
GPU Acceleration for Evolutionary Topology
Optimization of Continuum Structures Using

Isosurfaces

Jesús Mart́ınez-Frutos∗, David Herrero-Pérez

Department of Structures and Construction, Technical University of Cartagena, Campus
Muralla del Mar, 30202 Cartagena, Murcia, Spain

Abstract

Evolutionary topology optimization of three-dimensional continuum struc-

tures is a computationally demanding task in terms of memory consumption

and processing time. This work aims to alleviate these constraints proposing

a well-suited strategy for Graphics Processing Unit (GPU) computing. Such

a proposal adopts a fine-grained GPU instance of matrix-free iterative solver

for structural analysis and an efficient GPU implementation for isosurface ex-

traction and volume fraction calculation. The performance of the solving stage

is evaluated using two preconditioning techniques, including the comparison

with the sparse-matrix CPU implementation. The proposal is evaluated using

topology optimization problems for real-world applications.

Keywords: Evolutionary topology optimization, Isosurfaces, GPU computing,

Large scale, Multigrid preconditioning

1. Introduction

Topology optimization aims at finding the optimal layout of material within

a design domain for a given set of boundary conditions such that the resulting

material distribution meets a set of performance targets [1]. Such a material

∗Corresponding author
Email addresses: jesus.martinez@upct.es (Jesús Mart́ınez-Frutos),

david.herrero@upct.es (David Herrero-Pérez)

Preprint submitted to Computers and Structures April, 2017

distribution is obtained without assuming any prior structural configuration.

This provides a powerful tool to find the best conceptual design that fulfills the

design requirements at the early stages of the structural design. Not to mention

the great impact of the optimization of geometry and topology of structures

on its performance. Since the early work of Bendsøe and Kikuchi [2], topology

optimization has been successfully applied to a wide range of problems, such

as stiffness maximization of structures [1], design of compliant mechanisms [3,

4], maximization of temperature diffusivity [5], and minimization of acoustic

response [6, 7], to name but a few [8].

According to [9], topology optimization methods can be broadly classified

into density-based methods [10, 11], level set methods [12], phase field methods

[13, 14], topological derivative methods [15] and evolutionary approaches [16].

The variants of Evolutionary Structural Optimization (ESO) method [17, 18]

and Bi-directional Evolutionary Structural Optimization (BESO) method [19,

20] are some of the approaches included in the last category. These optimization

methods are based on heuristic rules, which include from simple hard-kill strate-

gies (elements with lowest strain energy density are removed) to bi-directional

schemes [21] where elements can be reintroduced if considered rewarding. Apart

from intuition, such methods use standard adjoint gradient analysis and filtering

techniques to stabilize algorithms and results [22].

Despite the great advances both in theory and practical application of topol-

ogy optimization achieved in the past decade, the computational requirements

of large-scale 3D problems still remain as a primary challenge [8]. This is due

to some demanding tasks involved in the topology optimization pipeline, such

as the use of iterative methods to solve large systems of equations, the com-

putation of sensitivities, the structural boundary extraction and the elemental

density update. Such tasks may increase meaningfully the computation time

of the topology optimization process. High Performance Computing (HPC) is

then needed to address the topology optimization process, normally making use

of task-level parallel computing to reduce the computational time of computa-

tionally intensive tasks [23, 24, 25].

2

The use of Graphics Processing Units (GPUs) for non-graphics applications

is rapidly growing in popularity. This is due to the high computing capacity

of these graphics cards for Massively Parallel Processing (MPP), also known as

Data-Level Parallelism (DLP) [26], at reasonable cost. GPU computing consists

of the use of a GPU together with a CPU to accelerate compute intensive ap-

plications. This is not a simple goal since the programming skills to be able to

fully utilize GPU hardware can be considered as an art that can take years to

master [27]. In fact, there exist numerous problems that prevent the use of GPU

computing for certain scientific applications, such as memory related problems

and lack of data-level parallelism. The memory related problems include ex-

cessive global memory transactions, non-coalesced global loads and stores that

degrade global memory bandwidth, and shared memory accesses inducing bank

conflicts, to name but a few. The lack of data-level parallelism prevents the ex-

ploitation of Single Instruction Multiple Data (SIMD) parallel computation for

which GPU architectures are designed. Therefore, the proper implementation

of topology optimization methods using GPUs requires a suitable formulation

and selection of techniques allowing making use of the potential acceleration of

massive parallel architectures and preventing memory related problems, which

constraint severely the GPU performance. The reader is referred to [27, 28] for

comprehensive reviews of this research field.

The use of GPU devices to speedup computationally demanding tasks in the

topology optimization pipeline has sparked a broad interest last years, giving

rise to several studies. The early work of Wadbro and Berggren [29] showed

how GPUs can be used to efficiently solve large topology optimization problems

using a gradient-based optimality criterion method. This early work imple-

ments a Preconditioned Conjugate Gradient (PCG) method on GPU to solve

high resolution finite element models arising in heat conduction topology opti-

mization problems. The grain size of this GPU instance is at the element level.

The lack of native double-precision support for early GPUs limited the GPU

instance to single-precision format, which not ensures the convergence of the

solver due to round-off errors. A nodal-wise assembly-free GPU implementa-

3

tion for the solver of the SIMP method is proposed by Schmidt and Schulz [30].

Applied to the minimization of the structural compliance problem, this GPU

instance achieves significant speedups. Such a strategy is followed by Suresh [31]

achieving speedups of one order of magnitude for the solving of the system of

equations of elasticity. Challis et al. [32] also used a matrix-free GPU instance

of PCG solver with the aim of increasing the tractable computational resolution

of topology optimization problems using a discrete level-set method.

GPU computing using the sparse-matrix representation permits the efficient

assembly and solving of the system of equations of elasticity [33]. However, a

higher performance can be achieved exploiting the grid regularity and perform-

ing the operations “on-the-fly”. The former permits to exploit data locality

providing reduced memory access and making use of on-chip memory, which is

much more efficient than global device memory. The latter avoids storing the

matrix of coefficients explicitly in global device memory, which affects seriously

the GPU performance. For these reasons, the matrix-free GPU implementations

of topology optimization using regular grids show good performance results for

the Finite Element Analysis (FEA). The GPU instance of PCG solver using geo-

metric multigrid preconditioning in topology optimization configured to perform

a reduced number of FEAs, and iterations per FEA, permitted Wu et al. [34]

to solve large-scale problems in a short time. This is done configuring the iter-

ative method with low tolerance level along with SIMP method using standard

Optimality Criteria (OC) method [1]. By using this configuration the solution

is likely to converge to a local minimum and a mechanical more sound solution

might exist [34], however this loss in accuracy is assumed by the authors for

the sake of efficiency. The GPU instance is based on the node-wise GPU par-

allelization proposed by Dick et al. [35], where the grid regularity is exploited

to perform coarsening and matrix-vector multiplication operations efficiently.

Besides, the operations at the finest level are performed “on-the-fly” to increase

the GPU performance.

This paper proposes a multi-granular GPU implementation of the different

stages involved in the evolutionary topology optimization method driven by

4

stress isosurfaces [36] and its variants [37]. On the one hand, a fine-grained

GPU implementation of matrix-free PCG solver for structural analysis using

the Fixed-Grid FEA (FGFEA) method is proposed. This technique permits

to exploit data locality maximizing the GPU performance for FEA [38]. The

matrix-vector multiplication operations of PCG GPU instance are performed

at the Degree of Freedom (DoF) level, which allows reducing and balancing the

workload for all the threads of the MPP architecture [26, 39]. It also permits

to compute the matrix-vector operations only for the DoFs within the model

(those DOFs attached to inside and boundary elements of the fixed grid), which

permits to reduce the computational cost significantly during the optimization

process using the iterative solver with Jacobi preconditioner. This improvement

is evaluated by the inclusion/exclusion of outside elements in the global system

matrix. The performance of structural analysis in evolutionary topology opti-

mization is evaluated in terms of speedup and wall-clock time analyzing two

preconditioning techniques; in particular, Jacobi preconditioner and geometric

multigrid preconditioner. On the other hand, the other tasks of ESO method

driven by stress isosurfaces are implemented using GPU computing in order not

to limit the theoretical speedup according to Amdahl’s law [40]. In particular,

the stress field calculation and the boundary extraction and volume calculation

are implemented on GPU at the node level and element level respectively. The

proposed GPU instance for the former task balances the workload of CUDA

threads increasing the GPU performance. The latter can take about the 10% of

the FEA according to [41]. This work proposes a method for the efficient calcu-

lation of the volume enclosed by the isosurface generated by the Marching Cubes

(MC) algorithm. Such a proposal keeps the cell wise strategy of MC algorithm

using a lookup table driven approach. This permits to reduce the computa-

tional cost using CPU and also facilitates the data parallelism exploitation at

the element level leveraging the power of many-core GPUs.

The study of the performance of evolutionary topology optimization driven

by stress isosurfaces, with severe computational shortcomings, allows us to ex-

plore the challenges in the parallel implementation for every stage of the topol-

5

ogy optimization pipeline, and thus proposing a well-suited strategy of GPU

computing for topology optimization. We have to remark that some of these

tasks are common for different topology optimization methods, and thus the

conclusions of this work can be applied to the GPU implementation of other

shape/topology optimization approaches; in particular, Eulerian based methods

in which the structural boundary can be modified by tracking the motion of a

level-set function, as is done in the Level-Set Method (LSM).

The paper is organized as follows. Section 2 provides an overview of the

GPU architecture and the CUDA programming model. The bases of the tech-

niques adopted in this work for evolutionary topology optimization driven by

stress isosurfaces are described in section 3. The proposed GPU implementa-

tion of such techniques for evolutionary topology optimization is presented in

section 4. Section 5 is devoted to the numerical experiments and the perfor-

mance evaluation of the proposed GPU instance with respect to the classical

CPU implementation. Finally, section 6 discusses about the conclusion of the

proposal.

2. GPU and CUDA architecture

GPU devices were initially designed to satisfy the market demand of real-

time and realistic 3D visualization. The use of these graphic cards with mas-

sively parallel architecture in non-graphics HPC applications is becoming very

popular due to their high computing capacity. Currently, the use of Nvidia de-

vices and its programming model, Compute Unified Device Architecture (CUDA),

is the prevailing tendency, which is adopted in the developments presented in

this work. Such a programming model allows us to view the GPU as a com-

pute device able to perform data-parallel computation (data/SIMD parallelism)

using multiple cores. The parallel code (single instruction) is defined as a C Lan-

guage Extension function, called kernel, which is executed by a lot of CUDA

threads using different data (multiple data). The kernel call, invoked from the

host (CPU) to the device (GPU) as shown in Figure 1(a), should specify the

6

Device Device
Grid Grid

Host Host

Kernel 2Kernel 2

.

.

.

Kernel NKernel N

Block(0,0) Block(0,0)

Thread (0,0)Thread (0,0) Thread (1,0)Thread (1,0)

RegistersRegisters

Local memoryLocal memory

Shared memoryShared memory

RegistersRegisters

Local memoryLocal memory

Block(1,0) Block(1,0)

Thread (0,0)Thread (0,0) Thread (1,0)Thread (1,0)

RegistersRegisters

Local memoryLocal memory

Shared memoryShared memory

RegistersRegisters

Local memoryLocal memory

Global memory Global memory

Constant memory Constant memory

Texture memory Texture memory

Kernel 1Kernel 1

(a)

GPU GPU
GLOBAL DEVICE MEMORY (SGRAM) GLOBAL DEVICE MEMORY (SGRAM)
Global memory

L2 cache

...

Texture memory

Constant memory

CPU CPU HOST MEMORY (DRAM) HOST MEMORY (DRAM)

 SM­0 SM­0

C0

R ALU

C31

R ALU

C1

R ALU ...

 L1Shared memory

texture cache

constant cache

 SM­1 SM­1

C0

R ALU

C31

R ALU

C1

R ALU ...

 L1Shared memory

texture cache

constant cache

 SM­N SM­N

C0

R ALU

C31

R ALU

C1

R ALU ...

 L1Shared memory

texture cache

constant cache

Local memory

(b)

Figure 1: (a) Thread batching and memory model and (b) memory hierarchy of CUDA.

7

number of CUDA threads organized as a grid of thread blocks.

The CUDA threads have only access to the device SGRAM (Synchronous

Graphic Random-Access Memory), a type of DRAM (Dynamic Random-Access

Memory) with high bandwidth interface for graphics-intensive functions, and to

the on-chip SRAM (Static Random-Access Memory) through the memory spaces

depicted in Figure 1(a). The blocks are batch of threads able to cooperate

by sharing data through shared memory and to synchronize their execution

coordinating memory accesses. A key point is that CUDA architecture is built

around a scalable array of multithreaded Streaming Multiprocessors (SMs). The

blocks of the grid, invoked by each kernel, are distributed to SMs depending

on their execution capacity, which includes on-chip memory resources. The

use of on-chip memory, much faster than SGRAM memory, is of paramount

importance to increase significantly the GPU performance.

For that reason, the CUDA memory hierarchy, shown in Figure 1(b), is

crucial to optimize memory access and achieve a reasonable performance. We

can observe that each SM has the following on-chip memory: one set of registers

per processor and a shared memory, a read-only constant cache and a read-only

texture cache. These memory resources are shared by all cores of such a SM.

This fact implies that the amount of blocks a SM can process at once depends

on the number of registers per thread and the shared memory per block required

for a given kernel. For this reason, the use of shared memory can show relatively

poor performance for computation using large arrays. CUDA cannot schedule

more blocks to SMs than the multiprocessors can support in terms of shared

memory and register usage, and thus the occupancy (number of active warps)

is deteriorated. A key point for the proposed GPU instance is that the constant

memory is stored in SGRAM but data are read through each multiprocessor

constant cache, which is on-chip memory. Constant memory is also optimized

for broadcast, i.e. when warp of threads read same location, but it is however

serialized when warp of threads read in different locations.

The software developments using CUDA consist of the following steps: i)

memory allocation and transaction, ii) kernel execution on GPU and iii) copy

8

back the results to the host. The strategies to optimize code in GPU com-

puting can be summarized as follows: i) optimization of parallel execution to

achieve maximum use of cores, ii) optimization of memory management to facil-

itate coalesced memory accesses, iii) optimization of instruction usage to achieve

maximum instruction performance, and iv) optimization of communications to

achieve minimal synchronization between parallel executions. The different ef-

fects of the proposed GPU implementation can be explained using these opti-

mization criteria.

3. Evolutionary topology optimization driven by stress isosurfaces

The techniques adopted to address the topology optimization of three-dimensional

continuum structures are briefly described below.

3.1. Fixed-Grid Finite Element Analysis (FGFEA)

The FGFEA method [42, 43] is a technique that allows to make fast re-

evaluations of modified meshes [44]. It permits to analyze complex finite element

models using a structured grid. This is done by superimposing the structural

domain Ω, shown in Figure 2(a), over a regular grid of rectangular/cubic equally

sized elements, as shown in Figure 2(b). Three types of elements can be created:

elements located inside Ω (I elements), elements located outside Ω (O elements),

and boundary intersected elements (B elements). The elemental stiffness matrix

is given by

Ke = (ξe +∆(1− ξe))
∫

Ωe

BTDB dΩe

= de
∫

Ωe

BTDB dΩe = deKe
0, (1)

where B is the strain-displacement matrix, D is the constitutive material matrix,

Ke
0 is the common local stiffness matrix, Ωe is the element domain, ξe is the

volume fraction of the element, de is the design fraction inside the element, and

∆ is a small magnitude close to zero. The common local stiffness matrix Ke
0

9

is similar for all of the elements due to the regularity of the grid. The design

fraction is full (de = 1) for inside elements I whereas it is a small magnitude

(de = ∆) for outside elements O. For the boundary elements B the design

fraction de is given by ξe + ∆(1 − ξe), where the volume fraction ξe = V eI /V
e

is the ratio between the elemental volume enclosed by the boundary V eI of the

real design Γ and the total volume of the element V e.

The global stiffness matrix K of linear elasticity problems can be then ob-

tained from the elemental stiffness matrices Ke using the assembly operator A
[45] as follows

K = A
e∈EEE

CeTKeCe, (2)

where EEE denotes the set of elements and the matrix Ce represents the transition

between local and global numbering of DoFs for the e-th element.

The use of a regular grid permits to compute this Ke matrix only once

at the beginning of the optimization. The disassociation of the boundary and

the physical domain from the mesh allows analyzing modifications of boundary

model without the regeneration of the mesh. This increases the efficiency of

FEA processes that require of mesh regeneration, such as structural topology

optimization. In fact, this technique has already been used to alleviate the

shortcomings of ESO method related to its computational efficiency [46].

The linear system of equations resulting from the finite element discretization

of the linear elasticity system is then as follows

Ku = f , (3)

where u is the vector of unknown displacements and f the vector of nodal

forces. The resolution of large systems of equations normally requires the use

of iterative algorithms, which reduces the memory requirements of the matrix

inversion operation at the cost of increasing the processing time of the solve step.

The PCG method using different preconditioning techniques is studied in this

10

B

I

O

Ω

Γ

ΩFG

Ω
e

O

Ω
e

I

Ω
e

Ω I

B

O

(a) (b)

Figure 2: (a) Fixed grid domain and (b) discretization of such a domain.

work to evaluate the performance of structural analysis using GPU computing

in evolutionary topology optimization.

The vector u of unknown displacements is then used to calculate the com-

ponents of the stress tensor σ
(n)
e for each node n of the element e of the regular

grid as follows

σ(n)
e = deDBιe(n)

e u(e), (4)

where ιe(:) is the global-to-local mapping operator indexing the nodes of each el-

ement, B
ιe(n)
e is the strain-displacement matrix evaluated at each node of the ele-

ments, u(e) is the vector of unknowns and de is the design fraction of the element

e. The components of the stress tensor σ(n) = [σ
(n)
x , σ

(n)
y , σ

(n)
z , τ

(n)
xy , τ

(n)
yz , τ

(n)
xz]

at each node are then calculated as

σ(n) =
1

k

∑
e∈EEE (n)

σ(n)
e , (5)

where k is the number of elements e ∈ EEE (n) connected to the node n. The von

Mises stress or equivalent tensile stress σ
(n)
VM for each node is finally calculated

as

σ
(n)
VM =

√
σ2
x + σ2

y + σ2
z − σxσy − σyσz − σxσz + 3(τxy + τxy + τxy)2 , (6)

11

where σ = σ(n) for clarity.

3.2. Marching Cubes (MC) algorithm

The MC algorithm [47] is a well-known cell-by-cell method for extraction of

isosurfaces from scalar volumetric data sets [48]. An isosurface can be defined

as the surface with constant value, called isovalue, within a volume of space.

MC algorithm provides a set of triangles representing such an isosurface. It

consists of marking the eight vertices of each cube with 256 (28) possible marking

scenarios. Each cube marking scenario encodes a cube-isosurface intersection

pattern, which provides the edges on which the vertices of triangles lies. For

performance reasons, this facetization information is typically stored in a lookup

table. The position of each vertex on the edge is estimated using interpolation

between the scalar values of the endpoints of the edge.

The early work of Lorensen and Cline [47] considers 15 marking scenarios

due to reflective and rotational symmetry. These symmetries provide equivalent

cube-isosurface intersection patterns for different marking scenarios, and thus

reducing to only 15 unique cube-isosurface intersection patterns the 256 possible

marking scenarios. However, some of these basic intersection topologies can be

facetized in multiple ways [49]. This ambiguity problem in standard MC al-

gorithm is of paramount importance because inconsistent intersection patterns

on the shared face between cells can produce holes in the isosurface. The ex-

ploitation of only rotational symmetry – or the non-exploitation of reflective

symmetry – overcomes this key problem without using face ambiguity resolu-

tion methods [50]. Figure 3 shows the 23 intersection topologies, with circles

denoting marked vertices, of the variant of MC algorithm exploiting rotational

symmetry.

We have adopted a cell-by-cell strategy to calculate the volume fraction en-

closed by the isosurface. The volume fraction of partial cells ξe is calculated for

the 23 intersection topologies of the MC algorithm, and then the volume frac-

tion of the whole domain is obtained as the addition of partial volume fraction

ξe of voxels. The volume of partial cells ξe only depends on the scalar field of

12

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5

Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14 Case 15 Case 16 Case 17

Case 18 Case 19 Case 20 Case 21 Case 22

Figure 3: The 23 intersection topologies when only rotational symmetry is exploited and the

volume enclosed by the isosurface using MC algorithm.

individual voxels, which allows preserving the benefits, especially the scalability,

of MC algorithm. The calculation of partial cells ξe is performed by selecting

the most suitable case to divide the problem into simplest ones, and then calcu-

lating the volume in an efficient way. The volume selection consists of choosing

between the volume enclosed or unenclosed by the triangles, up to five, result-

ing from the MC algorithm. This selection is performed for the 23 intersections

topologies, and ensures that the volume of partial cells ξe is composed of up

to four tetrahedra and one polytope. The volume of each tetrahedron VTH is

obtained by

VTH =
1

3!

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 1

b1 b2 b3 1

c1 c2 c3 1

d1 d2 d3 1

∣∣∣∣∣∣∣∣∣∣∣∣
(7)

13

where a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) and d = (d1, d2, d3) are

the vertices of the tetrahedron, which are stored using a lookup table for the

intersection topologies. The volume VP enclosed by the polyhedron P ∈ IR3 is

calculated using the divergence theorem. Such a theorem provides important

advantages with respect to the popular approach of the tetrahedralization of P .

In particular, the divergence theorem does not require that P be convex. Some of

the 23 intersections topologies are not convex, and thus the tetrahedralization

approach induces significant errors. Besides, the divergence theorem is much

more efficient than the tetrahedralization approach. Representing the surface

enclosing the polyhedron P ∈ IR3 as a set of N triangular faces with area Ai,

i = {0, . . . , N-1}, defined by the vertices (xi, yi, zi) ordered counterclockwise,

the volume VP enclosed by such a polyhedron P is given by

VP =

∫
P

dv =
1

3

N−1∑
i=0

∫
Ai

xi · ni =
1

6

N−1∑
i=0

xi · n̂i, (8)

where n̂i = (yi − xi) ⊗ (zi − xi) is the outer normal to P on each Ai and

ni = n̂i/|n̂i| is the outer unit normal. The volume selection ensures that the

surface of the polyhedron requires up to 20 triangular faces for the 23 intersection

topologies. The vertices of these faces ordered counterclockwise are also stored

using a lookup table for performance reasons.

3.3. Iso-stress driven ESO using isosurfaces

The iso-stress driven ESO using isolines is an iterative algorithm that grad-

ually add and/or remove material depending on the shape and distribution of

the contour isolines of the desired structural behavior [37]. Such a method

is adapted for topology optimization of three-dimensional continuum structures

using the FGFEA technique for structural analysis and the MC algorithm for iso-

surface extraction and volume fraction calculation. This method uses a smooth

boundary (isosurface) to represent the structural design, which facilitates the

topology interpretation [51, 52]. The topology design method is summarized

into the following steps:

14

FGFEA

St
ab

ili
za

ti
on

pr
oc

es
s

Calculate design criterion

Determine σMCL

Extract isosurface with σMCL

Volume change

Calculate design criterion

Convergence

EndFGFEA

Update redistribution
factor RF

Yes

No

Yes

No

distribution σ
(n)
VM

distribution σ
(n)
VM

Topology design parameters

Initialize

i=1

++i

Initialize design fraction de

Calculate volume fraction
Calculate design fraction de

(Structural boundary)

j=1

++j

|Vj+1 − Vj|
Vj

≥ ∆V

j>1 Yes

No

Vj

Vi = Vj+1
criteria

Figure 4: Flowchart of iso-stress driven ESO using isosurfaces.

1. The response of the structural design is calculated using FGFEA. The

design criteria distribution within the design domain is then calculated,

in particular the von Mises stress distribution σ
(n)
VM in all of the n nodes

enclosed by the design domain.

2. The Minimum Criteria Level (MCL) σMCL of the design criteria distri-

bution σ
(n)
VM that produces a new structural boundary, redistributing and

removing material, is calculated as

σMCL = RF × σ(n)
VMmax

, (9)

where σ
(n)
VMmax

is the maximum nodal criterion value of von Mises stress

distribution and RF ∈]0, 1[is the redistribution factor. This factor is

updated in each i iteration as

15

RF i+1 =


RF 0 if i = 1,

RF i if i > 1 and
|Vi+1 − Vi|

Vi
> ∆V,

RF i + ∆RF otherwise,

(10)

where ∆RF > 0 is the increment in the redistribution factor and ∆V > 0

is the minimum volume change between two consecutive iterations. The

RF 0, ∆RF and ∆V are empirical values that should be adjusted for each

problem. The σMCL is used as isovalue to obtain the structural boundary

(isosurface) from the scalar field of nodal von Mises stress distribution.

3. The structural boundary (isosurface) is then used to obtain the design

fraction inside each element de of FGFEA following (1), which permits to

update the finite element model, removing or redistributing material, and

reevaluate the structural response efficiently.

4. The σMCL is modified according to (9), and the iterative process is re-

peated from step 1 to step 3 until the desired volume VT is reached and

the following convergence criterion

errori =
|PIi − PIi−1|

PIi
6 ε (11)

is satisfied, where ε is a prescribed tolerance and PI is the performance

index. Such an index is defined as PI = 1
CV [53], where C and V are the

compliance and the volume of the current design.

The flowchart of the structural optimization process is shown in Figure 4.

The initialization consists of the tessellation of the design domain using the

regular grid of FGFEA method, the information about non-design domain, the

material properties, and the loads and boundary conditions of the finite element

model. The topology design parameters include the target volume VT , the initial

redistribution factor RF 0, the redistribution factor ∆RF and the minimum vol-

ume change limit ∆V . The analysis using FGFEA method requires the design

fraction de of each element, which is initialized as full (de = 1) for design domain

elements and a small magnitude (de = ∆) for non-design domain elements. The

16

calculation of the design fraction de of elements during the optimization process

is obtained from the partial volume fraction ξe of voxels/elements of MC algo-

rithm. The stabilization loop is an iterative process of reanalysis and material

distribution to evolve the structural boundary to the corresponding minimum

criteria level σMCL. This is done by obtaining the structural response σ
(n)
VM for

successive structural boundaries using a certain isovalue σMCL until the volume

change in successive iterations is lower than the empiric value ∆V . The number

of iterations of optimization process depends on the empirical parameter ∆RF .

The stopping criterion is satisfied when the target volume VT is reached and

the converge criterion of (11) is achieved. The redistribution factor is updated

following (10), the new σMCL is calculated as (9) and the stabilization process

is performed until the stopping criterion is satisfied.

4. GPU implementation

GPU computing is used to accelerate the computationally intensive tasks of

ESO method driven by stress isosurfaces. Such tasks are the iterative method to

solve the system of equations, the calculation of the design criteria distribution

σ
(n)
VM and the isosurface extraction and calculation of the volume enclosed by

such an isosurface.

4.1. Fixed-Grid Finite Element Analysis (FGFEA)

The FEA is a demanding task in terms of computation time and memory

requirements, mainly due to the assembly and the solving of the system of

equations. Iterative solvers and assembly-free methods have been widely used

for reducing the memory requirements at the cost of increasing the processing

time of the solving stage, which is normally alleviated using parallel computing.

The principal computational bottleneck for iterative solvers is the number of

iterations required to converge for ill-conditioned problems, which is typically

addressed using preconditioning techniques. However, the computation time

of the preconditioning may take more wall-clock time than the time spent in

17

Algorithm 1: DbD PCG algorithm (dbdPCG)
Data: Ke

0, f0, u0, d, tol, kmax, µ1, µ2, n`, ω, Ic, I, C

Result: u

1 ρ0 ← 0; γ0 ← 0; k ← 0; `← 0; // Host initialization

2 u← u0; f ← f0; // Device initialization

3 r← dbdMVP(u, d, Ke
0, `, Ic, I, C); // r = Keu

4 foreach u ∈UUU do // DbD CUDA kernel

5 r(u) ← f(u) − r(u);

6 end

7 if Jacobi then // Jacobi preconditioning

8 z← dbdJacP(d,Ke
0);

9 else if Multigrid then // Multigrid preconditioning

10 z← VCycle(Ke
0, r,d, `, n`, ω, Ic, I,C, µ1, µ2);

11 end

12 foreach u ∈UUU do // DbD CUDA kernel

13 ρ0 ← ρ0 + z(u)r(u); // Atomic operation

14 γ0 ← γ0 + f(u)f(u); // Atomic operation

15 p(u) ← r(u);

16 end

17 while (
√
ρk > tol · √γk) and (k < kmax) do

18 k ← k + 1;

19 a← dbdMVP(p, d, Ke
0, `, Ic, I,C); // a = Kep

20 φk ← 0;

21 foreach u ∈UUU do // DbD CUDA kernel

22 φk ← φk + a(u)p(u); // Atomic operation

23 end

24 αk ← ρk−1/φk;

25 foreach u ∈UUU do // DbD CUDA kernel

26 u(u) ← u(u) + αkp
(u);

27 r(u) ← r(u) − αka
(u);

28 end

29 if Multigrid then // Multigrid preconditioning

30 z← VCycle(Ke
0, r,d, `, n`, ω, Ic, I,C, µ1, µ2);

31 end

32 foreach u ∈UUU do // DbD CUDA kernel

33 ρk ← ρk + z(u)r(u); // Atomic operation

34 end

35 βk ← ρk/ρk−1;

36 foreach u ∈UUU do // DbD CUDA kernel

37 p(u) ← r(u) + βkp
(u);

38 end

39 end

18

Algorithm 2: DbD Jacobi preconditioner (dbdJacP)

Data: d, Ke
0

Result: M // Preconditioner

1 foreach u ∈ UUU do // Loop 1

2 M(u) ← 0;

3 EEE (u) ← Determine index of elements containing u;

4 foreach e ∈ EEE (u) do // Loop 2

5 UUU (e) ← Determine the unknowns of e ;

6 i← Extract index of u from UUU (e) ;

7 M(u) ←M(u) + d(e)Ke
0ii

;

8 end

9 M(u) ← 1/M(u);

10 end

computing the iterations saved. Besides, the preconditioning methods normally

increase the required memory, which can affect seriously the GPU performance.

Therefore, a trade-off between memory requirements and computation time is

mandatory for the proper GPU implementation of the solving stage.

The use of GPU computing for solving the system of equations of linear elas-

ticity problems using matrix-free and Jacobi PCG methods already has shown

its advantages for FGFEA in [38]. In this work, the performance of the solving

stage is evaluated using a matrix-free PCG method with two different precon-

ditioning techniques: geometric multigrid preconditioner and Jacobi precondi-

tioner. The use of geometric multigrid methods is especially suitable for regular

grids. These methods are based on the smoothing property and the coarse grid

principle. The former reduces the high frequency error components whereas the

latter approximates the low frequency error components on coarser grids, which

are then prolonged to the finer grids. Their major advantage is that they have

an asymptotically optimal complexity of O(N) and provide mesh-independent

convergence and good parallel scalability [54]. However, the performance of

these methods deteriorates with increasing contrast in material properties [55],

which is the case of FGFEA where outside O and inside I elements have very

different properties. The performance decrement is attributed to the coarsening

19

Algorithm 3: Vcycle Preconditioner (Vcycle)

Data: Ke
0, `r, d, `, n`, ω, Ic, I, C, µ1, µ2

Result: `z // Preconditioner

1
`z← 0;

2 foreach i = 1 : µ1 do

3
`s← dbdDJS(`z, `r,d,Ke

0, `, Ic, I,C);

4
`z← `s;

5 end

6
`z← dbdMVP(`z, d, Ke

0, `, Ic, I,C); // `z = `Ke`z

7 foreach u ∈ `UUU do // DbD CUDA kernel

8
`v(u) ← `r(u) − `z(u);

9 end

10
`+1v← R`+1

` (`v); // DbD CUDA kernel (Restriction)

11 if `+ 1 == n` then // Coarsest level

12
`+1v← Copy to Host memory;

13
`+1w← Solve system

(
n`K

)(
`+1w

)
= `+1v; // Direct solver

14
`+1w← Copy to Device memory;

15 else // Recursion

16
`+1w← VCycle(Ke

0,
`+1v,d, `+ 1,n`, ω, Ic, I,C, µ1, µ2)

17 end

18
`v← P`

`+1(`+1w); // DbD CUDA kernel (Prolongation)

19 foreach u ∈ `UUU do // DbD CUDA kernel (correction)

20
`z(u) ← `z(u) + `v(u);

21 end

22 foreach i = 1 : µ2 do

23
`s← dbdDJS(`z, `r,d,Ke

0, `, Ic, I,C);

24
`z← `s;

25 end

20

Algorithm 4: DbD Damped Jacobi Smoother (dbdDJS)

Data: z, r, d, Ke
0, `, ω, Ic, I, C

Result: s

1 foreach u ∈ UUU do // Loop 1

2 n1← Determine node containing u;

3 v← Determine the unknowns of n1;

4 i← Extract index of u from v;

5 foreach k = 0 : 26 do // Loop 2

6 n2← `In1
k ;

7 w← Determine the unknowns of n2;

8 if n2 > −1 then

9 if ` == 0 then // assembly on-the-fly

10 foreach e ∈ EEE (n1) do

11 if n2 ∈NNN (e) then

12 A← A + d(e)
(
Ke

0

)
v,w

;

13 end

14 end

15 A← Impose Dirichlet BC from Ic;

16 else

17 A← `Cn1
k ; // (3X3) coefficients matrix

18 end

19 if n2 == n1 then

20 M ← 1/Ai,i;

21 end

22 foreach j = 0 : 2 do // Loop 3

23 s(u) ← s(u) − ωMAi,j

(
z(w)

)
j
;

24 end

25 end

26 end

27 s(u) ← s(u) + ωMr(u);

28 end

21

Algorithm 5: DbD Matrix-Vector Product (dbdMVP)

Data: p, d, Ke
0, `, Ic, I, C

Result: a // a = Kp

1 foreach u ∈ UUU do // Loop 1

2 n1← Determine node containing u;

3 v← Determine the unknowns of n1;

4 i← Extract index of u from v;

5 foreach k = 0 : 26 do // Loop 2

6 n2← `In1
k ;

7 w← Determine the unknowns of n2;

8 if n2 > −1 then

9 if ` == 0 then // on-the-fly

10 foreach e ∈ EEE (n1) do

11 if n2 ∈NNN (e) then

12 A← A + d(e)
(
Ke

0

)
v,w

;

13 end

14 end

15 A← Impose Dirichlet BC from Ic;

16 else // device memory

17 A← `Cn1
k ; // (3X3) coefficients matrix

18 end

19 foreach j = 0 : 2 do // Loop 3

20 a(u) ← a(u) +Ai,j

(
p(w)

)
j
;

21 end

22 end

23 end

24 end

22

across discontinuities which affects to the coarse grid correction [56]. Never-

theless, the use of geometric multigrid as preconditioning technique shows good

convergence rates for topology optimization problems, given a sufficiently strong

smoothing operator [57].

The use of a regular grid permits to calculate and store the common ele-

mental stiffness matrix at the finest grid Ke
0 only once at the beginning of the

optimization, whereas the global matrix K at the finest grid can be calculated

“on-the-fly” using the design fraction of elements d for each analysis. This re-

duces meaningfully the use of device memory and permits to exploit the data

locality [38]. Such an approach is enough for the Jacobi preconditioning but

the geometric multigrid preconditioner requires the assembled coefficients at

the coarser levels, which are computationally intensive to calculate “on-the-fly”

and require significant memory resources when they are stored. One naive al-

ternative is making use of the geometric relationship between successive grids

assigning the material properties of coarser-grid elements as the average of those

for the underlying fine-grid elements. However, this procedure is a clear devi-

ation from the Galerkin projection [56] and converge rate can be compromise

due to the contrast in the system properties. Therefore, a Galerkin-based coars-

ening is required and the assembled coefficients at the coarser levels need to be

stored. This deteriorates the GPU performance due to the global memory ac-

cesses through large memory, which does not permit to exploit data locality.

The GPU instance to calculate and store the assembled matrices of coeffi-

cients C at the coarser levels is of paramount importance for an efficient geo-

metric multigrid implementation. The use of a regular grid permits to know a

priori the contributions to the matrix of coefficients per element and per node,

which are bounded by 8 elements and 27 nodes per node. This permits to set

the maximum size of global stiffness coefficients per node, which is bounded by

27 matrices of dimension 3 × 3. Such 27 matrices are related to the contribu-

tions of the 33 grid neighborhood of the node. This storage scheme requires

the indexes of the adjacent nodes, which are stored on a vector I of integers

where -1 means that the node does not exit. The storage of the global stiffness

23

matrix C per node has a similar size than using a sparse-matrix representation

but permits to allocate the required memory for the assembly at the beginning,

which has significant computational benefits for GPU computing.

The coefficient matrices for the coarser levels are obtained from the finer lev-

els using a Galerkin-based coarsening following `+1C = R`+1
`

`C P`
`+1, where

R and P are the restriction and prolongation operators respectively. Following

[35], the coarsening operation is computed in a node-by-node matrix-free fash-

ion using a two-step approach. Firstly, a linear combination of the 33 fine grid

neighborhood of considered node is performed, corresponding to a linear com-

bination of the rows of `C. Secondly, these coefficients are interpolated to the

coarser grid vertices, corresponding to a linear combination of the columns of

`C. These operations require the vector Ie of indexes of the elements contribut-

ing to each node. The GPU instance for the coarsening is performed assigning

one CUDA thread to the calculation of each one of the 27 matrices of coefficients

per node of the coarser level. This fine granularity provides good performance

in the calculation of the matrices of coefficients at the coarser levels. The as-

sembled matrices of coefficients `C at the coarser levels ` are calculated and

stored in the device memory. The global matrix K of the finest grid is cal-

culated “on-the-fly” using the elemental matrix Ke
0 and the design fraction of

elements d. This is done for both preconditioners and allows exploiting data

locality alleviating mostly of memory related problems in GPU architectures.

The pseudocode of the DoF-by-DoF (DbD) PCG or dbdPCG GPU instance

using both preconditioners for FGFEA is shown in Algorithm 1. Such an algo-

rithm assumes that the hierarchical grids are composed of equally sized first-

order isoparametric hexahedral elements. This tessellation provides for the finest

grid a set of elements EEE , a set of nodes NNN and a set of unknowns UUU , which are

calculated “on-the-fly”. The vector Ic indicating the boundary conditions per

node is also required to impose the Dirichlet conditions to the corresponding

DoFs at the finest level. Thus, the input data of the dbdPCG algorithm for

the finest level are the common stiffness matrix Ke
0, the vector of forces f0, an

initialization of displacements u0, the vector of elemental densities d and the

24

vector Ic indicating the boundary conditions per node. For the coarser levels,

the input data are the vector I of adjacent nodal indexes per node and the as-

sembled matrices of coefficients C per level. Note that the data of the coarser

levels is not needed for the Jacobi preconditioner. The algorithm also requires

the tolerance tol and the maximum number of iterations kmax for the stopping

criteria of the iterative method, the number of grid levels n`, the number of

pre- and post-smoothing steps µ1 and µ2, and the damping factor for Jacobi

smoothing ω. The GPU instance of PCG requires the matrix-vector product

(dbdMVP) for both preconditioners. Besides, it also requires the diagonally

preconditioner (dbdJacP) for the Jacobi preconditioning and the Vcycle pre-

conditioner (Vcycle) for the geometric multigrid preconditioning. Additionally,

the GPU instance requires the calculation of diverse vector arithmetic opera-

tions within the labeled loops with “DbD CUDA kernel”.

The pseudocode of the Jacobi preconditioner (dbdJacP) kernel is detailed

in Algorithm 2. It calculates the Jacobi preconditioner “on-the-fly” using the

common stiffness matrix Ke
0 and the vector of elemental densities d. This sim-

ple preconditioner is computationally cheap and only requires storing a vector

of the dimension of unknowns. The pseudocode of the matrix-vector product

(dbdMVP) kernel is shown in Algorithm 5. This algorithm also performs the

matrix-vector operation “on-the-fly” for the finest level (` = 0) using the ele-

mental densities d and the common stiffness matrix Ke
0. For the coarser levels,

it takes the matrix of coefficients contributing to the node to perform the op-

eration. Nevertheless, the grain size of the operations is performed at the DoF

level.

The pseudocode of the geometric multigrid preconditioner (Vcycle) kernel

is shown in Algorithm 3. Such a preconditioning is carried out by a recursive

call to the V-cycle algorithm. The algorithm requires as input data the ele-

mental densities d, the common stiffness matrix Ke
0, the vector Ic of boundary

conditions for the finest level (` = 0) and the assembled matrix of coefficients

C for the coarser levels. It also needs the vector I of adjacent nodal indexes

per node, the residual `r and the parameters ω, µ1 and µ2 for all the levels.

25

The algorithm performs a matrix-vector product (dbdMVP) and the multigrid

smoother (dbdDJS) for each level. Besides, diverse vector arithmetic operations

are performed using custom developed kernels. To transfer information between

two consecutive grids `+1Ω and `Ω, a prolongation operator P`
`+1 : `+1Ω→ `Ω

and a restriction operator R`+1
` : `Ω→ `+1Ω are introduced. The geometric re-

lationship between hierarchical grids allows us to avoid storing the prolongation

operator P`
`+1 and the restriction operator R`+1

` and to work with the stencils

instead, which are constant or can be computed “on-the-fly” when needed. The

number of levels ` is selected in order to ensure the coarsest level is small enough

to be solved using a sparse LU decomposition on CPU. When the number of

levels ` is properly selected, the number of DoFs in the coarsest grid is relatively

small and the system of equations can be solved with a direct method on CPU.

The pseudocode of the multigrid smoother (dbdDJS) kernel is shown in Algo-

rithm 4. Such a smoother is based on the damped Jacobi method, which uses

the inverse of the diagonal of global stiffness matrix with a relaxation parameter

ω.

The implementation of all these CUDA kernels is performed at the DoF level.

This is a key point to distribute properly the workload between the threads of

the MPP architecture, especially for the matrix-vector product operation [26].

This granularity also permits to optimize the implementation of FGFEA by

excluding outside O elements, i.e. DOFs attached to nodes unenclosed by the

isosurface. Such an exclusion provides significant improvements in computation

time due to the reduction of DoFs of the finite element model and the reduction

in the condition number of the system matrix which is related with the number

of iterations performed by the PCG algorithm [43]. This is done by simply

assigning CUDA threads to the unknowns u ∈ UUU which are attached to inside

I and boundary B elements of FGFEA.

The labeled loops with “DbD CUDA kernel” indicate that the computation

is performed on GPU with granularity at the DoF level. These loops are in-

dependent of the grid connections, and thus their implementation as CUDA

kernels is straightforward. The arithmetic operations labeled with “Atomic op-

26

eration” require the synchronization of the threads involved in the computation

to add the resulting data of all these threads. This is done using atomic addi-

tion in CUDA, which permits to read, modify, and write a value back to device

memory without the interference of any other threads.

4.2. Design criteria calculation

Algorithm 6: NbN stress calculation (nbnStress)

Data: u, d, ne, DB(i)

Result: σx, σy , σz , τxy , τxz , τyz , σvm

1 σx ← 0; σy ← 0; σz ← 0; τxy ← 0; τyz ← 0; τxz ← 0; σvm ← 0;

2 foreach n ∈NNN do // Loop 1

3 ie ← 0;

4 EEE (n) ← Determine index of elements containing n;

5 foreach e ∈ EEE (n) do // Loop 2

6 UUU (e) ← Determine unknowns of e ;

7 NNN (e) ← Determine nodes attached to e ;

8 i← Determine local index ιe(n), n ∈ NNN (e) ;

9 foreach j ∈ {1, . . . , ne} do // Loop 3

10 σx(n) ← σx(n) + d(e)DB
(i)
1j u

(e)
j ;

11 σy(n) ← σy(n) + d(e)DB
(i)
2j u

(e)
j ;

12 σz(n) ← σz(n) + d(e)DB
(i)
3j u

(e)
j ;

13 τxy(n) ← τxy(n) + d(e)DB
(i)
4j u

(e)
j ;

14 τyz(n) ← τyz(n) + d(e)DB
(i)
5j u

(e)
j ;

15 τxz(n) ← τxz(n) + d(e)DB
(i)
6j u

(e)
j ;

16 end

17 ie ← ie + 1;

18 end

19 σx(n) ← σx(n)/ie; σy(n) ← σy(n)/ie; σz(n) ← σz(n)/ie;

20 τxy(n) ← τxy(n)/ie; τyz(n) ← τyz(n)/ie; τxz(n) ← τxz(n)/ie;

σvm(n) ← Compute von Misses stress according to (5);

21 end

The calculation of the stress tensor components σ(n) and the equivalent ten-

sile stress σ
(n)
VM is accelerated using GPU computing. This is done by performing

the operations from (4) to (6) at the node level. The regularity of the first-order

27

isoparametric hexahedral elements composing the regular grid implies that the

strain-displacement matrix B(i) = B
(i)
e , evaluated at the i = {1, . . . , 8} nodes,

is similar for all the e elements. Since the constitutive material matrix D is also

constant for all the elements of the regular grid, the result of the products DB(i)

can be stored in a lookup table to save this computation, which is calculated

only once at the beginning of the optimization.

The pseudo-code of the GPU instance of equivalent tensile stress calculation

Node-by-Node (NbN) stress or nbnStress is shown in Algorithm 6. The input

data of this algorithm are the resulting displacements u of the analysis, the

design fraction d of elements, the number ne of DoFs per element and the result

of the products DB(i). The algorithm is designed as three nested loops. The

first loop applies to each node n ∈NNN for which the elements e ∈ EEE (n) connected

to such a node n are determined. The contribution of these connected elements

σ
(n)
e to the stress tensor components σ(n) of each node n is averaged according

to equation (5). The equivalent tensile stress σ
(n)
VM is then calculated following

the expression (6). The second loop operates on each element e ∈ EEE (n) to

determine the nodes and unknown displacements contained by such an element.

This information is used to obtain the contribution of each element σ
(n)
e =

d(e)DB(i)u(e) to the stress tensor components in the third loop. The algorithm

is implemented as a CUDA kernel assigning one thread to each node of the first

loop, i.e. the granularity of the GPU implementation is at the node level.

4.3. Isosurface extraction and volume calculation

The isosurface extraction from the design criteria field and the calculation of

the volume enclosed by such an isosurface is also performed using GPU comput-

ing. This work proposes an efficient method for the calculation of the volume

enclosed by the isosurface obtained from MC algorithm. The GPU instance is

implemented at the element level, which is called Element-by-Element (EbE)

volume calculation or ebeVol GPU instance. The pseudocode of this GPU

instance is shown in Algorithm 7. The input data are the design criteria dis-

tribution σ
(n)
VM, the isovalue σMCL and the cell volume Vc for the regular grid.

28

(custom kernel)

FGFEA (dbdPCG)

St
ab

ili
za

ti
on

pr
oc

es
s

Calculate design criterion

Extract isosurface with σMCL

Volume change Convergence

End

Update redistribution
factor RF

Yes

No

Yes

No

distribution σ
(n)
VM (nbnStress)

Topology design parameters

Initialize

i=1

++i

Calculate volume fraction (ebeVol)
Calculate design fraction de

j=1

|Vj+1 − Vj|
Vj

≥ ∆V

j>1
Yes

No

Vj

Vi = Vj+1

CPU computing

Initialize design fraction de

Device memory allocation
Transaction of data to device memory

Copy σ
(n)
VM back to host memory

Transaction of σMCL to device memory

Copy volume back to host memory

Calculate σMCL

FGFEA (dbdPCG)

Calculate design criterion
distribution σ

(n)
VM (nbnStress)

++j

Calculate info needed by kernels

++j

GPU computing

Custom kernels

criteria

Figure 5: Flowchart of GPU instance of ESO using isosurfaces.

29

Algorithm 7: EbE volume calculation (ebeVol)

Data: σ
(n)
vm, σMCL, Vc

Result: ξ

1 foreach e ∈ EEE do

2 m(e) ← Calculate marking scenario; // 28 cases

3 p(e) ← LuT1(m(e)); // Intersection pattern - 23 cases

4 switch p(e) do

5 case 0 do // O element

6 ξ(e) = 0;

7 end

8 case 22 do // I element

9 ξ(e) = 1;

10 end

11 otherwise do // B element

12 end

13 V (e) ← 0;

14 c(e) ← LuT2(m(e)); // Max 5 connections

15 t(e) ← Interpolation of c(e); // Triangles

16 th
(e) ← LuT3(m(e)); // Tretrahedra

17 V
(e)
TH ← Calculate volume of tetrahedra with th

(e);

18 ph
(e) ← LuT4(m(e)); // Polyhedron

19 V
(e)
P ← Calculate volume of polyhedron with ph

(e);

20 V (e) ← V (e) + V
(e)
TH + V

(e)
P ;

21 if LuT5(m(e)) then // Volume calculation case

22 ξ(e) = V (e)
/Vc ; // Normal case

23 else

24 ξ(e) = (Vc−V (e))/Vc ; // Complementary case

25 end

26 end

27 end

30

The algorithm consists of a simple loop operating on each element. This loop

calculates the marking scenario for the element m(e), which is then used to

determine the cube-isosurface intersection pattern p(e) using the lookup table

LuT1. The volume fraction ξ(e) is empty and full for the cases 0 and 22, shown

in Figure 3, respectively. These cases correspond to the outside O and inside I

elements of FGFEA method.

The volume fraction ξ(e) of boundary elements B is calculated using the

triangles provided by MC algorithm. The edges c(e) containing the vertices

of MC triangles are calculated using the lookup table LuT2 for the marking

scenario m(e). The position of the vertices of MC triangles t(e) is calculated by

interpolation. The lookup table LuT3 provides the vertices of the tetrahedra

th
(e) for the marking scenario m(e), which are used to calculate the volume of

tetrahedra V
(e)
TH according to (7). The lookup table LuT4 provides the vertices

of the triangular faces of the polyhedron ph
(e) for the marking scenario m(e),

which are used to calculate the volume of polyhedron V
(e)
P according to (8).

The addition of both volumes is the volume V (e) enclosed by the triangles

provided by MC algorithm. The lookup tables LuT3 and LuT4 provide the

information to calculate the volume fraction ξ(e) or the complementary case

following a simplicity criterion. The lookup table LuT5 indicates the volume

case, provided by LuT3 and LuT4, to calculate properly the volume fraction ξ(e)

for the corresponding marking scenario m(e). The algorithm is implemented as

a CUDA kernel assigning the operations on each cell to one thread, i.e. the

granularity of the GPU implementation is at the element level.

4.4. Evolutionary topology optimization

The flowchart of the GPU instance of ESO driven by isosurfaces is shown

in Figure 5. The GPU implementation consists of the development of custom

designed kernels for the computationally demanding tasks involved in the al-

gorithm. These CUDA kernels are the PCG solver (dbdPCG), the von Mises

stress calculation (nbnStress) and the design fraction computation (ebeVol).

The flowchart is designed to minimize the device memory allocation and the

31

 Global device memory Global device memory
Global memory (dbdPCG) Global memory (dbdPCG)

d1 d2 … deld1 d2 … del

L2L2

SM­1 SM­1

L1/
Constant

cache

L1/
Constant

cache

C1 ...
R1

...

 Global device memory Global device memory

Constant memory
(dbdPCG)
Constant memory
(dbdPCG)

 K0
1

e K0
2

e K0
576

e

L2L2

Global memory (nbnStress)Global memory (nbnStress)

XY1 XY2 ... XYnXY1 XY2 ... XYn

f1 f2 … fDoFf1 f2 … fDoF

u1 u2 … uDoFu1 u2 … uDoF

r1 r2 … rDoFr1 r2 … rDoF

p1 p2 … pDoFp1 p2 … pDoF

C2 C32

R2 Ri...

YZ1 YZ2 ... YZnYZ1 YZ2 ... YZn

XZ1 XZ2 ... XZnXZ1 XZ2 ... XZn

X1 X2 ... XnX1 X2 ... Xn

Y1 Y2 … YnY1 Y2 … Yn

Z1 Z2 … ZnZ1 Z2 … Zn

a1 a2 … aDoFa1 a2 … aDoF

VM1 VM2 ... VMn VM1 VM2 ... VMn

SM­N SM­N

L1/
Constant

cache

L1/
Constant

cache

C1 ...
R1

C2 C32

R2 Ri...

Global memory
(dbdPCG – Vcycle)
Global memory
(dbdPCG – Vcycle)

 … … zDoFz 0 z1

Constant memory
(nbnStress)
Constant memory
(nbnStress)

 DB1
(1)

DB2
(1) DB144

(1)

...
 DB1

(8) DB2
(8) DB144

(8)

 … … IcnIc0 Ic1

 … … Ie
8 nl 0

l0Ie0
l0 Ie1

l0

...
 … … Ie8 nnl

n lIe0
n l Ie1

n l

 … … I
27n l0

l0I 0
l0 I 1

l0

...
 … … I 27nnl

n lI 0
n l I 1

n l

 … … C 243 nl1

l1C0
l1 C1

l1

...
… … C243 nnl−1

n l−1C0
n l−1

 … … sDoFs0 s1

 … … vDoFv0 v1

Figure 6: Memory required by GPU instance of dbdPCG and nbnStress.

32

memory transactions between host and device memory. This is of paramount

importance to obtain reasonable results using GPU computing. One can observe

that the information needed by the kernels is allocated and transferred to the

device memory in the initialization of the optimization process. The iterations of

the optimization process only require to copy back to host memory some scalar

values and the design criteria distribution σ
(n)
VM for the implementation using the

Jacobi preconditioner. In the case of the PCG using the geometric multigrid

preconditioner, the vector of unknowns `v at the coarsest level is also copied

back to the host for solving the system of equations using a direct solver. This

minimization of memory transactions increases notably the GPU performance.

The device memory allocated for dbdPCG and nbnStress kernels, obviating

the allocation of scalar values, is shown in Figure 6. The dbdPCG kernel using

the Jacobi preconditioner requires the storage in the global device memory of

vectors d, f , u, r, p, a, z, and Ic indicated in the pseudocode of Algorithm 1.

When the geometric multigrid preconditioner is used, the vectors s, v, `Ie, `I

and `+1C are also stored in the global device memory for the corresponding

nl levels l. The common elemental stiffness matrix Ke
0 is stored in constant

memory. This permits to save bandwidth because constant memory is cached

and consecutive reads of the same address does not incur any additional memory

traffic. Besides, one single read from constant memory is broadcast to the

threads of a half-warp. The nbnStress kernel requires the storage in the global

device memory of vectors σx, σy, σz, τxy, τxz, τyz and σvm. The length of these

vectors is the number of nodes n of the fixed grid. The result of the products

DB(i) for the i = {1, . . . , 8} nodes of the common first-order isoparametric

hexahedral element are also stored in constant memory, taking advantage of the

same benefits that the common elemental stiffness matrix Ke
0. The memory

used by the five lookup tables of the ebeVol GPU implementation does not

depend on the dimension of the grid. This information is also stored in global

device memory.

33

Nvidia GPU

model

CUDA

cores

Processor

clock (MHz)

Memory

clock (MHz)

FMA-DP

(GFlops)

Quadro 4000 (GF100-100-KD) 256 475 1400 243

Tesla C2070 (GF100) 448 575 1566 515.2

Tesla K40 (GK110b) 2880 745 3004 1430

Table 1: GPU specifications for benchmark devices.

5. Numerical experiments

The performance of the proposal to accelerate the ESO method driven by

stress isosurfaces using GPU computing is evaluated using three real-life topol-

ogy optimization problems; in particular, the designs of the electric mast, the

tied-arch bridge and the Messerschmidt–Bölkow–Blohm (MBB) aircraft floor

beam. The solving of the system of equations is evaluated using two precondi-

tioning techniques; in particular, the Jacobi preconditioner and the geometric

multigrid preconditioner. The performance of the former is also evaluated by

the inclusion/exclusion of outside O elements in the global system matrix of

FGFEA. The GPU instance of these problems is compared with the classical

CPU implementation, in which the global stiffness matrix of (3) is assembled

and the sparse-matrix representation is used to perform the operations required

by the instances of PCG solvers. The CPU implementation makes use of only

one thread for the comparisons. The computationally demanding tasks involved

in the algorithm are evaluated separately using GPUs with different parallel ca-

pabilities. This aims to evaluate the scalability of the GPU instance with respect

to the capabilities of the graphics units. The first two experiments are relatively

large benchmarks which are used to evaluate the performance of the GPU in-

stances for usual models. The third problem is a large scale benchmark that

aims to show the ability of the proposal to address high resolution topology

optimization using only one computer equipped with one graphics card.

The numerical experiments are performed using a computer with an Intel

Core i7 980 3.33 GHz and 24 GB of RAM memory. Three Nvidia GPUs are in-

stalled in the computer to perform the experiments: Quadro 4000, Tesla C2070

and Tesla K40. The first two graphics cards use the Fermi microarchitecture,

34

b

b

b

b

5 m

10 m

20
m

5
m

F

F

5 m

5 m

nynx

nz

(a)

(b) (c)

Figure 7: Electric mast benchmark: (a) design domain and boundary conditions, topology

design from (b) isometric and (c) front view.

35

whereas the third one makes use of Kepler microarchitecture. Table 1 sum-

marizes the most important specifications of such graphics units for scientific

computation purposes; in particular, the number of cores, the processor and

memory clocks, and the Double-Precision (DP) Fused Multiply Add (FMA) op-

erations as specified in IEEE 754-2008. The GPU instance is compiled using

the NVIDIA CUDA Toolkit 7.5. The numerical experiments are run on 64 bits

Linux OS with the NVIDIA Driver Version 352.63. It is important to remark

that the development environment and the graphics driver updates often show

significant performance improvements.

The electric mast benchmark consists of finding the best structural design

for a T-shaped design domain where the corners of the bottom part of the T-

leg are simply-supported and two symmetric vertical loads are applied in the

bottom middle part of T-shafts. The two loads F = 10KN represent the force

applied by the wires on the mast. Figure 7(a) shows the T-shaped design domain

with continuous line and the domain used by FGFEA with dashed line. It also

shows the boundary conditions of the optimization problem. The domain used

by FGFEA consists of a box shape of 20 × 5 × 25 meters. The finite element

model is reduced to the half by imposing the symmetric boundary condition,

giving rise to a fixed grid of 60 × 28 × 148 hexahedral elements with 790743

DoFs. The relative small size of the model only permits to perform three levels

in the geometric multigrid preconditioning of the PCG solver up to a grid size

of 15× 7× 37 hexahedral elements.

The tied-arch bridge benchmark consists of finding the optimal layout of

material for a box shape design domain where the base of bridge abutments are

simply-supported and a uniformly distributed load is applied to the top of the

non-optimizable bridge deck. The bottom part of the bridge deck is simply-

supported. Figure 8(a) shows the box shape design domain and the boundary

conditions of the optimization problem. It also shows the non-optimizable region

over the top of the bridge deck, which represents the area needed to circulate the

vehicles. This topology optimization problem also makes use of the symmetric

boundary condition, and thus only half of the finite element model is analyzed.

36

20 m

b

b

b

25 m

360
m

24
0 m

60
m

9
0
m

4
5
m

4
9
m

nx
ny

nz

b

b

b

b

b

b

b

b

60
m

F

40 m

Non-design domain

(a)

(b)

(c)

Figure 8: Tied arch bridge benchmark: (a) design domain and boundary conditions, topology

design from (b) isometric and (c) front view.

37

Figure 9: Tied arch bridge taken from http://www.sellwoodbridge.org.

The half design domain is discretized using 184× 40× 96 hexahedral elements

with 2207235 DoFs. The size of this model allows performing four levels in

the geometric multigrid preconditioning of the PCG solver up to a grid size of

23× 5× 12 hexahedral elements.

The MBB beam benchmark consists of finding the best structural design

for a box shape design domain which is loaded at the center of the top part

and the corners of the bottom part are pinned supported. Figure 10(a) shows

the box shape design domain and the boundary conditions of the optimization

problem. The half design domain is discretized using 432 × 144 × 144 (8.9

millions) hexahedral elements with about 27M DOFs. The size of the model

permits to perform five levels in the geometric multigrid preconditioning of the

PCG solver up to a grid size of 27× 9× 9 hexahedral elements.

The topology optimization problems make use of the same material proper-

ties (E = 210GPa and ν = 0.31) and small magnitude (∆ = 10−6) for FGFEA

approach. The smoothing step is configured with a damping factor ω = 0.4 for

the electric mast and MBB beam benchmarks, whereas ω = 0.6 is set for the

tied-arch bridge experiment. All the calculations are performed using double-

38

L

b

b

b

b

L

6L

F

nx
ny

nz

(a)

(b)

(c)

Figure 10: MBB beam benchmark: (a) design domain and boundary conditions and topology

design from (b) isometric and (c) front view.

39

Model #DoFs
VT

#FEA tol
Memory (MB)

(%) Jacobi Multigrid Stress

Electric mast 790743 3 213 10−12 33.07 153.86 22.01

Tied-arch bridge 2207235 3 340 10−12 92.40 437.47 61.53

MBB beam 27311475 1.5 385 10−8 1144.93 5504.45 762.92

Table 2: Performance statistics for the benchmarks.

Electric mast

dbdPCG (sec) nbnStress ebeVol

Jacobi∗∗ Jacobi∗ Multigrid∗∗ (sec) (sec)

CPU (Sparse) 108356.62 12049.59 2063.96 165.81 21.02

Quadro 4000 13098.81 4778.57 2058.61 69.81 3.39

Tesla C2070 8887.96 2814.34 1385.99 35.27 2.55

Tesla K40 6849.65 1648.65 1120.29 31.05 1.96

Tied-arch bridge

dbdPCG (sec) nbnStress ebeVol

Jacobi∗∗ Jacobi∗ Multigrid∗∗ (sec) (sec)

CPU (Sparse) 461394.92 98376.13 14407.39 539.86 69.06

Quadro 4000 70153.70 25163.64 19564.32 232.58 10.49

Tesla C2070 36787.52 13904.94 11074.66 115.34 7.83

Tesla K40 25389.49 8387.96 7442.06 97.28 5.89

MBB beam

dbdPCG (sec) nbnStress ebeVol

Jacobi∗∗ Jacobi∗ Multigrid∗∗ (sec) (sec)

Tesla K40 (–) 362454.28 168121.76 2100.06 77.3

∗ Excluding outside O elements.

∗∗ Including outside O elements.

Table 3: Total wall-clock time for the topology optimization stages.

40

TolerancedbdPCG (Jacobi) dbdPCG (Multigrid)

dbdPCG (Jacobi)

dbdPCG (Multigrid)

Tolerance

200 400 600 800 1000

200 400 600 800 1000

-12

-10

-8

-6

-4

-2

0

-12

-10

-8

-6

-4

-2

0

#Iterations

L
o
g
 (

E
rr

o
r)

(a)

Tolerance

dbdPCG (Jacobi) dbdPCG (Multigrid)

Tesla K40 Tesla K40
CPU CPU

dbdPCG (Jacobi CPU)

dbdPCG (Multigrid CPU)

dbdPCG (Jacobi K40)

dbdPCG (Multigrid K40)

Tolerance

20 40 60 80 100

20 40 60 80 100

-12

-10

-8

-6

-4

-2

0

-12

-10

-8

-6

-4

-2

0

time (sec)

L
o

g
 (

E
rr

o
r)

(b)

Figure 11: Convergence behavior of Jacobi PCG and geometric multigrid PCG iterative solvers

for one FEA of the electric mast design.

41

dbdPCG
(Multigrid μ=μ=1)

1 2(Jacobi)
dbdPCG

(Multigrid μ=μ=3)
1 2

dbdPCG

50 100 150 200

50 100 150 200

101

102

103

10

100

103

FEA of optimization algorithm

Ite

ra
tio

ns

(a)

50 100 150 200 250 300

50 100 150 200 250 300

102

103

100

103

FEA of optimization algorithm

Ite

ra
tio

ns

(b)

Figure 12: Number of iterations required by Jacobi PCG and geometric multigrid PCG for

all the FEAs of (a) electric mast and (b) tied-arch bridge designs.

42

precision floating-point format. The elements of the regular grid are eight-node

hexahedral linear brick elements. The topology design parameters are also sim-

ilar for all the benchmarks: RF0 = 10−3, ∆RF = 10−3, ∆V = 10−2. Table 2

shows some important parameters and performance statistics of the topology

optimization experiments. The target volume VT is about 3% of the volume of

the design domain for the first two experiments and about 1.5% for the last one.

Besides, the maximum residual error of PCG solver is set to 10−12 for the first

two experiments and 10−8 for the last one. This configuration of the topology

optimization requires a considerable number of FEAs to obtain the results.

Figure 7(b) and Figure 7(c) show the resulting structural design of the elec-

tric mast problem. The optimization algorithm leads to a truss-like design that

resembles a real electric mast. Figure 8(b) and Figure 8(c) show the resulting

structural design of the tied-arch bridge problem. This structural design resem-

bles the typology of this kind of bridges, as shown in the real bridge of Figure 9.

Figure 10(b) and Figure 10(c) show the resulting structural design of the MBB

beam, which leads to a high resolution truss-like design.

The performance of solving the system of equations is evaluated using the

Jacobi and the geometric multigrid preconditioning techniques. Besides, the

performance of Jacobi preconditioner is evaluated including/excluding the out-

side O elements in the global system matrix of FGFEA. Figure 11(a) shows the

convergence behavior (in terms of number of iterations) of PCG iterative solver

using both preconditioning techniques for one FEA of the electric mast design

with tolerance 10−12. One can observe that the number of iterations to converge

is reduced considerably when using the geometric multigrid preconditioner. On

the other hand, Figure 11(b) shows the wall-clock time required to achieve the

prescribed tolerance using the CPU and the proposed GPU instance with Tesla

K40. Comparing Figure 11(a) and Figure 11(b), one can observe that the profile

of Jacobi PCG is kept whereas the slope of geometric multigrid PCG is mod-

ified for the experiments using the CPU sparse-matrix based implementation.

This is attributed to the fact that the wall-clock time per iteration of geometric

multigrid PCG is higher than the Jacobi PCG in the CPU implementation. One

43

Tesla K40

Tesla 2070

Quadro 4000

Tesla K40

Tesla 2070

Quadro 4000

Tesla K40

Tesla 2070

Quadro 4000

dbdPCG (Jacobi**) dbdPCG (Jacobi*) dbdPCG (Multigrid)

* Excluding O elements
** Including O elements

Electric mast Tied-arch bridge

dbdPCG (Jacobi**) (Tesla K40)

dbdPCG (Jacobi**) (Tesla 2070)

dbdPCG (Jacobi**) (Quadro 4000)

dbdPCG (Jacobi*) (Tesla K40)

dbdPCG (Jacobi*) (Tesla 2070)

dbdPCG (Jacobi*) (Quadro 4000)

dbdPCG (Multigrid) (Tesla K40)

dbdPCG (Multigrid) (Tesla 2070)

dbdPCG (Multigrid) (Quadro 4000)

50 100 150 200

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FEA of optimization algorithm

W
a

ll-
c
lo

c
k
 t

im
e

 /
 i
te

ra
ti
o

n
 (

s
e

c
)

dbdPCG (Jacobi**) (Tesla K40)

dbdPCG (Jacobi**) (Tesla 2070)

dbdPCG (Jacobi**) (Quadro 4000)

dbdPCG (Jacobi*) (Tesla K40)

dbdPCG (Jacobi*) (Tesla 2070)

dbdPCG (Jacobi*) (Quadro 4000)

dbdPCG (Multigrid) (Tesla K40)

dbdPCG (Multigrid) (Tesla 2070)

dbdPCG (Multigrid) (Quadro 4000)

50 100 150 200 250 300

50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

FEA of optimization algorithm

W
a

ll-
c
lo

c
k
 t

im
e

 /
 i
te

ra
ti
o

n
 (

s
e

c
)

(a) (b)

dbdPCG (Jacobi**) (Tesla K40)

dbdPCG (Jacobi**) (Tesla 2070)

dbdPCG (Jacobi**) (Quadro 4000)

dbdPCG (Jacobi*) (Tesla K40)

dbdPCG (Jacobi*) (Tesla 2070)

dbdPCG (Jacobi*) (Quadro 4000)

dbdPCG (Multigrid) (Tesla K40)

dbdPCG (Multigrid) (Tesla 2070)

dbdPCG (Multigrid) (Quadro 4000)

50 100 150 200

50 100 150 200

2

4

6

8

10

12

14

16

2

4

6

8

10

12

14

16

FEA of optimization algorithm

S
p
e
e
d
u
p

dbdPCG (Jacobi**) (Tesla K40)

dbdPCG (Jacobi**) (Tesla 2070)

dbdPCG (Jacobi**) (Quadro 4000)

dbdPCG (Jacobi*) (Tesla K40)

dbdPCG (Jacobi*) (Tesla 2070)

dbdPCG (Jacobi*) (Quadro 4000)

dbdPCG (Multigrid) (Tesla K40)

dbdPCG (Multigrid) (Tesla 2070)

dbdPCG (Multigrid) (Quadro 4000)

50 100 150 200 250 300

50 100 150 200 250 300

0

5

10

15

0

5

10

15

FEA of optimization algorithm

S
p

e
e

d
u

p

(c) (d)

Figure 13: Wall-clock time per iteration of (a) electric mast and (b) tied-arch bridge bench-

marks. Speedup per iteration of (c) electric mast and (d) tied-arch bridge benchmarks.

0
2
4
6
8

10
12
14
16
18

dbdPCG (Jacobi**)

dbdPCG (Jacobi*)

dbdPCG (Multigrid)

nbnStress

ebeVol

dbdPCG (Jacobi**)

dbdPCG (Jacobi*)

dbdPCG (Multigrid)

nbnStress

ebeVol

S
p
e
e
d
u
p

Quadro 4000 Tesla C2070 Tesla K40

Tied-Arch BridgeElectric mast

∗ Excluding outside O elements.

∗∗ Including outside O elements.

Figure 14: Speedup for benchmarks.

44

also can observe in Figure 11(b) that the speedup achieved in the GPU instance

of the Jacobi PCG is significantly higher than the one obtained using multi-

grid PCG, and that the computation time for one FEA of the GPU instance

of Jacobi PCG is only the double with respect to the GPU implementation of

multigrid PCG for this example.

The number of iterations required by the PCG using both preconditioners

for all the FEAs of the first two experiments is shown in Figure 12. One can

observe how the PCG using the multigrid preconditioner requires a significantly

lower number of iterations than the PCG using the Jacobi preconditioner. As

expected, the number of iterations required by the multigrid solver fluctuate

for each design cycle. This is due to the fact that convergence rate depends on

the contrast of the stiffness distribution which changes as the design evolves.

Nevertheless, the algorithm converges even for high-contrast layouts (4 = 1e−
6). Besides, the variability of the number of iterations is relatively low for the

PCG using the multigrid preconditioner; in particular, the iterations fluctuate

between 35 and 50 for electric mast experiment and between 35 and around

100 for the tied-arch bridge experiment using µ1 = µ2 = 1. By increasing the

number of pre- and post-smoothing steps these iterations can be reduced at the

cost of increasing the computational cost per iteration.

The device memory required by the solving of the system of equations using

both preconditioners and by the stress calculation is shown in Table 2. One can

observe that the memory required by the PCG using the geometric multigrid

preconditioner is much higher than the memory required by the PCG using the

Jacobi preconditioner. This is mainly due to the storage of the Ie and I vectors

and the assembled matrices of coefficients C for the coarser levels. Table 3 shows

the wall-clock time for the topology optimization stages using diverse graphic

cards, including the iterative solver using both preconditioners and the CPU

implementation using sparse-matrix operations. It also shows the wall-clock

time of the PCG using the Jacobi preconditioning excluding the O elements of

the FGFEA to evaluate the improvement of this simplification. One can observe

that the reduction in wall-clock time excluding the O elements of the FGFEA

45

is significant. However, the computation time is still considerably higher than

adopting the geometric multigrid preconditioner for the experiments using the

sparse-matrix CPU implementation.

On the other hand, the GPU instance of dbdPCG achieves higher speedups

using the Jacobi preconditioner than using the geometric multigrid precondi-

tioner. Indeed, the GPU instance on Tesla K40 provides computational times

of similar order of magnitude for Jacobi PCG excluding outside O elements and

multigrid PCG in the relatively small finite element models, such as the electric

mast (800K DoFs) and the tied-arch bridge (2.2M Dofs) experiments. The

MBB beam benchmark is only solved using the most modern GPU (Tesla K40)

taking more than four days using the Jacobi preconditioner excluding the out-

side O element and almost two days using the multigrid preconditioner. The

number of iterations per FEA required to solve this large model during the

topology optimization is computationally prohibitive for the Jacobi precondi-

tioner including the outside O elements. The wall-clock time for this large-scale

model using the multigrid preconditioner is the half with respect to the Jacobi

preconditioner excluding O elements of FGFEA. The wall-clock time of nbn-

Stress and ebeVol are low order with respect to the solving of the system of

equations. However, the efficient GPU implementation of these stages achieves

significant speedups.

Figure 13 shows the speedup and wall-clock time per iteration of the GPU

instances of solving stage during the topology optimization of the electric mast

and the tied-arch bridge benchmarks. Figure 13(a) and Figure 13(b) show that

the wall-clock time per iteration of FEA decreases during the optimization al-

gorithm when the Jacobi PCG excluding the outside O elements is used. Such

a reduction of wall-clock time also decreases the speedups during the topology

optimization, as shown in Figure 13(c) and Figure 13(d). One also can observe

that the wall-clock time per iteration of the FEAs using the geometric multigrid

preconditioner is much higher than the wall-clock time per iteration using the

Jacobi preconditioner. This is attributed to the higher amount of operations

and the global memory accesses to device memory. However, the reduction of

46

iterations to converge compensates this increment of wall-clock time per itera-

tion.

The averaged speedups of the computationally demanding tasks involved

in the evolutionary topology optimization method driven by stress isosurfaces

with different GPUs are shown in Figure 14. One can observe that the com-

putationally intensive tasks of the topology optimization algorithm using the

Jacobi preconditioner are accelerated significantly using the proposed GPU in-

stance with respect to the classical implementation on CPU. Speedups between

7x and 19x are obtained for the solving of the system of equations using the

Tesla K40 depending on the inclusion/exclusion of outside O elements. How-

ever, the speedups of the solving of the system of equations using the geometric

multigrid PCG solver are around 2x for the Tesla K40. A key point is that the

speedup of the GPU instance increases with the massive parallel capabilities

of the graphics unit. The acceleration of the isosurface extraction and volume

calculation tasks depends on the number of elements intersecting with the iso-

surface in the iterations of the optimization process. This speedup is relevant

and similar for both experiments. The acceleration of the calculation of the

design criteria distribution is similar for both benchmarks.

6. Conclusion

This paper has investigated about the proper strategy and techniques to

achieve efficient calculation and reasonable speedups using GPU computing

for the computationally intensive tasks of evolutionary topology optimization

method driven by stress isosurfaces. Different granularities are used to facilitate

the exploitation of massive parallel architectures. The solving of the system of

equations, the von Misses stress calculation and the volume fraction calcula-

tion are implemented at the level of DoF, node and element, respectively. The

common elemental stiffness matrix Ke
0 and the result of the products DB(i) are

stored in the constant device memory only once at the beginning of the opti-

mization to save memory bandwidth and exploit data locality. The numerical

47

results show the scalability of the proposed techniques with the resources of the

graphics units. This is a promising result to achieve higher speedups on new

generation of graphics cards or multi-GPU platforms.

The bottleneck of the topology optimization method is the solving of the

system of equations of FEA. A comparison of the GPU implementation of PCG

solver using Jacobi preconditioning and geometric multigrid preconditioning is

provided. The former requires much iterations (and wall-clock time) to con-

verge but a smaller amount of device memory. However, the wall-clock time

is significantly reduced when outside O elements are excluded of the system of

equations to solve. The latter reduces considerably the number of iterations

to converge but these iterations have a higher computational cost in terms of

wall-clock time and device memory requirements. The speedup using the ge-

ometric multigrid preconditioner is far lower than the speedups using Jacobi

preconditioners including/excluding outside O elements. This is due to the

GPU performance is deteriorated by the global memory accesses required by

coarsening and coarser level operations. Therefore, diagonally preconditioned

iterative solvers are a viable choice for not too large problems due to the reduced

device memory requirements. Nevertheless, the geometric multigrid precondi-

tioner presents better behavior for large-scale models, which permits to obtain

high-resolution designs using evolutionary topology optimization algorithms.

Acknowledgment

We gratefully acknowledge the support of NVIDIA Corporation with the

donation of some of the GPUs used for this research. Such a work has also been

supported by the research support programmes of Ministry of Economy and

Competitiveness under the contract DPI2016-77538-R and “Fundación Séneca

– Agencia de Ciencia y Tecnoloǵıa de la Región de Murcia” under the contract

19274/PI/14.

48

References

[1] M. P. Bendsøe, O. Sigmund, Topology Optimization – Theory, Methods,

and Applications, second ed., Springer-Verlag Berlin Heidelberg, 2004.

[2] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural

design using a homogenization method, Comput. Methods Appl. Mech.

Eng. 71 (1988) 197–224.

[3] O. Sigmund, On the Design of Compliant Mechanisms Using Topology

Optimization, Mechanics of Structures and Machines 25 (1997) 493–524.

[4] X. Huang, Y. Li, S. W. Zhou, Y. M. Xie, Topology optimization of com-

pliant mechanisms with desired structural stiffness, Eng. Struct. 79 (2014)

13–21.

[5] A. Iga, S. Nishiwaki, K. Izui, M. Yoshimura, Topology optimization for

thermal conductors considering design-dependent effects, including heat

conduction and convection, Int. J. Heat Mass Transfer 52 (2009) 2721–32.

[6] G. H. Yoon, J. S. Jensen, O. Sigmund, Topology optimization of acous-

ticstructure interaction problems using a mixed finite element formulation,

Int. J. Numer. Methods Eng. 70 (2007) 1049–75.

[7] L. Shu, M. Y.Wang, Z. Ma, Level set based topology optimization of

vibrating structures for coupled acoustic-structural dynamics, Comput.

Struct. 132 (2014) 34–42.

[8] J. D. Deaton, R. V. Grandhi, A survey of structural and multidisciplinary

continuum topology optimization: post 2000, Struct. Multidiscip. Optim.

49 (2014) 1–38.

[9] O. Sigmund, K. Maute, Topology optimization approaches: A comparative

review, Struct. Multidiscip. Optim. 48 (2013) 1031–55.

[10] M. P. Bendsøe, Optimal shape design as a material distribution problem,

Struct. Optim. 1 (1989) 193–202.

49

[11] M. Zhou, G. I. N. Rozvany, The COC algorithm, part II: topological,

geometrical and generalized shape optimization, Comput. Methods Appl.

Mech. Eng. 89 (1991) 309–36.

[12] N. P. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Level-set methods

for structural topology optimization: a review, Struct. Multidiscip. Optim.

48 (2013) 437–72.

[13] M. Burger, R. Stainko, PhaseField Relaxation of Topology Optimization

with Local Stress Constraints, SIAM J. Control Optim. 45 (2006) 1447–66.

[14] N. P. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Shape and topology

optimization based on the phase field method and sensitivity analysis, J.

Comput. Phys. 229 (2010) 2697–718.

[15] J. Sokolowski, A. Zochowski, On the Topological Derivative in Shape Op-

timization, SIAM J. Control Optim. 37 (1999) 1251–72.

[16] D. J. Munk, G. A. Vio, G. P. Steven, Topology and shape optimization

methods using evolutionary algorithms: a review, Struct. Multidiscip. Op-

tim. 52 (2015) 613–31.

[17] Y. M. Xie, G. P. Steven, A simple evolutionary procedure for structural

optimization, Comput. Struct. 49 (1993) 885–96.

[18] P. Tanskanen, The evolutionary structural optimization method: theoreti-

cal aspects, Comput. Methods Appl. Mech. Eng. 191 (2002) 5485–98.

[19] O. M. Querin, G. P. Steven, Y. M. Xie, Evolutionary structural optimisa-

tion (ESO) using a bidirectional algorithm, Eng. Computations 15 (1998)

1031–48.

[20] X. Huang, Y. M. Xie, Evolutionary Topology Optimization of Continuum

Structures: Methods and Applications, John Wiley & Sons, Ltd, United

Kingdom, 2010.

50

[21] V. Young, O. M. Querin, G. P. Steven, Y. M. Xie, 3D and multiple load

case bi-directional evolutionary structural optimization (BESO), Struct.

Optim. 18 (1999) 183–92.

[22] R. Ansola, E. Vegueria, J. Canales, J. Tarrago, A simple evolutionary

topology optimization procedure for compliant mechanism design, Finite

Elem. Anal. Des. 44 (2007) 53–62.

[23] T. Borrvall, J. Petersson, Large-scale topology optimization in 3D using

parallel computing, Comput. Methods Appl. Mech. Eng. 190 (2001) 6201–

29.

[24] K. Vemaganti, W. E. Lawrence, Parallel methods for optimality criteria-

based topology optimization, Comput. Methods Appl. Mech. Eng. 194

(2005) 3637–67.

[25] N. Aage, E. Andreassen, B. S. Lazarov, Topology optimization using

PETSc: An easy-to-use, fully parallel, open source topology optimization

framework, Struct. Multidiscip. Optim. 51 (2015) 565–72.

[26] J. Mart́ınez-Frutos, P. J. Mart́ınez-Castejón, D. Herrero-Peréz, Fine-

grained GPU implementation of assembly-free iterative solver for finite

element problems, Comput. Struct. 157 (2015) 9–18.

[27] A. R. Brodtkorb, T. R. Hagen, M. L. Sætra, Graphics processing unit

(GPU) programming strategies and trends in GPU computing, J. Parallel

Distrib. Comput. 73 (2013) 4–13.

[28] G. Pratx, L. Xing, GPU computing in medical physics: A review, Med.

Phys. 38 (2011) 2685–97.

[29] E. Wadbro, M. Berggren, Megapixel Topology Optimization on a Graphics

Processing Unit, SIAM Rev. 51 (2009) 707–21.

[30] S. Schmidt, V. Schulz, A 2589 line topology optimization code written for

the graphics card, Comput. Vis. Sci. 14 (2011) 249–56.

51

[31] K. Suresh, Efficient generation of large-scale pareto-optimal topologies,

Struct. Multidiscip. Optim. 47 (2013) 49–61.

[32] V. Challis, A. Roberts, J. Grotowski, High resolution topology optimization

using graphics processing units (GPUs), Struct. Multidiscip. Optim. 49

(2014) 315–25.

[33] F. J. Ramı́rez-Gil, E. C. Nelli-Silva, W. Montealegre-Rubio, Topology op-

timization design of 3D electrothermomechanical actuators by using GPU

as a co-processor, Comput. Methods Appl. Mech. Eng. 302 (2016) 44–69.

[34] J. Wu, C. Dick, R. Westermann, A System for High-Resolution Topology

Optimization, IEEE Trans. Visual Comput. Graphics 22 (2016) 1195–208.

[35] C. Dick, J. Georgii, R. Westermann, A Real-Time Multigrid Finite Hexa-

hedra Method for Elasticity Simulation using CUDA, Simulation Modelling

Practice and Theory 19 (2011) 801–16.

[36] M. J. Garcia, O. Ruiz, G. P. Steven, Engineering design using evolution-

ary structural optimization based on iso-stress-driven smooth geometry re-

moval, in: Proc. of NAFEMS World Congress, 2001.

[37] M. Victoria, P. Marti, O. Querin, Topology design of two-dimensional

continuum structures using isolines, Comput. Struct. 87 (2009) 101–9.

[38] J. Mart́ınez-Frutos, D. Herrero-Peréz, Efficient Matrix-free GPU imple-

mentation of Fixed Grid Finite Element Analysis, Finite Elem. Anal. Des.

104 (2015) 61–71.

[39] J. Mart́ınez-Frutos, D. Herrero-Peréz, Large-scale robust topology opti-

mization using multi-GPU systems, Comput. Methods Appl. Mech. Eng.

311 (2016) 393–414.

[40] G. M. Amdahl, Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities, in: AFIPS Conference Proceedings,

volume 30, 1967, pp. 483–5.

52

[41] M. Victoria, O. M. Querin, P. Mart́ı, Topology design of three-dimensional

continuum structures using isosurfaces, Adv. Eng. Software 42 (2011) 671–

9.

[42] V. R. Voller, C. R. Swaminathan, B. G. Thomas, Fixed grid techniques for

phase change problems: a review, Int. J. Numer. Methods Eng. 30 (1990)

875–98.

[43] M. J. Garćıa-Rúız, G. P. Steven, Fixed grid finite elements in elasticity

problems, Engineering Computations 16 (1999) 145–64.

[44] H. Kim, M. J. Garcia, O. M. Querin, G. P. Steven, Y. M. Xie, Introduction

of fixed grid in evolutionary structural optimisation, Eng. Computations

17 (2000) 427–39.

[45] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its

Basis and Fundamentals, Elsevier Butterworth Heinemann, Oxford, 2013.

[46] H. Kim, O. M. Querin, G. P. Steven, Y. M. Xie, Improving efficiency

of evolutionary structural optimization by implementing fixed grid mesh,

Struct. Multidiscip. Optim. 24 (2003) 441–8.

[47] W. E. Lorensen, H. E. Cline, Marching cubes: a high resolution 3D surface

construction algorithm, Comput. Graph. 21 (1987) 163–9.

[48] T. S. Newman, H. Yi, A survey of the marching cubes algorithm, Comp.

Graph. 30 (2006) 854–79.

[49] M. Dürst, Letters: Additional Reference to Marching Cubes, ACM SIG-

GRAPH Computer Graphics 22 (1988) 72–3.

[50] G. Nielson, On marching cubes, IEEE Trans. Visual Comput. Graphics 9

(2003) 283–97.

[51] M. J. de Ruiter, F. van Keulen, Topology optimization using a topology

description function, Struct. Multidiscip. Optim. 26 (2004) 406–16.

53

[52] M. H. Hsu, Y. L. Hsu, Interpreting three-dimensional structural topology

optimization results, Comput. Struct. 83 (2005) 327–37.

[53] X. Huang, Y. M. Xie, M. C. Burry, A New Algorithm for BiDirectional

Evolutionary Structural Optimization, JSME Int J., Ser. C 49 (2006) 1091–

9.

[54] S. Ashby, R. Falgout, A Parallel Multigrid Preconditioned Conjugate Gra-

dient Algorithm for Groundwater Flow Simulations, Nucl. Sci. Eng. 124

(1996) 145–59.

[55] W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2000.

[56] R. S. Sampath, G. Biros, A Parallel Geometric Multigrid Method for Finite

Elements on Octree Meshes, SIAM J. Sci. Comput. 32 (2010) 1361–92.

[57] O. Amir, N. Aage, B. S. Lazarov, On multigrid-CG for efficient topology

optimization, Struct. Multidiscip. Optim. 49 (2014) 815–29.

54

