -

These changes implicate a redesign of the register file structure:

 Having a unique register file for two VUs (with two issues each) results in

implementing many ports memory, which is not practicable.

 Having separated register files for each VU results in inefficient data transfers.

Therefore, the register file structure for multiple VUs can be implemented with a ring

structure. This new register file structure increases the operation parallelism allowing to

parallelize operations that require same functional units and same input data. Input data is

not duplicated, instead it is stored in the register file located between VUs. This structure

occupies less area and improves timing performance of the hardware implementation.

2.3. - Basics of Direct Memory Access Units

This section, presents the Directs Memory Access Units, the operation of a DMA Unit,

the DMA Unit strategies transfer, how to program a DMA controller, and finally a classification

of the DMA Units.

2.3.1. - Introduction

The processor core can make multiple operations in a cycle such as data fetches, data

stores and pointer increments/decrements. Moreover, the core, moving data into and out of

the register file, can lead data transfer between internal and external memory spaces.

The issue is that for achieving high performance in a specific application it is necessary

to interrupt the core to perform the transfers. To solve this, it is possible to use a DMA.

Processors use DMA to release the core from these transfers between internal/external

memory and peripherals, or between memory spaces.

2.3.2. - Operation of a DMA
Direct memory access (DMA) is a feature of modern computers that allows certain

hardware subsystems within the computer to access system memory for reading and/or

writing independently of the central processing unit. Many hardware systems use DMA

including graphics cards, disk drive controllers, sound cards, and network cards. DMA is also

used for intern-chip data transfer in multi-core processors, especially in multiprocessor

system-on-chips where each core is equipped with its local scratchpad memory and DMA is

used for transferring data to and from these local memories. Computers that have DMA

channels can transfer data to and from devices with much less CPU overhead than computers

without a DMA channel.

- 16 -

Using a DMA Unit, in a programmed input/output mode, the CPU would initiate the

transfer, makes other operations while the transfer is in progress, and receive an interrupt

from the DMA controller once the operation has been done. This is especially useful in real-

time computing applications where not stalling behind concurrent operations is critical. If we

don`t use a DMA, for the entire duration of the read or write operation the CPU is fully

occupied and is thus unavailable to perform other work.

DMA allows devices to transfer data without subjecting the CPU to a heavy overhead.

Otherwise, the CPU would have to copy each piece of data from the source to the destination.

During this time the CPU would be unavailable for any other tasks involving CPU bus access,

although it could continue doing any work which did not require bus access.

A typical usage of DMA is copying a block of memory from system RAM to or from a

buffer on the device. Moreover DMA is used in high performance embedded systems. DMA is

also used in functionalities such as network audio playback, packet routing and streaming

video.

Figure 2.9 shows a common interaction between the processor and the DMA

controller.

Figure 2.9.Interaction between the processor and DMA controller

The steps allocated to the processor involve enabling interrupts, setting up the

transfer, and running code when an interrupt is generated. The lines between peripheral and

the memory indicate operations the DMA controller makes to move data independent. Finally,

the interrupt input back to the processor can be used to signal that data is ready for

processing.

The DMA controller can perform several types of data transfers:

- 17 -

1) Moving to peripherals

Memory DMA
Peripheral

FIFO

Figure 2.10.Data transfer to a peripheral

2) Moving from peripherals

Memory DMA
Peripheral

FIFO

Figure 2.11.Data transfer from a peripheral

3) Moving from one memory space to another

Memory DMA Memory

Figure 2.12.Data transfer between memories

- 18 -

For example, source video might flow from a video to external memory, because

the working buffer size is too large to fit into internal memory. We don´t want to

make the processor fetch pixels from external memory every time we need to

perform a calculation, so a memory-to-memory DMA can be used for more

efficient access time.

A DMA transfer can involve data and code. We can use code overlays to improve

performance, configuring the DMA controller to move code into instruction memory before

execution. The code is usually staged in larger external memory.

Figure 2.13 shows one DMA bus structure, where the DMA Core Bus connects the

controller to internal memory, the DMA External Bus connects the DMA controller to external

memory and DMA Access Bus connects to the peripherals. Moreover an additional DMA bus

set is also available when on-chip memory is presented, in order to move data within the

processor’s internal memory spaces.

 Figure 2.13.DMA Unit bus structure

Each DMA channel on a DMA controller (if the DMA controller has channels, in our

case the DMA has a queue) has a programmable priority associated with it. If more than one

channel requests the DMA bus in a single cycle, the highest priority channel wins access.

When more than one DMA controller is presented on a processor, the channels from

one controller can run at the same time as channels on the other controller. This is possible

when both don´t try to access the same resource, if both DMA controllers try to access the

same resource, arbitration must take place (one of the controllers can be programmed to a

higher priority than the other).

- 19 -

2.3.3. - DMA transfer strategies

The following are different techniques to make data transfer:

1) ‘Cycle stealing’: is based in use one or more CPU cycles per instruction that runs

(hence the name). So it is achieved high availability of the system bus to the CPU,

although, consequently, the transfer of data is considerably slower. This method is

being used routinely because the interference with the CPU is very low.

2) ‘Burst DMA’: consists of sending the block of data requested by a burst, occupying the

system bus until the end of transmission. So gets the maximum speed, but the CPU can

not use the bus during that time, so it would remain inactive.

3) ‘Transparent DMA’: uses the system bus when there is confidence that the CPU does

not require it, such as in the stages of the execution process of the instructions where

never uses because the CPU performs internal tasks (eg phase decoding of the

instruction). Thus, as its name suggests, the DMA will remain transparent to the CPU

and the transfer will be done without jeopardizing the relation CPU-system bus. As a

disadvantage, the transfer rate is the lowest possible.

4) ‘Scatter-gather DMA’: allows data transfer to several areas of memory in a single

transaction DMA. It is equivalent to chaining multiple requests DMA simple. Again, the

aim is to liberate the CPU of copy tasks of data and multiple interruptions of data

input/output.

2.3.4. - How to program a DMA Controller

To perform a DMA transfer, starting source and destination address is required. In the

simplest case of a memory DMA, we need to specify the DMA controller the source address,

the destination address and the number of words to transfer. This type of transaction is called

simple one-dimensional (1D) transfer with a unity ‘stride’. With a unity stride, the address

increments by 1 byte for 8-bit transfer, 2bytes for 16-bit transfers, and 4 bytes for 32 bits

transfers. Figure 2.14 shows a 1D DMA Unit with unity stride:

- 20 -

 Figure 2.14.1D DMA Unit with unity stride

If we want to add more flexibility to a one-dimensional DMA Unit, we only have to

change the stride. For example, with non unity strides, we can skip addresses in multiples of

the transfer sizes. That is, specifying a 8-bit transfer and striding by 4 samples results in an

address increment of 4 bytes (four 8-bit words) after each transfer. Figure 2.15 shows this

case:

 Figure 2.15.1D DMA Unit with non-unity stride

In the case of a peripheral DMA, the peripheral’s FIFO serves as either the source or

the destination. If the peripheral serves as the destination, a memory location serves as the

source address, in otherwise (the peripheral serves as the source), a memory location (internal

or external) serves as the destination address.

- 21 -

We can describe two registers, XCOUNT and XMODIFY.

 XCOUNT: is the number of transfers that need to be made

 XMODIFY: is the number of bytes to increment the address pointer after the

DMA controller moves the first data element. Is always expressed in bytes.

The two-dimensional (2D) capability is even more useful than 1D DMA. 2D DMA is very

used especially in video applications, 2D DMA is an extension to 1D DMA. In this configuration

we program two registers more, YCOUNT and YMODIFY:

 YCOUNT: is the number of transfers

 YMODIFY: is specified as a number of bytes to increment the address pointer

2D DMA can be seen as a nested loop, where the inner loop is specified by XCOUNT

and XMODIFY, and the outer loop specified by YCOUNT and YMODIFY. A 1D DMA can then be

viewed simply as an ‘inner loop’ of the 2D transfer of the form:

for y =1 to YCOUNT STEP YMODIFY /*2D with outer loop*/

 for x =1 to XCOUNT STEP XMODIFY /*1D inner loop*/

 {/*Loop goes here*/

 }

 Figure 2.16.1D DMA Unit as an ‘inner loop’ of the 2D DMA transfer

While YMODIFY determines the stride value of DMA controller takes every time

XCOUNT decrements, YMODIFY determines the stride taken whenever YCOUNT decrements.

YMODIFY can be negative, which allows the DMA controller to wrap back around to the

beginning of the buffer.

For a memory DMA, the ‘memory side’ of the transfer can be 1D-to-1D transfer, a 1D-

to-2D transfer, a 2D-to-1D transfer, and a 2D-to-2D transfer. The only constraint is that the

total number of bytes being transferred on each end of the DMA transfer block has to be the

same.

Figures 2.17 show different Memory DMA configurations:

- 22 -

a) 1D to 1D c) 1D to 2D

b) 2D to 1D d) 2D to 2D

 Figure 2.17.Posible Memory DMA configurations

Peripheral DMA offers less flexibility, the ‘memory side’ of the transfer can be either

1D or 2D. On the peripheral side it is always a 1D transfer. The only constraint is that the total

number of bytes transferred on each size (source and destination) of the DMA must be the

same.

- 23 -

Example

Consider a 3-pixel (per line) x 4-line array, with byte-sized pixel values, ordered as shown in

Figure 2.18:

Figure 2.18.Source array

 While this data is shown as a matrix, it appears consecutively in memory as shown in

the Figure 2.19:

Figure 2.19.Posible Memory, it appears consecutively en memory

We want now to create using the DMA controller, the array shown in the Figure 2.20:

Figure 2.20.Destination array

Source and destination word transfer size = 1 byte per transfer.

We can use a memory DMA, with a 2D-to-1D transfer configuration. First I will explain

the values of the registers of the source.

- 24 -

The source is 2D and the array size is 4 lines x 3 pixels/line, therefore XCOUNT is 4 and

YCOUNT is 3.

We want to take the first value (0xa) and skip 3 bytes to the next value of 0xa. We will

repeat this four times (Source XCOUNT = 4). The value of the source XMODIFY is 3, because

that is the number of bytes the controller skips over to get to the next pixel (including the first

pixel). XCOUNT decrements by 1 every time a pixel is collected. When the DMA controller

reaches the end of the first row, XCOUNT decrements to 0, and YCOUNT decrements by 1.The

value of YMODIFY on the source side then needs to bring the address pointer back to the

second element in the array (0xb). At the instant this happens, the address pointer is still

pointing to the last element in the first row (0xa). Counting back from that point in the array to

the second pixel in the first row, we traverse back by 11 elements. Therefore, the source

YMODIFY = -11.

Therefore the source DMA register setting for this transfer are:

SOURCE

XCOUNT = 4

XMODIFY = 3

YCOUNT = 3

YMODIFY = -11

Figure 2.21.Source DMA registers

Now the values of the registers of the destination will be explained.

Due to we will use a 1D transfer to fill the destination buffer, we only need to program

XCOUNT and XMODIFY on the destination side. In this case, the value of XCOUNT is set to 12,

because that is the number of bytes that will be transferred. The YCOUNT value for the

destination side is simply 0, and YMODIFY is also 0.

Therefore the destination DMA register setting for this transfer are:

DESTINATION

XCOUNT = 12

XMODIFY = 1

YCOUNT = 0

YMODIFY = 0

Figure 2.22.Destination DMA registers

- 25 -

2.3.5. - DMA Classification

There are two main classes of DMA transfer configuration: Register mode and

Descriptor mode. The Table 2.2 shows the type of information into the DMA controller, which

is the same regardless of the class of DMA.

Table 2.2.DMA registers

a) Register-based DMA

In a register-based DMA, the processor directly programs DMA control register to

initiate a transfer. Registers don’t need to keep reloading from descriptors in memory, and the

core does not have to maintain descriptors. This DMA provides the best performance.

b) Descriptor-based DMA

Require a set of parameters stored within memory to initiate a DMA sequence. The

descriptor contains all of the same parameters normally programmed into the DMA control

register set. In descriptor-based DMA operations, we can program the DMA to automatically

set up and start another DMA transfer after the current sequence completes. The descriptor-

based model provides the most flexibility in managing system’s DMA transfers.

- 26 -

Chapter 3

H.264/AVC and Motion Estimation

This section introduces H.264/AVC which is a standard for video compression and also

introduces motion estimation (ME) algorithm.

3.1. - H.264/AVC Coding Standard

H.264 is a standard for video compression. It is also known as MPEG-4 Part 10, or

MPEG-4 AVC (for Advanced Video Coding). H.264 is the result of the collaboration between the

ISO/IEC Moving Picture Expert Group and the ITU-T Video Coding Expert Group.

The intent of the H.264/AVC project was to create a standard capable of providing

good video quality at substantially lower bit rates than previous standards (e.g. half or less the

bit rate of MPEG-2, H.263, or MPEG-4 Part 2), without increasing the complexity of design so

much that it would be impractical or excessively expensive to implement. An additional goal

was to provide enough flexibility to allow the standard to be applied to a wide variety of

applications on a wide variety of networks and systems, including low and high bit rates, low

and high resolution video, broadcast, DVD storage, RTP/IP packet networks, and ITU-T

multimedia telephony systems.

In this section H.264/AVC Coding Standard is studied, and the encoder and decoder

will be explained.

3.1.1. - Introduction

H.264/AVC is the latest standard in a sequence of the video coding standards H.261,

MPEG-1 Video, MPEG-2 Video, H.263, MPEG-4 Visual or part 2. These previous standards

reflect the adaptation of video coding to different applications and networks and the

technological progress in video compression. Applications range from video telephony to

consumer video on CD and broadcast of standard definition or high definition TV.

Nowadays, the importance of new network access technology (cable modem, Xdsl, and

UMTS) is increasing and therefore creating demand for the new video coding standard

H.264/AVC, providing enhanced video compression performance in view of non-interactive

applications like storage, broadcast and streaming of standard definition TV where the focus is

on high coding efficiency and interactive applications like video telephony requiring a low

latency system.

- 27 -

Comparing the H.264/AVC video coding tools to the tools of previous video coding

standards, H.264/AVC brought in the most algorithmic discontinuities in the evolution of

standardized video coding.

The standardization of the first version of H.264/AVC was completed in May of 2003.

The JVT (Joint Video Team) then developed extensions to the original standard that are known

as the Fidelity Range Extensions (FRExt). H264/AVC achieved a leap in coding performance that

was not foreseen just five years ago.

Figure 2.23 shows the scope of video coding standardization, where only the syntax

and semantics of the bit stream and the processing that the decoder needs to perform when

decoding the bit stream into video are defined:

Figure 3.1.Scope of video coding standardization

The steps of the previous scheme would be as follows:

 A digital video is captured from a camera or synthesized using appropriate tools.

 Optional pre-processing: the sender might choose to preprocess the video using

format conversion or enhancement techniques.

 Encoder: encodes the video and represents the video as a bit stream.

 Transmission of the bit stream over a communications network.

 Decoder: decodes the video.

 Optional post-processing: step which might include format conversion, filtering to

suppress coding artifacts, error concealment, or video enhancement.

Pre-
Processing

Encoding

Channel/

Storage

Decoding

Post-
Processing &

Error
Recovery

Video Bitstream

Bitstream Video

Source

Receiver

- 28 -

The standardization of the bit stream and the decoder by the H.264/AVC preserves

the fundamental requirement for any communications standard—interoperability.

Manufactures of video decoders can only compete in areas like cost and hardware

requirements. Optional post-processing of the decoded video is another area where different

manufactures can compete creating competing tools to create a decoded video stream

optimized for the targeted application. The standard does not define how encoding or other

video pre-processing is performed thus enabling manufactures to compete with their encoders

in areas like coding efficiency, cost, error resilience and error recovery or hardware

requirements.

Not only coding efficiency is relevant for efficient transmission in different

environment, but also the seamless and easy integration of the coded video into all current

future protocol and network architectures. This includes Internet and wireless network

expected to be a major application for the new video coding standard.

3.1.2. - Video Encoder

An encoder is a device used to change a signal or data into a code. In H264/AVC

standard the encoder encodes the video and represents the video as a bit stream for the

transmission over a communications network. Figure 2.24 shows a generalized diagram of a

video encoder with motion compensation:

Figure 3.2.Block diagram of a video encoder with motion compensation

The input image is divided into macroblocks and each of these macroblocks is what we

introduce into our encoder. Each machroblocks consists of the three components:

 Y: Luminance component which represents the brightness information.

 Cr and Cb: Chrominance components which represent the color information.

- 29 -

As the human eye system is more sensitive to the Luminance than to the chrominance,

the chrominance signals are both divided by a factor 2 in horizontal and vertical direction.

A macroblock consists of one block of 16 by 16 picture elements (luminance

component) and two blocks of 8 by 8 picture elements (chrominance components).

 Figure 3.3.Macroblock consisting of a Luminance component and Chrominance components.

Each macroblock are coded in Inter or Intra mode:

 Inter mode: A macroblock is predicted using motion compensation (will be

explained later).

 Intra mode: The image can be coded without reference to previously sent

information (will be explained later).

The macroblocks are processed in so called slices. A slice is usually a group of

macroblocks processed in raster scan order. There are five different slice-types:

 I: All macroblocks are encoded in Intra Mode.

 P: All macrobloks are predicted using a motion compensated prediction with

one reference frame.

 B: All macrobloks are encoded using a motion compensated prediction with

past and future pictures as reference.

 SI and SP: are used for an efficient switching between two different bit streams.

The following is the explanation of the operation of each of the blocks that appear in

the diagram, to finally explain the operation step by step of the encoder.

Intra prediction: Predict a current block from previously coded blocks in the same

frame.

For the prediction of the luminance component Y are in H.264/AVC two different types

of intra prediction:

 Y

 Cr

 Cb

- 30 -

 INTRA_16X16: Only one prediction mode is applied for the whole macroblock.

Four different prediction modes are supported for the type INTRA_16X16:

Plane prediction, vertical prediction, horizontal prediction and DC prediction.

 INTRA_4X4: The macroblock, which is of 16x16, is divided into sixteen 4x4

subblocks and a prediction for each subblock of the luminance signal is applied

individually. Nine different prediction modes are supported for the type

INTRA_4X4. One is DC prediction mode and in addition eight prediction modes

each for a specific prediction direction.

For the prediction of the chrominance signals Cb and Cr of a macroblock is similar to

the INTRA_16x16 type for the luminance signals. It is performed always on 8x8 blocks using

plane prediction, vertical prediction, horizontal prediction and DC prediction.

Motion compensation prediction: One method used by various video formats to

reduce file size is motion compensation, that is a technique for describing a picture in terms of

the transformation of a reference picture to the current picture. For many frames of a movie,

the only difference between one frame and another is the result of either the camera moving

or an object in the frame moving. In reference to a video file, this means much of the

information that represents one frame will be the same as the information used in the next

frame. Motion compensation takes advantage of this to provide a way to create frames of a

movie from a reference frame.

For this purpose, each macroblock can be divided into smaller partitions. The use of

larger blocks can reduce the number of bits needed to represent the motion vectors, while the

use of smaller blocks can result in a smaller amount of prediction residual information to

encode. Partitions with luminance block sizes of 16x16, 16x8, 8x16, 8x8 samples are

supported.

 Figure 3.4.Partitions with luminance block

In case of an 8x8 sub-macroblock, one additional syntax element specifies if the

corresponding 8x8 sub-macroblock is further divided into partitions with block sizes of 8x4,

4x8, 4x4.

16 x 16 8 x 16 16 x 8 8 x 8

- 31 -

 Figure 3.5.Partitions of an 8x8 sub-macroblock

A displacement vector (motion data) is estimated and transmitted for each block

(motion estimation), refers to the corresponding position of its image signal in an already

transmitted reference image. With this (motion data) and the reference image stored in

memory, motion compensation calculates the prediction of the current image.

 In former MPEG standards this reference image is the most recent preceding image. In

H.264/AVC it is possible to refer to several preceding images. For this purpose, an additional

picture reference parameter has to be transmitted together with the motion vector. This

technique is called motion-compensated prediction with multiple reference frames.

Figure 3.6.Motion-compensated prediction with multiple reference frames

H.264 encoding supports sub-pixel resolution for motion vectors, meaning that the

reference block is actually calculated by interpolating inside a block of real pixels.

Hence, we employ sub-pixel grid, in which motion vectors may point to candidate

blocks placed at half-pixel or sometimes quarter pixel locations. The reference block at sub-

pixel grid can be generated using either bi-linear interpolation but in H.264 standard is used a

more sophisticated six-tap filter.

 8 x 8 4 x 8 8 x 4 4 x 4

- 32 -

Figure 3.7.Pixel block on half pixel resolution Grid

Normally, the integer motion vector is further refined to first half pixel by testing the

eight neighbouring half pixel locations and further to quarter pixel by testing the neighbouring

eight quarter pixel locations.

Figure 3.8.Quarter resolution pixels

In the application used in the project it is possible to point to candidate blocks placed

only at half-pixel (of course also at full-pixel) and we will have the following cases:

Figure 3.9.Cases in the application of the project.

 FH: Average vertical (green circle).

 HF: Average horizontal (blue circle).

 HH: Average vertical and average horizontal (yellow circle).

 FF: copy (red circle).

- 33 -

Transform Coding: Is applied in order to code the prediction error signal. The task of

the transform is to reduce the spatial redundancy of the prediction error signal. For the

purpose of transform coding, all former standards such as MPEG-1 and MPEG-2 applied a two

dimensional Discrete Cosine Transform. In H.264/AVC, different integer transforms are applied

instead of the DCT.

Quantification: The human eye is very good detecting small changes of brightness in

relatively large areas, but not when the rapidly changing brightness in small areas (high-

frequency variations), this allows elimination of high frequencies, without losing too much

visual quality. All coefficients are quantized by a scalar quantizer. The quantization step size is

chosen by a so called quantization parameter QP which supports 52 different quantization

parameters. This is the process that loses much of the information (and quality) when an

image is processed by this algorithm.

Entropy Coding Schemes: The entropic coding is a special form of compression

without data loss. H.264/AVC specifies two alternative methods of entropy. These methods

are used to codify coefficients and motion vectors. The encoding used for this task are based

on VLC (Variable Length Coding) adaptative, of this concept is born the CAVLC (Context

Adaptive Variable Length Coding) and CABAC (Context Adaptive Binary Arithmetic Coding).

Adaptative Deblocking Filter: In block-based video compression technology, blocking

artifacts are obvious because of the luminance and chrominance discontinuities which are

caused by block-based motion compensation. Filtering the block edges has been shown to be a

powerful tool to reduce the visibility of these artifacts.

The filter described in the H.264/AVC standard is highly adaptive. Several parameters

and thresholds and also the local characteristics of the picture itself control the strength of the

filtering process. All involved thresholds are quantizer dependent, because blocking artifacts

will always become more severe when quantization gets coarse.

The filter is adaptive on three levels:

 On Sample level: It is important to distinguish between true edges in the image

and those created by the quantization of the transform-coefficients. True edges

should be left unfiltered as much as possible.

 On Slice level: The global filtering strength can be adjusted to the individual

characteristics of the video sequence.

 On block edge level: The global filtering strength is made dependent on

intra/inter prediction decision, motion differences, and the presence of coded

residuals in the two participating blocks. From these variables a filtering-

strength parameter is calculated, which can take values from 0 to 4 causing

modes from no filtering to very strong filtering of the involved block edge.

Memory: Where stored the macroblocks and can be used to predict future

macroblocks.

- 34 -

Motion Estimation: Is the process of determining motion vectors that describe the

transformation from one 2D image to another; usually from adjacent frames in a video

sequence. (This process will be widely explained in the next point).

Once explained the operation of each of the blocks that appear in the diagram, the

operation of the encoder is the following:

The input image is divided into macroblocks and each of these macroblocks is what we

introduce into our encoder.

Each macroblock is introduced in the block of motion estimation where a

displacement vector is estimated and transmitted for each macroblock (motion data) that

refers to the corresponding position of its image signal in already transmitted reference image

stored in memory. Vectors are introduced in the block of motion compensation that with this

and the reference image stored in memory calculates the prediction of the current

macroblock. The motion data calculated in motion estimation is also entropy coded and sent

to the decoder.

The difference between the original and the predicted macroblock is called prediction

error and is transformed, quantized, entropy coded and sent to the decoder. The prediction

error has smaller energy than the original pixel values and can be coded with fewer bits,

because of this is sent the prediction error instead of the original macroblock.

In order to reconstruct the same image on the decoder side, the quantized coefficients

are inverse transformed and added to the prediction signal. Once this is done, the macroblock

is introduced in the deblocking filter to reduce the visibility of blocking artifacts. The result is

the reconstructed macroblock that is also available at the decoder side. This macroblock is

stored in the memory where can be used to predict future macroblocks.

With respect to the block diagram H.264/AVC introduce the following changes:

 The Discrete Cosine Transform (DTC) used in former standards is replaced by an

integer transform.

 An adaptive filter deblocking filter is used in order to reduce the block-artifacts.

 In H.264/AVC a prediction scheme is used also in Intra mode.

 H.264/AVC allows storing multiple video frames in the memory, whereas in previous

standards the memory contains only one video frame.

- 35 -

3.1.3. - Video Decoder

A decoder is a device which does the reverse of an encoder, undoing the encoding so

that the original information can be retrieved. The same method used to encode is usually just

reversed in order to decode.

The following figure shows a generalized diagram of a video decoder with motion

compensation:

Figure 3.10.Video decoder with motion compensation

The decoder receives the motion data and the quantized coefficients, the entropy

decoder decodes the quantized coefficients and the motion data, which is used for the motion

compensated prediction.

As in the encoder, a prediction signal is obtained by intra-frame or motion

compensation prediction.

The prediction signal obtained is added to the inverse transformed coefficients. Once

this is done, the macroblock is introduced in the deblocking filter to reduce the visibility of

blocking artifacts. After deblocking filtering, the macroblock is completely decoded and stored

in the memory where can be used to predict future macroblocks.

3.2. - Motion Estimation

This point, presents the Motion Estimation algorithm with Three Dimensional

Recursive Search (3DRS) as such algorithm. After that, an scheme of operation of motion

estimation is presented, and finally, and example of motion estimation is explained.

- 36 -

3.2.1. - Introduction

Motion estimation is the process of determining motion vectors that describe the

transformation from one image to another; usually from adjacent frames in a video sequence.

The basic assumption of motion estimation is that, consecutive frames of video will be

similar except for changes induced by objects moving within the video frames.

Motion estimation extracts motion information from the sequence of video. The

motion is represented by a motion vector (x,y). This vector indicates the displacement of a

pixel or a pixel block from the current location due to motion. Applying the motion vector to

an image to get the next image is called Motion compensation. The combination of motion

compensation and estimation is a key part of video compression.

There are some techniques of motion estimation, as pel-recursive techniques, which

generate motion vector for each pixel or phase plane correlation technique, which generate

motion vectors via correlation between reference frame and current frame. But the most used

is Block Matching Algorithm.

3.2.2. - Block Matching Algorithm

Block Matching Algorithm is the most used motion estimation algorithm. This

algorithm (BMA) calculates a motion vector that is applicable to all the pixel in the block, i.e.,

calculates a motion vector for a block of pixels. Reducing thus the computational requirements

and also results in a more accurate motion vector since the objects are typically a cluster of

pixels.

Here are some figures to explain the functionality of the algorithm:

Reference Frame Current Frame
Figure 3.11.Block matching algorithm

Reference Block

Current Block

Search Region

Motion Vector

- 37 -

The Current frame is divided into blocks of pixels and motion estimation is performed

for each pixel block (as explained previously).

Motion estimation is performed by identifying a pixel block from the reference frame

that best matches the block to be coded. The reference block is generated by displacement

(this displacement is provided by the motion vector, which consists of a pair(x,y) of horizontal

and vertical displacement values)from the location of the block to be coded in the frame of

reference.

The reference pixel blocks are generated only from a region that defines the boundary

for the motion vectors and limits the number of block to evaluate. This region is called search

area. The height and width of search area is dependant on the motion in video sequence.

Bigger search area require more computation due to increase in number of evaluate

candidates. The available computer power determines the search area.

The choice of block size also determines the trade off between required computation

and accuracy of motion vectors. Smaller block size can accurately describe motion of smaller

objects but will need higher computation. A block size too small may not contain sufficient

texture, therefore, it may not be possible to accurately predict block matching.

There are various criteria for calculating block matching. The most popular are listed

below:

 Sum of Square Error (SSE) = (𝐶(𝑥, 𝑦) − 𝑅(𝑥, 𝑦))2𝑦=𝑁
𝑦=1

𝑥=𝑁
𝑥=1

SSE provides a very accurate block matching, however requires many computations.

 Sum of Absolute Difference (SAD) = 𝐶 𝑥,𝑦 − 𝑅(𝑥, 𝑦)
𝑦=𝑁
𝑥=1

𝑥=𝑁
𝑥=1

 SAD provides fairly good match at lower computational requirement. Hence it is widely

used for block matching.

We have assumed that the block can be found by an integer number of pixels. In

practice, the displacement of an object between two subsequent frames in a video is not an

integer number of pixels. Hence, modern coding standards employ also sub-pixel grid, in which

motion vectors may point to candidate blocks placed at half-pixel or sometimes quarter pixel

locations. The reference block at sub-pixel grid is generated using either bi-linear interpolation

or a more sophisticated six-tap filter as used in H.264 standard. Figure 3.7 shows a pixel block

on a half pixel resolution grid.

Normally, the integer motion vector is further refined to first half pixel by testing the

eight neighbouring half pixel locations and further to quarter pixel by testing the neighbouring

eight quarter pixel locations. Figure 3.8 presents a quarter resolution pixels.

- 38 -

In the application used in the project it is possible to point to candidate blocks placed

only at half-pixel and we will have the following cases:

 FH: Average vertical (green circle).

 HF: Average horizontal (blue circle).

 HH: Average vertical and average horizontal (yellow circle).

 FF: copy (red circle).

These cases are presented in Figure 3.9.

To find the pixel block from the reference frame that best matches the current block,

we must do a search of candidates. This search can be made with several algorithm, we are

going to explain Three Dimensional Recursive Search (3DRS), since it will be used in the

application.

3.2.3. - Three Dimensional Recursive Search

Three dimensional recursive search (3DRS) is one such algorithm. The algorithm has

two assumptions:

 Objects are larger than a block size

 Objects have inertia

Taking into account the first assumption the neighbouring blocks motion vectors can

be used as candidates for the current block. Here could appear a problem as for neighbouring

blocks ahead in raster scan, there is no motion vectors calculated yet. Here is where we apply

the second premise and motion vectors from previous frame are for this blocks. In my

application, for the search of candidates (motion vectors candidates) through 3DRS, the

algorithm that will be used is the explained below.

Bearing in mind that x is the coordinate x of the position of the macroblock to be

coded and y is the coordinate y of the position of the macroblock to be coded, the candidates

will be sought as follow:

Candidate1: MV(x-1, y-1)

Candidate2: MV(x+1, y+1)

Candidate3: MV(x+1, y-1)

Candidate4: MV(x+0, y-1)

Candidate5: MV(x-1, y-1) + (Random_x, Random_y)

Candidate6: MV(x+1, y+1) + (Random_x, Random_y)

 Candidate7: MV(x+1, y-1) + (Random_x, Random_y)

- 39 -

Candidate8: MV(x+0, y-1) + (Random_x, Random_y)

NOTE: From the fifth candidate, the motion vector will be increased by a random to

calculate the motion vector of that block.

Figure 3.12.Motion Vector candidates without random

In Figure 3.12 is marked in red color the macroblock to be coded and in blue color the

macroblocks whose motion vectors (without random) can be used as candidates for the

current macroblock (found by 3DRS).

Figure 3.13.Motion Vector candidates without and with random

- 40 -

In Figure 3.13, the macroblock to be coded is marked in red color and in blue color the

macroblocks, whose motion vectors without and with a later random, can be used as

candidates for the current macroblock (found by 3DRS).

If any of the blocks chosen by 3DRS is outside of the image, the motion vector that

takes will be:

 Exit at the top: the motion vector of the down block.

 Exit at the bottom: the motion vector of the top block.

 Exit on the side: the motion vector of the next block.

Example:

Figure 3.14.Blocks chosen by 3DRS are outside of the image

 The motion vector of the green block will be the motion vector of the block number 1.

 The motion vector of the yellow block will be the motion vector of the block number 1.

 The motion vector of the orange block will be the motion vector of the block number 2.

When there are two equals candidates, two motions vectors equal, we use only once this

motion vector within the motion compensation, therefore we have a candidate less.

3.2.4. - Scheme of operation of motion estimation

Figure 3.15 shows the scheme of operation of motion estimation:

- 41 -

Figure 3.15.Scheme of operation of motion estimation

The steps will be as follow:

6. The macroblock (to be coded) of the current image is introduced.

7. It is estimated the first motion vector in the current image through 3DRS.

8. With the motion vector of the block calculated and the reference image, through

motion compensation, is locate the candidate in the reference image.

9. Through the subtraction of the macroblock of the current image and the candidate

located in the reference image, is obtained the SAD.

10. Repeat steps 2 through 4 for 8 candidates, to finally stay with the motion vector of

the candidate with the lowest SAD.

3.2.5. - Example of motion estimation

Figure 3.16 shows an example of a frame with a landscape and a car. The second half

of this figure is an example of a possible next frame, where the car has moved towards the

tree.

 Frame 1 Frame 2

 Figure 3.16.Frame and next frame of an image

- 42 -

Then in the frame 2 is marked in red color the macroblock to be coded and in green

color the macroblocks (found by 3DRS) whose motion vectors (4 without random and 4 with

random) can be used as candidates for the current macroblock (for macroblocks ahead in

raster scan, there is no motion vectors calculated yet, then assuming that the objects have

inertia, the motion vector for previous frame are for these macroblocks).

Frame 2

 Figure 3.17.In red color is marked the macroblock to be coded and in green color the macroblocks whose

motion vectors (without and with a random) can be used as candidates for the current macroblock.

Then place the same macroblock of the current picture in the image of reference and

with the motion vectors calculated, the candidates (with motion compensation) are obtained.

 Frame 1 Frame 2

Figure 3.18.In frame 1 the candidates are obtained

Once this is done, from SAD calculated for each candidate, we rule out candidates with

the highest SAD, we stay therefore with the motion vector of the candidate with the lowest

SAD.

- 43 -

The selected candidate will be the following:

 Frame 1

Figure 3.19.Selected candidate

- 44 -

Chapter 4

Proposed enhanced DMA unit

This section introduces the DMA processor interface that will be used to introduce the

improvements in the project. After that, the DMA proposals for the ‘Enhanced DMA Unit’ will

be presented.

4.1. - Introduction

Nowadays because of the wide variety of applications such as current video

applications, multimedia cell phones, high-definition interactive television… are necessary

continuous improvements requiring sophisticated multimedia operations, which imply a high

demand of processing power.

Because of this and to achieve better performance, the processors tend to behave less

linearly and more in parallel. Due to the capability of exploiting parallelism in multimedia

applications, VLIW architecture is being very used in the last years.

Using subword parallelism a VLIW architecture can achieve a significant improvement

in performs. In subword parallelism, we pack multiple subwords into a word and then process

the whole words.

Therefore data-parallelism needs a way to expand data into larger containers for more

precision in intermediate computations and data alignment before or after a certain

operations for subwords.

Most SIMD processors provide access to only contiguous data in memory, with strong

alignment restrictions because they have limited memory architecture. These architectures,

either do not provide any hardware support for unaligned accessed or provide it but with

degrade results. Therefore the programmer usually ends doing the alignment in software

which, implies an extra-overhead not having an efficient support for unaligned accesses and

that degrade the performance significantly.

For example there are instructions like MIX, permute, or Load+ Alignment but these

instructions subject the CPU to a heavy overhead.

In applications like video coding and decoding that use ME and MC algorithms, it is not

possible to avoid unpredictable unaligned memory references. This is because to identify a

pixel block for the reference frame that best matches the block to be coded, the reference

block is generated by displacement from the location of the block to be coded in the frame of

- 45 -

reference. This displacement is performed using the motion vector and can be arbitrary and

therefore, that results in a lot of unpredictable unaligned accesses.

In this type of applications, current software optimizations become unsuccessful

because the instructions that are necessary for doing the data realignment in software subject

the CPU to a heavy overhead.

Knowing that DMA is an essential feature of all modern computers, as it allows devices

to transfer data without subjecting the CPU to a heavy overhead, a solution would be to create

a ‘Enhanced DMA Unit’ capable of performing the alignment of data without subjecting the

CPU to a heavy overhead.

The instructions mentioned above will remain used, because once the data is in

internal memory, these instructions will be responsible for performing any alignment required.

But in the other cases will use an 'Enhanced DMA Unit' because thus will be removing code

and therefore saving processing cycles.

The idea would be that this 'Enhanced DMA Unit' in addition to the alignment of data

can make padding of data.

For example in applications like video coding and decoding that use ME and MC

algorithms, to search the block of the reference frame that best matches the block to be

coded, the search is performed only in a region known as the search area, then when a

candidate (to be a pixel block from the reference that best matches the block to be coded)

goes beyond this search area, it is necessary to make padding of data.

Perform these extensions with DMA Unit also would reduce considerably the overhead

of the CPU. Moreover it would be also interesting that this 'Enhanced DMA Unit' was able to

store several transmission in a queue, allowing to perform one transfer after the other without

needing to wait in order to configure the transfers. Thus also would reduce considerably the

overhead of the CPU.

4.2. - DMA processor interface

This section presents the characteristics of the DMA Unit that will be used to introduce

the improvements.

- 46 -

4.2.1. - Processor interface

The DMA Unit used is a 2D-1D that conducted the exchange of data between an

external memory (SDRAM) and an internal memory (mem).

DMA transfer between external memory and local data and instruction memory is

performed through the 64bit DMA interface via the BUS AHB bus.

In a register-based DMA, the processor directly programs the DMA control registers to

initiate a transfer. The DMA use the followings register:

Table 4.1.DMA Registers

DMA transfers are initiated by writing to DMA_DATA_CTRL_START a ‘1’ for data

transfers. The transfer direction is configured by writing ‘1’ or ‘0’ in the bit 0 of

DMA_TRANSFER_CTRL (‘1’: read from extern; ‘0’: write from extern). A busy transfer is

indicated by flags. The flag is called dma_data_status, the flag is ‘1’ while the transfer is being

made and when the transfer ends the flag is set to ‘0’. DMA also will be working internally with

two pointers one for the external memory (pointer_to_sdram (size configurable)) and the

other one for the internal memory (pointer_to_mem (size configurable)).

 4.2.2. - Example

To better understand the meaning of these registers, I will present an example. The

configuration of the registers will be as follows:

 DMA_TRANSFER_CTRL: 0x001

 DMA_EXT_BASE_ADDR: 0x060 *NOTE

 DMA_SEGMENT_LENGTH: 0x003

 DMA_GAP_LENGHT: 0x00a

 DMA_SEGMENTS: 0x002 (There are 3 segments because there are segment 0)

 DMA_MEM_ADDR: 0x000

 DMA_DATA_CTRL_START: 0x001

- 47 -

*NOTE: when our pointer takes the direction of SDRAM (DMA_EXT_BASE_ADDR) is not going

to take every bit, it will leave the first three bits without take (to be explained in later), that is,

it will take the bits from 3 onwards. Therefore the 0x060 (96 decimal) will be 1100000 in

binary, if remove the first three bits we stayed with 1100 that is 0x00c in hex. So the base

direction of our SDRAM will be 0x00c.

SDRAM contents will be as follows:

 Figure 4.1.SDRAM contents

The data are taking from the direction 0x0c and will have to take 3 rows of data and

the length of the rows will be 3, the offset between segments will be 10.

 Figure 4.2.GAP

MEM contents will be as follows:

- 48 -

 Figure 4.3.Mem contents

4.3. - Alignment process

This section studies the alignment process and presents a DMA capable of performing

the alignment process.

4.3.1. - Introduction

A memory reference is called aligned when it accesses positions that match with the

memory access granularity of the processor, when that does not happen is called misaligned

(or unaligned).

Most SIMD processors have a limited architecture and cannot access an unaligned

memory position and if they can, is with a big performance penalty. To access an unaligned

position, must be done a realignment process. The realignment process is shown in Figure 1.3.

That process consists in:

 To read the aligned memory word that is located before the unaligned position

and discards the unnecessary bytes.

 To read the aligned memory word that is located after the unaligned position

and discards the unnecessary bytes.

 To merge the necessary bytes of the two previous word.

- 49 -

In current SIMD extensions the level of support for unaligned accesses includes

variations from hardware mechanisms, instructions to do the re-alignment in software and

system exceptions. The only one that includes both hardware support and unaligned

exceptions is the Intel’s SSE extension. The initial design only provides support for aligned

accesses with the instruction MOVDQA (Move Aligned Double Quadword). The SSE2 extension

with the instruction MOVDQU (Move Unaligned Double Quadword) that was implemented

using two 64-bit loads (or stores) and was based on microcode, allows to load and to store

non-aligned 128 bit words. But the SSE2 extension results in big latencies and big performance

penalties for unsigned accesses. Then to solve the mentioned problems the LDDQU (Load

Unaligned Integer 128 bits) instruction was introduced in SSE3 extension. This instruction

performs a 32 byte load and then performs a shift to extract the corresponding 16 bytes of

unaligned data.

This kind of alignment of the data described above could be called ‘Load + Alignment’

and subjects the CPU to a heavy overhead because it is necessary to make the load data in two

different registers, then the operation of alignment and finally another load operation in the

final register.

In addition to the manner described to perform the alignment, there are two more

instructions that allow us to make the alignment of data:

o MIX: These instructions take subwords from two registers and interleave alternate

subwords from each register in the result register. Mix left starts from the leftmost

subword in each of the two source registers, while mix right ends with the rightmost

subwords from each source register. Figure 1.1 illustrates this for 16-bit subwords

[1].

o Permute: The permute instruction takes one source register and produces a

permutation of that register’s subwords. With 16-bit subwords, this instruction can

generate all possible permutations, with and without repetitions, of the four

subwords in the source register. Figure 1.2 shows a possible permutation. To specify

a particular permutation, we use a permute index. The instruction numbers

subwords in the source register starting with zero for the leftmost subword. A

permute index identifies which subword in the source register the instruction places

in each subword of the destination register [1].

The problem with all these instructions is that subject the CPU to a heavy overhead

because they perform data realignment in software. That is a problem for applications like

video coding and decoding that use ME and MC algorithms, and they need continuous access

to unaligned memory references (to identify a pixel block for the reference frame that best

matches the block to be coded, the reference block is generated by displacement from the

location of the block to be coded in the frame of reference. This displacement is performed

using the motion vector and can be arbitrary and that results in a lot of unpredictable

unaligned accesses).

- 50 -

Therefore the proposal is to create a DMA capable of performing the alignment of

data.

4.3.2. - DMA with alignment

To make the alignment of the data on the DMA Unit, the DMA Unit will be

implemented as follows:

The directions point to a data of 64-bit. Due to there are subword parallelism, this

information is in turn divided into several smaller data (8-bit), particularly in 8 data. That's, the

directions are pointing to a words that are composed of 8 subwords. Figure 4.4 illustrates it:

 Figure 4.4.Words composed of 8 subwords

Through the alignment is possible to point to any subword, and from that subword

take a whole word. Figure 4.5 shows an example of alignment:

 Figure 4.5.Example of alignment

The idea will be that of the direction that will point the data of 64 bits, the first three

bits will be used to perform the alignment, that is, with these three bits will be indicated

whether the word is aligned, or if is necessary to take the 64-bit word from a determined

subword. Figure 4.6 illustrates that:

- 51 -

 Figure 4.6.The first three bits of the direction will be used to perform the alignment

- 52 -

As can be seen, the numbers of black color remain the same for the 64 bits of the

aligned word, and the first three bits (marked in red) indicates the subword of the word to be

pointing. For example if the address is …00000101, from that subword will have to take 64-bit:

 Figure 4.7.Example of alignment

To implement this, is necessary to create an internal register of three bits in the DMA

Unit in which will be stored the last three bits of the address at which wants to point.

 bit[2:0] int_row_reg

 int_row_reg = dma_ext_base_addr_reg[2:0]

With the pointer that pointing to the SDRAM I will always point to addresses of aligned

data, therefore this pointer should not take the first three bits of the direction that I have:

- 53 -

 pointer_to_sdram = dma_ext_base_addr_reg[SDRAM_W-1+3:0+3]

 SDRAM_W = constant(configurable)

Figure 4.8 shows how the pointer always point to addresses of aligned data:

 Figure 4.8.Pointer always point to addresses of aligned data

With the first three bits of data, as explained above, will be indicated the subword

within the word that wants to point.

When these three bits are 0 mean that is not necessary to do alignment of data,

because the word of data that wants to take is aligned. With any combination of these three

bits that isn´t 000, will be necessary to perform alignment of data.

For that will be created three internal registers in the DMA:

- 54 -

 bit[63:0] int_aux1_reg

 bit[63:0] int_aux2_reg

 bit[63:0] int_final_reg

Then when int_row_reg has the three bits to zero, will not have to perform alignment

of data and the implemented code will be the follow:

moai4k_mem.mem [pointer_to_mem] = moai4k_sdram.sdram [pointer_to_sdram]

Otherwise, we will have to make alignment of data and the implemented code will be the

follow:

int_aux1_reg = moai4k_sdram.sdram[pointer_to_sdram];

int_aux2_reg = moai4k_sdram.sdram[pointer_to_sdram +1];

int_final_reg[63:8*int_row_reg] = int_aux1_reg[((8-int_row_reg)*8)-1:0];

int_final_reg[(8* int_row_reg)-1:0]= int_aux2_reg[63:(8- int_row_reg)*8];

moai4k_mem.mem [pointer_to_mem] = int_final_reg;

As can be seen, in the case of non alignment, the data indicated by the pointer of the

SDRAM is copied directly into the address indicated by the pointer of the internal memory.

In the case of alignment, first copy the aligned memory Word that is located before the

unaligned position in an internal register (int_aux1_reg), second copy the aligned Word that is

located after the unaligned position in other internal register (int_aux2_reg). Then in other

internal register (int_final_reg) will be stored the final results, that’s, the necessary data of the

two words that had been stored in the registers.

The content of this register is what will be stored into the address indicated by the

pointer of the internal memory. Figure 4.9 shows an example:

In int_row_reg there is 2 in decimal (int_row_reg = 010) hence it is necessary to

perform alignment. The operation done is the follow:

 Figure 4.9.Example of alignment using int_row_reg

- 55 -

Of int_aux1_reg selects the bits from 0 to 47, since it would be:

 int_aux1_reg[((8-2)*8)-1:0] = int_aux1_reg[47:0]

And of int_aux2_reg selects the bits from 48 to 63, since it would be:

 int_aux2_reg[63:(8-2)*8] = int_aux2_reg[63:48]

The result is stored in the final register:

Figure 4.10.Final register

The final register stores the bits from 0 to 47 of int_aux1_reg, in the bits from 16 to 63

of int_final_reg, since it would be:

 int_final_reg[63:8*2] = int_aux1_reg[((8-2)*8)-1:0]

 int_final_reg[63:16] = int_aux1_reg[47:0]

The final register stores the bits from 48 to 63 of int_aux2_reg, in the bits from 0 to 15

of int_final_reg, since it would be:

 int_final_reg[(8*2)-1:0] = int_aux2_reg[63:(8-2)*8]

 int_final_reg[15:0] = int_aux2_reg[63: 48]

Performing the alignment in the DMA, much better results will be obtained because

the CPU is not subject to a heavy overhead.

With the instructions described above, it was necessary to load the data in memory,

later perform the alignment in software and finally load the aligned data into another register.

Therefore three registers are being used and the CPU is performing work.

Performing the alignment in the DMA, the alignment is performed while loading the

data, and the data are loaded into memory already aligned. In this way, all the work of

alignment is being performed in the DMA without interrupting the CPU and also is being used

only a register of memory (where the results will be stored in the desired order).

In applications like video coding and decoding that use ME and MC algorithms, this

mode to perform the alignment of data, can improve significantly the performance.

- 56 -

Using ME and MC algorithms it is not possible to avoid unpredictable unaligned

memory references. This is because to identify a pixel block for the reference frame that best

matches the block to be coded, the reference block is generated by displacement from the

location of the block to be coded in the frame of reference. This displacement is performed

using the motion vector and can be arbitrary, therefore that results in a lot of unpredictable

unaligned accesses. In point 3.2.5 there is an example of motion estimation.

Whenever that is necessary to situate a candidate in the reference image, the

operation described above will be performed, and that results in a lot of unaligned accesses.

Performing the alignment of data in the DMA in this type of applications, a lot of work

to the CPU is being saved and besides if the CPU doesn`t have to do this work, CPU can

perform other tasks while the DMA makes the alignment and therefore the performance will

be much better.

4.4. - Padding process

This section introduces the concept of padding and presents the proposal of a DMA

capable of performing the padding process.

4.4.1. - Introduction

In applications like video coding and decoding that use ME and MC algorithms, when

we want to search the block of the reference frame that best matches the block to be coded,

we search only in a region known as the search area, then when a candidate (to be a pixel

block from the reference that best matches the block to be coded) goes beyond this search

area, it is necessary to make padding of data.

Figure 4.11 clarifies the need to use padding in video applications:

- 57 -

 Figure 4.11.Frame with the need to use padding

In Figure 4.11, it can be seen outside of the search area a part of one candidate (the

yellow block), which means that for draw this candidate, is necessary to make a padding of

data. In this case, the padding of data is carried out by the top, that is, the contents of the last

line of data that is within the search area, must be extended upwards.

There are eight different cases where there is a need for padding as can be seen in

Figure 4.12:

 Figure 4.12.Cases that need to do padding

 Horizontal padding right (brown block).

 Horizontal padding left (gray block).

 Vertical padding upwards (yellow block).

 Vertical padding downwards (orange block).

 Vertical padding upwards and horizontal padding right (blue block).

 Vertical padding upwards and horizontal padding left (green block).

- 58 -

 Vertical padding downwards and horizontal padding right (purple block).

 Vertical padding downwards and horizontal padding left (pink block).

The idea would be that the 'Enhanced DMA Unit' in addition to the alignment of data

can make padding of these, because would be reduced considerably the overhead of the CPU.

4.4.2. - DMA with padding

To make the padding of the data on the DMA Unit, it would be implemented as follow:

It is necessary to implement two new registers in the DMA Unit:

 X_EDGE: To indicate the number of words those are outside of the image. If it is

positive means that the words are outside of the image to the left side, if it is

negative means that the words are outside of the image to the right side.

 Y_EDGE: To indicate the number of segments those are beyond of the image. If

it is positive means that the segments are outside of the image for the top, if it

is negative means that the segments are outside of the image from the bottom.

Figure 4.13.DMA registers

There are eight different cases where there is a need for padding, which will be

explained in three blocks.

CASE1: The block is completely within the image, the block is outside of the image for

the top or the block is outside of the image from the bottom.

- 59 -

Without alignment:

moai4k_mem.mem[pointer_to_mem] = moai4k_sdram.sdram [pointer_to_sdram +

(int_gap_length_reg* int_yedge)];

With alignment:

int_aux1_reg = moai4k_sdram.sdram [pointer_to_sdram + (int_gap_length_reg*

int_yedge)];

int_aux2_reg = moai4k_sdram.sdram [pointer_to_sdram + (int_gap_length_reg*

int_yedge)+1];

int_final_reg [63:8*int_row_reg] = int_aux1_reg [((8- int_row_reg)*8)-1:0];

int_final_reg [(8* int_row_reg)-1:0] = int_aux2_reg [63: (8- int_row_reg)*8];

moai4k_mem.mem [pointer_to_mem] = int_final_reg;

 If the block is completely within the image, so it is not is necessary to do the padding. It

would be the following case:

Figure 4.14.The block is completely within the image

The variable int_yedge will be zero, so the code is like the explained in the previous

case.

 If the block is outside of the image for the top, it is necessary to do the padding. It would

be the following case:

Figure 4.15.The block is outside of the image for the top

- 60 -

In this case, it will be necessary to copy the content of the first segment which is within

the image, in the other segments that are outside of the image. So the pointer moves

int_gap_length_reg* int_yedge and lies within the image.

When the DMA Unit arrived at the end of a segment, int_yedge= int_yedge-1 until it is

in the image.

 If the block is outside of the image from the bottom, it is necessary to do the padding. It

would be the following case:

Figure 4.16.The block is outside of the image for the bottom

In this case, it will be necessary to copy the content of the last segment which is within

the image, in the other segments that are outside of the image.

When int_yedge is negative, this variable will change its value to zero. The DMA will

begin transmitting lines that are within the image, and when it has no more lines within the

image, the DMA will have to re-transmit the contents of the last line. Therefore that point will

be re-pointer to the last line in the image (int_gap_length_reg = 0).

pointer_to_sdram = int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] +

int_gap_length_reg

int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] = int_ext_base_addr_reg

[SDRAM_ADDR_W-1+3:0+3] + int_gap_length_reg

CASE 2: The block is outside of the image to the left side, the block is outside of the

image to the left side and is outside of the image for the top, or the block is outside of the

image to the left side and is outside of the image from the bottom.

 If the block is outside of the image to the left side, it is necessary to do the padding. It

would be the following case:

- 61 -

Figure 4.17.The block is outside of the image to the left side

In this case, it will be necessary to copy the content of the first subword which is within

the image in the other words that are outside of the image. So the pointer moves int_xedge,

lies within the image and copy the first word.

int_new_reg = moai4k_sdram.sdram [pointer_to_sdram + (int_gap_length_reg*

int_yedge) + int_x_edge]

 In this case the variable int_yedge will be zero, therefore the pointer moves

int_xedge. The DMA will store the last 8 bits of this register in another, because these data are

those which will have to copy in all subword of the words that are out of the image.

 int_seg_new_reg = int_new_reg [63:56]

Here are two cases:

o Only one word is outside of the image and it is necessary the alignment.

Figure 4.18.The block is outside of the image to the left side and only one word is outside of the image

- 62 -

In this case the DMA will have to copy the content of the first subword

which is within the image in all subwords, until begins the word that is

within the image. When the block is within the image, the DMA will copy

the subword that have to copy of the first word which is within the image,

to complete the word.

for (i = int_row_reg; i<8; i++) {

 int_def_reg [7+i*8: i*8] = int_seg_new_reg;

}

int_final_reg[63:8*int_row_reg]=int_def_reg[63:8*int_row_reg]

int_final_reg[(8*int_row_reg)-1:0]=int_new_reg[63:(8-

 int_row_reg)*8]

moai4k_mem.mem [pointer_to_mem] = int_final_reg

The variable int_xedge will be zero, because there are no more words

outside of the image.

o There are more than a word that is outside of the image or only one word is outside

of the image and it is not necessary the alignment because the word is aligned.

Figure 4.19.The block is outside of the image to the left side and only one word is outside of the image

(this word is aligned) or the block is outside of the image to the left side and more than a word is outside

of the image.

The DMA Unit do not care if there is alignment to do or not when there

is more than a word outside of the image, because it will have to copy the

content of the first subword which is within the image in all subwords of

the words. If only one word is outside of the image and is not necessary

the alignment because the word is aligned, also the DMA Unit will have to

copy the content of the first subword which is within the image in all

- 63 -

subwords of the word. After this, int_xedge is decremented by 1 because

there is a word less to transmit.

 for (i = 0; i<8; i++) {
 int_def_reg [7+i*8: i*8] = int_seg_new_reg;

 }

 moai4k_mem.mem [pointer_to_mem] = int_def_reg;

 If the block is outside of the image to the left side and too is outside of the image for the

top, is necessary to do the padding. It would be the following case:

Figure 4.20.The block is outside of the image to the left side and for the top

The code and the cases will be the same as in previous case, only that in this case the

variable int_yedge will not be zero, so the pointer moves (int_gap_length_reg* int_yedge) +

int_xedge, and lies within the image.

int_new_reg = moai4k_sdram.sdram [pointer_to_sdram + (int_gap_length_reg*

int_yedge) + int_x_edge]

When the DMA Unit arrived at the end of a segment, int_yedge= int_yedge-1 until it is

vertically in the image.

 The block is outside of the image to the left side and too is outside of the image from the

bottom, is necessary to do the padding, would be the following case:

- 64 -

Figure 4.21.The block is outside of the image to the left side and for the bottom

The code and the cases will be the same as in previous case, when int_yedge is

negative, this variable will change its value to zero therefore in this case, the variable

int_yedge will be zero, so the pointer moves int_xedge.

int_new_reg = moai4k_sdram.sdram [pointer_to_sdram + (int_gap_length_reg*

 int_yedge) + int_x_edge]

The DMA will begin transmitting lines that are vertically within the image, and when it

has no more lines within the image, it will have to re-transmit the contents of the last line.

Therefore that point will be re-pointer to the last line in the image (int_gap_length_reg = 0).

pointer_to_sdram = int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] +

 int_gap_length_reg

int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] = int_ext_base_addr_reg

 [SDRAM_ADDR_W-1+3:0+3] + int_gap_length_reg

CASE 3: The block is outside of the image to the right side, the block is outside of the

image to the right side and too is outside of the image for the top, or the block is outside of the

image to the right side and too is outside of the image from the bottom.

 The block is outside of the image to the right side.

- 65 -

Figure 4.22.The block is outside of the image to the right side

When the block is outside of the image to the right side, the DMA Unit will have to

transmit the words of the block that are within the image and when the block is outside, the

DMA Unit will have to copy the content of the last subword which is within the image in the

other words that are outside of the image.

To see the number of words that the DMA Unit should transmit before the block leave

out, and therefore to copy the content of the last subword which is within the image in the

other words that are outside of the image, it is necessary to create a variable to indicate and

that only be update when changing line.

if (pointer_to_sdram = int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3]){

 int_seg_in = int_segment_length_reg_aux + int_xedge_aux;

}

The number of words of the line (or segment) minus the number of words that are out

of the image gives the words that are inside (int_xedge in this case is negative).

Here are two cases:

o The words are still in the picture horizontally or there is a word of the block that is

half within half outside of the image horizontally.

Without alignment: there is a word of the block that is completely inside of the image

horizontally or more than one word.

- 66 -

Figure 4.23.The block is outside of the image to the right side and there is a word of the block that is

completely inside of the image horizontally or more than one word.

moai4k_mem.mem[pointer_to_mem] = moai4k_sdram.sdram [pointer_to_sdram

 +(int_gap_length_reg* int_yedge)];

In this case int_yedge is zero. Each time that the DMA transmits a word, the

number of words inside the image is decremented a unit.

 With alignment: Here are two cases.

 There is only a word of the block inside of the image; the word is half within

half outside of the image horizontally.

Figure 4.24.The block is outside of the image to the right side and there is only a word of the block inside

of the image; the word is half within half outside of the image horizontally

The DMA Unit begins transmitting the subword that are within the

image until it leaves out, in this moment the DMA Unit will have to copy the

content of the last subword which is within the image in all subwords that are

outside of the image.

- 67 -

int_new_reg = moai4k_sdram.sdram [pointer_to_sdram +

 (int_gap_length_reg*int_yedge)]

int_seg_new_reg = int_new_reg [7:0]

for (i = 0; i<int_row_reg;i++) {

 int_def_reg [7+i*8: i*8] = int_seg_new_reg;

 }

int_final_reg [(8* int_row_reg)-1:0] = int_def_reg [7+

 (int_row_reg-1)*8:0];

int_final_reg [63:8*int_row_reg] = int_new_reg [((8-

 int_row_reg)*8)-1:0];

moai4k_mem.mem [pointer_to_mem] = int_final_reg;

In this case int_yedge is zero. Each time that the DMA transmit a word,

the number of words inside the image is decremented a unit.

 There is more than a word of the block inside of the image.

Figure 4.25.The block is outside of the image to the right side and there is more than a word of the block

inside of the image

 The DMA will perform the alignment as usual.

- 68 -

int_aux1_reg = moai4k_sdram.sdram [pointer_to_sdram +

 (int_gap_length_reg*int_yedge)];

int_aux2_reg = moai4k_sdram.sdram [pointer_to_sdram +

 (int_gap_length_reg*int_yedge)+1];

int_final_reg [63:8*int_row_reg] = int_aux1_reg [((8-

 int_row_reg)*8)-1:0];

int_final_reg [(8* int_row_reg)-1:0] = int_aux2_reg [63: (8-

 int_row_reg)*8];

moai4k_mem.mem [pointer_to_mem] = int_final_reg;

In this case int_yedge is zero. Each time that the DMA transmit a word,

the number of words inside the image is decremented a unit.

o The words are outside of the picture horizontally.

Figure 4.26.The block is outside of the image to the right side and the words are outside of the image

horizontally

DMA Unit does not care if there is alignment to do or not when there is more

than a word outside of the image, because the DMA will have to copy the content of

the last subword which is within the image in all subwords of the words. If only one

word is outside of the image and is not necessary the alignment because the word is

aligned, also the DMA Unit will have to copy the content of the last subword which is

within the image in all subwords of the word.

A variable, that increases one unit each time you go to transmit a word that is

outside of the image, has been created to be able to point to the last word that is

within the image.

- 69 -

int_new_reg = moai4k_sdram.sdram [pointer_to_sdram +

 int_gap_length_reg* int_yedge) – int_a];

int_seg_new_reg = int_new_reg [7:0];

for (i = 0; i<8; i++) {

 int_def_reg [7+i*8: i*8] = int_seg_new_reg;

 }

moai4k_mem.mem [pointer_to_mem] = int_final_reg;

int_xedge = int_xedge +1;

In this case int_yedge is zero. Each time that the DMA transmit a word, the

number of words outside the image is incremented a unit because int_xedge in this

case is negative.

 If the block is outside of the image to the right side and is outside of the image for the top,

is necessary to do the padding. It would be the following case:

Figure 4.27.The block is outside of the image to the right side and also for the top

The code will and the cases will be the same as in previous case, only that in this case

the variable int_yedge will not be zero.

When DMA Unit arrived at the end of a segment (or line), int_yedge= int_yedge-1 until

it will be vertically in the image.

 If the block is outside of the image to the right side and too is outside of the image from

the bottom, is necessary to do the padding. It would be the following case:

- 70 -

Figure 4.28.The block is outside of the image to the right side and also from the bottom

The code and the cases will be the same as in previous case, when int_yedge is

negative, this variable will change its value to zero.

The DMA Unit will begin transmitting lines that are vertically within the image, and

when it has no more lines within the image, will have to re-transmit the contents of the last

line. Therefore the pointer will be re-pointer to the last line in the image (int_gap_length_reg =

0).

pointer_to_sdram = int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] +

 int_gap_length_reg

int_ext_base_addr_reg [SDRAM_ADDR_W-1+3:0+3] = int_ext_base_addr_reg

 [SDRAM_ADDR_W-1+3:0+3] + int_gap_length_reg

In applications like video coding and decoding that use ME and MC algorithms,

perform these padding with DMA would reduce considerably the overhead of the CPU,

because every time that a candidate goes beyond the search area, the CPU must do extra

work, a work that will save if it is performed by the DMA. Besides if the CPU doesn`t have to do

this work, CPU can perform other tasks while the DMA makes the padding.

Therefore performing the padding with DMA, the results of video applications that use

ME and MC algorithms will significantly improve.

- 71 -

4.5. - Queue implementation

This section introduces the concept of queues and presents the proposal of a DMA

with a queue in order to be able to program all DMA transfers at one.

4.5.1. - Introduction

In applications like video coding and decoding that use ME and MC algorithms, when

we located the candidates in the reference frame, we must transmit several blocks, and every

time you transmit a block, it is necessary to interrupt the CPU and make it work (Register-

Based DMA) loading data for the next transmission.

Therefore it would be interesting that the DMA was able to store several transmission

in a queue, because in this way when I finish to make a transfer, will not be necessary to re-

schedule the next because that will have queued and directly will load the necessary data to

perform the next transmission. This also would reduce considerably the overhead of the CPU.

The idea would be that the 'Enhanced DMA Unit' in addition to the alignment of data

and make padding of data, can store several transmissions in a queue, because so the DMA

would reduce considerably the overhead of the CPU.

4.5.2. - DMA with queue

A DMA Unit capable of storing several transmissions in a queue has been

implemented. When a transfer finishes, it will not be necessary to schedule in the application

code the configuration of the next transfer because that will have queued and directly will load

the necessary data to perform the next transmission.

To implement the DMA Unit a new register has been created in the DMA Unit:

 DMA_READ_OUT: It is a register of one bit. When the user wants to know if the DMA has

finished with a determined transfer or if it is still transmitting a determined transfer. This

register can be used to increment an internal read pointer.

Moreover to implement the DMA are necessary three internal pointers:

 Write: Indicates the number of transmissions written. It is incremented whenever the data

of a new transmission (a new block) are written.
 Read: Indicates the number of transmission of which the user wants to know the state. It is

incremented whenever that the register DMA_READ_OUT is high.

- 72 -

 Transfer: Indicates the number of the actual transmission. It is incremented whenever a

transmission of a block has finished.

When one of these variables reaches the limit of the queue, is set to zero, and the registers

that use this variable as index, are overwritten.

To better understand the mode of operation, herewith is shown the Figure 4.29:

DMA Transmission

DMA Transmission

DMA_READ_OUT=1 because the user need to know when the second transmission has

 finished for an operation that makes in the future.

DMA Transmission

…

OPERATION

Figure 4.29.Mode of operation of the queues

- 73 -

To better understand the use of DMA_READ_OUT, herewith is shown the Figure 4.30:

Subroutine_DMA_0

Subroutine_DMA_1

Subroutine_Calculo_1

Int_data_status[0] = 0

Subroutine_Calculo_2 Is necessary to have performed Subroutine_DMA_0 to

 make this Calculo_2

Write DMA_READ_OUT, 1

Int_data_status[1] = 1

Int_data_status[1] = 0

Subroutine_Calculo_3 Is necessary to have performed Subroutine_DMA_1 to

 make this Calculo_3

Figure 4.30.Use of DMA_READ_OUT

In applications like video coding and decoding that use ME and MC algorithms, a DMA

Unit that can store several transmissions in a queue, reducing considerably the overhead of

the CPU.

- 74 -

Chapter 5

Evaluation of the proposed enhanced

DMA Unit

This section presents an evaluation of the proposal DMA Unit using Motion Estimation

algorithm. The design of the exploration space, the characteristics of the application (motion

estimation) and the results are explained in this section.

5.1. - Design Space Exploration

In this section it is explained the system environment and the motion estimation

algorithm, indicating the reasons why it has been chosen as application.

5.1.1. - System description

The system with which works this project is the following:

Figure 5.1.System

The project works with the ‘Enhanced DMA Unit’, which is inside the Moai4k

processor.

- 75 -

There are three profiles of the DMA Unit that will be analyzed:

 Basic Profile, is the basic DMA Unit.

 Advanced Profile 2, is the Basic Profile with alignment and padding.

 Advanced Profile 3, is the Advanced Profile 2 with queues.

 The ‘Enhanced DMA Unit’, communicates with the external memory (SDRAM)

through the bus AMBA.

With the aim of obtaining results more realistic, latency will be introduced into the

external memory controller. Therefore it will be a latency each time a line of a block of data is

transmitted. The results will be obtained with different values for this latency.

5.1.2. - Motion Estimation task

Using the ‘Enhanced DMA Unit’ proposed and the motion estimation algorithm as an

application, the advantages of this DMA Unit will be demonstrated.

The motion estimation algorithm has been selected for the following reasons:

 With motion estimation algorithm, it is not possible to avoid unpredictable

unaligned memory references, which result in lot of unpredictable unaligned

accesses.

This is because to identify a pixel block for the reference frame that

best matches the block to be coded, the reference block is generated by

displacement from the location of the block to be coded in the frame of

reference. This displacement is performed using the motion vector and can be

arbitrary.

In applications like video coding and decoding that use ME algorithm,

current software optimizations become unsuccessful because the instructions

that are necessary for doing the data realignment in software subject the CPU

to a heavy overhead.

 With motion estimation algorithm, to search the block of the reference frame

that best matches the block to be coded, the search is only in a region known as

the search area, then when a candidate (to be a pixel block from the reference

that best matches the block to be coded) goes beyond this search area, it is

necessary to perform padding.

- 76 -

In applications like video coding and decoding that use ME algorithm, if

in addition to the alignment of data, padding of these is made, would be

reduced considerably the overhead of the CPU.

 With motion estimation algorithm, when the candidates are located in the

reference frame, the DMA Unit must transmit several blocks, and every time

you transmit a block, it is necessary to interrupt the CPU and make it work

(Register-Based DMA) loading data for the next transmission.

In applications like video coding and decoding that use ME algorithm, it

is interesting that the DMA Unit was able to store several transfer

configuration in a queue, because in this way when a transfer finishes, it will

not be necessary to configure the next transfer because this configurations

was stored in a queue before, then the DMA can directly start the next

transmission. This, in addition to the alignment of data and padding of data,

would reduce considerably the overhead of the CPU.

Consequently, with this ‘Enhanced DMA Unit’, the results of video applications that

use ME algorithm will be significantly improved.

The motion estimation algorithm has been programmed in assembly language. The

structure of the code is shown in figure 5.2.

As can be seen in Figure 5.2, every time the DMA Unit must send something, at the

same time other tasks are being executed. Thus, the algorithm is stopped the shortest time

possible.

Once the first candidate has been obtained, the algorithm goes into a loop. Just enter

into the loop, the next candidate is requested, and at the same time another tasks are being

executed on the current candidate. This loop is repeated until there are no more candidates.

The algorithm has been implemented in this way because it has been proved that is

the optimal way to schedule the transfer if we have to wait to complete a transfer in order to

program the following.

- 77 -

ME_3DRS_START

DMA_TR_REF

ME_3DRS_CANDIDATES

WAIT_REF

REF 16 x 16

CAND 3 X 3

CANDIDATES

WAIT_CAND

DMA_TR_CURR

ME_CHECK_LOOP1

WAIT_CURR

CURR 16 x 16

ME_MBREF

ME_SAD

ME_3DRS_REORGANIZE_CANDIDATES

CANDIDATE 1

WAIT_MBREF

ME_MBREF

ME_MOTION_VECTORS

ME_ALIGN + PADDING

ME_MC

ME_SAD

CANDIDATE X+1

Last

Candidate

??

ME_END

NOT_SCHEDULE

WAIT_STORE_CANDIDATE

Figure 5.2.Motion Estimation algorithm

LOOP (ME CAND X)

- 78 -

5.2. - Characteristics of motion estimation

algorithm

The characteristic of motion estimation are the following:

 Use SAD for calculating block matching.
 Employ the algorithm 3DRS to search the candidates.
 The search area is the entire image.
 Although the standard H.264/AV allowed working with multiple images of reference, the

application only works with the previous image as a reference.
 In the application is possible to point to candidate blocks placed only at half-pixel (of

course also in full position) and will have the following cases:

 FH: Average vertical (green circle).

 HF: Average horizontal (blue circle).

 HH: Average vertical and average horizontal (yellow circle).

 FF: copy (red circle).

These cases are presented in Figure 3.9.

 Really Works with blocks of 16x16, but as is possible to point to candidate blocks placed at

half-pixel, the DMA Unit will take of memory blocks of 17x17 due to half-pixel.

5.3. - Results

Using the proposed ‘Enhanced DMA Unit’ and the motion estimation algorithm as an

application, the following analysis has been made:

 Basic Profile with different latencies between 15 and 55 cycles. The code used

for the motion estimation algorithm is the explained in 5.1.2.

 Advanced Profile 2 with different latencies between 15 and 55 cycles. The code

used for the motion estimation algorithm is the explained in 5.1.2 but without

ME_ALIGN +PADDING, because now the alignment and padding process, it is

performed by the DMA Unit.

 Advanced Profile 3 with different latencies between 15 and 55 cycles. In this

case, it will be not necessary to wait an end of a transfer to schedule the next,

with advanced profile 3 several transfers may be scheduled at the same time (in

the code explained in 5.1.2, the transfer of the reference block, the current

block and the candidates block may be scheduled at the same time). Therefore

in the code explained in 5.1.2, the WAITS only will be used in case that is

- 79 -

necessary to expect a transmission, but now are not required to configure the

next transfer. In the loop, in this case, there are two candidates in the queue

while the previous candidate is performing its operations.

5.3.1. - Results of Basic Profile (BP)

For Basic Profile with a latency of 15 cycles, the results are shown in figure 5.3.

Figure 5.3.Basic Profile with latency of 15 cycles

On the x-axis is represented the number of block, indicating the number of frames, the

graphic has a number of blocks corresponding to three frames. In the y-axis are represented

the number of cycles. In the graphic can be seen the number of cycles that each block use in

performing wait, alignment + padding, motion compensation, SAD, ME_3DRS and other tasks.

Also it can be seen the total number of cycles used for each block by identifying a block from

the reference frame that best matches the current block.

Peaks appears on the graphic because when there are two equals candidates, two

motions vectors equal, it is used only once this motion vector with the motion compensation,

therefore we have a candidate less.

Computing the average cycles which employs each of the blocks in performing each task

that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 9,4%

 ALIGN+PADDING: 25,1%

 MC: 21,6%

 SAD: 38,1%

0

1000

2000

3000

4000

5000

6000

7000

8000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

BP with Latency 15

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 80 -

 ME_3DRS: 5,6%

 Others: 0,2%

The total number of cycles employees in average by each blocks in running the

algorithm is 4990 cycles.

For Basic Profile with a latency of 30 cycles, the results are shown in figure 5.4.

Figure 5.4.Basic Profile with latency of 30 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 21,1%

 ALIGN+PADDING: 21,8%

 MC: 18,9%

 SAD: 33,1%

 ME_3DRS: 4,9%

 Others: 0,2%

The total number of cycles employees in average by each blocks in running the

algorithm is 5734 cycles.

For Basic Profile with a latency of 45 cycles, the results are shown in figure 5.5.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

BP with Latency 30

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 81 -

Figure 5.5.Basic Profile with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 32,8%

 ALIGN+PADDING: 18,6%

 MC: 16%

 SAD: 28,2%

 ME_3DRS: 4,2%

 Others: 0,2%

The total number of cycles employees in average by each blocks in running the

algorithm is 6728 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,

increases the total number of cycles required to identify a block from the reference frame that

best matches the current block. This is due to increasing the latency is equivalent to increase

the number of cycles that each block use in performing WAIT, because when the latency

increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.1 shows the percentages of used cycles in performing

each task with respect to the total number of cycles employees in average by each blocks in

running the algorithm and the total number of cycles employees in average by each blocks in

running the algorithm for the different latencies:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 397 793

N
u

m
b

e
ro

f c
yc

le
s

Number of blocks

BP with Latency 45

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 82 -

 BASIC PROFILE

WAIT % 9,4 21,1 32,8

ALIGN+PADDING % 25,1 21,8 18,6

MC % 21,6 18,9 16

SAD % 38,1 33,1 28,2

ME_3DRS % 5,6 4,9 4,2

Others % 0,2 0,2 0,2

 Total number of Cycles in average 4990 5734 6728

 Table 5.1.Basic profile with different latencies

When the latency increases, increases the total number of cycles and the percentage

of cycles that each block use in performing WAIT.

5.3.2. - Results of Advanced Profile 2 (AP2)

Now the alignment and padding of data is performed in the DMA Unit. Therefore the

processor executes less code. Because of this, in all the graphics that appears in this section,

the alignment +padding process require 0 cyles.

For Advanced Profile 2 with a latency of 15 cycles, the results are shown in figure 5.6.

 Figure 5.6.Adavanced Profile 2 with latency of 15 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

0

1000

2000

3000

4000

5000

6000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP2 with Latency 15

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 83 -

 WAIT : 13,3%

 ALIGN+PADDING: 0%

 MC: 28,3%

 SAD: 50,6%

 ME_3DRS: 7,5%

 Others: 0,3%

The total number of cycles employees in average by each blocks in running the

algorithm is 3749 cycles.

For Advanced Profile 2 with a latency of 30 cycles, the results are shown in figure 5.7.

Figure 5.7.Advanced Profile 2 with latency of 30 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 30,2%

 ALIGN+PADDING: 0%

 MC: 22,8%

 SAD: 40,7%

 ME_3DRS: 6%

 Others: 0,3%

The total number of cycles employees in average by each blocks in running the

algorithm is 4660 cycles.

0

1000

2000

3000

4000

5000

6000

7000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP2 with Latency 30

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 84 -

For Advanced Profile 2 with a latency of 45 cycles, the results are shown in figure 5.8.

Figure 5.8.Advanced Profile 2 with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 51,9%

 ALIGN+PADDING: 0%

 MC: 15,7%

 SAD: 28,1%

 ME_3DRS: 4,2%

 Others: 0,1%

The total number of cycles employees in average by each blocks in running the

algorithm is 6755 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,

increases the total number of cycles used for each block by identifying a block from the

reference frame that best matches the current block. This is due to increasing the latency is

equivalent to increase the number of cycles that each block use in performing WAIT, because

when the latency increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.2 shows the percentages of used cycles in performing

each task with respect to the total number of cycles employees in average by each blocks in

running the algorithm and the total number of cycles employees in average by each blocks in

running the algorithm for the different latencies:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP2 with Latency 45

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 85 -

 ADVANCED PROFILE 2

WAIT % 13,3 30,2 51,9

ALIGN+PADDING % 0 0 0

MC % 28,3 22,8 15,7

SAD % 50,6 40,7 28,1

ME_3DRS % 7,5 6 4,2

Others % 0,3 0,3 0,1

 Total number of Cycles in average 3749 4660 6755

 Table 5.2.Advanced Profile 2 with different latencies

When the latency increases, increases the total number of cycles and the percentage

of cycles that each block use in performing WAIT.

5.3.3. - Results of Advanced Profile 3 (AP3)

In this case, it will not be necessary to wait an end of a transfer to schedule the next,

with advanced profile 3 several transfers can be programmed at the same time.

For Advanced Profile 3 with a latency of 15 cycles, the results are shown in figure 5.9.

Figure 5.9.Adavanced Profile 3 with latency of 15 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

0

1000

2000

3000

4000

5000

6000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP3 with Latency 15

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 86 -

 WAIT : 8,6%

 ALIGN+PADDING: 0%

 MC: 30,9%

 SAD: 51,5%

 ME_3DRS: 8,7%

 Others: 0,3%

The total number of cycles employees in average by each blocks in running the

algorithm is 3672 cycles.

For Advanced Profile 3 with a latency of 30 cycles, the results are shown in figure 5.10.

Figure 5.10.Advanced Profile 3 with latency of 30 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 25,2%

 ALIGN+PADDING: 0%

 MC: 25,3%

 SAD: 42,1%

 ME_3DRS: 7,1%

 Others: 0,3%

The total number of cycles employees in average by each blocks in running the

algorithm is 4491 cycles.

For Advanced Profile 3 with a latency of 45 cycles, the results are shown in figure 5.11.

0

1000

2000

3000

4000

5000

6000

7000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP3 with Latency 30

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 87 -

Figure 5.11.Advanced Profile 3 with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each

task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

 WAIT : 47%

 ALIGN+PADDING: 0%

 MC: 18%

 SAD: 29,9%

 ME_3DRS: 5%

 Others: 0,1%

The total number of cycles employees in average by each blocks in running the

algorithm is 6325 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,

increases the total number of cycles used for each block by identifying a block from the

reference frame that best matches the current block. This is due to increasing the latency is

equivalent to increase the number of cycles that each block use in performing WAIT, because

when the latency increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.3 shows the percentages of used cycles in performing

each task with respect to the total number of cycles employees in average by each blocks in

running the algorithm and the total number of cycles employees in average by each blocks in

running the algorithm for the different latencies:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 397 793

N
u

m
b

e
r

o
f c

yc
le

s

Number of blocks

AP3 with Latency 45

WAIT

ALIGN+PADDING

MC

SAD

ME_3DRS

Others

- 88 -

 ADVANCED PROFILE 3

WAIT % 8,6 25,2 47

ALIGN+PADDING % 0 0 0

MC % 30,9 25,3 18

SAD % 51,5 42,1 29,9

ME_3DRS % 8,7 7,1 5

Others % 0,3 0,3 0,1

 Total number of Cycles in average 3672 4491 6325

 Table 5.3.Advanced Profile 3 with different latencies

When the latency increases, increases the total number of cycles and the percentage

of cycles that each block use in performing WAIT.

5.3.4. - Comparison of the different profiles

At this point has been made a comparison between the three profiles, taking into

account the data that appears in tables 5.1, 5.2, 5.3.

If we compare the Basic Profile (Table 5.1) with the Advanced Profile 2 (Table 5.2), it

can be seen that the number of cycles dedicated to performing alignment and padding has

disappeared, this is because now this operations are made by DMA Unit. By removing

alignment and padding, decreases the total number of cycles. Table 5.4 shows the data for a

latency of 15 cycles with BP and AP2:

 BASIC PROFILE ADVANCED PROFILE 2
WAIT % 9,4 13,3

ALIGN+PADDING % 25,1 0

MC % 21,6 28,3

SAD % 38,1 50,6

ME_3DRS % 5,6 7,5

Others % 0,2 0,3

Total number of Cycles in average 4990 3749

 Table 5.4.Data with Basic Profile and Advanced Profile 2 for a latency of 15 cycles

If we compare the Advanced Profile 2 (Table 5.2) with the Advanced Profile 3 (Table

5.3), it can be seen that the number of cycles dedicated to wait has decreased. This is due to in

this case it isn’t necessary to wait the end of a transfer to configure the next one, with

- 89 -

advanced profile 3 several transfers can be configured at the same time. Because of that the

total number of cycles has decreased. Table 5.6 shows the data for a latency of 45 cycles with

AP2 and AP3:

 ADVANCED PROFILE 2 ADVANCED PROFILE 3

WAIT % 51,9 47

ALIGN+PADDING % 0 0

MC % 15,7 18

SAD % 28,1 29,9

ME_3DRS % 4,2 5

Others % 0,1 0,1

Total number of Cycles in average 6755 6325

 Table 5.6.Data with Advanced Profile 2 and Advanced Profile 3 for a latency of 45 cycles

In conclusion we can say that AP3 is considerably better than BP and AP2 because of

the total number of cycles is lower for all the latencies.

The Figure 5.12 shows a comparison of the three profiles at time:

Figure 5.12.Comparison of BP, AP2 and AP3

On the x-axis is represented the latency, and in the y-axis is represented the average

number of cycles employees by each blocks in running the algorithm.

 When the latency increases, increases the total number of cycles used for each block

by identifying a block from the reference frame that best matches the current block.

This is due to increasing the latency is equivalent to increase the number of cycles

that each block use in performing WAIT, because when the latency increases, is

necessary to wait longer for the end of the transfers.

3000

4000

5000

6000

7000

8000

9000

15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f c

yc
le

s

Latency

Comparison between profiles

BP

AP2

AP3

- 90 -

 If we compare the Basic Profile with the Advanced Profile 2, it can be seen that with

short latencies, decreases the total number of cycles with AP2 that is because it the

alignment and padding process is performed in the DMA. But with large latencies,

there is a latency where it takes more or less the same number of cycles in total for

AP2 and BP. That is because with short latencies, for example in the loop of Figure

5.2, it will take longer to perform tasks in parallel that the time required to transfer

the next candidate. Therefore, it will not be necessary to wait for the candidate and

when alignment and padding is performed in the DMA, the total number of cycles is

significantly reduced. By contrast, with very large latencies it will take a long time to

send the candidate, more than to perform tasks in parallel, therefore it will be

necessary to wait and no matter saving cycles performing alignment and padding in

the DMA.

 Comparing AP2 with AP3 is easy to appreciate that AP3 uses fewer cycles than AP2

and that is more noticeable with increasing latency. With short latencies in most of

the cases do not need to wait, but with large latencies it will be necessary to wait,

and with AP2 we must wait longer. This is due to with AP2 is necessary to wait the

end of the transfer to schedule the next and with AP3 is not necessary to wait the

end of the transfers for scheduling the next.

 The code for AP2 has been implemented in order to obtain the best results taking

into account that to begin a transfer must be completed the previous and because of

this, the difference between the number of cycles used by AP2 and AP3 is less

noticeable.

 With AP3 besides it has been saved the time required to consider the best way to

implement the code taking into account that to begin a transfer must be completed

the previous.

 In conclusion, with AP3 it has been decreased the required execution time, because it

has been removed application code (alignment and padding subroutines) and it is not

necessary to wait the end of the transfers for configuring the next. Besides with AP3,

is saved the time required to consider the best way to implement the code.

- 91 -

Chapter 6

Conclusions

In this work it has been analyzed the VLIW and SIMD processors, the basics of Direct

Memory Access Units and the environment of video coding standards. Motion estimation (a

particular video coding task) has been studied, analyzing the algorithm and the transfer´s

requirements.

In applications like video coding and decoding that use motion estimation, it is not

possible to avoid unpredictable unaligned memory references. Motion estimation algorithm

searches a block that best matches with a block from the frame to be coded. This reference

block is generated by displacement from the location of the block to be coded in the frame of

reference. This displacement is performed using the motion vector and can be arbitrary and

therefore, that results in a lot of unpredictable unaligned accesses.

In this type of applications, current software optimizations become unsuccessful

because the instructions that are necessary for doing the data realignment in software subject

the CPU to a heavy overhead.

Knowing that DMA is an essential feature of all modern computers due to it allows any

device to transfer data without subjecting the CPU to a heavy overhead, the solution adopted

in this project has been to design an ‘Enhanced DMA Unit’ capable of performing the

alignment of data.

This 'Enhanced DMA Unit' in addition to the alignment process can perform the

padding process. For example in applications like video coding and decoding that use motion

estimation algorithm, to search the block of the reference frame that best matches the block

to be coded, the search is performed only in a region known as the search area, then when a

candidate (to be a pixel block from the reference that best matches the block to be coded)

goes beyond this search area, it is necessary to make padding.

Moreover this 'Enhanced DMA Unit' is able to store several transfer configurations in a

queue, in this way when the transfer finishes, it will be immediately initiated the next transfer.

Now is not necessary to wait a previous transfer in order to program a new one.

With the proposed ‘Enhanced DMA Unit’, which is inside the Moai4k processor and

communicates it with the external memory (SDRAM) through the AMBA bus, and using Motion

Estimation algorithm as an application, it has been analyzed the results obtained with three

different profiles:

 Basic Profile is a basic DMA Unit.

- 92 -

 Advanced Profile 2 is a Basic Profile with the inclusion of alignment and

padding process.

 Advanced Profile 3 is the Advanced Profile 2 with an additional queue to store

several transfer configurations.

With the aim of obtaining results more realistic, latency has been introduced into the

external memory controller and the results has been obtained with different values for this

latency (between 15 and 55 cycles).

We can conclude that:

 When the latency increases, it also increases the total number of executed cycles

required to identify a block from the reference frame that best matches with a

current block.

 Comparing the Basic Profile with the Advanced Profile 2, the total number of

executed cycles decreases because the alignment and padding process is done by

the DMA.

 Comparing AP2 with AP3, is easy to appreciate that AP3 uses fewer cycles than

AP2. With an AP2 DMA it is necessary to wait the end of the transfer in order to

start the next one. This “wait transfer scheduling”, which is programmed in the

instruction code, is avoid when using an AP3 DMA.

In conclusion with AP3 has been decreased the required execution time, because it has

been removed instruction code (alignment and padding process) and is not necessary to wait

the end of the transfers for programming a new one. Moreover, with an AP3, the time

required to consider the best place in the application code to wait a previously transfer in

order to start a new one, has been saved.

To complete this project, some ideas are proposed indicating possible future modifications.

When the padding is being done, it is necessary to copy the contents of a line in all the

lines that are outside of the image, this was implemented reading all the time the same line.

Therefore, reading all the time the content of this line is not necessary and it produces an

unnecessary transfers expense that can be avoided by:

 Adjusting the size of the block to the contents of this that remaining within the

image.

 Storing this content in the local memory, and copying these lines that are equal at

this time.

- 93 -

The implementation of these future modifications would save a lot of resources but

will be the DMA more complex.

- 94 -

References

1. Ruby B. Lee, “Subword Parallelism with MAX-2”, IEEE Micro, p.51-59, August 1996.

2. Guillermo Payá-Vayá, Javier Martín-Langerwerf, Piriya Taptimthong, and Peter Pirsch,

“Design Space Exploration of Media Processors: A Generic VLIW Architecture and a

Parameterized Scheduler”, ARCS 2007,LNCS4415, p. 154-267, March 2007.

3. A. Dasu and S. Panchanathan, “A Survey of Media Processing Approaches”, IEEE

Transactions on Circuits and System for Video Technology, p. 633-645, August 2002.

4. M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “Performance Impact of Unaligned

Memory Operations in SIMD Extensions for Video Codec Applications”, ISPASS 2007,

p. 62-71, April 2007.

5. Analog Devices, Inc One Technology Way Norwood, “Blackfin Processor Hardware

Reference”, December 2005.

6. David Katz and Rick Gentile, “Using Direct Memory Access effectively in media-based

embedded applications”, www.enbedded.com, November 2007.

7. John L. Hennessy and David A. Patterson (2003). “Computer Architecture: A

Quantitative Approach”, The Morgan Kaufmann Series in Computer Architecture and

Design.

8. Milind Phadtare, “Motion estimation techniques in video processing”, August 2007.

9. Jörn Ostermann, Jan Bormans, Peter List, Detlev Marpe, Matthias Narroschke,

Fernando Pereira, Thomas Stockhammer, and Thomas Wedi, “Video coding with

H.264/AVC: Tools, Performance, and Complexity”, Circuits and Systems Magazine,

IEEE, p. 7-28, 2004.

10. Yasushi Ooi, “Motion Estimation System Design”, Digital Signal Processing for

multimedia systems, K.K. Parhi and T. Nishitani, Marcel Dekker, Chap.12, pp. 299-327,

1999.

11. Songnan Li, Jianguo Du, Debin Zhao, Qian Huang, Wen Gao, “An Improved 3DRS

Algorithm for Video De-interlacing” in Proc.Picture Coding Symp., Bejing, China, April

2006.

http://www.enbedded.com/

- 95 -

12. John Watkinson, “The Engineer’s Guide to Motion Compensation”, 1994: Snell &

Willcox Lt.

- 96 -

- 97 -

- 98 -

- 99 -

- 100 -

