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Computational Mechanics and Scientific Computing Group, Technical University of Cartagena,
Campus Muralla del Mar, 30202 Cartagena, Murcia, Spain

Abstract

This paper presents an evolutionary approach for the Robust Topology Optimization (RTO) of continuum structures under loading
and material uncertainties. The method is based on an optimality criterion obtained from the stochastic linear elasticity problem in
its weak form. The smooth structural topology is determined implicitly by an iso-value of the optimality criterion field. This iso-
value is updated using an iterative approach to reach the solution of the RTO problem. The proposal permits to model the uncertainty
using random variables with different probability distributions as well as random fields. The computational burden, due to the high
dimension of the random field approximation, is efficiently addressed using anisotropic sparse grid stochastic collocation methods.
The numerical results show the ability of the proposal to provide smooth and clearly defined structural boundaries. Such results
also show that the method provides structural designs satisfying a trade-off between conflicting objectives in the RTO problem.
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1. Introduction

Topology optimization aims at finding the optimal layout of
material within a design domain for a given set of boundary
conditions such that the resulting material distribution meets a
set of performance targets [1]. Contrary to other disciplines
within structural optimization such as size and shape opti-
mization, in topology optimization the material distribution is
obtained without assuming any prior structural configuration.
This provides a powerful tool to find the best conceptual design
that fulfills the requirements at the early stages of the structural
design [2]. Such a method has been successfully applied to a
wide range of problems, from nanophotonics design [3] to air-
craft and aerospace structural design [4, 5], which validates it
as an effective tool for least-weight and performance design.

Topology optimization methods can be broadly classified,
following [6], into density-based methods [7, 8], level set meth-
ods [9, 10], phase field methods [11, 12], topological deriva-
tive methods [13, 14] and evolutionary approaches [15]. The
variants of Evolutionary Structural Optimization (ESO) method
[16] are some of the approaches included in the last category,
such as the Bi-directional Evolutionary Structural Optimization
(BESO) method [17] and the Evolutionary Topology Optimiza-
tion (ETO) method using isolines [18, 19, 20] and smoothing
boundary representation [21]. These optimization methods are
based on heuristic rules including from simple hard-kill strate-
gies (elements with lowest strain energy density are removed)
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to bidirectional schemes (elements can be reintroduced if con-
sidered rewarding). Apart from intuition, such methods can
use standard adjoint gradient analysis and filtering techniques
to stabilize algorithms and results [22, 23].

ETO methods have shown their ability for providing struc-
turally sound and aesthetically pleasing designs [24], which
commonly mimic nature’s own evolutionary optimization pro-
cess. Such methods normally assume deterministic conditions
to integrate function and form in a synergistic way [25], which
obviates the different sources of uncertainty that may affect not
only the safety and reliability of structures but also their per-
formance. These sources of uncertainty include epistemic un-
certainties, typically due to limited data and knowledge, and
aleatory uncertainties, which are the natural randomness in
a process, including manufacturing imperfections, unknown
loading conditions, variations of the material properties, etc.
The introduction of uncertainty to model realistic conditions in
the design process has shown to be a key issue for solving real-
world engineering problems in several fields, such as civil [26],
automotive [27] and mechanical [28] engineering, to name but
a few. This fact, together with the development of probabilistic
uncertainty propagation methods, has fostered the interest for
considering uncertainty within the topology optimization prob-
lems, giving rise to the formulation of several approaches em-
braced under the term of Topology Optimization Under Uncer-
tainty (TOUU) methods.

TOUU methods can be broadly classified, according to
the representation and treatment of uncertainties, into non-
probabilistic and probabilistic approaches. Non-probabilistic
approaches [29] do not require the statistical information about
the uncertainty of the phenomenon but a qualitative notion
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about its magnitude. The worst-case approach [30, 31], taking
the form of a min-max optimization problem, and fuzzy tech-
niques [32], making use of fuzzy set theory, are some of the
methods included in this category. The main drawback of these
approaches is that they are often too conservative, due to over-
estimation of uncertainty, and may lead to optimal designs with
poor structural performance. Conversely, probabilistic methods
make use of a probabilistic characterization of the uncertainty
of the phenomenon. Several formulations have been proposed
in this context, which differs from each other in the design of
the objective function as well as in the way the uncertainty is
incorporated in the formulation.

Reliability-Based Topology Optimization (RBTO) aims at
determining the best design solution with respect to prescribed
criteria, e.g. stiffness, weight and construction costs, while ex-
plicitly considering the unavoidable effects of uncertainty. This
is done by defining the constraints in terms of the probability of
constraint violation (probability of failure) [33]. Risk-Averse
Topology Optimization (RATO) [34, 35] aims at minimizing a
risk cost function that quantifies the expected loss related to the
damages, such as excess probability. That is, whereas RBTO
provides optimal designs in terms of deterministic prescribed
criteria with enough reliability level, RATO provides the best
design from the point of view of risk-aversion [36]. Contrary
to RBTO and RATO formulations, Robust Topology Optimiza-
tion (RTO) incorporates statistical moments of the compliance
to the objective function. The aim is to obtain optimal designs
which are less sensitive to variations in the input data. Several
developments based on RTO formulation have been developed
to handle uncertainty in loading [37], material [38], stiffness
[39], geometry [40], boundary [41], and loading and material
[42, 43]. For the specific case of uncertainty in loading, Al-
varez and Carrasco [44] and then Dunning et al. [45] showed
that the RTO problem of minimizing the expected compliance
is analogous to a multiload-like problem associated with a par-
ticular finite set of loading scenarios, which depend on the mean
and the variance of the perturbations [46]. Nevertheless, a very
common practice is to use the weighted sum of the first two
statistical moments of compliance as the objective function of
RTO formulation [43, 38, 37]. This is the formulation adopted
in this work, where the expected value and the standard devia-
tion of the compliance are considered as a measure of structural
robustness.

Despite the fact that ETO methods have been successfully
applied to the design of many complex industrial deterministic
problems, they have not been used to the same extent to ad-
dress TOUU problems. Kim et al. [47] addressed the RBTO
problem using the ESO method and first-order reliability ap-
proach, as approximate probability integration method, to solve
problems with uncertainty in loading and material. Eom et al.
[48] made use of an improved hard-kill BESO method using a
response surface to compute the reliability index for address-
ing RBTO problems with uncertainty in loading and material.
The BESO method using a performance measure, with proba-
bilistic constraints formulated in terms of the reliability index,
was used by Cho et al. [49] to address RBTO multi-objective
problems including uncertainty in static stiffness of bending,

torsion, and natural frequency. The linear elasticity hypothe-
sis was exploited by Kanakasabai and Dhingra [50] using su-
perposition to efficiently handle reliability constraints in RBTO
problems with uncertainty in loading using the BESO method.
Recently, topology optimization of continuum structures under
probabilistic and fuzzy loads is addressed by Liu et al. [51] us-
ing BESO method; in particular, the uncertainty of input data is
described using a cloud model that permits to transform the un-
certain topology optimization problem into a deterministic one
with multiple load cases.

In this work, an ETO method driven by an optimality crite-
rion is proposed for addressing the TOUU problem. This pro-
posal includes some of the ingredients of the iso-XFEM method
[19]; in particular, the use of implicit boundary representation
by iso-contours, to control the shape and topology variations
during the optimization process, and the extended finite ele-
ment method (XFEM), to improve the accuracy of finite ele-
ment solutions on the boundary of the design. The optimality
criterion for the RTO problem is derived from the stochastic
linear elasticity formulation in its weak form using a contin-
uous adjoint method without being limited by the discretiza-
tion method used for the physical and the stochastic domains.
The ETO method uses an iterative approach to gradually add
and/or remove material based on the iso-contours of the opti-
mality criterion. The proposal permits to handle loading and
material uncertainties modeled by different probability distri-
butions and random field. To address the increment of dimen-
sionality induced by the random field, an anisotropic sparse grid
stochastic collocation method is used for the efficient computa-
tion of the multidimensional integrals over the random domain.
Compared to density-based and level-set methods addressing
TOUU problems, the proposal requires neither an initialization
of the boundary nor any regularization parameter, and it pro-
vides smooth and clearly defined boundaries. Another impor-
tant advantage of the proposal is that it provides optimal so-
lutions for different volume fractions during the optimization
process, which enables to efficiently find a trade-off between
performance and robustness for different volume fractions dur-
ing the topology optimization.

The remainder of the paper is organized as follows. The
basis and theoretical background of TOUU problem and the
RTO formulation are briefly reviewed in section 2. Section 3
presents the adaptive sparse-grid stochastic collocation method
used for uncertainty propagation and the efficient computation
of the multidimensional integrals over the random domain re-
quired by the RTO formulation. The optimality criterion, used
by the proposal to reach an optimal solution, is derived for the
RTO problem in section 4. Section 5 presents the proposed
ETO algorithm driven by an optimality criterion to address the
RTO problem. Section 6 is devoted to the numerical experi-
ments used for validating the proposed method. Finally, sec-
tion 7 presents the conclusion of the proposed ETO method for
RTO problems.

2



2. Topology optimization under uncertainty (TOUU)

The mathematical basis and fundamentals of TOUU prob-
lems and the specific formulation of RTO, addressed in this
work, are presented below.

Let (Ω,F ,P) be a complete probability space, and let D ⊂
Rd (d = 2 or d = 3) be a bounded Lipschitz domain whose
boundary is decomposed into three disjoint parts ∂D = ΓD ∪

ΓN∪Γ0. Consider the linearized elasticity system under random
input data


−5 · σ(u(x, ω)) = b(x, ω) in D ×Ω

u(x, ω) = ū in ΓD ×Ω

σ(u(x, ω)) · n = t̄(x, ω) in ΓN ×Ω

σ(u(x, ω)) · n = 0 in Γ0 ×Ω

, (1)

where x is the spatial variable, ω ∈ Ω are the random events,
σ is the Cauchy stress tensor, b and t̄ are the body and surface
forces, ū is the prescribed displacement field, and n is the unit
outward normal vector to ∂D. The stress tensor σ and the sym-
metric gradient of the displacement field ε are related by means
of the following constitutive equation

C(x, ω) : ε(x, ω) = σ(x, ω), (2)

where C represents the fourth order constitutive tensor and “:”
operator is the double dot product of two tensors. Notice that
compared to its deterministic counterpart, the body and surface
forces and the constitutive tensor depend on a spatial variable x
and on a random event ω ∈ Ω. By using an Eulerian approach,
the structural boundary ∂O splits the domain D into two differ-
ent subdomains O ⊆ D and Oc ⊆ D, such that O ∪ Oc = D and
O ∩ Oc = ∅. This subdivision into subdomains can be repre-
sented by means of a characteristic function χ such that

χ(x) =

 1 x ∈ O

0 x < O
. (3)

This allows us to rewrite the constitutive tensor equation as

C(x, ω) = χ C+(x, ω) + (1 − χ) C−(x, ω), (4)

where C+ and C− are the fouth order constitutive tensors of a
stiff and a soft material respectively.

The TOUU problem is then formulated as the minimization
of the structural compliance under random input data subjected
to the maximum material allowed, as follows

min
χ∈DL

J(χ, ω) =

∫
D

bu dx +

∫
ΓN

t̄u ds

s. t. : a(χ, u, v, ω) = l(v, ω) ∀ v ∈ VD,∀ ω ∈ Ω

DL =
{
χ ∈ L∞(D, {0, 1}), |O| ≤ L|D|

}
(5)

where VD = {v ∈ H1(D)d : v|ΓN = 0}, DL is the feasible domain
restricted to a volume constraint on O denoted as a fraction 0 <
L < 1 of the domain D, and a(χ, ·, ·, ·) and l(·, ·, ·) are the bilinear
form and the right hand side of (1) obtained taking the weak
form as follows

a(χ, u, v, ω) =

∫
D
σ(u(x, ω)) : ε(v(x, ω)) dx (6)

l(v, ω) =

∫
D

bv dx +

∫
ΓN

t̄v ds . (7)

The general formulation of the TOUU problem (5) provides
a different solution for each realization of the random event.
The random functional should be transformed into a determinis-
tic one to address the optimization problem using conventional
optimization algorithms. Different formulations have been pro-
posed in the literature depending on how the uncertainty is in-
corporated in the formulation. In this work, the formulation
is focused on the RTO problem, which aims to find designs
less sensitive to variations in the design variables and the in-
put parameters. This is normally done by formulating the RTO
problem as a two-objective optimization problem where the ex-
pected value and standard deviation of the compliance are con-
sidered as a measure of structural robustness.

The use of the weighted approach both in the structural op-
timization context [52, 53] and the RTO one [43, 38, 37] is ex-
tensive. The weighted sum method [54] incorporates a priori
articulation of preferences by selecting weights, which are used
to scalarize the multi-objective problem into a single-objective
one. The solution of the single-objective problem allows the
algorithm to determine a solution that presumably reflects such
preferences. It is important to notice that the weighting coeffi-
cients do not reflect the relative importance of the objectives in
the proportional sense, but they are only parameters varied to
locate the non-dominated solution points. One can argue that
the weights represent the trade-off between objectives, and thus
maintaining the original unit of the objectives might be advan-
tageous. An important recommendation adopted in this work is
the use of unrestricted positive weights when articulating well-
understood preferences [55].

It is well known that the major drawbacks of the weighted
sum approach are its inability to capture solutions that lie on
non-convex portions of the Pareto-optimal fronts [56] and the
non-uniform distribution of points in the Pareto optimal set pro-
vided by the method with a consistent change in the weights.
The former is due to the weighted sum utility function is only
a linear approximation (in the criteria space) of the preference
function [56], whereas the latter is attributed to the difficulty
to set weights to indicate the relative importance of objectives.
The systematic weight assignment is addressed by ranking
methods in Multiple Objective Decision Making (MODM) [57]
by ordering the objective functions by importance; in particular,
the least important objective receives a positive weight and the
objectives that are considered more important receive weight
with consistent increments. A similar approach is commonly
used in the RTO context to show the trade-off between the ex-
pected value and standard deviation of the compliance. Despite
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the drawbacks mentioned, the simplicity of the weighted ap-
proach has made it one of the most popular methods used to
scalarize multi-objective problems.

The RTO problem is then formulated as follows

min
χ∈DL

JR(χ) = E[J(χ, ω)] + α
√

Var[J(χ, ω)]

s. t. :
∫

Ω

a(χ, u, v, ω)dP(ω) =

∫
Ω

l(v, ω)dP(ω) (8)

∀ v ∈ L2
P(Ω,VD),

DL =
{
χ ∈ L∞(D, {0, 1}), |O| ≤ L|D|

}
,

where E[·] denotes the expectation operator, Var[·] denotes the
variance operator, and α ≥ 0 is a weight parameter to indicate
the number of standard deviations from the mean to be consid-
ered. Increasing the parameter α has the effect of tightening the
constraint on variability [38]. This is conceptually equivalent,
as seen in [58], to increasing the robustness by adding penalty
terms to constraints which include the tolerances of the design
variables. In this probabilistic setting, the mean and the vari-
ance of the performance function are obtained as follows

E[J(χ, ω)] =

∫
Ω

J(χ, ω)dP(ω),

Var[J(χ, ω)] =

∫
Ω

J2(χ, ω)dP(ω) (9)

−

( ∫
Ω

J(χ, ω)dP(ω)
)2

.

In practice, these multi-dimensional integrals cannot be eval-
uated analytically, and their numerical computation becomes
computationally intractable as the dimension of the random do-
main increases. This issue has motivated the development of
efficient methods to address the problem, such as dimension re-
duction methods and sparse grid collocation methods. In this
work, due to the smoothness of the solution of the elasticity
system an anisotropic non-intrusive sparse grid stochastic col-
location method is used to evaluate the integrals in the random
domain.

3. Anisotropic non-intrusive sparse grid method

The random state equation (1) may include uncertainties with
spatial variations, such as material properties or distributed
loads. These uncertainties are characterized by random fields.
Let z(x, ω) : D × Ω −→ R be a random field, which is a func-
tion of the spatial coordinate x and an element ω of the sample
space. This random field is completely characterized by an in-
finite number of random variables, which is computationally
intractable. To address this issue, the Karhunen-Loève (K-L)
expansion [59] can be used to reduce the infinite-dimensional
stochastic space to a finite-dimensional stochastic one. A trun-
cated K-L expansion of the random field z(x, ω) can be written
as

z(x, ω) � z̄(x) +

N∑
i=1

√
γiφi(x)yi(ω), (10)

where z̄(x) is the mean function, γi and φi are the eigenvalues
and eigenvectors, respectively, of the compact and self-adjoint
operator

ψ 7→

∫
D

C(x, x′)ψ(x′) dx′, ψ ∈ L2(D), (11)

and yi(ω) are the terms of a vector of independent random vari-
ables.

The number of terms of the truncated K-L expansion (10) is
related to the decay rate of its eigenvalues. Thus, the number
of terms required to reach a specified error threshold depends
on the correlation function of the process. Thus, a large num-
ber of terms is needed to approximate the random field with
reasonable accuracy for a relatively small correlation length.
In this case, the use of full tensor product rules for solving
the multi-dimensional integrals in (9) can lead to an unafford-
able computational problem. To overcome this difficulty, the
isotropic sparse grid approaches [60] were proposed to reduce
the number of collocation points keeping the level of accuracy
for problems whose random variables weigh equally in the so-
lution. However, the convergence rate is deteriorated for highly
anisotropic problems [61], which is the resulting case from K-
L expansions. In this case, an anisotropic sparse tensor product
can drastically reduce the computational cost while providing
highly accurate solutions.

The numerical approximation in the random domain is per-
formed using the adaptive anisotropic sparse grid collocation
method described below. For an integer ` ∈ N+, called the
level, and a vector of weights for the different stochastic direc-
tions β = (β1, β2, · · · , βN), consider the index set

Xβ (`,N) =

i = (i1, · · · , iN) ∈ NN
+ , i ≥ 1 :

N∑
n=1

(in − 1) βn ≤ `β

 ,
with β := min1≤n≤N βn. Some examples of isotropic and
anisotropic Smolyak grids are illustrated in Figure 1. Similarly
to the isotropic Smolyak quadrature rule [60], the anisotropic
Smolyak quadrature formula applied to a generic function f is
given by

Aβ (`,N) f =
∑

i∈Xβ(`,N)

(
∆i1 ⊗ · · · ⊗ ∆iN

)
f

=
∑Ri1

r1=1 · · ·
∑RiN

rN =1 f
(
yr1

1 , · · · , y
rN
N

)
wr1

1 · · ·w
rN
N ,

(12)
where ∆in = Qin − Qin−1, with Q0 = 0, is a quadrature rule
in which the coordinates yrn

n of the nodes are those for the 1D
quadrature formula Qin and their associated weights wrn

n are the
difference between those for the in and in − 1 levels. The num-
ber of collocation points in the n-th direction is denoted by Rin .
The vector of weights β depends on the analyticity properties of
the solution u (x, y) with respect to y. For the case of Gaussian
random variables [62, 63], the n-th term of the vector β takes
the following form
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Figure 1: Smolyak grids for ` = 5, N = 2 and Gaussian 1d quadrature: (a)
sparse grid and (c) index set obtained by isotropic sparse tensor product with
g = [1, 1], and (b) sparse grid and (d) index set obtained by anisotropic sparse
tensor product with g = [1, 0.5].

βn =
1

2
√

2
√
γn‖φn‖L∞(D)

, (13)

with (γn, φn (x)) the eigenpair in the K-L expansion.
The level ` of the quadrature rule is adaptively chosen as to

comply with a prescribed level of accuracy 0 < ε << 1. This is
done as follows:

1. Calculate the vector of weights β according to (13).
2. Initialize the level ` = 1 and a positive, large enough, inte-

ger `.
3. Determine the discrete numerical approximation of the

performance function Aβ (`,N) J(χ, ω). The compliance
J(χ, ω), given by (5), is obtained solving the state equation
a(χ, uχ, v, yk) = l(v, yk) at the stochastic nodes yk, which
come from the quadrature rule (12).

4. Calculate the norm over L2(D) of the mean and the vari-
ance of J(χ, ω) denoted by

Eβ,`,N = ||Aβ (`,N) J(χ, ω)||2L2(D)

and

Vβ,`,N = ||Aβ (`,N) J2(χ, ω) −Aβ (`,N) J(χ, ω)2||2L2(D).

5. Calculate the numerical approximation of an enriched so-
lution given by

Aβ̂
(
¯̀ + 1,N

)
J(χ, ω), with β̂n =

 In

(
β, `

)
− 1

In

(
β, `

) 
βn

β

 ,

(14)

where the maximum index in each direction In

(
β, `

)
=

maxi∈Xβ
(
`,N

) {in} is introduced.

6. Compute the norm over L2(D) of the mean and the vari-
ance of the enriched solution as follows

Eβ̂, ¯̀,N = ||Aβ̂
(
¯̀ + 1,N

)
J(χ, ω)||2L2(D)

and

Vβ̂, ¯̀,N =

||Aβ̂
(
¯̀ + 1,N

)
J2(χ, ω) −Aβ̂

(
¯̀ + 1,N

)
J(χ, ω)2||2L2(D)

7. Finally, the level ` is increased linearly (from ` = 1 to
` = `opt ≤ `) up to the stopping criterion

max

 |Eβ,`,N − Eβ̂, ¯̀,N |

Eβ̂, ¯̀,N
,
|Vβ,`,N − Vβ̂, ¯̀,N |

Vβ̂, ¯̀,N

 ≤ ε (15)

is satisfied.

4. Optimality criterion for Robust Topology Optimization

Following the Céa’s classical Lagrange method [64], the con-
strained minimization problem (8) is transformed into an un-
constrained minimization problem using the augmented La-
grangian function

L(χ, u, p) = JR(χ, u) +
∫

Ω
a(χO, u, p, ω)dP(ω)

−
∫

Ω
l(p, ω)dP(ω) + λ

( ∫
O
χdx − L|D|

)
,

(16)

where p ∈ L2
P(Ω,VD) is the adjoint state and λ is the La-

grange multiplier used to enforce the volume constraint at con-
vergence. Notice that the augmented Lagrangian function is
defined for any characteristic function χ ∈ DL, and for any
u, p ∈ L2

P(Ω,VD), so that the variables are independent.
For a fixed χ, we search for the saddle points (u, p) ∈

L2
P(Ω,VD) of L(χ, ·, ·). First, we take the derivative of L with

respect to p̂ in the direction q ∈ L2
P(Ω,VD). After integrating by

parts and equating to zero gives

∂L(χ,u,p)
p̂ (q) =

∫
Ω

∫
D σ(u) : ε(q)dxdP(ω)

−
∫

Ω

∫
D bq dxdP(ω) −

∫
Ω

∫
ΓN

t̄q dsdP(ω) = 0,
(17)

where the weak form of the state equation is recovered, whose
total sum is zero. Similarly, taking the derivative of L with
respect to û in the direction v ∈ L2

P(Ω,VD) and integrating by
parts the following adjoint equation is obtained

∂L(χ,u,p)
û (v) =

∫
Ω

∫
D σ(p) : ε(v)dxdP(ω)

−
∫

Ω

∫
D

(
1 + α

Std[J] J(χ, ω) − αE[J]
Std[J]

)
bv dxdP(ω)

−
∫

Ω

∫
ΓN

(
1 + α

Std[J] J(χ, ω) − αE[J]
Std[J]

)
t̄v dsdP(ω)

= 0.
(18)

The shape derivative of the Lagrangian functional is given by
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∂L(χ,u,p)
∂χ

(θ) =
∫

Γ0
θ · n

( ∫
Ω

b · u + α 1
Std[J]

(
J(χ, ω)b · u

)
−α E[J]

Std[J] b · u − b · p + σ(u) : ε(p)dP(ω) + λ

)
ds

= 0,
(19)

where the following optimality criterion for the RTO problem
can be derived

Φ(χ, x)|x∈∂O =
∫

Ω

{
− b · u − α 1

Std[J]

(
J(χ, ω)b · u

)
+α E[J]

Std[J] b · u + b · p − σ(u) : ε(p)
}
dP(ω)

= λ.
(20)

That is, the optimal structural design should satisfy the con-
dition Φ(χ, x) = λ in the boundary of the design. Such an opti-
mal criterion can be used to evolve the search for the optimum
design using evolutionary methods. This is done using an it-
erative approach to adaptively update the Lagrange multiplier
λ ∈ R based on the optimal criterion until the design satisfying
the final amount of material is reached.

Assuming that body forces are not present in our problem,
i.e. b = 0 from (17) to (20), and given a set of Nsg sparse
grid nodes (y1, . . . , yNsg ) and weights (w1, . . . ,wNsg ), the crite-
rion Φ(χ, x) can be approximated as

Φ(χ, x) �

Nsg∑
k=1

(
σ(u(x, yk)) : ε(p(x, yk))

)
wk, (21)

where p(x, yk) is the adjoint state at the collocation point yk ob-
tained solving the system∫

D σ(p(x, yk)) : ε(v) dx =∫
ΓN

(
1 + α

Std[J] J(χ, yk) − αE[J]
Std[J]

)
t̄(x, yk)v ds

(22)

for all v ∈ VD.

5. Evolutionary method for updating the optimal criterion

The proposed method makes use of the optimality criterion
derived in the previous section to obtain optimal shapes that sat-
isfy such a criterion in the boundary of the structural design. We
can consider the proposal as a variant of ESO method that grad-
ually adds and/or removes material depending on the shape and
distribution of the optimality criterion in the design. This ap-
proach is similar to the method used in other works using strain
energy density or von Mises stress [19] to evolve the structural
design. The method defines the structural boundary by the in-
tersection of the structural performance distribution with a min-
imum level of performance, which is increased during the opti-
mization process. Compared to traditional ETO methods, such
ESO/BESO, the method driven by an optimal criterion provides
solutions with a smooth boundary representation, which facili-
tates the topology interpretation.

Void element

Gauss point

Structural boundary

Solid element

Boundary element

XFEM integration scheme

Figure 2: Classification of elements using fixed grid approach and XFEM inte-
gration scheme for boundary elements.

In this work, the iso-XFEM approach [19] is adopted to grad-
ually update the Lagrange multiplier λ, which defines the struc-
tural boundary. This is done by superimposing the structural
domain O over a regular grid of rectangular equally sized el-
ements, as shown in Figure 2. Three types of elements are
defined: elements located inside O (solid elements), elements
located outside O (void elements), and boundary intersected el-
ements (boundary elements). The integration is performed us-
ing the XFEM approach. That is, the solid and void elements
are integrated using conventional finite element method (FEM),
whereas boundary elements are integrated on the corresponding
solid sub-domain. Figure 2 shows how the solid sub-domain of
the boundary elements is partitioned into triangles, which are
integrated using three Gauss quadrature points. The element
stiffness matrix of the boundary elements is obtained adding
the contribution of each triangle.

The proposed ETO method is summarized into the following
steps:

1. Define the RTO problem, including the regular grid of fi-
nite elements, boundary conditions, solid and void mate-
rial properties, optimizable and non-optimizable regions,
and uncertain variables.

2. Define the target volume V∗, an evolutionary volume ratio
(ER) and the allowable volume change ∆V for stabilization
purposes.

3. Calculate the approximate distribution Φ(χ, x)(i) of (21) us-
ing XFEM for solving the state and adjoint state equations
at each stochastic collocation point at the current iteration
of the optimization approach.

4. Average the criterion with the values of previous itera-

tions Φ(χ, x)(i) =
Φ(χ, x)(i) + Φ(χ, x)(i−1)

2
to stabilize con-

vergence [65].
5. Calculate the target volume for the current iteration fol-

lowing V (i) = max{V (i−1)(1 − ER),V∗}. Once the objective
volume is reached, the volume will be kept constant for
the remaining iteration.
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6. Calculate the value of the Lagrange multiplier λ(i) in-
tersecting with Φ(χ, x)(i) that gives the target volume at
the current iteration V (i). This is done using a bisection
method.

7. Extract the boundary of the design ∂O and assign solid and
void material properties according to

Φ(χ, x)(i)


> λ(i) x ∈ O

= λ(i) x ∈ ∂O

< λ(i) x < O

. (23)

8. Perform a stabilization loop to evolve the structural bound-
ary to the corresponding iso-value λ(i). This is an itera-
tive process of reanalysis and material distribution until
the volume change in successive iterations is lower than
the empiric value ∆V .

9. Repeat from 3 to 8 to gradually reduce the volume V (i)

until the target volume V∗ satisfying the optimal criterion
is obtained.

Notice that the topology optimization problem in elasticity is
known to be ill-posed since there is not always existence of so-
lutions in the set of admissible shapes [66] and there is usually
non-uniqueness of the solution [67]. The existence of, at least,
one solution in the set of admissible shapes can be proven un-
der certain constraints [42]. The practical consequence is that
numerical methods may exhibit numerical instabilities and the
optimal design depends on several factors, such as the initial de-
sign and the parameters used for the optimization problem, to
name but a few. The strategy used to update the Lagrange mul-
tiplier is mesh dependent, which is typically the case for ETO
methods and element based topology optimization methods.
This issue has been studied in a deterministic settings in ear-
lier investigations for BESO [68, 65] and for iso-XFEM meth-
ods [19]. Such works indicate that pseudo mesh-independent
topologies can be obtained using filtering strategies. Addition-
ally, these strategies may decrease the complexity of the con-
vergence solutions at the cost of degrading the performance of
the optimal topology.

6. Numerical Experiments

The effectiveness of the proposed development for RTO of
continuous structures is evaluated using three benchmarks com-
monly used in the TOUU literature. The first two problems
(“beam-to-cantilever” [31, 37, 42] and “carrier plate” [37, 35])
aim at optimizing the design domain under uncertain loading
characterized by different probability distributions and random
fields. The last problem (“simply supported beam” [37, 35])
is concerned with the optimization problems combining load-
ing and material uncertainties. These experiments aim at show-
ing that the proposed development is able to deal with differ-
ent probability distributions as well as random fields. All the
benchmarks make use of a fixed grid of Q1 quadrangular plane
stress finite elements with Poisson’s ratio ν = 0.3 and Young’s
modulus Esolid =1 and Evoid =1e-5 for solid and void material
respectively.

t̄ = 1

Dx = 1

hx

hy

Dy = 2
φ

(a) (b)

Figure 3: The beam-to-cantilever problem: (a) the design domain and boundary
conditions, and (b) the deterministic optimal design.

6.1. Beam-to-cantilever problem

The beam-to-cantilever problem consists in the topology
optimization of a two-dimensional cantilever under uncertain
loading conditions. Such a benchmark is widely used [31, 37,
42] to show the effect of uncertain loading in the robust optimal
design. The left edge of the cantilever is anchored and a unitary
force with uncertainty in direction, centered in the horizontal
line, is applied in the middle of the right edge. The design do-
main is a 1x2 rectangle tessellated using a 64x128 quadrangular
mesh (h1 = h2 = 0.0156). The uncertain loading, the boundary
conditions, and the tessellation of the design domain are shown
in Figure 3(a), whereas the topology design using a determinis-
tic approach is shown in Figure 3(b).

The configuration of the numerical resolution of the RTO
problem is as follows. The target volume V∗ is set to the 20%
of the initial design domain. The direction φ of the unit-load
follows a Gaussian distribution centered at the horizontal line
with mean µφ = 0 and standard deviation σφ = π/12. Two dif-
ferent probability distributions of φ are evaluated to study the
effect of the skewness on the robust topology design. In partic-
ular, Gaussian and Gumbel probabilistic distributions are con-
sidered. Non-normal stochastic distributions are transformed
into a Gaussian distribution, and then a Gauss-Hermite quadra-
ture rule with a level ` = 5 is used to evaluate the integrals
involved in the optimality criterion. The evolutionary volume
ratio ER = 0.005 and the allowable volume change ∆V = 0.001
are used in the experiments. The linear system of equations
of elasticity is solved using a conjugate gradient method and a
V-cycle geometric multigrid preconditioning using 6 levels, a
damping factor for Jacobi smoothing w = 0.4 and a tolerance
tol =1e-8.

Figure 4 shows the robust optimized designs for the mini-
mization of the functional cost JR with different values of α.
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(a) α = 0 (b) α = 1 (c) α = 2

(d) α = 3 (e) α = 4 (f) α = 5

(g) α = 6 (h) α = 8 (i) α = 10

Figure 4: Robust optimized designs using different values of α for the beam-to-
cantilever problem with the direction of the unit-load φ ∼ N(0, π/12).

Table 1: Statistical moments of compliance and volume fraction for different
values of α solving the beam-to-cantilever problem.

α E[J] Std[J] Vol. frac.

Det. 6.127 4.0741 0.199
0 4.487 1.336 0.200
1 4.642 0.939 0.200
2 4.877 0.780 0.199
3 5.160 0.658 0.200
4 5.449 0.575 0.202
5 5.716 0.512 0.200
6 6.122 0.434 0.201
8 7.033 0.310 0.201

10 8.694 0.127 0.200

The resulting robust designs incorporate stiffness in the verti-
cal direction where the uncertain loading is introduced. The
mean and standard deviation of compliance for deterministic
and robust designs are shown in Table 1. One can observe
that the standard deviation of all the robust designs is smaller
than the one obtained for the deterministic design. This veri-
fies the improvement of the robust designs in terms of robust-
ness. In addition, the expected performance decreases as the
weight of variance increases in the functional cost. This unveils
the multi-objective nature of the RTO problem and the impor-
tance of finding a trade-off between structural robustness and
expected structural performance. The resulting front of robust
optimal solutions for the beam-to-cantilever problem, shown in
Figure 6(a), provides the designer useful information for the
decision-making process, where the preferences between con-
flicting objectives should be chosen.

The effect of the probability distribution used to model the
uncertainty of the direction φ of the unit-load is shown in Fig-
ure 5, where the density of probability is represented by the
magnitude of arrows for the corresponding φ. One can ob-
serve that the probability distribution used to model the uncer-
tainty has a notable influence on the optimal design. We ob-
tain a symmetric optimal design using a Gaussian distribution
for modeling the uncertainty in the direction φ of the unit-load,
whereas the resulting optimal design using a Gumbel distribu-
tion is asymmetric by thickening the cantilever members in the
direction of the skew.

One of the advantages of the proposed approach is that it
provides the designer with a set of optimal solutions at differ-
ent volume fractions. That is, the intermediate designs with
different amount of material used to reach the optimal design
satisfying the volume constraint, are also optimal designs for
the corresponding volume fraction. Such intermediate robust
designs can be used to obtain a trade-off between performance
and robustness for different volume fractions. Figure 7 shows
the trade-off between performance and robustness for differ-
ent volume fractions obtained during the RTO of the beam-
to-cantilever problem using the proposed method. This set of
optimal solutions provides valuable and relevant information
to support the designer decisions, permitting to find a trade-off

between performance (stiffness of compliance) and robustness
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Figure 5: Robust optimized designs for beam-to-cantilever problem using α = 1
and considering (upper) Gaussian and (lower) Gumbel probability distributions
for the direction φ of the unit-load.

(standard deviation) for different volume fractions of material.

6.2. Carrier plate under distributed uncertain load
We use the carrier plate problem [37] to show the perfor-

mance of the proposal for solving RTO problems using random
fields to model uncertain loading. The boundary conditions and
uncertain loading are shown in Figure 8(a). The design do-
main consists of a square of side length 10. The domain is
tessellated with a regular mesh of 128x128 Q1 elements. Three
layers of elements at the top of the domain are defined as non-
optimizable to ensure the structure remains attached to the load-
ing conditions. The structure is subjected to a uniformly verti-
cally distributed load t̄2 = 10 acting at its top. The vertical load
is perturbed with a random horizontal distributed load t̄1(x, ω)
applied at its top edge. The random load magnitude is modeled
as a Gaussian random field with zero mean and isotropic square
exponential covariance function

C(x, x′) = σ2exp
[
−

2∑
i=1

(xi − x′i )
2

l2

]
(24)

where x = (x1, x2), x′ = (x′1, x
′
2) ∈ ΓN , σ = 5 is the standard

deviation, and l = 1.5 is the correlation length.
According to the decay rate of the eigenvalues, the K-L ex-

pansion is truncated at its fifth term to capture 60% of the en-
ergy field. Since the considered random variables Yn are Gaus-
sian, a non-nested quadrature rule, whose collocation nodes yk

are determined by the roots of Hermite polynomials, is used.
The nodes and weights of the anisotropic sparse grid are com-
puted adaptively as described above with N = 5, ¯̀ = 7, ε =1e-2
and `opt = 3. The convergence rate, shown in Figure 9, reveals
a (sub)-exponential decay of the error as the number of points
increases linearly. Both the level and the number of points of
the anisotropic sparse grid method are governed by the error of
the variance of the compliance, which has the slowest rate of
convergence. By using 61 sparse grid nodes, errors of 2e-3 and
1.2e-12 are achieved for the variance and the mean value of the
compliance, respectively.

The target volume V∗ is set to the 35% of the initial design
domain, and the evolutionary volume ratio ER = 0.005 and the
allowable volume change ∆V = 0.005 are used for the experi-
ments. The linear system of equations of elasticity is solved us-
ing a conjugate gradient method preconditioning and a V-cycle
geometric multigrid preconditioning with 5 levels, a damping
factor for Jacobi smoothing w = 0.4 and a tolerance of 1e − 8.

Figure 10 shows the robust topology designs obtained in-
creasing the value of the parameter α. One can observe that the
robust topology designs differ meaningfully compared to the
deterministic optimal design shown in Figure 8(b). The robust
designs show a larger span between supports compared to the
deterministic counterpart. Besides, the increase in robustness is
firstly achieved by means of topology modifications, increasing
the redundancy by adding paths to transmit the load to the sup-
port, and then by thickening the members. We also can observe
that the robust designs incorporate diagonal members to with-
stand the loading direction uncertainty. The expected value and
the standard deviation of the compliance, detailed in Table 2,
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Figure 6: Fronts of robust optimal solutions for (a) the beam-to-cantilever prob-
lem, (b) the carrier plate design and (c) the simply supported beam.
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Figure 7: Trade-off between performance and robustness for different volume
fractions for the beam-to-cantilever problem.

Table 2: Statistical moments of compliance and volume fraction for different
values of α solving the carrier plate benchmark.

α E[J] Std[J] Vol. frac.

Det. 2821.8 3532.8 0.350
0 515.658 218.052 0.349
1 525.686 189.144 0.349
2 535.601 182.245 0.349
4 552.790 178.044 0.349

10 583.721 170.770 0.349
100 795.377 168.894 0.350

show the improved performance of robust designs compared to
their deterministic counterpart. Figure 6(b) shows the trade-off

between performance and robustness for different values of the
α parameter.

6.3. Simply supported beam under loading and material uncer-
tainties

The simply supported beam experiment is used to evaluate
the ability of the proposal to obtain optimal designs in RTO
problems with combined loading and material uncertainties.
Figure 11(a) shows the boundary conditions and the design do-
main, which is tessellated using a regular grid of 200x80 lin-
ear quadrangular elements. The structure is subjected to three
uncertain vertically concentrated loads, whose moduli are char-
acterized by three independent random variables. These ran-
dom variables follow a Gaussian distribution with mean values
µt̄1 = µt̄2 = µt̄3 = 1 and standard deviations σt̄1 = 0.5, σt̄2 = 0.1
and σt̄3 = 0.2. The Young’s modulus is modeled by a 2D log-
normal random field with mean µF = 1 and standard deviation
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Figure 8: The carrier plate benchmark: (a) the design domain and boundary conditions, and (b) the deterministic optimal design.
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Figure 9: The rates of convergence of the anisotropic sparse grid algorithm: the
maximum error given by (15) against the level of sparse grid.

σF = 0.3. The lognormal random field is obtained through the
transformation

F(x) = exp (η + ξU(x)) , (25)

with

η = log

 µ2
F√

µ2
F + σF

2


ξ =

log
1 +

σF
2

µ2
F

1/2
, (26)

where η and ξ are the location and scale parameters of the
lognormal distribution, and U follows a Gaussian distribution
with zero mean and the isotropic squared exponential covari-
ance function (24) considering the correlation length lc = 80.

The Gaussian random field U is discretized through the trun-
cated K-L expansion using 4 terms. The resulting stochas-
tic domain is composed of seven random variables, three of
them characterizing the uncertain loads and four of them char-
acterizing the material variability. A non-nested quadrature
rule, whose collocation nodes yk are determined by the roots
of Hermite polynomials, is used. The nodes and weights of the
anisotropic sparse grid are computed adaptively as described
above with N = 7, ¯̀ = 7, ε =1e-2 and `opt = 3. The target vol-
ume V∗ is set to 50% of the initial design domain. The errors for
estimating the variance and the mean value of the compliance
are 8e-3 and 8e-5, respectively, using 175 sparse grid nodes.

Figure 12 shows the robust designs obtained increasing the
value of the parameter α. Similarly to previous experiments,
these designs show significant topological differences with re-
spect to their deterministic counterpart. As the weighting pa-
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Figure 10: The robust optimized designs of the carrier plate benchmark for different values of α.

Table 3: Statistical moments of compliance and volume fraction for different
values of α solving the simply supported beam benchmark.

α E[J] Std[J] Vol. frac.

Det. 122.403 46.449 0.499
0 118.970 44.748 0.502
1 120.489 43.562 0.500
2 121.798 42.855 0.500
3 123.113 41.968 0.501
5 126.324 41.318 0.501

10 133.649 41.253 0.500

rameter α increases, the topologies evolve modifying the num-
ber of holes and increasing the thickness of the members. One
can also observe that the material distribution is oriented to the
left in order to withstand the force with the highest level of
uncertainty. Table 3 shows the expected and standard devia-
tion values of the compliance of the optimal designs. We can
observe that the optimal designs are the solutions of a multi-
objective problem, where a trade-off between the two first sta-
tistical moments of compliance is found. This is shown in Fig-
ure 6(c) for different values of the α parameter.

t̄1

Dy = 80

hx

hy

Dx = 200

t̄3t̄2

(a)

(b)

Figure 11: Simply supported beam benchmark: (a) the design domain and
boundary conditions, and (b) the deterministic optimal design.
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(a) α = 0

(b) α = 1
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Figure 12: The robust optimized designs of the simply supported beam bench-
mark for different values of α.

7. Conclusion

This work proposes a stochastic framework that combines
evolutionary methods and sensitivity analysis to address the
RTO problem of continuous structures. The proposal addresses
the stochastic linear elasticity problem in its weak form, and
thus it is not limited by the discretization method or the prob-
abilistic characterization of model uncertainty. The uncertainty
of input data can be modeled using random variables with dif-
ferent probability distributions as well as random fields. The
method is based on the derivation of an optimality criterion of
the RTO problem using a continuous adjoint formulation. The
calculation of this optimal criterion involves the estimation of
multidimensional integrals over the uncertain parameter space,
which is computationally expensive due to the stochastic di-
mensionality. An adaptive anisotropic sparse grid method is
used to solve efficiently the stochastic integrals. The optimality
criterion is used as the indicator to identify optimal shapes in
an evolutionary optimization algorithm.

The proposal combines the benefits of ETO methods with
those of level-set based methods. On the one hand, similarly
to level-set methods, a smooth boundary representation is ob-
tained, which facilitates the postprocessing stage. On the other
hand, the final topology does not depend on the initial design
because new holes are generated during the optimization in re-
gions satisfying the condition Φ(χ, x) < λ. In contrast to other
methods addressing the RTO problem, a key contribution of the
proposal is that the method provides a trade-off between perfor-
mance and robustness for different volume fractions during the
optimization process. This enables to efficiently find a balance
between performance (stiffness of compliance) and robustness
(standard deviation) for different volume fractions of material.

The effectiveness of the proposal is evaluated using three
RTO benchmarks subjected to loading and material uncertain-
ties. Such experiments include Gaussian and non-Gaussian
uncertainties as well as random variables and smooth random
fields. We have to remark that the proposal has been particular-
ized to the RTO problem, but it can be extended to other TOUU
formulations, such RATO and RBTO.
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